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We consider a multi-agent multi-armed bandit setting in which n honest agents collaborate over a network to
minimize regret but m malicious agents can disrupt learning arbitrarily. Assuming the network is the complete
graph, existing algorithms incur O((m + K/n)log(T)/A) regret in this setting, where K is the number of arms
and A is the arm gap. For m < K, this improves over the single-agent baseline regret of O(K log(T)/A).

In this work, we show the situation is murkier beyond the case of a complete graph. In particular, we prove
that if the state-of-the-art algorithm is used on the undirected line graph, honest agents can suffer (nearly)
linear regret until time is doubly exponential in K and n. In light of this negative result, we propose a new
algorithm for which the i-th agent has regret O((dpy,1(i) + K/n)log(T)/A) on any connected and undirected
graph, where d;;,,1(i) is the number of i’s neighbors who are malicious. Thus, we generalize existing regret
bounds beyond the complete graph (where dy,,1(i) = m), and show the effect of malicious agents is entirely
local (in the sense that only the dy,,(i) malicious agents directly connected to i affect its long-term regret).
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1 INTRODUCTION

Motivated by applications including distributed computing, social recommendation systems, and
federated learning, a number of recent papers have studied multi-agent variants of the classical
multi-armed bandit problem. Typically, these variants involve a large number of agents playing a
bandit while communicating over a network. The goal is to devise communication protocols that
allow the agents to efficiently amalgamate information, thereby learning the bandit’s parameters
more quickly than they could by running single-agent algorithms in isolation.

Among the many multi-agent variants considered in the literature (see Section 1.5), we focus on
a particular setting studied in the recent line of work [18, 49, 52, 56]. In these papers, n agents play
separate instances of the same K-armed bandit and are restricted to o(T) pairwise and bit-limited
communications per T arm pulls. We recount two motivating applications from this prior work.

ExaMPLE 1. For an e-commerce site (e.g., Amazon), the agents model n servers choosing one of K
products to show visitors to the site. The product selection problem can be viewed as a bandit — products
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are arms, while purchases yield rewards — and communication among the agents/servers is restricted
by bandwidth.

ExAMPLE 2. For a social recommendation site (e.g., Yelp), the agents represent n users choosing
among K items, such as restaurants. This is analogously modeled as a bandit, and communication is
limited because agents/users are exposed to a small portion of all reviews.

To contextualize our contributions, we next discuss this line of work in more detail.

1.1 Fully cooperative multi-agent bandits

The goal of [18, 49, 52] is to devise fully cooperative algorithms for which the cumulative regret
R(Ti) of each agent i is small (see (5) for the formal definition of regret). All of these papers follow a
similar approach, which roughly proceeds as follows (see Section 3 for details):

e The arms are partitioned into n subsets of size O(K/n), and each agent is assigned a distinct
subset called a sticky set, which they are responsible for exploring.

o Occasionally (o(T) times per T arm pulls), each agent i asks a random neighbor i’ for an arm
recommendation; i’ responds with the arm they believe is best, which i begins playing.

For these algorithms, the regret analysis essentially contains two steps:

o First, the authors show that the agent (say, i*) with the true best arm in its sticky set eventually
identifies it as such. Thereafter, a gossip process unfolds. Namely, i* recommends the best
arm to its neighbors, who recommend it to their neighbors, etc., spreading the best arm to all
agents. The spreading time (and thus the regret before this time) is shown to be polynomial
in K, n, and 1/A, where A is the gap in mean reward between the two best arms.

e Once the best arm spreads, agents play only it and their sticky sets, so long-term, they
effectively face O(K /n)-armed bandits instead of the full K-armed bandit. By classical bandit
results (see, e.g., [3]), this implies O((K/n)log(T)/A) regret over horizon T.

Hence, summing up the two terms, [18, 49, 52] provide regret bounds of the form'

(i) KlogT | 1
—ol|= K.n, — 1
R, O(n A tpoly (Kom, ) (1)

as compared to O(K log(T)/A) regret for running a single-agent algorithm in isolation.

1.2 Robust multi-agent bandits on the complete graph

Despite these improved bounds, [18, 49, 52] require all agents to execute the prescribed algorithm,
and in particular, to recommend best arm estimates to their neighbors. As pointed out in [56],
this may be unrealistic: in Example 2, review spam can be modeled as bad arm recommendations,
while in Example 1, servers may fail entirely. Hence, [56] considers a more realistic setting where n
honest agents recommend best arm estimates but m malicious agents recommend arbitrarily. For
this setting, the authors propose a robust version of the algorithm from [18] where honest agents
block suspected malicious agents. More specifically, [56] considers the following blocking rule:
e If agent i’ recommends arm k to honest agent i, but arm k subsequently performs poorly for i
- in the sense that the upper confidence bound (UCB) algorithm does not select it sufficiently
often — then i temporarily suspends communication with i’.
As shown in [56], this blocking scheme prevents each malicious agent from recommending more
than O(1) bad arms long-term, which (effectively) results in an O(m + K /n)-armed bandit (O(m)
malicious recommendations, plus the O(K/n)-sized sticky set). Under the assumption that honest

IMore precisely, [18, 49] prove (1), while the K/n term balloons to (K/n) + log n in [52].
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and malicious agents are connected by the complete graph, this allows [56] to prove

(i) _ K logT 1
R —O((;+m)T+poly(K,n,m,Z . (2)

In [56], it is also shown that blocking is necessary: for any n € N, if even m = 1 malicious agent is
present, the algorithm from [18] (which does not use blocking) incurs Q(K log(T)/A) regret. Thus,
one malicious agent negates the improvement over the single-agent baseline.

1.3 Objective and challenges

Our main goal is to generalize the results of [56] from the complete graph to the case where the
honest agent subgraph is only connected and undirected. This is nontrivial because [56] relies
heavily on the complete graph assumption. In particular, the analysis in [56] requires that i* (the
agent with the best arm in its sticky set) itself recommends the best arm to each of the other honest
agents. In other words, each honest agent i # i* relies on i* to inform them of the best arm, which
means i* must be a neighbor of i. Thus, to extend (2) beyond complete graphs, we need to show
a gossip process unfolds (like in the fully cooperative case): i* recommends the best arm to its
neighbors, who recommend it to their neighbors, etc., spreading it through the network.

The challenge is that, while blocking is necessary to prevent Q(K log(T)/A) regret, it also causes
honest agents to accidentally block each other. Indeed, due to the aforementioned blocking rule and
the noisy rewards, they will block each other until they collect enough samples to reliably identify
good arms. From a network perspective, accidental blocking means that edges in the subgraph of
honest agents temporarily fail. Consequently, it is not clear if the best arm spreads to all honest
agents, or if (for example) this subgraph eventually becomes disconnected, preventing the spread
and causing the agents who do not receive the best arm to suffer ©(T) regret.

Analytically, accidental blocking means we must deal with a gossip process over a dynamic
graph. This process is extremely complicated, because the graph dynamics are driven by the bandit
algorithms, which in turn affect the future evolution of the graph. Put differently, blocking causes
the randomness of the communication protocol and that of the bandit algorithms to become
interdependent. We note this does not occur for the original non-blocking algorithm, where the two
sources of randomness can be cleverly decoupled and separately analyzed - see [18, Proposition 4].
Thus, in contrast to existing work, we need to analyze the interdependent processes directly.

1.4 Our contributions

Failure of the existing blocking rule: In Section 4, we show that the algorithm from [56] fails
to achieve a regret bound of the form (2) for connected and undirected graphs in general. Toward
this end, we define a natural “bad instance” in which n = K, the honest agent subgraph is an
undirected line (thus connected), and all honest agents share a malicious neighbor. For this instance,
we propose a malicious strategy that causes honest agents to repeatedly block one another, which
results in the best arm spreading extremely slowly. More specifically, we show that if honest agents
run the algorithm from [56], then the best arm does not reach honest agent n (the one at the
end of the line) until time is doubly exponential in n = K. Note [56] shows the best arm spreads
polynomially fast for the complete graph, so we demonstrate a doubly exponential slowdown for
complete versus line graphs. This is rather surprising, because for classical rumor processes that
do not involve bandits or blocking (see, e.g., [50]), the slowdown is only exponential (i.e., @(log n)
rumor spreading time on the complete graph versus ©(n) on the line graph). As a consequence of
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the slow spread, we show the algorithm from [56] suffers regret

P-of )i
R =Q log(T =, ——l, 3
T (mm { og(T) + exp (exp (3 log T (3)
i.e., it incurs (nearly) linear regret until time Q(exp(exp(n/3))) and thereafter incurs logarithmic
regret but with a huge additive term (see Theorem 1).

Refined blocking rule: In light of this negative result, we propose a refined blocking rule in
Section 5. Roughly, our rule is as follows: agent i blocks i’ for recommending arm k if

e arm k performs poorly, i.e., it is not chosen sufficiently often by UCB,

e and agent i has not changed its own best arm estimate recently.
The second criterion is the key distinction from [56]. Intuitively, it says that agents should not
block for seemingly-poor recommendations until they become confident that their own best arm
estimates have settled on truly good arms. This idea is the main new algorithmic insight of the
paper. It is directly motivated by the negative result of Section 4; see Remark 5.

Gossip despite blocking: Analytically, our main contribution is to show that, with our refined
blocking rule, the best arm quickly spreads to all honest agents. The proof is quite involved; we
provide an outline in Section 7. At a very high level, the idea is to show that honest agents using
our blocking rule eventually stop blocking each other. Thereafter, we can couple the arm spreading
process with a much more tractable noisy rumor process that involves neither bandits nor blocking
(see Definition 1), and that is guaranteed to spread the best arm in polynomial time.

Regret upper bound: Combining our novel gossip analysis with some existing regret minimization
techniques, we show in Section 5 that our refined algorithm enjoys the regret bound

(i) _ K . logT 1
Ry =0 ((; + dmal(l)) A + poly (K, mm, ||, (4)

where dp,41(i) is the number of malicious neighbors of i (see Theorem 2). Thus, our result generalizes
(2) from the complete graph (where dpma(i) = m) to connected and undirected graphs. Moreover,
note the leading log T term in (4) is entirely local — only the dm,(i) malicious agents directly
connected to i affect its long-term regret. For example, in the sparse regime dpa1(i) = O(1), our
log T term matches the one in (1) up to constants, which (we recall) [18, 49] proved in the case
where there are no malicious agents anywhere in the network. In fact, for honest agents i with
dma1(i) = 0, we can prove that the log T term in our regret bound matches the corresponding term
from [18], including constants (see Corollary 2). In other words, we show that for large horizons T,
the effects of malicious agents do not propagate beyond one-step neighbors. Furthermore, we note
that the additive term in (4) is polynomial in all parameters, whereas for the existing algorithm it
can be doubly exponential in K and n, as shown in (3) and discussed above.

Numerical results: In Section 6, we replicate the experiments from [56] and extend them from the
complete graph to G(n + m, p) random graphs. Among other findings, we show that for p = 1/2 and
p = 1/4, respectively, the algorithm from [56] can perform worse than the non-blocking algorithm
from [18] and the single-agent baseline, respectively. In other words, the existing blocking rule
becomes a liability as p decreases from the extreme case p = 1 considered in [56]. In contrast, we
show that our refined rule has lower regret than [18] across the range of p tested. Additionally, it
outperforms [56] on average for all but the largest p and has much lower variance for smaller p.

Summary: Ultimately, the high-level messages of this paper are twofold:
e In multi-agent bandits with malicious agents, we can devise algorithms that simultaneously
(1) learn useful information and spread it through the network via gossip, and (2) learn who
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is malicious and block them to mitigate the harm they cause. Moreover, this harm is local in
the sense that it only affects one-hop neighbors.

e However, blocking must be done carefully; algorithms designed for the complete graph may
spread information extremely slowly on general graphs. In particular, the slowdown can be
doubly exponential, much worse than the exponential slowdown of simple rumor processes.

1.5 Other related work

In addition to the paper [56] discussed above, several others have considered multi-agent bandits
where some of the agents are uncooperative. In [6], the honest agents face a non-stochastic
(i.e., adversarial) bandit [4] and communicate at every time step, in contrast to the stochastic
bandit and limited communication of our work. The authors of [48] consider the objective of
best arm identification [2] instead of cumulative regret. Most of their paper involves a different
communication model where the agents/clients collaborate via a central server; Section 6 studies a
“peer-to-peer” model which is closer to ours but requires additional assumptions on the number of
malicious neighbors. A different line of work considers the case where an adversary can corrupt
the observed rewards (see, e.g., [11, 12, 25, 26, 29, 33, 40, 41, 44], and the references therein), which
is distinct from the role that malicious agents play in our setting.

For the fully cooperative case, there are several papers with communication models that differ
from the aforementioned [18, 49, 52]. For example, agents in [15, 17] broadcast information instead
of exchanging pairwise arm recommendations, communication in [34, 36, 47] is more frequent, the
number of transmissions in [45] depends on A™! so could be large, and agents in [37] exchange
arm mean estimates instead of (bit-limited) arm indices.

More broadly, other papers have studied fully cooperative variants of different bandit problems.
These include minimizing simple instead of cumulative regret (e.g., [28, 54]), minimizing the total
regret across agents rather than ensuring all have low regret (e.g., [22, 57]), contextual instead
of multi-armed bandits (e.g., [19, 23, 24, 35, 55]), adversarial rather than stochastic bandits (e.g.,
[7, 16, 31]), and bandits that vary across agents (e.g., [10, 53, 58]). Another long line of work features
collision models where rewards are lower if multiple agents simultaneously pull the same arm (e.g.,
[1, 5, 13, 21, 30, 42, 43, 46, 51]), unlike our model. Along these lines, other reward structures have
been studied, such as reward being a function of the agents’ joint action (e.g., [8, 9, 32]).

1.6 Organization

The rest of the paper is structured as follows. We begin in Section 2 with definitions. In Section 3,
we introduce the algorithm from [56]. Sections 4 and 5 discuss the existing and proposed blocking
rules. Section 6 contains experiments. We discuss our analysis in Section 7 and close in Section 8.

2 PRELIMINARIES

Communication network: Let G = ([n + m], E) be an undirected graph with vertices [n + m] =
{1,...,n+ m}. We call [n] the honest agents and assume they execute the forthcoming algorithm.
The remaining agents are termed malicious; their behavior will be specified shortly. For instance,
honest and malicious agents represent functioning and failed servers in Example 1. The edge set E
encodes which agents are allowed to communicate, e.g., if (i, i’) € E, the i-th and i’-th servers can
communicate in the forthcoming algorithm.

Denote by Enon = {(i,i’) € E : i, i’ € [n]} the edges between honest agents and Ghon = ([1], Ehon)
the honest agent subgraph. For each i € [n], we let N(i) = {i’ € [n+ m] : (i,i") € E} denote
its neighbors, Nyon(i) = N(i) N [n] its honest neighbors, and Ny,1(i) = N(i) \ [n] its malicious
neighbors. We write d(i) = |N(i)|, dhon(i) = |Nhon(i)], and dmai(i) = |Nmai(i)| for the associated
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Fig. 1. Illustration of the phases in Algorithm 1; see beginning of Section 3.1 for details.

degrees, and d = max;e[n] d(i), dhon = max;e[n] dhon(i), and dmal = MaX;e[n] dmal(i) for the maximal
degrees. We make the following assumption, which generalizes the complete graph case of [56].

AssuMPTION 1. The honest agent subgraph G, is connected, i.e., for any i, i’ € [n], there exists
l € Nandip,iy,...,i; € [n] such thatiy =i, (ij-1,1j) € Epon ¥V j € [I], and i = i’.

Multi-armed bandit: We consider the standard stochastic multi-armed bandit [38, Chapter 4].
Denote by K € N the number of arms and [K] the set of arms. For each k € [K], we let vx be a
probability distribution over R and {X; ;(k)}ie[n],rerv an i.i.d. sequence of rewards sampled from vy.
The interpretation is that, if the i-th honest agent chooses the k-th arm at time ¢, it earns reward
Xi.+(k). The objective (to be formalized shortly) is reward maximization. In Example 2, for instance,
[K] represents the set of restaurants in a city, and the reward X; ; (k) quantifies how much person i
enjoys restaurant k if they dine there on day t.

For each arm k € [K], we let y; = BE[X; (k)] denote the corresponding expected reward. Without
loss of generality, we assume the arms are labeled such that yy > - -+ > px. We additionally assume
the following, which generalizes the v = Bernoulli(yy) and p1 > po setting of [56]. Notice that
under this assumption, the arm gap Ay = p; — py is strictly positive.

ASSUMPTION 2. Rewards are [0, 1]-valued, i.e., for each k € [K], vk is a distribution over [0, 1].
Furthermore, the best arm is unique, i.e., i1 > [ia.

Objective: For each i € [n] and t € N, let Iii) € [K] denote the arm chosen by honest agent i at
time t. Our goal is to minimize the regret R(T’) , which is the expected additive loss in cumulative

reward for agent i’s sequence of arm pulls {Igi)}tll compared to the optimal policy that always
chooses the best arm 1. More precisely, we define regret as follows:

T T L
R =Yg [x,.,,(l) - xi,t(Ii’))] =) E [M - /w] =) B [Afi”] ' ®)
=1 =1 =

3 ALGORITHM

We next discuss the algorithm from [56] (Algorithm 1 below), which modifies the one from [18]
to include blocking. For ease of exposition, we begin by discussing the key algorithmic design
principles from [18] in Section 3.1. We then define Algorithm 1 formally in Section 3.2. Finally, we
introduce and discuss one additional assumption in Section 3.3.

3.1 Key ideas of the non-blocking algorithm

We assume m = 0 this subsection and describe the non-blocking algorithm from [18].
o Phases: In [18], the time steps 1, ..., T are grouped into phases, whose role is twofold. First,
within the j-th phase, the i-th honest agent only pulls arms belonging to a particular subset
SJ(.i) C [K]. We call these active sets and detail their construction next. Second, at the end of
the j-th phase, the agents construct new active sets by exchanging arm recommendations
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(a) Initial active sets (b) Recommendations (c) Updated active sets

(d) Later active sets e) Recommendations f) Updated active sets

Fig. 2. lllustration of the active sets in Algorithm 1; see Example 3 for details.

with neighbors, in a manner to be described shortly. See Figure 1 for a pictorial description.
Notice that the phase durations are increasing, which will be discussed in Section 3.2.

Active sets: The active set S}(.i) will always contain a subset of arms $@ ¢ [K] that does not

vary with the phase j. Following [18, 56], we call S the sticky set and its elements sticky
arms. The sticky sets ensure that each arm is explored by some agent, as will be seen in the
forthcoming example. In addition, SJ(.i) will contain two non-sticky arms that are dynamically
updated across phases j based on arm recommendations from neighbors.

e Arm recommendations: After the j-th phase, each agent i contacts a random neighbor, who
responds with whichever of their active arms performed “best” in the current phase. Upon
receiving this recommendation, i adds it to its active set and discards whichever currently-
active non-sticky arm (i.e., whichever element of Sj.i) \ $O) performed “worse”. (We quantify
“best” and “worse” in the formal discussion of Section 3.2.)

ExampLE 3. Each subfigure of Figure 2 depicts n = 3 honest agents as circles and their active sets as
rectangles. The blue rectangles are sticky sets, the orange rectangles are non-sticky arms, and the arms
are sorted by performance. For example, the left agent in Figure 2a has sticky set {1,2} and active
set {1,2,3,6} and believes arm 3 to be the best of these. Note the blue sticky sets partition [K] = [6],
so at each phase, each arm is active for some agent. This ensures the best arm is never permanently
discarded during the arm recommendations discussed above. Figure 2b shows agents recommending
the active arms they believe are best, and Figure 2c depicts the updated active sets. For instance, the left
agent replaces its worse non-sticky arm 6 with the recommendation 5. Figure 2d shows a later phase
where the best arm 1 has spread to all agents, who have all identified it as such. Thereafter, all agents
recommend 1, so the active set remains fixed (Figures 2e and 2f). Hence, all agents eventually exploit
the best arm while only exploring a subset of the suboptimal arms (three instead of five here).

3.2 Formal definition of the blocking algorithm

The algorithm in [56] supplements the one from Section 3.1 with a blocking procedure. Specifically,
honest agents run the algorithm from [18] while maintaining blocklists of neighbors they are
unwilling to communicate with. This approach is defined in Algorithm 1 and detailed next.

