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Abstract

In this paper, we study complex Jacobi matrices obtained by the Christoffel and Geronimus
transformations at a nonreal complex number, including the properties of the corresponding sequences
of orthogonal polynomials. We also present some invariant and semi-invariant properties of Jacobi
matrices under such transformations. For instance, we show that a Nevai class is invariant under the
transformations in question, which is not true in general, and that the ratio asymptotic still holds outside
the spectrum of the corresponding symmetric complex Jacobi matrix but the spectrum could include one
extra point. In principal, these transformations can be iterated and, for example, we demonstrate how
Geronimus transformations can lead to R;j-recurrence relations, which in turn are related to orthogonal
rational functions and pencils of Jacobi matrices.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

We denote by C the set of all complex numbers and by C. = {z € C|£Imz > 0} the upper
and lower half-planes, respectively. Let £ be a complex-valued linear functional defined on the
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vector space C[z] of all polynomials with complex coefficients. Evidently, such a functional is
uniquely determined by its moments

s;=L[z]1eC, j=0,1,2,....
If the moments are such that

det(siﬂ)l’f,j:o #0, n=0,1,2,...

then L is called quasi-definite or regular. It is known that £ is quasi-definite if and only if
there exists a sequence of polynomials P,(z) of degree n that are orthogonal with respect to
L. The latter means that they satisfy the following relations

LIP,()Pu()] =0, n#m,
and
LIP?()] #0, n=0,1,2,....

This Orthogonal Polynomial System (in what follows it will be abbreviated to OPS) is unique
provided that the sequence of leading coefficients of P,(z)’s is fixed. To be definite, we assume
that P,(z) is a monic polynomial for each n and in this case the OPS satisfies a three-term
recurrence relation of the form

Pi(2) =@ —c)Pi1(@) = A Pra(z), n=23,..., (1.D
or, equivalently,
2Py (2) = Pop1(2) + cuy1 Po(2) + Ay Pmi(2), n=1,2,..., (1.2)

where Py(z) = | and P;(z) = z — c;. Moreover, the complex numbers ¢, and A, can be

computed in terms of £ as follows:

_LP@l LR
LIPZ @1 T LR

n

ntl n=0,1,2,..., (1.3)
where we assume that E{Pfl(z)} = 1 for consistency. Note that A, = 0 forn = 1,2,3,...
since L is quasi-definite (for more details about the basic theory of quasi-definite linear
functionals see [7, Chapter IJ).

It is without any doubt that one of the most famous OPSs is the Chebyshev polynomials.
Recall that the monic Chebyshev polynomials {V,(z)};2, of the third kind form an OPS with
respect to the linear functional (e.g. see [20])

! I+x
Lpx)] = / p(x),/ ——dx
—1 1—x
and they satisfy the three-term recurrence relation

1
Vu(2) = Vn+1(Z)+an_1(Z), n=1,2,...
with the initial conditions
1
Voo)=1, Vi(z)=2z— 7
Clearly, the linear functional for the Chebyshev polynomials is defined by the measure
1+x
1—x

dx on (—1, 1) and in this case we say that the polynomials are orthogonal with respect
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to the measure. Moreover, if ¢, € R and A, > 0, then, according to the Favard theorem,
the underlying functional is defined by a positive measure du, in which case for k € R the
transformation

dp(x) = dp*(x) = (x — «)dpu(x)

defines a new OPS {P}(k, 2)}°2, as long as x — « does not change the sign on the convex hull

of the support of the measure dyu. This transformation is called the Christoffel transformation
at k. It has an inverse transformation, which is given by the formula

1
dp(x) — dp " (x) = mdﬂ(x) + M.,

where M is a real number and §, is the delta function supported at x, and which is called
the Geronimus transformation at «. These two transformations give rise to a family of discrete
dynamical systems defined by iterations of the forms

({enhita: Anlnln) = (e ()50, {4, 00)2,),

({enhna: Anlnlo) = (e, (O, (A, (0O)L,),
where ¢, A% and ¢, *, A, * correspond to du* and du~*, respectively (note that the existence
of the resulting sequences ¢, A and ¢, *, A,”* is not automatically guaranteed). For instance,
given a sequence of points k1, k2, k3, ..., one can define the kth evolution to be

cn = (cp(kak—1)) " (k2k), A = (A, (e2k—1)) ™ (ke2), 1.5

provided each transformation is correctly defined. The Chebyshev polynomials play a very
special role for such discrete dynamical systems. Namely, the composition of a Christoffel
transformation and a Geronimus transformation

14+x - 1—x [1+x 1—x
d =,/ d d = \/ dx = d
() 1—x X dpx) I1+xV1—x * 1+x *

maps the monic Chebyshev polynomials {V,,(z)}72, of the third kind into the monic Chebyshev
polynomials {W, (z)}°2, of the fourth kind. The latter satisfies the three-term recurrence relation

(1.4)

1
Wi(2) = Wi (2) + ZWn_l(z), n=12,...

with the initial conditions

Wo(z) =1, W1(Z)=Z+l.