Inputs (Line 1): The first input is a standard UCB exploration parameter « > 0, which will be
discussed shortly. The input f > 1 controls the lengths of the phases; namely, the j-th phase
encompasses times 1+A;_y,...,A;, where A; = [jﬁ'l. Note the phase duration A; - A;_; = O(jﬁ’l)
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Algorithm 1: Multi-agent bandits with blocking (executed by i € [n])

1 Input: UCB parameter @ > 0, phase parameter 8 > 1, sticky arms $®) with |S?)| = § < K -2

2 Initialize A; = = [jA, P(') 0V j € N (communication times and blocklists)

3 Set j = 1 (current phase) let {U(') L(l) } c [K]\ S be two distinct non-sticky arms and
S(l) SOy {U(l) L(l)} the initial active set

4 for t € Ndo

5 Pull Igi) = arg maxkes<,> (pk)(t -1+ \/a log(t)/T(l)(t - 1)) (UCB over active set)

6 if t = A; (if communication occurs at this time) then

7 B(.i) = argmax, _ 5 (T(i)(A i) — T(i)(Aj_l)) (most played active arm in this phase)
8 {P(l)} 5-j < Update- Blockllst({P(’)} o ([56] uses Alg. 3; we propose Alg. 4)
9 (H(.’), 5’)) = Get-Recommendation(i, j, PJ(. D) (see Alg. 2)

10 if Rﬁ.i) ¢ Sj(.i) (if recommendation not already active) then

1 U]'(Jlr)1 = arg manE{U;i)’L-(ii)} (TIEI)(Aj) - Tlil)(Aj,l)> (best non-sticky active arm)
12 L§21 = R( D (replace worst non-sticky active arm with recommendation)

13 51(-?1 = S(’) U {U](fr)l, L(l)l} (new active set is sticky set and two non-sticky arms)
14 else

15 ‘ 51(:)1 = 5(1) (keep the same active set, since recommendation is already active)
16 je—j+1 (mcrement phase)

Algorithm 2: (Hj(.i), R;.i)) = Get-Recommendation(i, j, Pj(.i)) (black box to i € [n])

1 Input: Agent i € {1,...,n}, phase j € N, blocklist PJ(.i)
2 Sample H](.i) from N(i) \ P}(.i) (non-blocked neighbors) uniformly at random
3 if Hj(.i) < n (if the sampled agent is honest) then

g
4 ‘ Set Rj.l) B( i) (honest agents recommend most played arm from this phase)
5 else
6 ‘ Choose R\ € [K] arbitrarily (malicious agents recommend arbitrary arms)

7 Output: (HJ(.i), R;i))

grows with j, as shown in Figure 1. The final input is an S-sized sticky set S@ (S = 2 in Example 3),
which, as in [56], we assume are provided to the agents (see Section 3.3 for more details).

Initialization (Lines 2-3): To start, i initializes the times A; at which the j-th phase ends, along
with the blocklist Pj(.l). Additionally, i chooses two distinct (but otherwise arbitrary) non-sticky

arms Ul(i) and L(li) and constructs the active set S§i> =50y {Ul(i) , L(li)}. Notice that the active set
contains the sticky set and two arms that depend on the phase, as described in Section 3.1.

UCB over the active set (Line 5): As was also mentioned in Section 3.1, i only pulls arms from
its current active set S;l). More specifically, at each time ¢ during phase j, i chooses the active arm
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I(i) € S(i) that maximizes the UCB in Line 5 (see [38, Chapters 7-10] for background). Here Tlii)(t -1)

and (l)(t — 1) are the number of pulls of k and the empirical mean of those pulls, i.e.,

i i (i 1
e-n= ) W=k {e-0=—m—— > Xk
se[t-1] T =1 ook

where X; (k) ~ v¢ as in Section 2 and 1 is the indicator function.

Best arm estimate (Line 7): At the end of phase j (i.e., when t = A;), i defines its best arm estimate
B;i) as the active arm it played the most in phase j. The intuition is that, for large horizons, the arm
chosen most by UCB is a good estimate of the true best arm [14]. Thus, because phase lengths are
increasing (see Figure 1), Bj.i) will be a good estimate of the best active arm for large j.

Blocklist update (Line 8): Next, i calls the Update-Blocklist subroutine to update its blocklist
Pj(.l). The implementation of this subroutine is the key distinction between [56] and our work. We
discuss the respective implementations in Sections 4 and 5, respectively.

Arm recommendations (Line 9): Having updated P](.i), i requests an arm recommendation R;i)
via Algorithm 2. Algorithm 2 is a black box (i.e., i provides the input and observes the output),
which samples a random non-blocked neighbor H;i) e N(i)\ P](i). If H}i) is honest, it recommends
its best arm estimate, while if malicious, it recommends an arbitrary arm.?

Updating the active set (Lines 10-15): Finally, i updates its active set as in Section 3.1. In partic-
ular, if the recommendation RY is not currently active®, i defines U.(fr)l to be the non-sticky arm
that performed better in phase j, in the sense that UCB chose it more often (following the above

521 becomes the recommendation R(') and the new

active set becomes SJ(.Jr)1 =S50y {Uj(fr)l, L(l)l} (the sticky set and two other arms, as above)

intuition from [14]). The other non-sticky arm L

3.3 Additional assumption

Observe that Algorithm 1 does not preclude the case where the best arm is not in any honest
agent’s sticky set, i.e., 1 ¢ Uyzlﬁ(i). In this case, the best arm may be permanently discarded, which
causes linear regret even in the absence of malicious agents. For example, this would occur if 1
was not a sticky arm for the left agent in Figure 2 (since the right agent discards 1 in Figure 2c). To
prevent this situation, we will follow [18, 49, 52, 56] in assuming the following.

AssUMPTION 3. There exists i* € [n] with the best arm in its sticky set, i.e., 1 € SU™)

REMARK 1. As discussed in [18, Appendix N], Assumption 3 holds with high probability if S (the size
of the sticky set input to Algorithm 1) is set to ©(K /n) and each sticky set ) is sampled uniformly at
random from the S-sized subsets of [K].

REMARK 2. The choice S = O(K/n) from Remark 1 requires the honest agents to know an order-
accurate estimate of n, i.e., they need to know some n’ = O(n) in order to set S = ©(K/n’) and ensure
that S = ©(K /n). As discussed in [56, Remark 7], this amounts to knowing order-accurate estimates of
n+ m andn/(n + m). The former quantity is the total number of agents, knowledge of which is rather
benign and is also assumed in the fully-cooperative setting [18, 49, 52]. The latter requires the agents
to know that, e.g., half of the others are honest, which is similar in spirit to the assumptions in related
problems regarding social learning in the presence of adversarial agents (e.g., [39]).

2Technically, malicious recommendations need to be measurable; see [56, Section 3] for details.
31f the recommendation is currently active, the active set remains unchanged (see Line 15 of Algorithm 1).
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REMARK 3. Alternatively, we can avoid Assumption 3 entirely by defining the set of the arms to be
those initially known by the honest agents (i.e., their sticky sets), rather than sampling the sticky sets
from a larger “base set" as in Remark 1. In this alternative model, the honest agents aim to identify and
spread through the network whichever of the initially-known arms is best, similar to what happens on
platforms like Yelp (see Example 2). In contrast, the Section 2 model allows for the pathological case
where the base set contains a better arm than any initially known to honest agents (e.g., where no
honest Yelp user has ever dined at the best restaurant). Coping with these pathological cases either
requires Assumption 3, or another mode of exploration (i.e., exploration of base arms) that obfuscates
the key point of our work (collaborative bandit exploration amidst adversaries). For these reasons,
we prefer the alternative model, but to enable a cleaner comparison with prior work [56], we restrict
attention to the Section 2 model (which generalizes that of [56]).

4 EXISTING BLOCKING RULE

We can now define the blocking approach from [56], which is provided in Algorithm 3. In words,
the rule is as follows: if the recommendation R;'_)l from phase j — 1 is not i’s most played arm in the

subsequent phase j, then the agent H}@l who recommended it is added to the blocklists P](.i), e, P}f,),
where n > 1 is a tuning parameter. By Algorithm 2, this means i blocks (i.e., does not communicate
with) HJ(.?I until phase j7 + 1 (at the earliest). Thus, agents block others whose recommendations
perform poorly - in the sense that UCB does not play them often — and the blocking becomes more

severe as the phase counter j grows. See [56, Remark 4] for further intuition.

Algorithm 3: {P;f)};??:j = Update-Blocklist (executed by i € [n], existing rule from [56])

1 if j > '1 and Bﬁ” * Rﬁ.l;)l (if previous recommendation not most played) then
2 PJ(.,’) — P]<.,’ v {H](.'_)l} Vj e {j,...,[j"]} (block the recommender until phase j7)

In the remainder of this section, we define a bad instance (Section 4.1) on which this blocking
rule provably fails (Section 4.2). Our goal here is to demonstrate a single such instance in order to
show this blocking rule must be refined. Therefore, we have opted for a concrete example, which
includes some numerical constants (e.g., 13/15 in (6), the 7 in the log’ T term in Theorem 1, etc.)
that have no particular meaning. Nevertheless, the instance can be generalized; see Remark 4.

4.1 Bad instance

The network and bandit for the bad instance are as follows:

e There are an even number of honest agents (at least four) arranged in a line, increasing in
index from left to right, and there is a malicious agent connected to each of the honest ones.
Mathematically, we have n € {4,6,8,...},m = 1,and E = {(i,i + 1)} U{(i,n + D)} .

o There are K = n arms that generate deterministic rewards (i.e., vx = §,,) with

13 (n/2)-k
h+
=1 pe=—+ Z o Vikef2,...,n/2}, e =0Yk>n/2 (6)
157 &

Intuitively, there are three sets of arms: the best arm, (n/2) — 1 mediocre arms, and n/2 bad
arms. We provide further intuition in the forthcoming proof sketch. For now, we highlight
three key properties. First, the gap from mediocre to bad arms is constant, i.e., ptg, — ik, > 13/15
when k; < n/2 < k;. Second, the gaps between mediocre arms are doubly exponentially
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small, i.e., g — pr1 = 2 2" ok e {2,...,(n/2) — 1}. Third, the gap A, from the best
to the mediocre arms is at least 1/15, as shown in Appendix C.

OBSERVATION 1. Since rewards are deterministic, the most played arm B;'i+)1 in phase j + 1 is a

deterministic function of the number of plays of the active arms at the beginning of the phase, i.e., of

the set {T,El)(Aj)}kes(,-) . Hence, when the j-th recommendation is already active (i.e., when Ry) € SJ(.I),
J+1

which implies Sj(.?l = Sj(.i) in Algorithm 1), B;i)l is a function Of{TIEi)(Aj)}kes(i)’ which is information
g

available to the malicious agent at the j-th communication time A;. Consequently, the malicious agent
can always recommend some R§l> € S;l) such that B;’Jr)l = R;.l) to avoid being blocked by i.

We make the following assumptions on Algorithms 1 and 2:
o The parameters in Algorithm 1 are & = 4 and f§ = 2, while n = 2 in Algorithm 3.
o Sticky sets have size S = 1 and for any i € {1 + n/2,...,n}, i’s initial active set satisfies
min Sgi) > n/2. Thus, active sets contain three arms, and the right half of the honest agents
are initially only aware of the bad arms, i.e., of those that provide no reward.

REMARK 4. Note that Assumptions 1-3 all hold for this instance, and the choicesa = 4 andf = n =2
are used for the complete graph experiments in [56]. Additionally, the instance can be significantly
generalized — the key properties are that K and n have the same scaling, the gaps from mediocre arms
to others are constant, the gaps among mediocre arms are doubly exponentially small, and a constant
fraction of agents on the right initially only have bad arms active.

Finally, we define a particular malicious agent strategy. Let J; = 2% and inductively define
Ji+1 = (J; + 2)? for each I € N. Then the malicious recommendations are as follows:

elfj=Jjandi€ {I+1+n/2,l+2+n/2} for somel € [(n/2) — 1],setR§.i) =1-1+n/2
e Otherwise, let Rﬁ.i) € Sj(.i) be such that B§?1 = R;i) (see Observation 1).

Similar to the arm means, we will wait for the proof sketch to explain this strategy in more detail.
For now, we only mention that the phases J; grow doubly exponentially, i.e.,

J1+1=(]1+2)2>]12>--->]121VZGN 7)

4.2 Negative result

We can now state the main result of this section. It shows that if the existing blocking rule from
[56] is used on the above instance, then the honest agent n at the end of the line suffers nearly
linear regret Q(T) until time T exceeds a doubly exponential function of n = K.

THEOREM 1. If we run Algorithm 1 and use Algorithm 3 as the Update-Blocklist subroutine
with the parameters and problem instance described in Section 4, then

R(T"> = Q (min {log(T) + exp (exp (n/3)),T/log’ T}) .

ProoF skeTCH. We provide a complete proof in Appendix C but discuss the intuition here.

o First, suppose honest agent 1+ n/2 contacts the malicious agent n+ 1 at all phases j € [J; — 1]
(this occurs with constant probability since Jj is constant). Then the right half of honest agents
(i.e., agents 1+ n/2, ..., n) only have bad arms (i.e., arms 1 + n/2, ..., n) in their active sets
at phase J;. This is because their initial active sets only contain such arms (by assumption),
n + 1 only recommends currently-active arms before J;, and no arm recommendations flow
from the left half of the graph to the right half (they need to first be sent from n/2 to 1 + n/2,
but we are assuming the latter only contacts n + 1 before Ji).
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e Now consider phase J;. With constant probability, 1+ n/2 and 2 + n/2 both contact n+ 1, who
recommends a currently active (thus bad) arm and the mediocre arm n/2, respectively. Then,
again with constant probability, 2 + n/2 contacts 1 + n/2 at the next phase J; + 1; 1 + n/2
only has bad arms active and thus recommends a bad arm. Therefore, during phase J; + 2,
agent 2 + n/2 has the mediocre arm n/2 and some bad recommendation from 1 + n/2 in its
active set. The inverse gap squared between these arms is constant, thus less than the length
of phase J; + 2 (for appropriate J;), so by standard bandit arguments (basically, noiseless
versions of best arm identification results from [14]), n/2 will be most played. Consequently,
by the blocking rule in Algorithm 3, 2 + n/2 blocks 1 + n/2 until phase (J; + 2)? = J.

e We then use induction. For each I € [(n/2) — 1] (I = 1 in the previous bullet), suppose
I+ 1+ n/2blocks [ + n/2 between phases J; + 2 and J;.1. Then during these phases, no arm
recommendations flow past [ + n/2, so agents > I + 1 + n/2 only play arms > 1 — [ + n/2. At
phase J;;1, the malicious agent recommends k > 1—1+n/2and —I+n/2 to agents [+ 1+n/2
and [ + 2 + n/2, respectively, and at the subsequent phase Jj;; + 1,/ + 1 + n/2 recommends
k" > 1+1+n/2tol+ 2+ n/2. Similar to the previous bullet, we then show [ + 2 + n/2
plays arm —I + n/2 more than k’ during phase J;.; + 2 and thus blocks [ + 1 + n/2 until
(Ji41 + 2)? = Ji12, completing the inductive step. The proof that —I + /2 is played more than
k' during phase Jj;1 + 2 again follows from noiseless best arm identification, although unlike
the previous bullet, the relevant arm gap is no longer constant (both could be mediocre arms).
However, we chose the mediocre arm means such that their inverse gap squared is at most
doubly exponential in [, so by (7), the length of phase J;;; dominates it.

In summary, we show that due to blocking amongst honest agents, [ + 1 + n/2 does not receive
arm 1 — [ + n/2 until phase Jj, given that some constant probability events occur at each of the
times Ji, ..., J;. This allows us to show that, with probability at least exp(—Q(n)), agent n does not
receive the best arm until phase J,/, = exp(exp(€Q(n))), and thus does not play the best arm until
time exp(exp(Q(n))) in expectation. Since A, is constant, we can lower bound regret similarly. O

5 PROPOSED BLOCKING RULE

To summarize the previous section, we showed that the existing blocking rule (Algorithm 3) may
result in honest agents blocking too aggressively, which causes the best arm to spread very slowly.
In light of this, we propose a relaxed blocking criteria (see Algorithm 4): at phase j, agent i will
block the agent H;i)l who recommended arm R;l_)l at the previous phase j — 1 if

() () _ gl _ — gl

TR’(_i)l(Aj) <k; and le = Bj.‘_1 =...=B" (8)

$
where xj < Aj and 6; < j are tuning parameters. Thus, i blocks if both of the following occur:

e The recommended arm R(.i_)1 performs poorly, in the sense that UCB has not chosen it
sufficiently often (i.e., at least k; times) by the end of phase j.

e Agent i has not changed its own best arm estimate since phase 8;. Intuitively, this can be
viewed as a confidence criterion: if instead i has recently changed its estimate, then i is
currently unsure which arm is best, so should not block for recommendations that appear
suboptimal at first glance (i.e., those for which the first criterion in (8) may hold).

Algorithm 4: {Pj(.,i)};?:j = Update-Blocklist (executed by i € [n], proposed rule)

1 if j > 1 and (8) holds then P](.,i) — PJ(.,i) U {H;Z} Vje{j...,[j"1} (block recommender);
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REMARK 5. The first criterion in (8) is a natural relaxation of demanding the recommended arm be
most played. The second is directly motivated by the negative result from Section 4. In particular, recall
from the Theorem 1 proof sketch that 1 + 1+ n/2 blocked | + n/2 shortly after receiving a new mediocre
arm from the malicious agent. Thus, blocking amongst honest agents was always precipitated by the
blocking agent changing its best arm estimate. The second criterion in (8) aims to avoid this.

REMARK 6. Our proposed rule has two additional parameters compared to the existing one: k; and
0;. For our theoretical results, these will be specified in Theorem 2; for experiments, they are discussed
in Section 6. For now, we only mention that they should satisfy two properties. First, k; should be o(A;),
so that the first criterion in (8) dictates a sublinear number of plays. Second, j — 0; should grow with
J» since (as discussed above) the second criterion represents the confidence in the best arm estimate,
which grows as the number of reward observations increases.

In the remainder of this section, we introduce a further definition (Section 5.1), provide a general
regret bound under our blocking rule (Section 5.2), and discuss some special cases (Section 5.3).

5.1 Noisy rumor process

As discussed in Section 1.4, we will show that under our proposed rule (1) honest agents eventually
stop blocking each other, and (2) honest agents with the best arm active will eventually recommend
it to others. Thereafter, we essentially reduce the arm spreading process to a much simpler rumor
process in which each honest agent i contacts a uniformly random neighbor i’ and, if i’ is an
honest agent who knows the rumor (i.e., if the best arm is active for i’), then i’ informs i of the
rumor (i.e., i’ recommends the best arm to i). The only caveat is that we make no assumption on the
malicious agent arm recommendations, so we have no control over whether or not they are blocked.
In other words, the rumor process unfolds over a dynamic graph, where edges between honest and
malicious agents may or may not be present, and we have no control over these dynamics.

In light of this, we take a worst-case view and lower bound the arm spreading process with
a noisy rumor process that unfolds on the (static) honest agent subgraph. More specifically, we
consider the process {Z_'j}]f'io that tracks the honest agents informed of the rumor. Initially, only i*
(the agent from Assumption 3) is informed (i.e., Zy = {i*}). Then at each phase j € N, each honest
agent i contacts a random honest neighbor i’. If i’ is informed (i.e., if i’ € I_}_l), then i becomes
informed as well (i.e., i € fj) subject to some Bernoulli(Y) noise, where Y < dpon(i)/d(i). Hence, i
becomes informed with probability |Z_'j_1 N Nuon ()Y /dpon(i) < IZ_'j_l N Nhon(i)|/d(i). Note the right
side of this inequality is in turn upper bounded by the probability with which they receive the best
arm in the process of the previous paragraph.

More formally, we define the noisy rumor process as follows. The key quantity in Definition 1 is
Topr, the first phase all are informed. Analogous to [18], our most general result will be in terms
of the expected time that this phase occurs, i.e, E[Az ,]. Under Assumption 1, the latter quantity
is O((ndyon/Y)?), which cannot be improved in general (see Appendix D.4). However, Section 5.3
provides sharper bounds for E[Az,, ] in some special cases.

DEFINITION 1. Let Y = min;e[,) dpon(i)/d(i). For each honest agent i € [n], let {1_6.(1')}]?"’=1 be iid.
Bernoulli(Y) random variables and {H;i)}jf'il i.i.d. random variables chosen uniformly at random from
Npon(i). Inductively define {Z_}}Jf“’zo as follows: Iy = {i*} (the agent from Assumption 3) and

L=Lyu{iem\L,: 7" =1A" el }vjeN

Finally, let 7y, = inf{j € N : Z; = [n]}.
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5.2 Positive result

We can now present the main result of this section: a regret upper bound for the proposed blocking
rule. We state it first and then unpack the statement in some ensuing remarks. The proof of this
result (and all others in this section) is deferred to Appendix D.
THEOREM 2. Let Assumptions 1-3 hold. Suppose we run Algorithm 1 and use Algorithm 4 as the
Update-Blocklist subroutine with 0; = (j/3)" and k; = j**/(K%S) in (8). Also assume
1 3 1 1 1
>1, n>1, 0<p <-, STt —+—, ——<py< -1). 9
B n prsls @>otogd 2% 203 p2 < pi(f—1) ©9)

Then for any honest agent i € [n] and horizon T € N, we have

( o -1 Apal(i)+3 1 S+dpa(i)+4 K 1

i) ; — —

R}’ < 4alog(T) min — E Ar + E E AL 2E[Azz,,] + Cx, (10)
k=2 kzdma,(i)+4 k=

where Ay = 1 by convention ifk > K. Here Cy is a term independent of T satisfying
Co = O (mavx {da(i)/ o, (K /)%, SP1OHID), (5 P10, @P1m1 ks )

where O(-) hides dependencies on a, B, 1, p1, and p, and log dependencies on K, n, m, and At

REMARK 7. The theorem shows that our algorithm’s regret scales as (dyq(i) + S) log(T)/ A, plus an
additive term 2E[Azz,, | + Cx that is independent of T and polynomial in all other parameters. When
S = O(K/n) (see Remark 1), the first term is O((dmq(i) + K /n)log(T)/A), as stated in Section 1.4. Also,
when dpg (i) is large, we recover the O(K log(T)/A) single-agent bound (including the constant 4a),
i.e., if there are many malicious agents, honest ones fare no worse than the single-agent case.

REMARK 8. In addition to Assumptions 1-3, the theorem requires the algorithmic parameters to
satisfy (9). For example, we can choose f = n =2, p1 = 1/2, a = 4, and p2 = 1/3. More generally, we
view these five parameters as small numerical constants and hide them in the O(-) notation.

REMARK 9. The bound in Theorem 2 can be simplified under additional assumptions. For instance,
in Example 2, it is reasonable to assume K = ©(n) (i.e., the number of restaurants is proportional to
the population) and d = O(1) (i.e., the degrees are constant, as in sparse social networks). Under these
assumptions, the choice S = O(K/n) = O(1) from Remark 1, and the parameters from Remark 6, the
theorem’s regret bound can be further upper bounded by

() W48 logT 2 2 A4 12
RP <> ao * 2BlAar, ]+ Olmax{(K/ M), A", nK?D),
k=2
REMARK 10. Note the parameters from Remark 8 were also used for the bad instance of Section
4. There, we had Ax > 1/15, S = dpa(i) = 1, and E[Azz,, ] = O(nP), so our regret is O(log T) plus a
polynomial additive term that is much smaller than the doubly exponential term in Section 4.

PROOF SKETCH. Let 7, = inf{j € N : B;f/) =1V i’ € [n],j’ = j} denote the first phase where the
best arm is most played for all honest agents at all phases thereafter. Before this phase (i.e., before
time A, ) we simply upper bound regret by E[A,, |. The main novelty of our analysis is bounding
E[Ar,] in terms of Cy and E[A;,, |. We devote Section 7 to discussing this proof.

After phase 7y, the best arm is active by definition, so i incurs logarithmic in T regret. We let

=inf{(j e N:H e PP\ PV vj > jst R #1}
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be the earliest phase such that i blocks for all suboptimal recommendations thereafter. We then
split the phases after rg,, into two groups: those before ) & Tepr V rél?( v TYBK) and those after.
For the phases after 7, but before 70 we consider three cases:
o 70 = Tepr: In this case, there are no such phases, so there is nothing to prove.
o () = T1/(FK). Here we have an effective horizon Az = (7D)f = TVK 50 similar to [56], we
exploit the fact that the best arm is active and modify existing UCB analysis to bound regret

by O(K log(T'/¥)/A) = O(log(T)/A), which is dominated by (10) (in an order sense).

0 = r]ili]i: Here we are considering phases j where the best arm is most played by i (since

Jj = 7spr) but i does not block suboptimal recommendations (since j < Tél?(). Note that no
such phases arise for the existing blocking rule, so here the proof diverges from [56], and
most of Appendix D.1 is dedicated to this case. Roughly speaking, the analogous argument
of the previous case yields the regret bound O((K/A)E[log 7], and we prove this term is
also O(log(T)/A) by deriving a tail bound for 7). The tail amounts to showing that, once
the best arm is active, i can identify suboptimal arms as such, within the phase. This in turn
follows from best arm identification results and the growing phase lengths.

After phase 7(¥), the best arm is most played for all honest agents (since 7 > Tepr), SO they
only recommend this arm. Thus, i only plays the best arm, its S sticky arms, and any malicious
recommendations. Consequently, to bound regret by O((S + dpa1(i)) log(T)/A) as in (10), we need
to show each malicious neighbor i’ only recommends O(1) suboptimal arms. It is easy to see that i’
can only recommend O(log K) such arms: if i’ recommends a bad arm at phase 7, they will be
blocked until phase T/ (FK) (since 7 > Téﬁi v TY(FK)) then until phase (T7/(FK)y1 = T 1K) etc.

i % BK) = TVB which is ti
Thus, the (log, K)-th bad recommendation occurs at phase T" = T"/?, which is time T by
definition A; = jP. Finally, an argument from [56] sharpens this O(log K) term to O(1). o

5.3 Special cases
We next discuss some special cases of our regret bound. First, as in [18], we can prove an explicit
bound assuming the honest agent subgraph Gnon is d-regular, i.e., dhon(i) = d V i € [n].

COROLLARY 1. Let the assumptions of Theorem 2 hold and further assume Gy, is d-regular with
d > 2. Let ¢ denote the conductance of Gyon. Then for any honest agent i € [n] and horizon T € N,

on—1 dpal(i)+3 1 S+dpali)+4

K
1 1
E — + E —,E — (11)
-1 = A k=doma(i)+4 Ak k=2 A

Rg) < 4alog(T) min

+0 (max {dmaz(i) [ g, (K /D)2, SPIPLB-D) (57 A2)PIB-D) gblm nics, ((ﬂ)—ﬁ}) .

REMARK 11. This corollary includes the complete graph case studied in [56], where d (i) = m,
¢ =0(1), and Y = O(n/(n + m)). In this case, the term (11) matches the corresponding term from [56]
exactly, i.e., for large T, Corollary 1 is a strict generalization. Our additive term scales as

max { (m/ 8), (K B )2, SP/PHD), (5] AP0, (1 4+ )Pt nK?S, (n + m) )}

whereas the additive term from [56] scales as max{(m/A;), (K/A5), (S/A%)zﬁ”/(ﬁ_l), (n+ m)?, nK?*S}.

Notice our dependence on the arm gap is A;Zﬁ/(ﬁ_l), which matches the fully cooperative case [18],

—2pn/(f-1)

whereas the dependence is A, in [56], which is potentially much larger.
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REMARK 12. In the setting of Remark 9, the corollary’s regret bound becomes

U ugloe T
< 2087 1 H(max{(K/As)% AF4, nK?, (¢Y)PY).
prr AT

The key difference is the dependence on conductance O(¢~*), which matches the result from [19].
] = O((¢Y)_ﬁ). To do so,

we let 7 ; denote the noiseless version of 7; (defined in the same way but with Y = 1) and r opr =

Proor skeTcH. In light of Theorem 2, we only need to show E[Az,
inf{j:71 ;= [n]}. We then construct a coupling between 7; and 7 I3 which ensures that with high
probability, 7, < jlog(j)/Y whenever Topr S J- Finally, using this coupling and a tail bound for
Topr from [18] (which draws upon the analysis of [20]), we derive a tail bound for Zy,;. This allows
us to show E[Az ] = O(((log n)? log(log(n)/$)/(¢Y))P) = O(($Y)7#), as desired.* O

Finally, we can sharpen the above results for honest agents without malicious neighbors.

COROLLARY 2. Fori € [n] with dpg(i) = 0, the terms (10) and (11) from Theorem 2 and Corollary
1, respectively, can (under their respective assumptions) be improved to 4a log(T) Zi:; A;l.

REMARK 13. The improved term in Corollary 2 matches thelog T term from [18], including constants.
Thus, the corollary shows that for large T, agents who are not directly connected to malicious agents
are unaffected by their presence elsewhere in the graph.

Proor skeTcH. Recall from the Theorem 2 proof sketch that the log T term arises from regret
after phase 7y,;. At any such phase, the best arm is most played for all honest agents (by definition),
so when dpqi(i) = 0, i’s neighbors only recommend this arm. Therefore, i’s active sets after gy, are
fixed; they contain the best arm and S + 1 suboptimal ones. Thus, i only plays S + 1 suboptimal
arms long-term, so in the worst case incurs the standard UCB regret 4« log(T) Zi:g A;I. O

6 NUMERICAL RESULTS

Thus far, we have shown the proposed blocking rule adapts to general graphs more gracefully than
the existing one, at least in theory. We now illustrate this finding empirically.
Experimental setup: We follow [56, Section 6] except we extend those experiments to G(n + m, p)
graphs, i.e., each edge is present with probability p. For each p € {1,1/2,1/4} and each of two
malicious strategies (to be defined shortly), we conduct 100 trials of the following:
o Setn = 25 and m = 10 and generate G as a G(n + m, p) random graph, resampling if necessary
until the honest agent subgraph Gy, is connected (see Assumption 1).
e Set K = 100, y; = 0.95, and yp = 0.85, then sample the remaining arm means {,uk}llfz3
uniformly from [0, 0.85] (so A, = 0.1). For each k € [K], set v = Bernoulli(u).
e Set S = K/n and sample the sticky sets {§(i)}?:1 uniformly from the S-sized subsets of [K],
resampling if necessary until 1 € U;‘=15A(") (see Assumption 3).
e Run Algorithm 1 with the existing (Algorithm 3) and proposed (Algorithm 4) blocking rules,
along with two baselines: a no communication scheme, where agents ignore the network
and run UCB in isolation, and the algorithm from [18], where they do not block.

Algorithmic parameters: We set « = 4 and f = n = 2 as in Remarks 4 and 8. For the parameters
in the proposed blocking rule, we choose k; = j!->, and 6; = j — log j. While these are different

4When Y = 1, [18] shows E[Alsp 1=E[Az,] = O((log(n)/qﬁ)ﬁ), so our bound generalizes theirs up to log terms.

r
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Fig. 3. Empirical results for synthetic data. Rows of subfigures correspond to the malicious strategy, while
columns correspond to the edge probability p for the G(n + m, p) random graph.

from the parameters specified in our theoretical results (which we found are too conservative in
practice), they do satisfy the key properties discussed in Remark 6.

Malicious strategies: Like [56], we use strategies we call the naive and smart strategies (they are
called uniform and omniscient in [56]). The naive strategy simply recommends a uniformly random

(1) p
ke (2o KNS Tkl (A)), ie., the least

played, inactive, suboptimal arm. Intuitively, this is a more devious strategy which forces i to play

suboptimal arm. The smart strategy recommends R jl) = arg min

Ry) often in the next phase (to drive down its upper confidence bound). Consequently, i may play
it most and discard a better arm in favor of it (see Lines 11-13 of Algorithm 1).

Results: In Figure 3, we plot the average and standard deviation (across trials) of the per-agent
regret 2.7 Rg) /n. For the naive strategy, the existing blocking rule eventually becomes worse
than the no blocking baseline as p decreases. More strikingly, it even becomes worse than the no
communication baseline for the smart strategy. In other words, honest agents would have been
better off ignoring the network and simply running UCB on their own. As in Section 4, this is
because accidental blocking causes the best arm to spread very slowly. Additionally, the standard
deviation becomes much higher than all other algorithms, suggesting that regret is significantly
worse in some trials. In contrast, the proposed blocking rule improves as p decreases, because it
is mild enough to spread the best arm at all values of p, and for smaller p, honest agents have
fewer malicious neighbors (on average). We also observe that the proposed rule outperforms both
baselines uniformly across p. Additionally, it improves over the existing rule more dramatically
for the smart strategy, i.e., when the honest agents face a more sophisticated adversary. Finally,
it is worth acknowledging the existing rule is better when p = 1 - although not in a statistically
significant sense for the smart strategy — because it does spread the best arm quickly on the
complete graph (as shown in [56]), and thereafter more aggressively blocks malicious agents.

Other results: As in [56], we reran the simulations using arm means derived from the MovieLens
dataset [27]. We also experimented with new variants of the smart and naive strategies, where the
malicious agents follow these strategies if the best arm is active (in hopes of forcing honest agents
to discard it) and recommend the second best arm otherwise. Intuitively, these variants differ in that
malicious agents recommend good arms (i.e., the second best) more frequently, while still never
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revealing the best arm (the only one that leads to logarithmic regret). For all experiments, the key
message — that the proposed blocking rule adapts to varying graph structures more gracefully than
the existing one - is consistent. See Appendix B for details.

7 GOSSIP DESPITE BLOCKING

As discussed above, the main analytical contribution of this work is proving that the best arm
spreads in a gossip fashion, despite accidental blocking. In this (technical) section, we provide a
detailed sketch of this proof. We begin with a high-level outline. The key is to show that honest
agents eventually stop blocking each other. This argument (roughly) proceeds as follows:
o Step 1: First, we show that honest agents learn the arm statistics in a certain sense. More
specifically, we provide a tail bound for a random phase 7, such that for all phases j > 7am
(1) each honest agent’s most played arm in phase j is close to its true best active arm and (2)
any active arm close to the true best one is played at least x; times by the end of phase j.

Step 2: Next, we show that honest agents communicate with their neighbors frequently. In
particular, we establish a tail bound for another random phase z.om such that for any j > zcom,
each honest agent contacts all of its honest neighbors at least once between 0; and j.

Step 3: Finally, we use the above to show that eventually, no blocking occurs amongst honest
agents. The basic idea is as follows. Consider a phase j, an honest agent i, and a neighbor
i’ of i. Then if i has had the same best arm estimate k since phase 6; - i.e., if the second
blocking criterion in (8) holds — i” would have contacted i at some phase j' € {0}, ...,j} (by
step 2) and received arm k. Between phases j’ and j, the most played arm for i’ cannot get
significantly worse (by step 1). Thus, if i asks i’ for a recommendation at j, i’ will respond
with an arm whose mean is close to yix, which i will play at least x; times (by step 1). Hence,
the first criterion in (8) fails, i.e., the two cannot simultaneously hold.

In the next three sub-sections, we discuss these three steps. Then in Section 7.4, we describe how,
once accidental blocking stops, the arm spreading process can be coupled to the noisy rumor
process from Definition 1. Finally, in Section 7.5, we discuss how to combine all of these steps to
bound the term E[A,,, | from the Theorem 2 proof sketch.

7.1 Learning the arm statistics

Recall we assume py > --- > g, so for any W C [K], min W is the best arm in W, i.e., gminw =
max,,cw Hw- Therefore, for any § € (0,1), Gs(W) 2 {w € W : yu,, > piminw — 6} is the subset of
arms at least §-close to the best one. For each honest agent i € [n] and phase j € N, define

=) _ @) (@) =) _ ; (i) =) _ =) =)
.:jfl = {le ¢ G‘Sj,l(sjl )} , “jfz = { min_ T (A)) < Kj} , _jl — “‘jfl U sz’Z.
W€G5j,2(sj )

where & 1, 8; » € (0, 1) will be chosen shortly. Finally, define the random phase

Tam = inf{j € N : 11(5?) =oVie[n,j/e{jj+1,...}}

In words, T,y is the earliest phase such that, at all phases j thereafter, (1) the most played arms are
dj,1-close to best active arms and (2) all arms J; »-close to the best are played at least «; times.

As discussed above, Step 1 involves a tail bound for 7,,,. The analysis is based on [14, Theorem
2], which includes a tail bound showing that the most played arm is §-close to the best, provided
that 1/82 samples have been collected from each of the §-far arms. In our case, phase j lasts
Aj—Ajq = O(j#~1) time steps, so each of S + 2 active arms is played ©(j#~1/S) times on average.
Hence, we can show the most played arm within the phase is §; ;-close to the best if we choose
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dj1= @)(W), which allows us to bound P(Eﬁ')l) Analogously, we choose J;; = ©(1/4/k;) and
show that §; »-close arms must be played 1/ 5;2 = C:‘)(Kj) times before they are distinguished as
such, which allows us to bound P(EY)Z) Taken together, we can prove a tail bound for 7,y (Lemma
9 in Appendix E.1) with these choices §; ; = @(W) and §; , = @(1/\/17]-).

7.2 Communicating frequently

Next, for any i,i’ € [n] such that (i,i") € Epop, let E;i_)i/) = ﬁj:,__zw_J{H](.,i/) # i} denote the event
L)
that i did not send a recommendation to i’ between phases | 8;]| and j — 2. Also define

Teom = inf{j € N : l(ui_,irEEhmgj_fﬂi )) =0Vj e{jj+1,...}}.

Here we abuse notation slightly; the union is over all (undirected) edges in Ey, but viewed as pairs
of directed edges. Hence, at all phases j > 7.om, each honest agent i’ receives a recommendation
from each of its honest neighbors i at some phase j’ between 0, and j — 2.

Step 2 involves the tail bound for 7., that was mentioned above (see Lemma 10 in Appendix
E.2). The proof amounts to bounding the probability of Ej.iﬁi’). Recall this event says i’ did not
contact i for a recommendation at any phase j* € {6;,...,j — 2}. Clearly, this means i’ did not
block i at any such phase. Hence, in the worst case, i’ blocked i just before 6;, in which case i was
un-blocked at 9;7 = (j/3)P" < j/3, where the inequality holds by assumption in Theorem 2. Hence,
gi=7) implies i’ was not blocking i between phases j/3 and j — 2, so each of the O(j) neighbors
that i’ contacted in these phases was sampled uniformly from a set containing i, yet i was never
sampled. The probability of this decays exponentially in j, which yields an exponential tail for com.

7.3 Avoiding accidental blocking

Next, we show honest agents eventually stop blocking each other. Toward this end, we first note

Vie[n], Yj2=tam, Finins9 S M + dja < Fenin 59, * dj1 (12)

where the first inequality uses the definition of 7., and the second holds because min S](‘i—)l €

argmax, _q» i and Bﬁ.i) € 51('?1 in Algorithm 1 (see Claim 13 in Appendix E.3 for details). In words,
J+1
(12) says the best active arm can decay by at most J; ; at phase j. Applying iteratively and since

there are K arms total, we then show (see Claim 14 in Appendix E.3)

Viel[n], Vj >j> Tarm, Figin s Z )~ (K-=1) sup 1.
J

J 7’ e’}
Combining the previous two inequalities, we conclude (see Corollary 3 in Appendix E.3)
Vie[n], Vj2j2tam P 2 peogo — K sup i1 (13)
J ’ VS VRN

Now the key part of Step 3 is to use (13) to show (see Claim 15 in Appendix E.3)

VjENSL O 2 tm Vi elnlstie{H Vi eP\PY. (14)

In words, this result says that if j is sufficiently large, and if i has sent a recommendation to i’
since phase 0, then i will not block i" at phase j. The proof is by contraction: if instead i blocks
i’ at j, then by Algorithm 4, i has not changed its best arm estimate k since phase 8;, so it would
have recommended k to i’ at some phase j* > ;. Therefore, ﬂminS;f,> > k. Additionally, since
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j' = 0; = Q(j*1), we know that for any j” > j’, the choice of §;» ; in Section 7.1 guarantees that

Kép1 < O(KSy.1) = é(\/KZS/(j’)ﬁ‘l) < O(\/KZS/jpl(ﬁ‘l)).

Combining these observations and using (13) (with j* and j replaced by j — 1 and j’), we then show

prgiy 2 p o — Kosup &1 > pig — é(\/KZS/jPI(ﬁ—l)). (15)
Jj-1 J

Y

On the other hand, i blocking i’ at phase j means i plays the recommended arm Bﬁ'_/)l fewer than

k;j times by the end of phase j. Since j > 6; > 7um, this implies (by definition of 7,,) that

Hie > pgu + dj,2, where §;, = ©(1/4/k;) as in Section 7.1. Combined with (15) and the choice
-1

k; = jP2/(K*S) from Theorem 2, we conclude jP1 =D < O(j?). This contradicts the assumption

p2 < p1(f — 1) in Theorem 2, which completes the proof of (14).
Finally, we use (14) to show honest agents eventually stop blocking each other entirely, i.e.,

VjeNSL 02 teom O, 2 Tam: P\ N [n]=0Vi€[n] (16)

(see Lemma 11 in Appendix E.3). Intuitively, (16) holds because after new blocking stops (14), old
blocking will eventually “wear off”. The proof is again by contradiction: if i is blocking some honest
i’ at phase j, the blocking must have started at some j’ > j/7 (else, it ends by (j/)" < j). Thus,
by assumption jin > e > 0; > Tcom, i blocked i’ at phase j’ > 7¢om. But by definition of 7com, i’
would have contacted i at some phase j” € {0y, ...,j’}. Applying (14) (at phase j’; note that by the
above inequalities, § > 91-1/,, > 0p; > Tarm, as required by (14)), we obtain a contradiction.

7.4 Coupling with noisy rumor process

To begin, we define an equivalent way to sample HJ(.i) in Algorithm 2.° This equivalent method will
allow us to couple the arm spreading and noisy rumor processes through a set of primitive random
variables. In particular, for each honest agent i € [n], let {vﬁ.l)};"l and {IL_I](.I)}]T"’:1 be i.i.d. sequences

drawn uniformly from [0, 1] and Npon(i). Then choose HJ@ according to two cases:
o PV N [n] = 0,let Y\ = 10" < duon(i)/IN()) \ P\"|) and consider two sub-cases. First, if
YJ.(i) =1, set H](.i) = I-_I](.i). Second, if Yj(i) = 0, sample HJ@ from Npar(i) \ PJ@ uniformly.
o If P;i) N [n] # 0, sample H}i) from N(i) \ P;i) uniformly.

Next, we observe that since §;; — 0 as j — oo by the choice of §; ; in Section 7.1 and A; > 0 by
Assumption 2, we have §; ; < A, for large enough j. Paired with the definition of 7,y, this allows

us to show that for all large jand i € [n] with 1 € S](.i) (i.e., with the best arm active), Bj.i) =1(ie,
the best arm is played most). See Claim 17 in Appendix E.4 for the formal statement.
Finally, we observe that by (16), only the first case of the above sampling strategy occurs for

large j. Moreover, in this case, Y;i) is Bernoulli with parameter
dhon(D)/IN(D) \ P\”| 2 dnon(1)/IN(D)| £ dhon(i)/d(0) 2 Y,

where the second inequality holds by Definition 1. Hence, the probability that Y;i) = 1, and thus
the probability that i contacts the random honest neighbor HJ@ in the above sampling strategy,

dominates the probability that i contacts Hj@ in the noisy rumor process of Definition 1. Additionally,
by the previous paragraph, agents with the best arm active will recommend it (for large enough j).

5Claim 16 in Appendix E.4 verifies this equivalency (the proof is a straightforward application of the law of total probability).
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Taken together, we can show that the probability of receiving the best arm in the arm spreading
process dominates the probability of being informed of the rumor in the noisy rumor process. This
allows us to prove a tail bound for 7y, in terms of a tail bound for the random phase 7, from
Definition 1, on the event that the tails of 7, and 7 o are sufficiently small (in the sense of (16);
see Lemma 12 in Appendix E.4 for details).