2
This demonstrates that the pair of sequences
1 1
=0,c3=0,..., M=-,A3=—,... 1.6
2 3 2=pha=7 (1.6)

is a fixed point of the transformation composed of the two given in (1.4) for different points
and M = 0, and so it is an equilibrium solution to the corresponding discrete dynamical system
in which the state of the system evolves according to (1.5). Up to an alteration in the initial
data, one can see that the sequence (1.6) is also a fixed point for the two-iterated Christoffel
transformation

dx dx
—— > (1 =) +x)——= =1 —x%dx,
V1 —x? V1 —x?
which maps the Chebyshev polynomials of the first kind onto the Chebyshev polynomials of
the second kind. In this light, the statement of [23, Theorem 3.1] basically reads that specific
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iterations of the double Christoffel transformations of an appropriate measure dp converge
d
to —x2 weakly, which generates the Chebyshev polynomials of the first kind and is

also relatgd to the sequence (1.6). Thus [23, Theorem 3.1] can be interpreted as a stability
result for this equilibrium solution. This observation gives a warrant for a further investigation
of the general discrete dynamical systems in question and the stability of their equilibrium
and periodic solutions. In this paper, we begin this study by exploring the analytic nature of
Christoffel and Geronimus transformations, the building blocks of the dynamical systems, in
the case when we lose positivity and so the situation does not fall under the classical settings.
When there is no need to distinguish between the two, these transformations are referred to
as Darboux transformations [6,24] and sometimes they are also referred to as commutation
methods [8,16]. To be more specific about our goal, let us remind that one can associate (1.2)
to the following monic Jacobi matrix

C1 1 0
)Lz C 1
Jm - 0 A3 3 1 I I

where the subscript m stands for monic. So, what we do in this paper is we study how
Darboux transformations affect the analytic properties of a real Jacobi matrix J,, corresponding
to a positive measure and its symmetrization, which includes the analytic properties of the
corresponding orthogonal polynomials, when « is a nonreal number. In particular, we establish
some invariant and semi-invariant properties of Jacobi matrices under such transformations.
Unlike the algebraic properties of Darboux transformations, which have been extensively
studied (see [0,26,27], and the references therein), the effects of Christoffel and Geronimus
transformations at x € C\ R on analytic properties are not addressed in the existing literature.
Besides, the Darboux transformations in questions do not preserve the realness of the Jacobi
matrix and so we are basically studying certain families of complex Jacobi matrices, which,
in the sense of dynamical systems, are elements of orbits of real Jacobi matrices. Note that
in recent years there has been a growth of interest in complex Jacobi matrices (for example,
see [4,5,22], and [25]) and their applications in computational mathematics [3] (also see the
references therein) and in non-classical quantum mechanics [17,28].

The paper is organized as follows. Section 2 gives a brief refresher of the case when the
linear functional is positive-definite and presents some auxiliary statements. Next, in Sections 3
and 4 we thoroughly analyze the Christoffel and Geronimus transformations at x € Cy using
theory of orthogonal polynomials. Since the resulting measure is no longer positive-definite,
it is not obvious if we can iterate such transformations. Therefore, we will then establish
conditions under which we can perform two successive iterations of both transformations. After
that, Section 5 discusses the spectral properties of the Darboux transformations of real Jacobi
matrices at k € C. Finally, in Section 6 we show how Darboux transformations give rise to
orthogonal rational functions and the underlying three-term recurrence relations that correspond
to R;- and R;;-continued fractions, which were introduced in [19].

2. Preliminaries: the positive-definite case

Recall that the functional L is called positive-definite if £[p(x)] > O for every polynomial
p(x) that is not identically zero and is non-negative for all real x. It is not so hard to see that
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given a non-negative function w(x) on the interval (a, b), the functional

b
Lp(x)] =/ p(w(x)dx

gives an example of a positive-definite linear functional provided that w(x) is integrable on
(a, b) and w(x) > 0 on a subset of (a, b) of positive Lebesgue measure. Also, in the same way,
any probability measure that is compactly supported on R defines a positive-definite functional
(to find out more details about the positive-definite case one can consult either [7] or [18]).
If £ is positive-definite, all the moments s; = L(z7) are real and therefore, the coefficients
¢, and A, of the three-term recurrence relation
2Py (2) = Put1(2) + o1 Pu(2) + Ap1 Pom1(z2), n=1,2,...