7.5 Spreading the best arm

In summary, we prove tail bounds for 7, and zcom (Sections 7.1 and 7.2) and show the tails of 7,
are controlled by those of 7, provided the tails of 7,:m and 7com are not too heavy (Sections 7.3
and 7.4). Combining and summing tails allows us to bound E[A,, ] in terms of C, (which accounts
for the tails of 7um and 7eom) and E[Az, ] (which accounts for the tail of 7y,,), as mentioned in the
Theorem 2 proof sketch. See Theorem 3 and Corollary 4 in Appendix E.5 for details.

8 CONCLUSION

In this work, we showed that existing algorithms for multi-agent bandits with malicious agents fail
to generalize beyond the complete graph. In light of this, we proposed a new blocking algorithm
and showed it has low regret on any connected and undirected graph. This regret bound relied
on the analysis of a novel process involving gossip and blocking. Our work leaves open several
questions, such as whether our insights can be applied to multi-agent reinforcement learning.
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A NOTES ON APPENDICES

The appendices are organized as follows. First, Appendix B contains the additional numerical results
that were mentioned in Section 6. Next, we prove Theorem 1 in Appendix C and all results from
Section 5 in Appendix D. We then provide a rigorous version of the proof sketch from Section 7 in
Appendix E. Finally, Appendix F contains some auxiliary results — namely, Appendix F.1 records
some simple inequalities, Appendix F.2 provides some bandit results that are essentially known but
stated in forms convenient to us, and Appendices F.3-F.4 contain some tedious calculations.

For the analysis, we use C;, C;, etc. to denote positive constants depending only on the algorithmic
parameters «, §, 1, p1, and p,. Each is associated with a corresponding claim, e.g., C; with Claim 1.
Within the proofs, we use C, C’, etc. to denote constants whose values may change across proofs.
Finally, 1 denotes the indicator function, E; and P; are expectation and probability conditioned on
all randomness before the j-th communication period, and A™!(t) = min{j € N : t < A;} denotes
the current phase at time t € N.
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Fig. 4. Empirical results for real data. Rows of subfigures correspond to the malicious strategy, while columns

correspond to the edge probability p for the G(n + m, p) random graph.
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Fig. 5. Empirical results for synthetic data with p = 1/2 and mixed malicious strategies.

B ADDITIONAL EXPERIMENTS

As mentioned in Section 6, we also considered arm means derived from real data. The setup was
the same as for the synthetic means, except for two changes (as in [56]): we choose m = 15 instead
of m = 10, and we sample {,uk},If:1 uniformly from a set of arm means derived from MovieLens
[27] user film ratings via matrix completion; see [56, Section 6.2] for details. The results (Figure 4)
are qualitatively similar to the synthetic case.

Finally, we repeated the synthetic data experiments from Section 6 with the intermediate G(n +
m, p) graph parameter p = 1/2 and two new malicious strategies called mixed naive and mixed
smart. As discussed in Section 6, these approaches use a “mixed report” where the malicious agents
more frequently recommend good arms — namely, the second best when the best is inactive and the
naive or smart recommendation otherwise. Results are shown in Figure 5. They again reinforce the
key message that the proposed rule adapts more gracefully to networks beyond the complete graph
— in this case, our blocking rule has less than half of the regret of the existing one at the horizon
T. Additionally, we observe that the no blocking algorithm from [18] has much lower regret in
Figure 5 than Figure 3, though still higher than our proposed blocking algorithm. This suggests
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that our algorithm remains superior even for “nicer” malicious strategies under which blocking is
less necessary (in the sense that [18] has lower regret in Figure 5 than Figure 3).

C PROOF OF THEOREM 1

We first observe that since h < 21V h € N, we can lower bound the arm gap as follows:
(n/2)-2 2h-1 oo h
13 1 13 1 1
NAp=p—pp=1-—— — >1-— - —| =—.
2T AT 15 hZ; (16) 15 hl(m) 15

Next, we show that for phases j > Jj, agents aware of arms at least as good as 1 — [ + n/2 will (1)
play such arms most often in phase j and (2) have such arms active thereafter. The proof is basically
a noiseless version of a known bandit argument, specialized to the setting of Section 4.

LeEmMA 1. Under the assumptions of Theorem 1, for anyl € [n/2],j > J;, and i € [n] such that
minS;l) <1-1+n/2, we havij.l) <1-1+n/2 andminSJ(.,l) <1-Il+n/2Vj =]

Proor. First, we prove by contradiction that Bﬁ.i) < 1-1+n/2: suppose instead that B;i) > 2—l+n/2.
Let k; = min Sj(.i) and k, = B;i). Then TIEZ)(Aj) - TIE;)(Aj—l) > (Aj — Aj_1)/3; otherwise, since
|SJ(.1)| = S + 2 = 3 by assumption and k; is the most played arm in phase j, we obtain

D@ - T4 ) < 3104 - T4 ) < Aj = A,
keS}i)
which is a contradiction. Furthermore, there clearly exists t € {1+ A;_y,...,A;} such that
) . ) . .
T - 1) - T(4) = T(A) - T4 ) -1, 1Y =k,

Combining these observations, and since Tlii)(Aj,l) > 0, we obtain that

i i i Ai—Ai ;
Tliz)(t -2 Tliz)(Aj) - T]iz)(Aj—l) -1z % -1, Iﬁ) = ks.

By the UCB policy and since a = 4 by assumption, the previous expression implies

4logt 4logt 4logt
Hiey < Hi, + OV < Hk, O < pg, + A AL (17)
T, (t-1) Tkz(t—l) == -1
Since A; = j* by the assumption = 2 and t < A;, we also know
4logt 8logj 12logj
og < °logs _ tzlogj h(j), (18)

Aj—Ajq = 2j-1 i—2
== - 1 = J

where we define h(j’) = 12log(j")/(j* — 2) V j’ > 2. Note this function decreases on [3, ), since
12(j' =2 —j"logj’ 12(j/ =2 —j'log3 —24

W) = g ~2 j zogj) < (1‘, 2 j Zog ) _ o

JG -2) J'G"-2) J'G"—2)

where the second inequality is e < 3. Thus, since j > J; > J; > 3, we know h(j) < h(J;). Combined

with (17) and (18), we obtain pg, < g, + VhA(J;). Finally, recallk; > 2—I1+n/2and k; < 1-1+n/2,
SO Uk, — Mk, = Hi-l+nj2 — Ha—1+nj2 > 0. Combined with pp, < pg, + vh(J;), we conclude

(Hi-t4nj2 = Ho-14nj2)" < hU1) = 121og(J)/(J; - 2). (19)

We now show that in each of three cases, (19) yields a contradiction.

<0Vj >3,
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e [ = 1: By definition, the left side of (19) is (yn/2 — H14n/2)* = (13/15)* and the right side is
121og(2%)/(2% — 2), and one can verify that 12log(28)/(2% - 2) < (13/15)%

el<l<n/2:Herel-I+n/2>1and2—-1+n/2 <1+ n/2,ie,both arms are mediocre. By
definition, we thus have (p1_j4n/2 — /12—l+n/2)2 = 2_21“, so to obtain a contradiction to (19), it
suffices to show h(J;) < 272" We show by induction that this holds for all [ € {2,3,...}.
Forl=2note = (i +2)*> J2+2=2"%+2(s0 , -2 > 2% and J, = J + 4] +4 =
216 + 210 + 22 < 217 (so log J, < 17log 2 < 17). Thus, h(J;) < 12 - 17/2'® = 204/216 < 278,
Now assume h(J)) < 272" for some [ > 2; we aim to show h(Jj41) < 272" Since Ji =2, we
have Jj,1 < (2);)? < ]14; we also know Jj,; —2 = ]l2 +4J; + 2 > J;(J; — 2). Thus, we obtain

12logJ} 4 4 N 4 " v2_olt

M) < Tk = 2 ohO) < 522 < g g,
Ji=2) Ji J?

where the inequalities follow from the previous paragraph, the inductive hypothesis, and (7)

from Section 4.1, respectively. Since 2 < 2/*!, this completes the proof.

e [ = n/2: Recall that in the previous case, we showed h(J;) < 272" for anyl € {2,3,...}. There-
fore, h(J,/2) < g 2T < 58 by assumption n € {4,6,...}. Since (U1_4nj2 — fo—14n/2)* =
A% = (1/15)* > (1/16)* = 278 in this case, we obtain a contradiction to (19).

Thus, we have established the first part of the lemma (B;i) < 1-I1+n/2). To show min Sj(.f) <1-1+
n/2, we suppose instead that min Sj(.,i) > 1—I1+n/2 for some j’ > j. Then j© = min{j’ > j : min Sj(.f) >
1 -1+ n/2} is well-defined. If j© = j, then min SJ(.i) > 1 — [ + n/2, which violates the assumption of
the lemma, so we assume j' > j. In this case, we know min S](l;)_l < 1-1+n/2 (since j' is minimal)
and B;lz)_l > 1—1+n/2 (else, because B;,.?_l € SJ(I) we would have min Sj(l) < B;l{)_ L S1- l+n/2). But

since j* — 1 > Jj (by assumption j* > jand j > J;), this contradicts the first part of the lemma. O
Next, for each [ € [n/2], we define the event

& ={l+nj2g PPyl o

A {minSJ(.i) >1-1+n/2,n+1¢ PJ(.i)},

where {n ¢ P}:/:l)} = Q by convention (so &/, is well-defined). Thus, in words &; says (1) [+1+n/2
is not blocking [ + n/2 at phase Jj, (2) no honest agent i > [ + n/2 has ever been aware of arms as
good as 1 — [ + n/2 up to phase J;, and (3) no such i has ever blocked the malicious agent n + 1.
Point (2) will allow us to show that agent n does not become aware of the best arm until phase J,/,
(when &/, holds). The other events in the definition of {81};;/ 12 will allow us to inductively lower
bound their probabilities. The next lemma establishes the base of this inductive argument.

LEMMA 2. Under the assumptions of Theorem 1, P(E;) > 372U,

Proor. We first observe that at all phases j € [J; — 1], only the second case of the malicious
strategy — where the malicious agent recommends to avoid blocking — arises, which implies

n+1¢ PJ(.i) Vj € [ili € [n]. Therefore, it suffices to show P(E]) > 372U1=1), where we define

& ={1+n/2¢ PPy a0l an

i=14n)2 {min S;i) > n/2}.

To do so, we will show & > F = ﬂJJI:_ll ﬂ?:ﬁ/z {HJ@ =n+1}and P(F) > 372071,

To show P(F) > 372171 _first note that by the law of total expectation, we have
=2 ~2+n/2 (i 2+n/2 i)
P(F) = E[1(n] ) 202 1o {H] )=+ 1Py (N /Z{H}f_l =n+1})].
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Ji-2 ~2+n/2

Now when Ol Nistin/2

is sampled from a set of three agents which includes n + 1, for each i € {1 + n/2,2 + n/2}. Since

2+n/2 i
i=;1+/n/2 {HJ(.’) = n+ 1} occurs,

Byl (H = e 1) =372

{H(l) = n + 1} occurs, the malicious strategy implies P(fll =0, so H}:-)i1

this sampling is independent, we conclude that when ﬂ] N

Thus, combining the previous two expressions with the definition of ¥ and iterating, we obtain

PO A2 (HY = n4 1)) = BF) = RO 03 (HD = s 1y)/38 = 37000,

i=1+n/2 i=1+n/2
To show & O F, first observe that when # occurs, 2+ n/2 does not contact 1+ n/2 at any phase
je[Ji—-1],s01+n/2 ¢ P}?M/Z). Thus, it only remains to show that ¥ implies min Sj(.i) > n/2
for all j < J; and i > n/2. Suppose instead that # holds and min S;i) < n/2 for some such j and
i.Let j" = min{j < J; : min Sj(.i) < n/2 for some i > n/2} be the earliest j it occurs; note jT > 1 by
assumption that min Sgi) > n/2 fori > n/2. Let i’ be some agent it occurs for, i.e., i > n/2 is such
that k" € S](,f) for some k' < n/2. Since j' is the earliest such phase and j > 1, we know k' was

not active for i’ at the previous phase j" — 1, so it was recommended to i* at this phase. By the
malicious strategy and j* — 1 < J; — 1, this implies that the agent i* who recommended k' to i' is
honest, so k' was active for i* at the previous phase, which implies it<n /2 (else, we contradict the
minimality of 7). From the assumed line graph structure, we must have i’ = 1+ n/2 and i* = n/2,
i.e, 1+ n/2 contacted n/2 at phase j* — 1 < J; — 1. But this contradicts the definition of %, which
stipulates that 1 + n/2 only contacts n + 1 before J;. O

To continue the inductive argument, we lower bound P(E;,1) in terms of P(&;).
LEMMA 3. Under the assumptions of Theorem 1, for anyl € [(n/2— 1], we have P(E41) = 37P(E)).

Proor. The proof is somewhat lengthy and proceeds in four steps.
Step 1: Probabilistic arguments. First, we define the events

G = ml.+2+"/2{H(l) =n+1}, G, = {H(H”"/Z) =1+n/2}, G=GiNG.

i=l+n/2 Ji+1
Then by the law of total expectation, we know that
P(&1 N G) = E[Ej+1[1(& N G1)1(G2)]] = E[1(E N GVP),+1(G2)]. (20)
Now if & N Gy occurs, then | + n/2 ¢ P}fﬂm/z) (by &;) and H}lHH"/Z) = n+ 1 (by Gy); the latter
P}l:M/Z) \ PUHM/Z) so combined with the former, [ + n/2 ¢ P}l:im/z) Thus,
&; N Gy implies that H(l+l+"/2) is sampled from a set of most three agents containing [ + n/2, so
Pj+1(G2) = 1/3. Substltutmg into (20), and again using total expectation, we thus obtain

P& NG) =2 P& NG1)/3 =E[E;[L(E)L(GII/3 = E[L(E)P,(G1)]/3.

Analogously, when &; holds, n + 1 ¢ P}f) Vie{l+n/2,...,]1+ 2+ n/2}, which by similar

logic gives P;,(G1) > 37°. Therefore, combining the previous two inequalities, we have shown
P(E; N G) = 37*P(E)). Consequently, it suffices to show that & N G C E44.
Step 2: Event decomposition. For I’ € {I,] + 1}, we decompose & = ﬂ‘;lzlﬂp,h, where

implies [ + n/2 ¢

’ U ’ .
Hp,1={'+n/2¢ P};Hn/z)}, Hy o = ﬂJ’ N Vin2 {mlnS( Ds1-1+ n/2,n+1¢ P;l)},
7'([',3 = ﬂ]

]ZJI/,1+1 m;l:l’+n/2 {minSJ(.l) >1-1"+n/2}, Hy,a = =nj ﬁi:l’+n/2 {n+1¢ PJ@}'

=Ty g1
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As a simple consequence of these definitions, we note that
Hip N His N Hyg =0 0n), iminS® > 1-1+n/2.n+1¢ PP}

Ji n
c r]jzl mi:l+1+n/

, minSY > 1-(+ 1) +nj2.n+1¢ PV} = Hy .
Hence, to prove & N G C &4y, it suffices to show & NG € Hii1,1 N Hiv1,3 N Hiyq,a. For the
remainder of the proof, we thus assume &; N G holds and argue H1,1 N His1,3 N Hiyq,4 holds.

Step 3: Some consequences. We begin by deriving several consequences of &; N G. First, note
eachi € {I+1+n/2,1+2+n/2} contacts n+ 1 at phase J; (by Gi), who recommends 1—1+n/2 (by
the malicious strategy). Since min S;j) >1-1+n/2 (by H; ), this implies 1 — [ + n/2 = min S}?H,
so 1 —1+ n/2 is most played in phase J; + 1 (by Lemma 1). In summary, we have shown

HY =n+1,R) =BY =1-l+n/2Vie{l+1+n/21+2+n/2}. (21)
Second, as a consequence of the above and Lemma 1, we can also write
1-1+n/2= minSSf)Jr1 > minS}j)Jrz >---Vie{l+1+n/2,l+2+n/2}. (22)

Third, we know [ + n/2 contacts n + 1 at phase J; (by G;), who responds with a currently active

arm (by the malicious strategy), so since min S%Jr"/ D>1-1+n /2 (by Hi 3), we have
min S > 1 -1+ n/2. (23)

Ji+1
As a consequence of (23), we see that when [ + 1 + n/2 contacts [ + n/2 at phase J; + 1 (which
occurs by G»), [ + n/2 recommends some arm strictly worse than 1 — [ + n/2. On the other hand, by
(22) and Lemma 1, we know the most played arm for [ + 1 + n/2 in phase J; + 2 has index at most
1 — I + n/2. Taken together, the recommendation is not most played, so

l+n/2e PPy je (i+2, (i +2)" = i) (24)

Step 4: Completing the proof. Using the above, we prove in turn that Hj,1 4, Hj1,3, and
Hi1,1 hold. For H,q 4, we use proof by contradiction: if Hj,q 4 fails, we can find i > [ + 1+ n/2

andje {J;+1,..., 41} suchthatn+1 € P](.i).Leth =min{je{;+1,...,;;1}:n+1 EPJ(.i)}
be the minimal such j (for this i). Since n + 1 ¢ P}j) (by H.4) and jT is minimal, we must have
n+le P;? \P](;)_1 i.e., n+1 was blocked for the recommendation it provided at j‘L —1.Ifi > [+3+n/2,

this contradicts the malicious strategy, since j* — 1 € {J,..., Jis; — 1} and the strategy avoids
blocking for such i and j. A similar contradiction arises if i € {{+1+n/2,[+2+n/2} and ' > J;+2
(since j" =1 € {J; +1,..., J1s1 — 1} in this case), so we must have i € {I + 1 +n/2,1+ 2+ n/2} and
jT=J; + 1. Butin this case,n + 1 € P](,i) \ P;_Ql = P}f)ﬂ \P}j) contradicts (21).

Next, we show H},1 5 holds. The logic is similar to the end of the Lemma 2 proof. If instead H.1 3
fails, we canfindj € {J;+1, ..., Ji;1tandi € {I+1+n/2,...,n} such that minSJ(.i) < (n/2)-1.Let "

be the minimal such jand i" > [+ 1+ n/2 an agent with min S](,f) = k' for some kT < (n/2) 1. Since

min 55;.,) > 1—1+n/2 (by Hy3),j* = J;+1,and j' is minimal, we know that k' was recommended to
it at phase j* —1 € {J;, ..., Jis1 — 1}. By the malicious strategy, this implies that the recommending
agent (say, i¥) was honest. Therefore, k' was active for i* at phase j© — 1, so since j' is minimal,
i* < I+n/2. Hence, by the assumed graph structure, i’ = [ + 1 +n/2 contacted i* = [ +n/2 at phase
jT =1, who recommended k¥. If j" — 1 € {J;, Ji + 2, ..., Ji+1 — 1}, this contact cannot occur, since
I+ 1+ n/2 instead contacts n + 1 at J; (by G;) and does not contact [ + n/2 at J; + 2,. .., Jj+1 (by
(24)). Hence, we must have j" — 1 = J; + 1, so min S}i:?/z) < k' < (n/2) - I, contradicting (23).
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Finally, we prove H, 1 1. Suppose instead that [+ 1+n/2 € Px”m/z) ie,l+1+n/2isblocked at
Ji+1- Then since P(l+2+"/2) 0, we musthave [+ 1+n/2 € P(l+2+"/2) \P(.I_J;“"/Z) for some j € [J141].

Let j* be the maximal such j. Then jT > i1 = Jj + 2; otherw1se, if j* < VJivr, I+ 1+ n/2 would
have been un-blocked by phase J,;. Therefore, the blocking rule implies

B(l+2+n/2) " R(I+2+n/2) B§{t11+n/2) (25)

By j" € {Ji +2,...,Jix1}, Hit1.3, and (22), we also know

-1+ n/2 < min Sj(fz”/z), min Sj(,itllﬂ/z) <1-1+n/2,

so min /" = min S(HH"/Z) — I + n/2. Combined with (25), we must have B(H};:rrzl/Z)
min S(l”;lﬂzl/z) =1-1+ n/2 for some h € {1, 2}, which contradicts Lemma 1 (since j7 > J; +2). O

Finally, we can prove the theorem. Define 0 = min{j e N:1 € Sj(.")}. Then by definition, Ig") #1
for any t < A,_1. Hence, because A, = 1/15 in the problem instance of the theorem, we obtain

Ag AT Ao AT
Ap g AT BT 21y Y E10" =0 G & (n) _
D T YD N e DI
=1 t=1 k=2 t=1 k=2

Thus, by Claim 23 from Appendix F.1 and since A,_; = (¢ — 1)? by the choice = 2, we can write

Z ZA 1070 = k)| >

t=1 k=2

[a’l/\T] E[(c —1)* A T]

(n) _
R
T 15

Let [ € [n/2] be chosen later. Then o > J; implies 0 — 1 > J; (since o, J; € N). Thus, we can write
El(o -~ 1)* AT] 2 E[((6 = 1)) AT)1(o > J)] = U} AT)B(c > J).

By definition of ¢ and &;, along with Lemmas 2 and 3, we also know
P(o > J;) > P(&)) > 374 Dp(g,) > 374D . 372Ui-1) = g3-20-)1

By (7) from Section 4.1, we know J? > ]121 = (28)? = 22", Combined with the previous three
bounds, and letting C denote the constant C = 93-/1 /15, we thus obtain

R™ > 227 AT)-9* %15 =C-8170 - (27 AT) V€ [n/2]. (26)

We now consider three different cases, each with a different choice of [.
o If T > 22("/2)+3, choose I = n/2. Then (26) becomes R(Tn) > C-817"/2. 22" Observe that

2(n/2)+3 o(n/2)+3

> 167" -2 = (24227 5 (24 S exp(27/?)
= exp(exp(nlog(2)/2)) > exp(exp(n/3)),

where the second inequality is n < 2"2 forn € {2,4,8,...}. On the other hand, Claim 1
below shows R(n) > log(T)/C; for some absolute constant C; > 0. Thus, we have shown

81 2.2

R = RY/2) + (R /2) = (C/2) explexp(n/3)) + log(T)/(2Cy).

o If T € (28, 22(n/2)+3], let I = [log,(log,(T)) — 3]. Then 22" > T, so 2 AT =T. Furthermore,
we know [ < log,(log,(T)) — 2, which implies

817" > 817 - 817 gloe(T) > g1 . g7 7lorlor(T) = 812 /log(T) = 81° log’(2)/log’(T).
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Next, observe that 0 = log,(log,(2®)) — 3 < log,(log,(T)) — 3 < n/2 for this case of T, so
I € [n/2]. Thus, we can choose this [ in (26) and combine with the above bounds to lower
bound regret as R(T") > 81%1og’ (2)CT/log’ (T).
o If T < 28, choose [ = 1. Then 22 = 21 > T, s0 (26) implies R(Tn) > CT/81.
Hence, in all three cases, we have shown R(T") > C’ min{log(T) + exp(exp(n/3)), T/log’(T)} for
some absolute constant C’ > 0. This establishes the theorem.

We return to state and prove the aforementioned Claim 1. We note the analysis is rather coarse;
our only goal here is to establish a log T scaling (not optimize constants).

Cram 1. Under the assumptions of Theorem 1, we have R(T") > log(T)/Cy, where C; = 15log 99.

Proor. If T = 1, the bound holds by nonnegativity. If T € {2,. .., 99}, then since min Sgn) >n/2
and A, > 1/15 by assumption in Theorem 1, we know Al(n) > 1/15, which implies R(Tn) >1/15 >
log(T)/C;. Thus, only the case T > 100 remains. By Claim 23 from Appendix F.1 and A, > 1/15,
B[S/ 10" # D] _ log09)EIST, 1" # 1] 2E(R, 10,” # 1)]

15 G G '
Thus, it suffices to show that Zthl ]l(IE") # 1) > log(T)/2. Suppose instead that this inequality
fails. Then since the left side is an integer, we have Zthl ]1(1;") # 1) < |log(T)/2] by assumption.

Therefore, we can find t € {T — |log(T)/2] + 1,...,T} such that Ig") = 1 (else, we violate the
assumed inequality). By this choice of t and the assumed inequality, we can then write

(n)
R >

t-1
T -1)=t-1- Z 1" £ 1) > (T — |log(T)/2]) - (Llog(T)/2]) > T —logT.
s=1
We can lower bound the right side by 4log T (else, applying Claim 20 from Appendix F.1 with x = T,
y =1,and z = 5 yields T < 100, a contradiction), which is further bounded by 4log t. Combined
with the fact that rewards are deterministic, y; = 1, and @ = 4 in Theorem 1, we obtain

APt = 1) + e log(t)/ T (t - 1) = 1+ \4log(®) /Tt - 1) < 2. (27)

Next, let k € le-)l o be any other arm which is active for n at time t. Then clearly

T T
T =1 < D10 = k) < > 10" # 1) < [log(T)/2] < log(T)/2

t=1 t=1

= (- 1)+ \/a log(£)/TL(t — 1) = +/8log()/log(T) = 24/log(t)/log(VT). (28)

By (27), (28), the fact that I;") = 1, and the UCB policy, we conclude ¢ < \T. Since T > 4, this
further implies ¢ < T/2. But we also know that t > T — |log(T)/2] + 1 > T — log(T)/2. Combining
these inequalities gives T < log T, a contradiction. O

D PROOFS FROM SECTION 5
D.1 Proof of Theorem 2

Fix an honest agent i € [n]. Let 7\ = 7, v )

bl where we recall from the proof sketch that

Topr = inf{j € N : B}f') =1Vi' €[nlj >/}

oy =inf{jeN:H e PP\PY v >jst R %1}
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Let y; € (0,1) be chosen later. Denote by 59 - {2,...,K}n$D and $D = {2,...,K} \ S® the
suboptimal sticky and non-sticky arms, respectively, for agent i. Then by Claim 23 from Appendix

F.1, we can decompose regret as Rg) = R(Tl)h, where
A‘fspr/\T T
RY =E| > Awl. RY= D AE[ Y 107 =k,
=1 g t=14A g,
AT(i)v(TYi/ﬁ]AT T
RY, = X ME| > 1@’ =k, R, = ) AB > 1w =w),
kes® t=1+Arg, kes® t=1+Ar(i)v[TYi/ﬁ]

and where ;72 o 1, () = = k) = 0 whenever s; > s, by convention. Thus, we have rewritten regret as
the sum of four terms R(T)l,
due to sticky arms after the best arm spreads; R
spreads but before phase 7! v [T¥i/#7]; and RT »
subsequent lemmas bound these terms in turn.

which accounts for regret before the best arm spreads; RT ,» the regret

(i)
T3’

regret from non-sticky arms after this phase. The

regret from non-sticky arms after the best arm

LEMMA 4. Under the assumptions of Theorem 2, for anyi € [n] and T € N, we have

RY| < E[Aq,] = OSPPID) v (Slog(s/Ay)/ AP/ PD v (dlog(n + m)P/Pt v nK?S) + E[ Az, .

Proor. Assumption 2 ensures Ax < 1, so R(Tl)1 < E[A,, ] The result follows from the bound on

E[A,,] discussed in Section 7.5 and formally stated as Corollary 4 in Appendix E.5. O

LEMMA 5. Under the assumptions of Theorem 2, for anyi € [n] and T € N, we have

(i)
RT 5 <

Z 4alogT N 4o - 1)|§(i)|
Ag 20 -3

kes?

Proor. For any k € E(i), Claim 22 and Corollary 6 from Appendix F.2 imply

T T
@ _ | = @) _ D) 4alogt
Bl > 1(i=k)|=E| l(Itl—k,Tk'(t—l)< =
t=1+Azg, 1=1+Arg, k
L y (i) 4o logt
(i
+E Z (1 =k T (1) > - )
t=1+Arg, k
< 40(10ng N 4a - 1)’
AL 200 -3
so multiplying by Ag, using Ax < 1, and summing over k € §(i) completes the proof. O

LEmMMA 6. Under the assumptions of Theorem 2, for anyi € [n], y; € (0,1), and T € N, we have

dalogArryipy  4(a—1)|SY|  4CeK | (CK
R(T')3 < Z Sa AL + ( 57 + % 2+ +E[A. ]
: Ak 200 — 3 Ag)/i AZ}/i *r
keg(”
Proor. The proof is nontrivial; we defer it to the end of this sub-appendix. O
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LEMMA 7. Under the assumptions of Theorem 2, for anyi € [n], y; € (0,1), and T € N, we have

2n —1 4 log T N 8aflog, (1/yi)dmali) + 2) . 4(ax — 1)87)

R(i) < max
Nn—1 §5cs®:|S|<dpali)+2 P Ag A; 200 -3

T,4 —

Proor skeTcH. The proof follows the same logic as that of [56, Lemma 4], so we omit it. The only
differences are (1) we replace m (the number of malicious agents connected to i for the complete
graph) with dy,,1(i), and (2) we use Claim 19 from Appendix F.1 to bound the summation in [56,
Lemma 4]. We refer the reader to the Theorem 2 proof sketch for intuition. O

Additionally, we note the sum R(Ti)3 + R(Ti) , can be naively bounded as follows.

LEmMA 8. Under the assumptions of Theorem 2, for any i € [n] and T € N, we have

_ (i)
(i) (i) dalogT  4(a —1)|SY
Ry 3+ Ry, < Z + .

Kesth A 200 -3
Proor. The proof follows the exact same logic as that of Lemma 5 so is omitted. O
We can now prove the theorem. First, we use the regret decomposition R(Ti) = 2:1 Rg)h, Lemmas
4-7, and the fact that |§(1)| + |§(i)| < K to write
) 2n—1 4alogT 4alog T dalog Arryip
RV <22 aAOg Py EEL N — 71 (29)
N—=1 $cs®:|S| <dpuli)+2 s k =) k Kesth k
8aflog,(1/yi)(dma(i) +2) 8@ -1)K 4CaK, (CiK
+ u m + (@-1) 2 S+ 2E[A; ]. (30)
Az 200 — 3 AZ}/i AZYI' SPT

Now choose y; = Ay /(KAgyq,,(i)+4) € (0,1). Then

(30)

O ((dmal(i)/A2) V (K/D3)?) + 2E[Ay,, |
=0 ((dmal(i)/Az) V(K/Dg)? v SPIED) v () A2)P1B-D v ghler nKZS) + 4E[ Az, |

where the second inequality is due to Lemma 4. Furthermore, by Claim 18 from Appendix F.1,
we know that log(A 7y,/57) < log(e?#(TYi/F)F) = 2 + y;log T. Combined with S < K, A >
A, Vke §<i), and the choice of y;, we can thus write

Z 4alog Aryipy - Z 8af +yilogT < 8apK +yiKlogT  8afK N logT

o Ay o Ay A, A, AStdpy(i)+a

Therefore, we can bound (29) as follows:

2n—1 4alog T 4alog T log T 8afK
(29) < L i max Z OB 4 Z roB° %% + ap
n=1 §cs®:§|<dpa(i)z = Ak — Ak Asid(i)+a A;
keS keS
< 2n—1 (43 4o log T . St 4 log T N 8afK
-1 = Ak k=dpm(1)+4 A Az
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where the second inequality holds by A, < --- < Ak and |§(i)| < S. Combining the above yields

dma(i)+3 S+dmal(i)+4

1 1
> —+ > |+ 2Bl Az, ] (31)
k=2 Ok k=doa(i)+a Ok

2n—-1

Rg) < 4alog(T) —

+0 ((dmal(i)/Ag) V (K/Ag)? v SPIPHB-D) v (5/A2)BIB-D  gblen v nKZS> .
Alternatively, we can simply use Lemmas 4, 5, and 8 to write

4(a - 1K

+E[A. . 32
o T ElA,] (32)

K
(i) 1
R} < da log(T)% AL +

Therefore, combining the previous two expressions and again invoking Lemma 4 to bound the
additive terms in (32) by those in (31), we obtain the desired bound.

Thus, it only remains to prove Lemma 6. We begin by using some standard bandit arguments
recounted in Appendix F.2 to bound R(Ti,)3 in terms of a particular tail of 7(?).

CraM 2. Under the assumptions of Theorem 2, for anyi € [n], y; € (0,1), and T € N, we have

dalogArryipy  4(a —1)|SD]
(i) [TYilP] B
RT 5 < Z A + 5o —3 + E[ATW
kes®
4aKlogT 4aKlog T
OB OB s (/B A, < ZEROBC ) (33)
Ay e Ay

Proor. If T = 1, we can naively bound R(T)3 < 1, which completes the proof. Thus, we assume

T > 1 (which will allow us to divide by log T later). For any k € S, we first write

Ar(i)vrrh'//ﬁ AT T o log ¢
(i) _ (i) _ (i)
E _Z 1(1)=k)| <B _Z 11(1 =k, Tt - )‘T) (34)
t=1+Aqg, t=1+Arg, k
[ [TYz/.B]/\T 4al ¢
. ; ; (0]
YE[1D <[P Y1 (15” =k T 1) < —g) (35)
AZ
=1+ A g, k
[ AnT dalogt
+E (160 > [Ty Y 1(“) T 1) < =38 ) . (36)
1=1+Az, Ak

By Corollary 6 from Appendix F.2, (34) is bounded by 4(« — 1)/(2¢ — 3). By Claim 22 from Appendix
F.2 and 1(-) < 1, (35) is bounded by 4« log(A[Ty,»/p])/Ai. For (36), Claim 22 similarly gives

At dalogt| 4alogT
Z n(Iﬁ”zk,Téi)(t—1)< 208 )s 2087
A2 A2
1=1+Arg, k k
which clearly implies the following bound for (36):
At salogt||  4alogT
E (19> [Tr/P) 1(1§i>:k,rlgi>(t—1)< 208 ) < dedog Ty o 5 rpnipy),
N? A2
t=1+Arg, k k

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 53. Publication date: December 2022.



53:34 Daniel Vial, Sanjay Shakkottai, and R. Srikant

For the remaining probability term, by Markov’s inequality, we have

‘ ‘ ASE[A,
P(e® > [T7i/7]) SP(,@) S [TVE A, < 4aK10gT) L2 [Az,, ]

fopr A, 4aKlogT’
Hence, combining the previous two inequalities, and since A; < Ak, we can bound (36) by

4alogT
A Ak

Tspr

P(TO‘) > [TV/P, A, < 4aK10gT) + E[ATSF“]_

2 KA

Finally, combining these bounds, then multiplying by Ay, summing over k € $%), and using Ax < 1
and |§<i)| < K, we obtain the desired result. o

To bound (33), we consider two cases defined in terms of the following inequalities:
4aK 1og(T)/Ay < Ojpriipy )P, 4aKlog(T)/Ay < Kiryiisys (37)

4o log A
A

AZ(Z(X - 3)

<1 =1Vj= TP, dog(T) D (] - 1) < 8aK?

Jj=[TvilF]

(38)

Roughly speaking, when all of these inequalities hold, then T is large enough to ensure that the
event {r() = Q(poly(T)), A, = O(log T)} in (33) is unlikely. The next claim makes this precise.

Tspr
CraM 3. Under the assumptions of Theorem 2, for anyi € [n], y; € (0,1), and T € N such that all
of the inequalities in (37)-(38) hold, we have

4aK log T
Ay

4aKlogT

@ > [Tvilq, A, < A
2

Proor. If T = 1, the left side is zero and the bound is immediate, so we assume T > 1. First note
that if A, , < 4aKlog(T)/A,, then since A [Tsir] > Tsli)r by definition and 4aK log(T)/A; <

101 1vi087 1P AR prvirsg by (37), Tpr < |_9|'TY1//3'|J/\K|—TY p7- BY definition Or7y/57 = (77171 /3)P with
p1 € (0,1), this further implies 7g,; < [TYi/F]. Thus, when () > [TYi/ﬁ'| and Az, < 4aKlog(T)/Az,

we have 7q,; < ), which by definition of 79 implies 7 = r Therefore we can write

Tspr

. 4K log T
P (D > [1/F, A, < 2B Aog

< P(T(l) > [T‘yl/'g-| Tspr < |_9|'TYz/ﬁ'|J ANK ld
2

Tspr [TYi /ﬁ] )

ow efinition, 75, < vi/61] implies that D= Jj = viip1]. Also efinition,
Now by definition, 7y < L0}7y/p1) implies that B = 1V j > [0;7y1). Also by defi
rb(lill > [TYi/P] implies that for some j > [T¥/#] and k > 1, Ry_)l = k but H](.i)l ¢ Pj(.i) \P](.i)l. Thus,

P(T(l S rTYz/ﬁ'I Tspr < I_G[Tyz/ﬁ]J A K[T/i //J’])
K (o]
<> D, BRY =k HY ¢ PO\PY r < [Orpvie] A KF/TﬁY o)
k=2 j=[Tvi/B]

Now fix k and j as in the double summation. Again using Tspr < I_G[Ty,/,s]J = B( D=1v Jj =
L6 7vi/57], the blocking rules implies that if zg, < LG[TYi/ﬁ].]’ =k, and H(') ¢ P(l) \ P(') ,
then i) > Kj.Since i) € N, this means i) > [x;]. Hence, there must exist some
hen T."(A;) > «;. Since T.(A;) € N, thi (A > [ ]1 H h
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t € {[xj],...,A;} such that T(l)(t -1) > [kj]—1and I(l) k. Thus, taking another union bound,

PR, =k, HY, ¢ PO\ PO, v < 1070009 A K[Tﬁy #7)

Aj
< D BT -102 151 - L1 = kore <k ).
f=|-Kj-|

Next, note 7g,; < k Ve implies that for any j > [TY/#] and t > [x;1, we have > [K7y57] 2

[TYilB

[rspr] = Ag,,501€ S(l)l(t) by definition of 7g,,. Therefore, for any t € {[x;],...,A;},

Pt - 1) 2 [k - LI = koo <0 ) <PIO(-1) 2 i1 - 1,1€ 80, 17 = k).

ATyt

Now let ky = k, k; = 1, and £ = [k;] — 1. Then p, — pr, = A > [4arlog(t)/([x;] — 1) by definition
and (38), respectively. Therefore, we can use Corollary 5 from Appendix F.2 to obtain

PT(t-1)> i1 -1 1€ 5“)1(”,1“) k) < 2t20-@),

Combining the above five inequalities, then using Claim 19 from Appendix F.1 and (38), we obtain

. 4aKlog T
(@) YilB 2(1-a)
P(® > [T/P, A, < ~ ) 2K Z Z t
Jj=[TvilB] t=k;]

|'TY ilB]

3-2a
2a— [;m(“cj] -1 4aKlogT
J 12
so multiplying both sides by 4aK log(T)/A completes the proof. O

On the other hand, when (37)-(38) fails, we can show that T is bounded, and thus we bound the
log T term in (33) by a constant and the probability term by 1, as shown in the following claim.

CraMm 4. Under the assumptions of Theorem 2, there exists a constant C4 > 0 such that, for any
i €[n],y: €(0,1), and T € N for which any of the inequalities in (37)-(38) fails, we have
4aK logT (l) > [_Tyl/ﬁ_l ATSPY 4aK lOgT < 4C40(K log C4K )
Ay Ay Azyi Azyi

Proor. By Claims 33-36 in Appendix F.4, we can set Cy = max;e(s3,._ 36} C; to ensure that, if
any of the inequalities in (37)-(38) fail, then log T < (C4/y;i)log(C4K/(Azyi)). The claim follows
after upper bounding the probability by 1. O

Finally, Lemma 6 follows by combining the previous three claims.

D.2 Proof of Corollary 1

As discussed in the proof sketch, we will couple with the noiseless process. We define this process
as follows: let {ﬂﬁ')}}"’zl be i.i.d. Uniform(Npo,(i)) random variables for each i € N, and

_ (i _ : (O] ;
£0_{l }’ £j_£j_1u{l€[n]\£j_1 'I;Ij Eij_l}VJGN-

For the coupling, we first define

J
0o =0, o7=inf{j>0'l_1:min Z Y]f})zl}VZEN.

1€|n
[ ]j':1+0'1_1
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Next, for each i € [n] and [ € N, let Zl(i) =min{j € {1+ 0/_1,...,07}: Y}i) = 1}. Note this set is

nonempty, and since Zl(i) is a deterministic function of {Yj}}"’:l, which is independent of {Hj(i)}]?'il,

H(Zi()i) is Uniform(Npon(i)) for each [ € N. Hence, we can set
1
) if j = Z\” for some | € N
OIS Bk I=4
g0 = ! N ) co
Uniform(Npon(i)), ifj ¢ {Zl(l)}l=1
without changing the distribution of {7 ; }720- This results in a coupling where the noiseless process
dominates the noisy one, in the following sense.
CrLamm 5. For the coupling described above, £j C jgj foranyj > 0.
Proor. We use induction on j. For j = 0, we simply have I, = {(i*y=1; = jgj. Now assume
I. . cl1,

_j—l j-1 ; -
is straightforward: if i € 7 i1 then i € Z,,_, by the inductive hypothesis, so since ;-1 < o; by

we aim to show thatif i € 7, then i € 1,,. We consider two cases, the first of which

definition and {I_jz };f’:o increases monotonically, we obtain i € T o5 8S desired.

For the second case, we assume i € [n] \zj_l and ﬂy) € zj—r Set j/ = Z;i) and recall j/ €
{1+ 0j-1,...,0;} by definition. From the coupling above, we know Yj(,i) =1land I:IJ(./i) = g;i). Since
E;i) € £j_1 in the present case, we have HJ(.,i) € £j—1 as well. Hence, because £j_1 C I_gj_l by the
inductive hypothesis, j/ — 1 > 0;_; by definition, and {Z;~ }Jf'/‘i:o is increasing, we obtain I:I](f ) e .
We have thus shown Yj(,') =1and I:I](f ) e I_1, 50 i € Iy by Definition 1 Finally, using j’ < o; and
again appealing to monotonocity, we conclude that i € J_},j. O

We can now relate the rumor spreading times of the two processes. In particular, let 7o, = inf{j €
N: fj = [n]} (as in Definition 1) and Topr = inf{jeN: T ;= [n]}. We then have the following.

CLam 6. Foranyj € {3,4,...} and1 > 1, we have P(Ty, > 1jlog(j)/Y) < P(zspr > j) + 27nj7
Proor. Let h(0) = 0 and A(j") = 1j’ log(j)/Y for each j* € N. Then clearly
P(Tepr > tjlog(j)/Y) = P(Tspr > h(j), 0j < h(j)) + P(Tspr > h(j), o; > h())). (39)
For the first term in (39), by definition of 7, and Claim 5, we have
{Zopr > h(i)0j < h(D} € {Fope > 03} = {L5, # [n]} c{Z; # [n]} = {z, > J}- (40)

For the second term in (39), we first observe that for any j* € N,
LhG)] = Th(" = 1)1 =1 2 h(j") = h(" = 1) = 3 = (11og(j)/Y) =3 > 0,

where the last inequality holds by assumption on j and i. Thus, by the union bound, we can write
n
-r - Lh(G")] (i) _ _ h(")]-Th(j-1)1-
B(oy > h(j").op-1 < h(G' = 1) < ) BOLE, (T = 0) = a1 - 1)LOTRG=0
i=1

< n(1 - 1)H1eD/M=3 < pexp(—1log(j) + 3Y) < 27nj .
Hence, because oy = 0 = h(0), we can iterate this argument to obtain that for any j’ € N,
P(oj > h(j")) < P(oj > h(j’), 0j-1 < h(j' = 1)) + P(oj—1 > h(j’ — 1))
<27nj' +P(oj-1 > h(j' — 1)) < --- < 27nj'j".
In particular, P(c; > h(j)) < 27nj'~". Combining with (39) and (40) completes the proof. O
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To bound the tail of Typr» WE will use the following result.

Cramm 7 (LEMMA 19 FroM [18]). Under the assumptions of Corollary 1, there exists an absolute

constant C; > 0 such that, for any h € N, we have P(z,, > C;hlog(n)/¢) < n~h,
Using the previous two claims, we can prove a tail bound for 7.

Cramv 8. Under the assumptions of Corollary 1, there exists an absolute constant Cs > 0 such that,
foranyh € {3,4,...}, we have P(7yp, > £(h)) < 56 - 27", where we define

£(h) = Cs(log n)*h’ log(Cs log(n)/$)/ ().

Proor. Since Gy is d-regular with d > 2 by assumption, we have n > 2 as well. Therefore,
setting Cs = (2C7) V ((e + 1)/log(2)), we know log(Cs log(n)/¢$) > 1, which implies

(h—1)log(Cslog(n)/p) = h—1=logh =  hlog(Cslog(n)/¢) > log(Cshlog(n)/¢).
Consequently, if we define 1 = hlogn and j = |Cshlog(n)/¢], we can write
&(h) = (hlogn) (Cshlog(n)/¢) (hlog(Cs log(n)/¢)) /Y
2 (hlogn) (Cshlog(n)/¢)log(Cshlog(n)/$)/Y = 1jlog(j)/Y.
Because Cs > (e + 1)/log(2), h > 3, and n > 2, we also know
j=Cg-h-log(n)— 12 ((e+1)/log(2))-3-log(2) —1=3(e+1)—1> 3e > . (41)
Hence, j € {3, 4, ...}; combined with : > 3log2 > 1, we can apply Claim 6 to obtain
P (e > E()) < P (B > 1710g()/Y) < P (2, > ) + 2707 (42)
On the other hand, (41) implies Cghlog(n)/¢ > 2, so by definition of Cs,
Jj = (Cshlog(n)/¢) — 1 = (Cshlog(n)/$)/2 = (Cs/2)hlog(n)/¢ = Crhlog(n)/¢.
Therefore, by Claim 7, we know that
P (Zspr > j) <P (zspr > C7hlog(n)/¢) <n <t
Finally, notice that 1 = hlogn > 3log2 > 2,s0 1 — 1 < —1/2, thus by (41),
270" < 27nj% = 27n4Jj < 27nexp(—1) = 27n' 7"
Hence, substituting the previous two inequalities into (42) and using n > 2 completes the proof. O
We now bound E[A;z,, ]. First, we define
x = [Cs(log n)* log(Cs log(n)/$)/(¢Y)], C =8p/log2, hx = [ClogC]V 3.

Notice that for any h > h, > ClogC, we have 27h < g (else, we can invoke Claim 20 from
Appendix F.1 with x = h, y = 1, and z = C/2 to obtain h < ClogC, a contradiction). We write

0 oo 2x(h+1)?
DA = AP 2 /2) S Agyy + DL Y. (A= AP 2 j/2). (43)
j=1 h=hy j=2yh3+1

Now for any h > hy and j > 2yh® + 1, we use 27" < B8 the definition of x> and Claim 8 to write

P(Zspr = j/2) < P(Fpr = xh®) < P(Fpr = E(R)) < 56 - 27" < 56k,
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Therefore, for any such h, we obtain

2x(h+1)3 2x(h+1)3
Z (Aj = Ajo)P(Tspr = j/2) < 56h74 Z (Aj = Ajo1) < 567 Ay iy
Jj=2xh¥+1 j=2yh3+1

Furthermore, by Claim 18 in Appendix F.1 and h > 1, we know that
Ag iy < €Px(h+1)°) < e 2x2h)®) = (40P yPRF v h > 1.
Therefore, by the previous two inequalities and (43), and since h, > 3, we have shown
DA - Ay )BT 2 /2) < (407 5P (hiﬁ +56 hﬁ) < (4007 y* (hiﬁ + /ﬁ)
j=1 h=h,

where the second inequality follows from Claim 19 from Appendix F.1, h, > 3, and § > 1. Because
h, is a constant, the right side is O( )(/3 ). Therefore, we have shown

= Z(A,— — A ) P(Zge 2 j/2) = O(xP).

Elory] = E | D (A) = Aj-) L2 2 )
Jj=1 j=1

Hence, by definition of y, we obtain E[A,z,, ] = O(((log n)? log(log(n)/$)/(¢Y))#). Combining this
bound with Theorem 2 completes the proof of Corollary 1.

D.3 Proof of Corollary 2

Similar to the analysis in Appendix D.1, we can use the decomposition R(If) = ;11:1 Rg’)h, along with
Lemmas 4 and 5, to bound regret as follows:
<@
; dalogT  4(a—-1)|S| i i
R(T') < Z + + R(T’?S + R(T”)4 +E[Ag, ] (44)

) A 200 — 3
kegm

Tspr*

Next, for each k € Q(i), let Yy = H(U;’;Tspr{k € S](.i)}) be the indicator that k was active after A
Then as in the proof of Lemma 5, we can use Claim 22 and Corollary 6 from Appendix F.2 to write

T
i 4alogT 4(a-—1)
Bl Y 11(1§’>=k) < E[Y¢] Azg o (45)
k

t=1+A

Tspr

(The only difference from the proof of Lemma 5 is that, when applying Claim 22, we write

T
; ; 4alogt 4alog T
Z 1 (IE’) - k,TIEl)(t—l) < a—Og) o L
A2 A2
1=1+Arg, k k

where we can multiply by Y because the left side is also zero when Y; = 0.) Combining (45) with
the definitions of R(T’)3 and R(Tl) , and using Ag < 1, we thus obtain

log T . 4(a — 1)[S7)
A 20 -3

i) pld) da
RY +RY, <E Z Yy
keg(i)
We claim, and will return to prove, that when dp, (i) = 0,
S+2
1 Yi 1

—+ LN 46
2oat 2 S (46)

kes® F ke O
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Assuming (46) holds, we can combine the previous two inequalities and substitute into (44) to obtain
R(') < 4alog(T) ZS+2 A + O(K) + E[A,, ]. Bounding E[A,, ] as in Lemma 4 yields the sharper
version of Theorem 2, and further bounding E[A2z,, ] as in Appendix D.2 sharpens Corollary 2.
To prove (46), we first show X, g0 Ve < 1+ 1(1 € Sy, Suppose instead that ), .qo Yx 2
2+ 1(1 € D) 2 H. Then we can find H distinct arms ki, ..., ky € S, and H corresponding
phases j, > 7, such that kj, was active at phase jj, for each h € [H]. Without loss of generality,
we can assume each jj is minimal, i.e., j, = min{j > 7o : ky € S](.i)}. We consider two cases (which
are exhaustive since j, > 7gp,) and show that both yield contradictions.
® jn = Typr V h € [H]: We consider two further sub-cases.
- 1€ 8%, je, the best arm is sticky. Then H = 3, s0 k1, . . ., k3 are all active at phase rg,,. But
all of these arms are non-sticky and only two such arms are active per phase.
- 1¢S9 Here k1, k; are both active at phase 7y, as is 1 (by definition of 7). But since k;
and k;, are suboptimal, we again have three non-sticky active arms.
® maXxpe[y| jrn > Tspr: We can assume (after possibly relabeling) that j; > 7. Thus, by mini-
mality of ji, k; was not active at phase j; — 1 but became active at jy, so it was recommended
by some neighbor i at j; — 1. But since dia1(i) = 0, i’ is honest, and since j; — 1 > 7g, the
best arm was most played for i’ in phase j; — 1, so i’ would not have recommended k;.
Thus, ¥, s Y < 1+ 1(1 € $?) holds. Combined with the fact that |§(l)| =S-1(1 € §¥)
by definition, at most S + 1 terms are nonzero in the summations on the left side of (46). Since
A; < -+ < Ak by the assumed ordering of the arm means, this completes the proof.

D.4 Coarse analysis of the noisy rumor process

For completeness, we provide a coarser though more general bound for E[A;;,, ] than the one
derived in Appendix D.2. To begin, let P} and E} denote probability and expectation conditioned on

{Y(,l),H(l)} . For each h € [n], define the random phase 7(h) = inf{j € N : |7;| = h}. Note that
r(l) = 1 and Tspr = 7(n). We then have the following tail bound.
Cramm 9. Foranyl,j € N, we have P(£(1) > 1j) < (1 = Y/dhon) .

Proor. We use induction on . For I = 1, 7(1) = 1 ensures P(7(I) > Ij) = 0 for any j € N, so the
bound is immediate. Next, assume the bound holds for [ € N. We first write

Pz(+1)>U+1))) <P@El+1)>I+1))7(1) <L) +PE1) > ).
Thus, by the inductive hypothesis, it suffices to bound the first term by (1 — Y/dpnon)’. We first write
P(z(l+1)> (I +1)j,7() < lj) =E[1(z(]) < lj)IP;jH(f(l +1) > (I + 1)j)].

Now suppose 7(I) < Ij. By Assumption 1, we can find i € flj and i’ ¢ flj such that i € Nyon(i).
Then for 7(I + 1) > (I + 1)j to occur, it must be the case that, for each j* € {Ij + 1,...,(l + 1)j}, the
event {I:IJ(f )i, Y}(,l) = 1} did not occur. Therefore, we have
1
Pl (EI+1) > (+1) < ]P’ljﬂ(mﬁ +}]>f+ ABY =17 =139).
By the law of total expectation, we can write
! 20 _ ol
Pl (O (A =7 = 1))

_E/

1 (i’ . oli ’ i i
O AT = 7 = 390 - P, @) =0T =),

Jj=lj+1 (I+1)j > T (l+1)j
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Since H((ll +)1) is Uniform(Npon(i)) and Y((; ey is Bernoulli(Y), we have

@) _ @)
(1+1)] (H(l+1)] i Y(l+1) 1) Y/dhon(l) 2 Y/dhon

Therefore, combining the previous two expressions and iterating, we obtain

1 1
M(mﬁ +}J)f+ ABY =17 =139 < P,J+1(m§ +}J>1 A =17 = 139)(1 = Y/ dnon)
- < (1 - Y/dhon)J~ O

Next, we have a simple technical claim.
Craim 10. Let hy = (8dpon/Y) log(8Bdnonn/Y). Then for any h > hi, exp(=hY/dpen) < h™% /n.

_Proor. If the claimed bound fails, we have h < (2Bdnon/Y)log(h) + (dnon/Y) log(n). Then since
(dhon/Y) log(n) < h+/2 < h/2, we obtain h < (4fdhon/Y)log h. Applying Claim 20 from Appendix
F1withx = h,y =1, and z = 4fdpon /Y, we obtain h < 2zlog(2z) < h;, a contradiction. m]

We can now bound E[Ajz,, ]. The analysis is similar to Appendix D.2. We first write

00 2n(h+1)
ElAzz, ] < Asnfn] + Z P(Zepr > nh) Z (Aj—Ajy).
h=Ths] j=2nh+1

By the previous two claims, we know
P(Zspr > nh) = P(2(n) > nh) < n(1 =Y /dhon)" < nexp(=hY /dnon) < h™%.
By Claim 18 from Appendix F.1, we also have
Azningy < 200 (nhi)P,  Agnnary < €2 (2n(h + 1))P < e? (2n(2h))P = (2¢)* (nh)? ¥ h € N.

Therefore, combining the previous three expressions, we obtain

S 1
EAZi_'spr < (2e)2ﬁnﬂ hf + Z h_ﬁ < (2e)2ﬁnﬂ (h'f + ﬁ) ,
h=[hs]

where the second inequality uses § > 1, h+ > 2, and Claim 19 from Appendix F.1. Hence, we have
shown E[Azz,, | = O((nh+)P) = O((ndhon /Y)P). Note this bound cannot be improved in general —

for example, if Gyop, is a line graph, it becomes O((n/Y)#P), so since E[fspr]ﬁ = O(E[A;

zpr])> We have

E[Tp] = O(n/Y), which is the correct scaling (up to log terms) in Definition 1.

E DETAILS FROM SECTION 7

In this appendix, we formalize the analysis that was discussed in Section 7. In particular, the
subsequent five sub-appendices provide details on the respective five subsections of Section 7.

E.1 Details from Section 7.1

Let ¢’ = (py + f(2a — 1))/(2af). Note that since ¢ > 2 and p, € (0, ) by assumption,
0 <1-1/(2a) = p(2a = 1)/2ap) < ¢ < (B + p2a - 1))/(2ap) = 1,

soy = \/W is well-defined and ¢ € (0, 1). Next, for any j € N, define

4alog A; 1- 2
_ talogdy s~ Jaloga v | 12X - Vo,
Aj—Ajn I / N A—A;
(T —DVI T B v
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Since A; —Aj_q = O(jA1), ¥ < 1,and p, < f — 1, we are guaranteed that Aj—Aj_122(S+2)and
dj,2 > 0 for large j, so the following is well-defined:
Jr=min{jeN:Ay-Ay_ 1 >25+2),8y,>0Vj >j}. (47)

Also note J}* > 2 (since A; — Ay = 1). Next, recall from Section 7.1 that

=) _ Q) () =) _ ; (i) =) _ =) ) =)

:jfl = {le ¢ Gaj,l(sjl )}, :jfz = { min T (A)) < Kj}, :jl = :jfl Uzjfz.

WEGdj,Z(Sj )
Hence, if we let S® = {W c [K] : |[W| =S +2,5?) c W} denote the possible active sets for agent
i(ie., SJ(.') e S for any phase j), we can write
20 = Uyeso (B n {81 = wh U (E)C nEY, n (s = wh)).

Consequently, by the union bound, we obtain

PE) < Z()( PEY N (s = W+ B(ED)C N5 0 (s = W})) (48)
weSU

The next two claims bound the two summands on the right side.
CrLA 11. Under the assumptions of Theorem 2, for anyi € [n], j > JF, and W € S%, we have

(”@ n {s(’) W) < 48(j — 1)PB29) /(24 — 3).

Proor. If W\Gs, (W) = 0, the claim is immediate. Otherwise, = ”(l) N {S(l) W} implies B( D=
for some w € W\ Gs, , (W). Thus, by the union bound,

PE! NS =w}) < Z P(B = w,minW € 5\"). (49)
weW\Gs, | (W)

Fix w € W\ Gs, ,(W). Then B{" = w implies T3, (4;) — T\ (A;-1) > (A; — Aj-1)/(S + 2) (else, by
definition of B{", zkesﬁ,-)(Tli")(Aj) ~ T(Aj1)) < Aj = Aj_y). Since Aj — Aj > S +2 (by j > J),
we conclude Tv(f)(Aj) - TS)(AJ-_I) > 1, so there exists t € {1+ Aj_y,...,A;} such that

T - 1) - T4 = TVA) - T4 -1, 1 = w.

Combining and using the union bound and with T‘(j)(A j-1) = 0 by definition, we obtain

4
. . _ A — A N
(D) _ : () (O J A : (0 ) _
P(Bj =w,mnW €§; )St_HEA P(Tw (t-1)= ) LminW €S [," =w (50)
=174,

Now fix t as in the summation. Observe that since w € W \ G5, (W) and j > J7, we have

4alog A; 4o logt
Hminw = pw > Oj1 = \/Aj—Ai—l = \/Ai—Ai-l

sz 1 sz 1

Therefore, for any such ¢, we can apply a basic bandit tail (namely, Corollary 5 from Appendix F.2
with the parameters ky = w, k; = min W, and £ = (A; — Aj_1)/(S + 2) — 1) to obtain

. Ai— A . 5 _
T -1) > ﬁ ~1LminW e S\, IV = w) < 2¢20-9),
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Substituting into (50) and using Claim 19 from Appendix F.1 (which applies since @ > 2), we obtain

. . ad 2ATI o(j — 1)fB20)
P(BY) = w,minW € s\) < 2 o) o I o .
(J W, T J)_ Z 20 —3 20— 3

t=1+Aj-1

Substituting into (49) and using [W \ G5, ,(W)| < [W| -1 =S + 1 < 25 completes the proof. O
CLAIM 12. Under the assumption of Theorem 2, for anyi € [n], j > J*, and W € S,
P(E)DS NEY, N {s = W) <6 285( - /29 /(20 - 3).

ProoF. By definition, we have

3j,2

=(i)\C -—() @) _ () : (i) (i) _
(:jfl) NE; A {S V=w} = { e Gs, (W), o nin W) T, (A)) < kj, Sj’ _ W} .
As in the proof of Claim 11, we know that

Ai—Ai Ai—A;i
T = T ) =T = BB s (B2

B; S+2 S+2

—1)V1>Kj,

where the final inequality holds since §; , > 0 by assumption j > J*, which implies

Aj=Aj 2
-1)Vvi1
. ) > ( 2 ) > 1.

Kj 1- l//

Thus, ("(l) ¥n :(') N {S(l) W} implies B( )¢ arg ming, ;. w) Tff)(Aj), so by the union bound,

j,2
P(E D NED N s =w) (51)
. . A —Ai_ . .
(i) () J L) (i) _
= Z P (Tw1 (A4j) = T,/ (Aj-1) 2 ﬁsTwz (4)) < x;,S" = W) .

w1€Gs; | (W), w2€Gs; , (W)\{w1}

Now fix wy, w; as in the double summation. Then similar to the proof of Claim 11,

i i A; — —1 i ;
P (T&B(A» - T 2 TR T < k.S = W) (52)
4
i Aj—Aj i i) (i
s Z P(Tévl)(t_l)zJSfZJ_LT»(VZ)(Aj)SKj,WzGS](),IE):WI)
t=14A;

Aj 4j
DL ag =2 N (gl

t=1+Aj- t=1+A;j

where the second bound follows from applying Claim 21 from Appendix F.2 with k; = wy, k2 = wy,
t=(Aj—Aj1)/(S+2)—1,u = kj, and t = ; note this claim applies since by assumption j > J,

2 1-y
- > — Hmi > —0i, > +alogt -
Hwy = Hwy 2 Hw, — Pminw .2 g TSy 5
S+2

Next, observe that for any t > A;_; > (j — 1)/3, by definition of ;, j > ]1* >2,and py < f— 1,
Kjt’pZ/ﬁ < Kj(j -1 =01- l/j)’pz/(KZS) < 2ﬁ—1/5'
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Similar to the proof of Claim 11, we can then use Claim 19 to obtain
A; s A B(i_ 1\f(3-2a)
Z (et P2 P )22 < z Z pre c ZUZDT T V-1
t=1+Aj S t=1+Aj 5(26{ - 3)

Combining with (51) and (52) completes the proof, since
|Gs,,(W)IIGs,,(W) \ {wi}] < (S +2)(S + 1) < (35)(29) = 65 o
Finally, we provide the tail for 7oy, = inf{j e N : ]l(”(l)) =0Vie|nlj =j}
LEMMA 9. Under the assumptions of Theorem 2, for any j > J V 3,
(67 + 2)nK2S(j — 2)PB-2)+1
(2a = 3)(f(2a —3) - 1)
PROOF. By (48), Claims 11 and 12, |S?| = (2) < K— ,and 8 > 1, we can write

(6 - 28 + 4)K?S(j" — 1)fB-2) - (67 + 2)K?S(j' — 1)PG-20)
2(2a - 3) - 20— 3 '

P(rarm > j) <

PEY) <

Thus, because Ty, > j implies 1(U 1:@) = 1for some i € [n] and j* > j, the union bound gives

P(Tarm > J) < Z ZP(”(”) L@ 24; 2)n31< S Z("' _ 1)fG-2),
J'=i

j=j i=1

Finally, use Claim 19 (which applies since (2 — 3) > 1) to bound the sum. O

E.2 Details from Section 7.2
Recall 8; = (j/3)”*, where p; € (0,1/n] and n > 1. Hence, for all large j, we have
1<6<j-2 [LOI"M <6 +1<(/3)+1<(~2)~j/3
Thus, the following is well-defined:
J=min{jeN:1<[0;] <j-2j/3<(G" -2)-[lOy]"1Vj =j}. (53)

,—-(z—)l ) _

Now recall from Section 7.2 that 2 ﬂJ zw J{H<.,i/) # i}, and

Teom = Inf{j € N = 1(Ugt i) Zy N=oVjielj+1..}}
The next lemma provides a tail bound for this random phase.
LEMMA 10. Under the assumptions of Theorem 2, for any j > J¥,
P(zeom > J) < 3(n + m)* exp(—j/(3d)).
Proor. We first use the union bound to write
P> )<Y, Y] FHES), (59
J'=j i—i'€Epon
Fixi — i’ € Epgpand j’ > j. Supposeﬁ(H " holds. Then i ¢ P( )\P( ) Vi"e{l0y]+1,...,j =1}

else, wecanfind j”" € {|0;]+1,...,j —1}suchthatH(,,)1 = 1(1e H(,,) =iforj”’ € {|0y],.

2}), contradicting Eﬁ' v) . Hence, we have two cases: i ¢ P( )\P( ) Vj"el[j/-1],orie P(,’,)\P(,, .
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for some j” € [}/ — 1] and max{j” € [[' - 1] : i € P(,l,) \P(,, .} < |0y]. In the former case,
i¢ PJ(.,i,/) V j” € [j* — 1]; in the latter, i ¢ P(.,i,/) Vji”e{ll0y]"1+1,...,j —1}. Thus,

P('“(l*)l )) < P(ﬂ],, H_g J'I"+1{l ¢ P(N ,H](j/) £i})

= B[1(" ,,_He i # PULHG # i1 ¢ PRy o(HY, # 1)].

Now given that i ¢ P<’ ) . H (') , is sampled uniformly from a set of at most d elements which includes

i,s0 Py _Z(H](.,z2 #1i) < (1 - 1/ d). Substituting above and iterating yields
PET) < (- ydy IO < (1 - 1/d) ", (55)

where the final inequality uses j* > j > J*. Combining (54) and (55) and computing a geometric
series, we obtain

|Ehon|(1 - 1/d)j/3 < IEhon|(1 - I/J)j/3

1-(1-1/dy3 =~ 1-(1-1/d)\3

Finally, using |Epon| < n? < (n+m),,1—-x <e*Vx €R,(1+x)" <1+ rxforanyr € (0,1)and
x > —1,and d < m + n, we obtain the desired bound. O

E.3 Details from Section 7.3
We begin with some intermediate claims.
CraM 13. If the assumptions of Theorem 2 hold, then for any i € [n] and j > Tarm, wWe have
l'lminS;.i) = 'uB;i) + 6j’1 < ﬂminSj(.i)l + 6j’1'
Proor. The first inequality holds by definition of 7,y and assumption j > 7,m. The second
holds since min S](Ql is the best arm in S](‘l+)1 and B;l) SJ(I+)1 in the algorithm. O

CraM 14. If the assumptions of Theorem 2 hold, then for anyi € [n] and j' > j = t4m,
'uminS(” z yminS@ - (K - 1) sup 5j',’1'
j/ J .
Proor. If j = j/ or Hoins® = Ho o the bound is immediate, so we assume j° > j and
Finin s® < Frnin 5 for the remainder of the proof. Under this assumption, there must exist a phase

j” €{j+1,...,j'} at which the mean of the best active arm reaches a new strict minimum since
j, ie., Hoin s® < Hin 500 Let m denote the number of phases this occurs and j(l), .. .,j(m) these
7 i

(ordered) phases; formally,

=j. /¥ =min {J U LT B s < M 0 1>} vielmk
J U=
The remainder of the proof relies on the following three inequalities:

m<K-1, Hiin s < Hoins®s  Hpp o = ,u in s Vlie([m]. (56)
jm) 7’ -1 D=1

i)

(i)
0 ,min S

The first inequality holds since p_. S(,) >eee>qp 5(’) by definition, so min st m)
are distinct arms; since there are m + 1 of these arms and K in total, m + 1 < K. For the second,

we have p_. s ) =p sj(_f) when j™ = j’ and B s < B S](_f) when j™ < j (if the latter
J J
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fails, we contradict the definition of m). For the third, note j) > j=V 4+ 1 by construction, so if
7 = j=V 4 1, the bound holds with equality; else, j©) — 1 > j=V + 1, so if the bound fails,

iP-1e {j" e UV +1,...,j} B s < i s }
J

Fia))
which is a contradiction, since j) is the minimal element of the set at right. Hence, (56) holds.

Combined with Claim 13 (note j© — 1 > j© = j > 7, V | € [m], as required), we obtain

m
/lminS(.i) - 'uminS(.f) = Z (‘umins(i) - ‘uminS(i) ) + IJminS(i) - ‘uminS(j)
J J =1 -1 jUl j(m) J

m m
< (‘uminSU) = Hoin 5@ ) < Z 5]-(1)_1’1 <(K-1) sup A Sjr.15
=1 =1

gUm ()
where the last inequality uses j = j© < j) —1 < j VI e [m]. O
As a simple corollary of the previous two claims, we have the following.
COROLLARY 3. If the assumptions of Theorem 2 hold, then for anyi € [n] and j' > j > t4em,

”B;? = ,ummsj(n -K sup 1.

Proor. Since j' > j > Tam, We can use Claims 13 and 14, respectively, to obtain

Hgo Z p oo =01 2p o= sup  Spaizp . qn—K sup g O
J 7 i el ') J J" €, nj’}
Next, inspecting the analysis in Section 7.3, we see that §; ; > (K + 1) SUPjic(|0;].....j} ;1 for
large j. Thus, the following is well-defined:
J3 = min {j eEN:§y > (K+1) sup SpaVj = j} . (57)
J7e{L0y 1,0}

As discussed in Section 7.3, we can now show that no new accidental blocking occurs at late
phases, at least among pairs of honest agents that have recently communicated.

CraiM 15. Under the assumptions ofTheorem 2, lf] > J¥, 10;] = tarm, and H;f') = i for some
i.i" € [n] andj’ € {|6;.....j - 2}, then i’ ¢ P\ \ PV

Proor. Suppose instead that i’ € PJ(.i) \ P](.i)l. Then by the algorithm,

() _ _ g (i) (&) _ gl ()
Bj =... = BngJ, Tlejl(AJ) < Kj, Rj—l = Bj—l € Sj . (58)

Since j > |6;] > Tarm, this implies Bﬁ'_)l ¢ ng‘z(Sj(.i)). We then observe the following:

e Since Bﬁl_)l € SJ(.') \ G(gjyz(S](.’)), the definition of ngEZ(SJ(.l)) implies My <p 5; 2.

min Sj.i) -
e Again using j > Tam, Claim 13 implies pt__ 5 < Ml +6j 1.

e Since | 6;] < j’ < j, (58) implies Bﬁ.’) = Bﬁ.f), S0 ,uB;,-) = :”B;f)'

e Since HJ(' ) = i, the algorithm implies Bﬁ.f) € S](l +)1, so ,qu_,? S M 55-521’

e Since T, < [0;] < j'+1 < j, Corollary 3 implies ’uminS(.,i/)l < ﬂBﬂ + Ksupj,,e{wjj iy 01
'+ -
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Stringing together these inequalities, we obtain

‘UB(_;-/) < /JB(_,-/) + K sup 51'//’1 — 5]"2 + 5j,l < ﬂB(_i') + (K + 1) sup 51'/"1 — (Sj,g,
/1 J1 J7e{lO;],-..j} 7 77 e{lO;],-...5}

ie, 82 < (K+1)supjucqig,|.... ;3 9.1, which contradicts j > J*. |

.....

Finally, we prove that honest agents eventually stop blocking each other.

LEMMA 11. Under the assumptions of Theorem 2, if j > J¥, |0;] = Teom V J3', and L010;1] = 7arm,
then for anyi € [n] and j' > j, P](.,i) N[n]=0.

Proor. Fix i — i’ € Epoy and j/ > j; we aim to show i’ ¢ Pj(.,i/). This clearly holds if i’ ¢
Pj(.,i,) \P](.,i,)_l V j” < j’'. Otherwise, jg; = max{j” < j' :i’ € PJ(.,i,) \Pj(l)_l} (the latest phase up to and
including j” that i blocked i’) is well-defined. We consider two cases of jp 1.

The first case is jp; < |0;]. Let jp o = min{j” > j": P](.,l,) \Pj(f,)_l} denote the first phase after j’
that i blocked i’. Combined with the definition of jg ;, the algorithm implies

¢ POV " e ([ 1+ 1. b (59)
Since j > ], the definition of J* implies
[e;1"M+1<(-2)-0(/3)+1<(-2)+1=j-1,
SO |'jg'| +1 < j—1<j as well. Combined with j’ < jg 2 — 1 by definition, i’ ¢ P](.,i/) holds by (59).

The second case is jp ; > | 0;]. By assumption, jg 1 > [0;] = Tcom. Hence, by definition of 7com,
H{") = iforsome jc € {|0,,].. . ..j5.1-2}. Note that jp; > [6;] > J and [6,,] = [616,)] > Tarm
by assumption (and by monotonicity of {[8;]};ew in the latter case). Hence, we can apply Claim
15 (with j = jp; and j* = jc in the claim) to obtain i’ ¢ PJ(.;)1 \PJ(.;)l_l. This is a contradiction. O

E.4 Details from Section 7.4
We first verify that the sampling strategy in Section 7.4 is identical to the one in Algorithm 2.

CraiMm 16. Suppose we replace the sampling ofH](i) in Algorithm 2 with the sampling of Section 7.4,
and recall P; denotes probability conditioned on all randomness before this sampling occurs. Then

Pi(H = i") = 1(i" € N(i) \ P\")/IN(i)\ P\"| V i € [n]. i’ € [n+ m].j € N.
Proor. Since P; conditions on Pj(.i), we can prove the identity separately in the cases PJ(.i) N[n]#0

and P](.i) N [n] = 0. The identity is immediate in the former case. For the latter, we have

Pi(H =) =BH" =Y} = DB;(v," = 1)+ B;H = |Y)" = 0)B;(v” = 0)

1(i’ € Noon()  dhon(i) . 10’ € Nuwaa() \ P} dhon (i)
= 5 — + - - -
dhon(D  IND\PP] [Nt \ P ING)\ PV
_ 17 € Noon(@) , 1067 € Nowai(9)\ P ING) \ PiP| = dhon(i)
ING)\ P |Nimai (i) \ Py ING)\ P
L(i’ € Npon(0)) + 1(’ € Newa()\ P}") 1" € N() \ P}")
INGi) \ P IN(i) \ P17
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Next, note that since 6y ; — 0 as j’ — oo, the following is well-defined:
Jr=min{j€ {2,3,...}: §p1 <A VJ = |j/2]}. (60)

Asin Section 7.4, welet I; ={ie[n]: 1€ S;i)} be the agents with the best arm active at phase j.

CrLAM 17. Under the assumptions of Theorem 2, if j > J and |j/2] > Tam, then B;f) =1Vj =
Li/2).ie 1.

Proor. Suppose instead that Bﬁf) # 1 for some j* > |j/2]| and i € Zj. Since j* > |j/2] > |J;/2],
we know d; 1 < A,. Hence, because 1 € S;f) by definition of 7, we have G6jr,1 (Sj(.,i)) = {1}. Combined
with Bﬁf) # 1, we get Bﬁf) € Sﬁ.f) \ G(sj,vl(S](A,i)), which contradicts j* > |j/2] > Tarm. O

Finally, recall zg,; = inf{j € N : B;f) =1Vie€|[n],j 2 j} and 75, = inf{j e N : Z; = [n]}, where
{Z; }72, is the noisy rumor process from Definition 1.

LEMMA 12. Under the assumptions of Theorem 2, if j > J), |j/2] = J)\, and [0|j/2;] = J, then
P(Teom < |.9|_j/2JJ, Tarm < LQLBU/ZJJJ’ Tspr > = IP)('l_'spr > j/2).
ProOF. Let &; = {7com < [0j/2) ] Tarm < 101011} and
Ly =} =L Ufi e [\ Ly - V) = LAY e T,y Ve {lj/2)+ 1. Lif2)+2... ). (61)
Then it suffices to prove the following:
Pjj2)(E5 N {Topr > J}) < Pljj2)(8; N {Z; # [n]}) < Pjja)(Z; # [n]) = P(Egpe > j/2).  (62)
For the first inequality in (62), we begin by proving
Sj N {Tspr > ]} N {-Z} = [I’l]} = 0. (63)
To do so, we show &;,1; = [n] = 75 < j. Assume &; and 7; = [n] hold; by definition of 7,

we aim to show B;f) =1Vi € [n],j/ = j. We use induction. The base of induction (j* = j) holds

by Zj = [n], & € {ram < |01g,, )] < Li/2]}, and Claim 17. Given the inductive hypothesis
B;.f) =1Vie€ [n],wehavel € SJ(.,ill by the algorithm and Jj,; = [n] by definition, so we again use

the assumption that &; holds and Claim 17 to obtain Bﬁfll =1V i € [n]. Hence, (63) holds, so

Plis2) (& N {zspr > j}) = P2 (& N {zspr > j} NA{Z; # [n]}) < Pyj2)(E5 N {Z; # [n]}).
For the second inequality in (62), we claim, and will return to prove, the following:
& c n;":Lj/ZJ{Ij' c Iy} (64)
Assuming (64) holds, we obtain
PLj2)(&; N {Z; # [n]}) < Pypay(Z; € I, I # [n],) < Pljjay(; # [n)).

Hence, it only remains to prove (64). We show by induction on j* when &; holds, jj/ C Iy for each
j e{lj/2l,...,j}. Forj = |j/2], recall1 € S(Llj*/;J by Assumption 3, so 7|/ D {i*} = j[j/2J~ Now
assume fj,_l C Iy for some j" € {[j/2] +1,...,j}. Leti € I; we aim to show that i € Iy, ie.,
that1 e Sj(.,i). By (61), we have two cases to consider:
eic ]3-/_1: By the inductive hypothesis, i € I;_; as well,so 1 € SJ(,')_ by definition. Combined
with j* =1 > |j/2] and Claim 17 (recall j > J; and |j/2] > [0|,,,1] = Tarm When &; holds,

so the claim applies), this implies Bj')f1 =1,s01¢€ S](l ) by the algorithm.
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e ic|n] \[},_1, Y;,i) = I,HJ(.,i) € I}z_leirst observe that since | |;/5)] > JJ and j* > |j/2] > J,
we can apply Lemma 11 on the event &; (with j replaced by | j/2] in that lemma) to obtain
P](.,l e [n] = 0. On the other hand, recall that Y(,l) is Bernoulli(Y) in Definition 1 and v], is

Uniform|0, 1] for the Section 7.4 sampling, so we can realize the former as Y;,’ = ]l(vjf) <)

Hence, by assumption }_’;,i) = 1 and definition Y = min;e[,] dhon(i)/d(i), we obtain

1=7" =10} <71) < ]1( () ¢ dhonli )) 1| < —dhon® ) _ )
! d(i) TNoARY )
In summary, we have shown that PJ@ N [n] = 0 and Y;i) = 1. Hence, by the Section 7.4
sampling, we conclude H(l) Hj(.i). Let i’ = Hj(.i) denote this honest agent. Then by the
inductive hypothesis, we know thati’ € jj/_l C Zjy_q,ie,thatle S](l:) . By Claim 17, this
implies Bﬁlljl = 1, so by the algorithm, 1 = 35121 = Rﬁ'll S S;,i).
Finally, for the equality in (62), note that 7 is independent of the randomness before | j/2]. By

7 L2l = Iy = {i*}, the fact that Y(l) and Y(,l) Ljj2) are both Bernoulli(Y) random variables and H ()

and H (,1 ) Ljj2 are both sampled umformly from Nyon(i), Z; has the same distribution as I —1j/2]-

Also, note that I » is independent of the randomness before Lj/2]. Finally, by definition of Ty,
jj_ Ljj2] # [n] implies that 7o, > j — [j/2] > j/2. These observations successively imply

Biyja)(d; # [n]) = B(Z; # [n]) = BTy p2) # [n]) < BFpr > J/2). :
E.5 Details from Section 7.5
Combining the lemmas of the above sub-appendices, we can bound the tail of the spreading time.

THEOREM 3. Under the assumptions of Theorem 2, for any j > Ji, where ], is defined in Claim 32
from Appendix F.3, we have

A R 3) i, p (T . i) _
(2a = 3)(B(2a —3) - 1) o
Proor. For any j > J,, we can use Claim 32 to obtain
J2UE LOu) 2 JE VIR L0y 1) 2 TV (2+ 71 /84) > 3 (65)
(n+ m)® exp(=10y;211/(3d)) < jPAPO2D, (66)
In particular, | 0|¢,,, 1] > J v 3 implies that we can use Lemma 9 with j replaced by L616,,,1]-
Combined with (65) (namely, |8|4,,,,,] — 2 > j*i /84); this yields

P(Tspr >j) <

84P1(F2a=3)-1)(¢F 4 2)nK2S
(2a—3)(BRa—3)-1)
Since [8;/2)] = JJ by (65), we can use Lemma 10 (with j replaced by [ 6,/ ]) and (66) to obtain

P(Tarm > LGLQU/ZJJJ) < ~pf(ﬂ(3—20l)+1)-

0, .
P(teom > 101j/21)) < 3(n+ m)* exp (—%) < 3jPipE-2a D),

Furthermore, using the bounds j > J, |0|/2)] = J5,and | 0|/2)] = J from (65) (the last of which
implies | j/2] > JF, since 0|;/2) = (Lj/2]/3)"" < Lj/2] by p1 € (0, 1)), we can use Lemma 12 to get

P(Tarm < LGI_GU/ZJJL Tecom < |_‘9|_j/2JJ’ Tspr > J) < IED('z—spr > J/Z)
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Finally, by the union bound, we have
P(Tspr > j) < P(tarm > LGLGUMJJ) + P(7com > Lel_j/ZJJ)
+ P(Tarm < I_HLGU/ZJJJ, Tecom < I.el_j/ZJJ’ Tspr > Bl
so combining the previous four inequalities yields the desired result. O
Finally, as a corollary, we can bound E[A,, .

CoROLLARY 4. Under the assumptions of Theorem 2, we have

84,1(FRa=3)-1)(gh 4 2) . 2BnK?S
(2a = 3)(B(2a =3) = 1) pi(p2a —3) - 1)~ B

=0 (sﬁ/(Pf<ﬂ-1>> V (Slog(S/A2)/ADPIBD v (dlog(n + m)PlPr v nKZS) + E[Ag, ]

ElAr,] < (J2)F + ( +E[Azz,, ]

where ], is defined as in Claim 32 from Appendix F.3.
Proor. We first observe
E[Ar, ] = ) (Aj = Aj )Pty 2 ) S Afy 1 + ) (A) = Aj1)P(tpe > ). (67)
Jj=1 J=Jx

For the first term in (67), using Claim 18 from Appendix F.1, we compute
Ajr = A = Ay = AL ) = [0 = (A - A) < O +1-1= U
For the second term in (67), define the constant

84Pf(ﬁ(2a—3)—1)(6ﬁ +2)
C= + 3.
2a -3)(f2a-3)-1)

Then by Theorem 3, we have

Z(Aj —Aj—l)P(Tspr > j) < Z(AJ - Aj—l)P(fSpr >j/2) (68)
J=Jx J=Jx
+ CnK?S Z(Aj — Ajoy)jPiPC20), (69)
J=Jx

For (68), we simply use nonnegativity to write

DA = A OPEge > j/2) < ) (Aj = Aj )P > j) = ElAgs, 1.
J=Jx Jj=1

For the second term in (69), we use Claim 18 and f > 1 and pf (B(2a—3)—1) > p by the assumptions
of Theorem 2 to write

CnK?S Z(Aj ~Aj) jPLBG=20+) < 9p0nK2S Z i (Pi(Ba-3)-1)-p)

I J=Tx
00 2
< 2BCnK*S / FIPHBCa=3)-1-) g _ 2BCnK?2S |
=t pA(B2a —3)—1) - p
Finally, combining the above bounds completes the proof. O
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F OTHER PROOFS
F.1 Basic inequalities
In this sub-appendix, we prove some simple inequalities used frequently in the analysis.
CrLamm 18. Foranyj € N, we have
<A< B-1FT-1<A-AL <BFT 1 A -AL 21,
and foranyz > 1 andl € N, we have Aj,1 < e?P(lz)P.
Proor. For the first pair of inequalities, observe A; = j# = j*# =1 when j = 1, and for j > 2,

F<a<ifri<of <P <

For the second pair of inequalities, we first observe
A=A > —(-1f -1=pP 12 B -1 -1, (70)

where the equality holds for some x € [j—1, j] by the mean value theorem and the second inequality
is x > j — 1. By analogous reasoning, one can also show A; — A;_; < BjP~1 + 1, so the second pair
of inequalities holds. The third inequality holds with equality when j = 1, and for j > 2, the lower
bound in (70) and g > 1 imply A; — Aj_; > 0, so since A; and A;_; are integers, A; — A;j_; > 1.
Finally, using z > 1, f > 1, and 2 < e, we can write

A < (z+ 1)) +1 < 2l2)P + (2l2)f = 2P (1) < 2P (2)P. o
Cramv 19. ForanyjeNandc > 1, X2, i€ < j'7¢/(c = 1).

ProOF. Since j > 1 and ¢ > 1, we can write

0 il—c

(e 0o i 0 i
—c _ .—c —c _ —c _J
Zz _Z‘/x:ial deZ/X:iilx dx—/x_x dx—c_l. O

i=j+1 i=j+1 i=j+1 =J

Cram 20. For any x,y,z > 0 such that x¥ < zlogx, x < ((2z/y)log(2z/y)"/¥ < (2z/y)*'".

Proor. Multiplying and dividing the right side of the assumed inequality by y/2, we obtain x¥ <
(2z/y)log x¥/%. We can then loosen this bound to get x¥ < (2z/y)x¥/?, or x < (2z/y)*/¥. Plugging
into the log term of the assumed inequality yields x¥ < (2z/y) log(2z/y). Raising both sides to the
power 1/y establishes the first bound. The second bound follows by using log(2z/y) < 2z/y. O

REMARK 14. We typically apply Claim 20 with y constant but z not. It allows us to invert inequalities

of the form x¥ < zlog x to obtain x = O(z'/Y).

F.2 Bandit inequalities

Next, we state and prove some basic bandit inequalities. The proof techniques are mostly modified
from existing work (e.g., [3]), but we provide the bounds in forms useful for our setting.

Cramm 21. Suppose that ki, ky € [K],t € N, {,u > 0, and 1 € (0, 1] satisfy

2 1—1
- >+alogt|— — .
Hhe ™ o = V08 (vz va)

Letj € N be such thatt € {1+ Aj_1,...,A;}, i.e, j € AX(t). Then for anyi € [n], we have

P (= 1) 2 6 TOA) < wky € S, 10 = k) < 2(Lu) A e
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Proor. For k € [K], let {X(s)};2, be an i.i.d. sequence distributed as v, and for s € N, let
alogt

S
NG 1 / (i) A (i)
== § Xi(s), UP(t,s) = +
. (s) s L k(") U (t,s) = (s)

denote the empirical mean and UCB index of if i has pulled the k-th arm s times before t. Then
Algorithm 1 implies that if k; € S(l) and I(’) k1, we must have

(@) (1) (i) (i)
Uy, (t, T, (t-1) = Uy, (t, T, (t-1)). (71)
Next, note that if TIE?(Aj) < u, then by monotonicity, T,Ei)(t — 1) < u as well. Combined with the
fact that Tg)(t — 1) € [¢t] by definition, we conclude that TIE?(AJ) < u implies Téi)(t -1) < |lu] At

Similarly, T, (t - 1) > ¢ implies T, (t — 1) > [£] (since T, (t - 1) € N). Combined with (71), we
obtain that if the event in the statement of the claim occurs, it must be the case that

. (i)
> U, "(t,ss).
e U502 in UG

Therefore, by the union bound, we obtain

t  lulAat
PI-1)2 6T A <ukp e S0 =k) < Y0 Y PO s) 2 UL ). (72)
s1=[€] s2=1

Now fix s; and s, as in the double summation. We claim U,Ef)(t, s1) > U,E;)(t, s2) implies
(1) 2 i, + Nalog(®)/si or  ji(s2) < pu, — W log(t)/s;.
Indeed, if instead both inequalities fail, then by choice of sq, s, and the assumption of the claim,
Ut 51) < piy + 2 log(t)/s1 < pu, + 2vJalog(t) /€
< i, + (1= e log(t)/u < pu, + (1= )alog(t) /sy < U (8, 52),
which is a contradiction. Thus, by the union bound, Hoeffding’s inequality, and € (0, 1), we obtain

BU(ts1) 2 Ut 52)) < PG (s1) 2 iy, + Varlog(t)]s) + B (s2) < pr, — 1 Tog(1)]s)

< e72leogt + 6720512 logt _ ey t72a12 < 2t72a12
so plugging into (72) completes the proof. O

COROLLARY 5. Suppose that ki, k, € [K],t € N,and £ > 0 satisfy p, — pg, = +/4alog(t)/¢. Let
j € N be such thatt € {1+ Aj_1,...,A;}, ie, j = A"Xt). Then for any i € [n], we have

PT(E=1) 2 6y €S, 1) = k) < 2207,
Proor. Using Tg) (Aj) < A; by definition and applying Claim 21 withu = Ajand 1 = 1,
PTO(t=1) 2 by €SP 1D = k) =BTt - 1) 2 6.T(A) < Aj. kg € .11 = ky)
< 2(LAj] A D)2 = 2070, o

COROLLARY 6. Foranyi € [n], k € [K], and T € N, we have

T
i i 4alogt 4 -1
2l Y1 k1> 08 Hem D)
A 2a -3
1=Ag+1 k
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Proor. First observe that since 1 € S(l) ) whenever t > ATSpr + 1 by definition, we have

; 4alogt - ; 4alogt
11(1}” kT -1) > aAOg )_ZIL(TIEl)(t—l)Z aA(;g e st 1 = k)7.3)
k t=1 k

T

t=A g +1
Next, let k; = k, k, = 1, and € = 4« log(t)/Ai. Then by definition, we have pg, — px, = Ax =
v4a log(t)/€. Therefore, we can use Corollary 5 to obtain

BTt - 1) 2 4arlog(t)/Af, 1€ S, 17 = k) < 2207, (74)

Hence, taking expectation in (73), then plugging in (74) to the right side and using Claim 19, yields

T )
E Z 1(1(’) kT -1) > 4aAlOgt) s2(1+2tz(1‘“))s—4(a_1) o

£ A 200 -3

Tspr

CrLAmM 22. Foranyi € [n], ty, t, € N such that t; < t, and {ft}?:tl C (0, 0),

ty

g (1}” =k T 1) < é’,) <, max L

t=t;

ProoF. Set £ = max;c(y,... 1) ;- Then clearly

,,,,,

ty 7}
P! (I(’) KT -1) < ¢ ) 1 (1<'> kT —1) < f).

t=t t=t
Now suppose the right strictly exceeds €. Then since the right side is an integer, we can find [{]
times t € {t1,...,t;} such that I(') k and T(l)(t 1) < €. Let f denote the largest such t. Because

I(l) k occurred at least [£]—1 times before ¢, we know T(l)(t 1) > [€]—-1.But since T(l)(t 1) < ¢,
thlS implies € + 1 > [{], which is a contradiction. m]

Finally, we recall a well-known regret decomposition.
Cramm 23. The regret R( D defined in (5) satisfies R(l) Z AkE[ ]l(I(l) k)]
Proor. See, e.g., the proof of [38, Lemma 4.5]. O

F.3 Calculations for the early regret

In this sub-appendix, we assume a, f3, 1, 0}, k;, p1, and p; are chosen as in Theorem 2. Recall C;, C;,
etc. denote constants associated with Claim i that only depend on «, S, n, p1, and p,.

Cram 24. There exists Caq, C), > 0 such that | 0)j/2)] > C24j* and [0\g,,,,1] > CoujPi V j > Gy
Proor. This follows from the choice 6y = (j’/3)”* V j’ € N in Theorem 2. o
Cramm 25. There exists Co5 > 0 such that | 0(jj2)] = JX V j = Cos.

Proor. This follows from Claim 24 and the fact that J* is a constant by definition (53). O

Cramm 26. There exists Cs, C, > 0 such that for any j > CysSY#~V,

Aj—Aj_ Aj—Aj_ if-1
(] 11_1) 1= j-1 1>J

S+2 S+2 TS
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Proor. By Claim 18, we can find C,C’ > 0 depending only on ff such that A; — A;_; > cjP1
whenever j > C’. Hence, for any j > (65/C)Y/f~D v C’, we know A; — Aj_; > CjP~ > 68, so
A —A._ -1 _ -1 _ H:p-1 f-1
j 11_1>C] 3SZCJ Cj /2=C] > 1
S+2 3S 38 6S
where we also used S > 1. The claim follows if we set Css = (6/C)Y/#~V v ¢’ and C, = C/6. D

>

CrAmM 27. There exists Cy7,Cy, > 0 such that for any j > Cyy SY (-1

1y 2 CLK°S
log(Aj_1 vV 1) > Blog(j)/2 > 0, - > ) (75)
Kj Aj—Aj1
Vs v

Proor. By Claim 26, we can find constants Cy, C;, > 0 such that for any j > CysSYB-D),

2/\J((A) = Aj-0)/(5 + 2] = 1) V 1 < \JAC)S/i#1 < \JaC) K25 /-1,

where we also used K > 1. Furthermore, since p, < f — 1 by assumption, we can find C > 0
depending only on C,, ¢, f, and p,, such that for any j > C, we have 4C§6/jﬁ’1 < (1=1)?/(4j"?).

26°
Combined with the previous inequality and the choice k; = j*2/(K%S) in Theorem 2, we obtain

1- 2 1 —1)2K2S
\/_‘ﬁ - - 4‘22 Vj > (Cy vV C)SYE,
K; Aj-Aj- j
/ (L -DVi1

Hence, if we set Co; = Cos V. C V 4 and C}, = (1 — 1/)*/4, the second inequality in (75) holds for
j = Cy;8Y =D Finally, define h(j) = j — 1 —+/jVj € N. Then h(4) = 1 and #'(j) = 1 — 1/(2v]j) >
0V j>4,s0h(j) >0V j> 4 Thus, for any j > C,;SY#~D > 4 we know j — 1 > /], so by Claim
18, log(Aj-1) = log((j — 1P > log(\/jﬁ) = Blog(j)/2, i.e., the first inequality in (75) holds. O

CLAIM 28. There exists Cos > 0 such that for any j > CysS/(Pi(F-1), L6161 = T

Proor. By Claims 26 and 27, we can set C = Cyq V Cy7 to ensure that for j > CSYB-1), Aj—Aj ;>
2(S +2) and ;, > 0. Hence, J}* < CSYF=1) by definition (47). On the other hand, by Claim 24,
we know LGEBU/ZJJJ > C24j"’f for j > C;,. Thus, 2if we set Cog = (C/C24)1/Pf2v C;,, then for any
j = CysSVPiA-1) e obtain L616,,51] = Cauj?t (since j > C},) and Cyyjft > CSYB-1) (since
J 2 (C/Cop)1PiSHPIFD) = ((C/Cp4)SHP~V)1/PT), which implies [0, ] > CS'PV > J*. o

Cram 29. There exists Co9 > 0 such that for any j > ngSl/(pf(ﬁ_l)), 01j/2)] = ]3*.

Proor. We first upper bound J;*. By Claim 24, we can find Co4, C;, > 0 such that [§;| > Cy4j*"
when j > C),.Letj > C£4V((Cz(,/C24)Sl/(ﬁ_1))1/P1, where Cy is from Claim 26, and j* € {6;], ..., j}.
Then j' > | 6;] = Cpyj* > Cy6SY P~V 50 we can find C;¢ > 0 such that

dalog(A/)CYS _ \/(2K)24alog(jzﬂ)cg6 B \/CKZSIOgj

(j")B-1 (CyyjPrr)p-1 jerp-n 7
where the first inequality uses Claim 26; the second inequality uses K > 1, j > |6;] > C,4j”, and

Claim 18; and the equality defines C = 32aﬂC§6/C2ﬁ4_1. On the other hand, if j > C,;S"#~1, where

Cy7 is from Claim 27, we can find C;, > 0 such that
82 > \JaBlog(i)C;,K25/(2j¢) = KIS Tog(j)/ 7
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where the inequality uses Claim 27 and the equality defines C’ = aC;,/2. Finally, by assumption
ps < pi(B — 1), we can find C”” > 0 such that, for any j > C”, we have C’/j” > C/j,F~D,
Combined with the previous two inequalities, we obtain that for j > C}, V ((Cas/Cy4)SYF-V)V/P1 v
(C,SM Py v " and any j’ € {[6;],. ...} 8,2 > (K + 1)5;1. Therefore, by definition of J;* (57),
we conclude that J* < CSY(PB=D) swhere C = C}, V (C26/Cz4) V Co7 V C”. Therefore, if we set
Ca9 = C}, V (C/C24)"/P, we obtain that for any j > CyoSU/(PI(B-1)), 101/2)] = Ca4jP* (since j > C},)
and CyjP* > CS1/(p1(B-1) (since j > (é/cz4)l/p151/(pf(ﬁ—l)) - (C‘Sl/(Pl(ﬁ_l))/C24)l/Pl)’ so stringing
together the inequalities, we conclude | 8|;/5] = Coyjf* > CSY(p(B-1) > J¥. O

Cra 30. There exists C3g > 0 such that J < C50(S log(C3OS/A§)/A§)1/(ﬁ_1).

PrROOF. Let Csp = 16Cy.af/(f—1)and Cs) = Cso V (BCN;é('Bfl)) V (3Cy) V 16, where Cys and C; are
the constants from Claim 26. Also define ]I = Cs(Slog(C30S/A2)/A2)Y P~V Then by definition of
J (60), it suffices to show §;; < A,V j > LL]IJ/ZJ. Fix such a j and suppose instead that §; 1 > A,.
Since C3y > 16, we know ]I > Cs(log Cs0)V/ B > 16, so

Jz (U2 =12 U - D/2) - 1= U]/ - 6/2) > T /3. (76)
Hence, because C;3y > 3Cy4, we have j > ]:/3 > CysSY D, 50 by Claims 26 and 18, respectively,
67, < 4alog(Aj)C}S/jP 7 < 4alog(*P)C}S /P = 8C)apSlog(j) /P .
Rearranging and using the assumption §;; > Ay, this implies jP < 8C},apSlog(j)/ A% Hence,
applying Claim 20 with x = j,y = f — 1, and z = 8C},,afS/A3, we obtain
J < (16C},apSog(16CsapS/ (B — DAI/((B — DAY ED = (CsoSlog(CsuS/AZ)/ AV,
But since Cso > Cs V (3@;6(/3_1)), we have shown j < ]j/3, which contradicts (76). O
Cram 31. There exists Cs; > 0 such that, for any j > (Cs1d log(Cs1d(n + m)))/P1,
(n+m)° exp(~10/2)/(3d)) < jPiPE-2D, (77)

PrOOF. Let Cs; = 12p1(B(2or —=3)—1)/Cos and C3; = C;, V3V (18/Cys) V Cs1, and suppose instead
that (77) fails for some j > (Cs;d log(Cs;d(n + m)))/P1. Then we can write

101j/21] < 9dlog(n + m) + 3dp?(B(2a — 3) — 1) log j. (78)

Since C3; > C;, V 3 and p; € (0, 1), we know that j > (C;, log(3))/P1 > Cy 50 101211 = Coyj”
by Claim 24. Since Cs; > (18/Cy4) V 1 and d > 1, we also have j > ((18/Cy4)log(n + m))!/?1, or
Cy4jP1 /2 = 9d log(n + m). Combining these two bounds with (78), we conclude

JP1 < (6p3(B(2ar = 3) = 1)/Cyy)dlog j = Cs1(p1/2)d log ).

Applying Claim 20 with x = j, y = p;,and z = égl(pl/Z)J, we obtain j < (égldlog(@ﬂ))l/m. But
since C3; > Cj1, this contradicts the assumed lower bound on j. ]

CrLam 32. Deﬁne C32 = C25 \Y ng \% ng and
i = (C38MPII=D) v (C50(S log(C308/A2) /A3 PD) v (Cs1d Log(CS (n + m))) /7.
= © (SVWIP) v (Slog(5/0)/A3) 1PV v (dlog(n + m))! /)
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Then for any j € N such that j > J,, we have

J2 T8 L0yl 2 T VIS Bleu] 2 IV (@2 +jP1/84) > 3
(n +m)’ exp(=|0y/2))/(3d)) < jFiPG-20+D),

ProoF. The first bound holds by j > Cs((S/A%)log(C},S/A2%))Y/ P~ and Claim 30. The second
holds since [0|j/2)] > J; by j > Cy5 and Claim 25, and since [0|;/2)] > JJ by j > CpoSY/(PI(-1)
and Claim 29. The third holds since | 0|¢,,, ] > Jrbyj> Cy5S1/(Pi(F=1) and Claim 28, and since
616,11 = (2 +jpf/48) for large enough C7,. The fourth holds since | 6g,,, |] > 2 (by the third)
and 0|, |] € N. The fifth holds by j > (Cgldlog(Cgl(n +m)))"/P and Claim 31. O

F.4 Calculations for the later regret

In this sub-appendix, we assume «, f, 1, 0}, k;, p1, and p, are chosen as in Theorem 2. Recall C;, C},
etc. denote constants associated with Claim i that only depend on a, f, 1, p1, and ps.

CraIM 33. There exists C33 > 0 such that, for anyy; € (0, 1),
LH[TYi//;]J'B < 4aKlog(T)/A; = logT < (Css/yi)log(CssK/(Azyi)) - (79)

Proor. Similar to Claim 24 from Appendix F.3, we can find constants C,C’ > 0 such that for
any j > C’, |0;] = Cj”. If [TYi/F] < C’, then TV < [TY/F1F < (C")P, sologT < (B/y:)log(C’),
and the right side of (79) will hold for C35 > f Vv C’. If instead [TYi/F] > C’, then |_9|'Tyi/ﬁ'|J
C[TYi/B1Pr > CTYiPB 50 if the left side of (79) holds, we can write

\%

cPrvier = €TV PIPYP < 0, 1y10571F < 4alog(T)/As.
Hence, applying Claim 20 with x = T, y = y;py1, and z = 4a/(CPA;), we obtain
log T < log(8ar/(AzyiCP py))*WiPD) < (Cs3/y:) log(Cs3K /(Aayi)),
where the last inequality holds for any Cs3 > (8at/(CFp1)) Vv (2/p1). O

CraM 34. There exists C34 > 0 such that, for anyy; € (0, 1),

Krrriipy < 4aKlog(T)/Ay = logT < (Csa/yi)log (CsuK/(Azyi)) .

\%

ProOOF. Recall k; = j*2/(K%S) in Theorem 2. Hence, because S < K, we know that K(7vi/h1
TYiP2/B |K3. Rearranging and using the assumed bound, we obtain

TVPIP < K® - kipypy < K® - 4aK log(T)/ Az = (4aK*/Ap)log T < (4aK/Az)" log T,

where the last inequality uses @ > 1 and A, € (0, 1). Applying Claim 20 with x = T, y = y;p2/p,
and z = (4aK/A,)*, and noting that 2/y < (2/y)* (since y; € (0,1) and p; € (0, § — 1)), we obtain

log T < log(8aBK/(Azyip2))P!irY) < (Csu/yi) log(CsuK /(Azyy)),
where the second inequality holds for Cs4 > 8af5/p,. O
Cramm 35. There exists C35 > 0 such that, for anyy; € (0, 1),

3> [TF] st [K;] < 1+ dalog(A)/A: = logT < (Css/yi)log (CssK/(Agyy)).
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PRrOOF. Fix j > [TYi/#] such that [k;] < 1+4alog(A;)/A% Note thatif j = 1, then 1 > [TYi/F] >
TYi/P, 50 since T € N, we must have T = 1. This implies logT = 0, so the claimed bound is
immediate. Hence, we assume j > 2 moving forward. We first observe

. . . 3 .

- A A

2 2

where the inequalities use [x;] = [j*2/(K?S)] > j**/K?, the assumed upper bound on [«;], Claim
18, and 8aBlog(j)/A% > 1 (since a, B = 1, > 2, and A; € (0, 1)), respectively. Applying Claim 20
with x = j, y = py, and z = 16aBK>/A2, and noting that 2z/y < (32aBK/(Azp,))® (since a > 1,
p2 € (0, — 1), and A, € (0,1)), we obtain j < (32aK/(Azp2))*/"* < (C35K/(Agy:))*/P for any
Css = 32af/p,. Therefore, by assumption j > [TYi/#], we obtain that for any Cs5 > 32a8/p2,
T< |'TYi/ﬁ'|ﬁ/Yi < ]'.B/Yi < (C35K/(A2},i))6ﬂ/(ﬂz)’i) < (C35K/(A2yi))c35/)/i ) O
CraiM 36. There exists C3s > 0 such that, for anyy; € (0, 1),

Az(Za - 3)

o SlogM) Y (k-1 = logT < (Cis/yi) log(CsoK/(Aay).  (80)

j= [Tyi/ﬂ]

ProOF. We first eliminate the corner case where min{T?!/#, Krrvip1} < 2. In this case, one of
TVi/F < 2 and k{7,617 < 2 must hold. If the former holds, then log T < (§/y;)log 2, and if the latter
holds, then 2 > Kkrry./57 = [TYi/B1P2 |(K2S) > TYir2/B K3 s0 log T < (B/(yip2))log(2K?). In both
cases, we can clearly find Cs¢ > 0 satisfying the right side of (80).

Next, we assume K(7y;/p7 = 2 and TV /B > 2. By monotonicity, the former implies kj > 2 for any

j > [T"i/P]. For any such j, by definition and S < K, we can then write
[ki1—12>kK;—12k;/2=j/(2K%S) > j**/(2K?).

Therefore, since 3 — 2a < 0 by assumption in Theorem 2, we obtain

Z (Tk;] - 1)>2@ < g2e-3g3Ca) Z P32
J=[TrilA j=[TvilB]

For the summation at right, we use TYi/# > 2 (which implies [TY/#] -1 > TVi/F — 1 > TVi/F ]2)
and p,(2a — 3) > 1 by assumption in Theorem 2, along with Claim 19, to write

> pa3-20) - (TYilB j2)1+pP2(-2c)  op2(2a=3)Tyi(1+p2(3-20))/
j < =
p2(2a =3) -1 2(p2(2a =3) = 1)

J=TYilA]
Using pz(2a — 3) > 1 (by assumption), we also know
2BTYi(1+p2(3-20))/ log(Th(pz(Za—3)—1)/(2ﬁ)) - 2TYi(1+p2(3-20))/(2)
Yi(p2(2a =3) = 1) T vilp(2a—=3)-1)
Combining the previous three inequalities, we then obtain

TVi(1+p2(3-20))/ B log(T) =

1)(2a-3 3(2a-3
20 KT apas-2anf(ep)

) > 1 _ 1\3-2a)
Og(T)j=[;;/ﬁ](ch1 v = (p2(2a =3) = 1)* i

Therefore, if the left side of (80) holds, we are guaranteed that

A>(2a = 3) - 2<p2+1)(2“_3)ﬂ K3(2a-3)

Tri(+pa(3-20))/(2P)
8aK? T (p2(2a—3)-1? y; ’
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or, after rearranging, then using « > 1 and Ay, y; € (0, 1),

2 +1)(2a—3 6a—7 6a—7 6a
Trilpa2a=3-0/p) o __ 8" 2PetEagp K < e o (c361< )

(2a = 3)(p2(2c = 3) = 1)* Auy; Azy; Azyi
where the second inequality holds for large Css and the third uses & > 1 and Ay, y; € (0, 1). Taking
logarithms and choosing Cs appropriately in terms of p;, @, and f yields the right side of (80). DO
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