are also real according to (1.3) and the fact that a monic OPS with respect to a positive definite
linear functional must be real. Furthermore, the positive-definiteness of £ implies that

LIP}(2)] >0, n=0,1,2,...

and thus by (1.3), we get that A,, > 0 for n = 1,2, 3,.... Another consequence of positive-
definiteness is that the zeros of P,(z) are simple and real. Also, it is well known that in this
case the zeros of P,;(z) and P,(z) interlace. These facts yield properties that we will need
and we prove them in the following statement for the reader’s convenience.

Proposition 2.1. Let {P,(z)}72, be a monic OPS with respect to a positive definite linear
Sfunctional.

(i) If z € C then

0>Im (P"I(Z)) > —L.
Pn(Z) Imz

(ii) If z € C_ then

Imz P,(2)

(iii) If z € Cyi is fixed and, in addition, the sequences A, and c, are bounded then the

sequences
Po1(z)  Pup(2)
Pn (Z) ’ Pn (Z)

are bounded as well.

Proof. Let x, ; denote the jth zero of P,(z). Since the zeros of P,(z) are simple and real,
Pn—l(z)

Pu(2)
Poi(z)  an o2 . Oy, n
P2 Z— a1 Z— a2 = Xnn
Notice that in this partial fraction decomposition,

has a partial fraction decomposition of the form

2.1)

Py 1(2) = a1z — x02) -+ (2 — Xpn) + @0 2(2 — X0 1)(Z — Xp3) -+ (2 — Xnn) + - -
+ an,n(Z - xn,l)(z - xn,Z) e (Z - xn,n—l)-
Thus, since P,_;(z) is monic, we have that Y, a,; =1 foralln =1,2,....

5



R. Bailey and M. Derevyagin Journal of Approximation Theory 288 (2023) 105876

Now, let z € C,. Then Im( ) <Oforall j =1,2,...,n. From (2.1) we get that
n, j

Pn—l(Z) _ Pn—l(xn.j)

;= lim (z — x, ; = ,
Ay, j Z_)XM_(Z Xn,]) Pn(Z) P,:(xn,j)
where o, ; > 0 for all j = 1,2,...,n since the zeros of P,i(z) and P,(z) interlace [7, cf.

Chapter I, Theorem 5.3]. Therefore, Im( ”,J,> <Oforallz € Cy, j=1,...,n and thus,
from (2.1),

m(Pn—l(Z)> <0
Py(2)

Next, notice that if z € C,, we have Im (Z

1

) > —IL. Hence, we arrive at
; mz

E—
P,_ 1 ‘ 1
0> Im L(Z) > —— Zani = ——.
P,(2) Imz P ' Imz
. P\ _ Pii®@ iy - . .
Since o) = Poo (ii) is a direct consequence of (i). To prove (iii), one needs to
observe that
Pn+l(Z) —z—¢ _ Pn—l(z)
P.(2) R
and that ”P (12()z) < |lm due to (2.1), which yields the desired result. [J

We will also need another family associated to £. Namely, let us consider polynomials Q,(z)
that are defined via the formula

0.(2)="L (M> . n>0, 2.2)
z—y y

where the subscript y indicates that the functional acts on the variable y. The Q,(z) are indeed

polynomials of degree n — 1 and they are called polynomials of the second kind or numerator
polynomials (see [18]). Rewriting Eq. (1.2) as

Z¥Yn = Yn+1 + Cn+1Yn + )‘-n-&-lyn—l (23)

we have a second-order linear difference equation in the variable n that has two linearly
independent solutions. Clearly, one of these solutions is the OPS {P,(z)};2, and it is easy
to check that y, = Q,(x) satisfies the same second-order difference equation subject to the
initial conditions

Qo(2) =0, Qix)=1.

Thus, {Q,(2)};2, is linearly independent of {P,(z)};2,, and so it is the second solution. Also,
in the positive-definite case the zeros of P,(z) and Q,(z) interlace. Let us stress here that if
L is positive-definite then by Favard’s theorem, {Q,(z)}52, is an OPS with respect to some
positive-definite linear functional. Finally, if the entries of Eq. (1.2) are such that ¢, — ¢ and
Ay — a for c € R and a € [0, 00), then {P,(2)};2, (or the corresponding Jacobi matrix) is
said to be in the Nevai class N(a, c). Since {Q,(2)}3, satisfy the same recurrence relation
as {P,(2)}52, it is clear that if {P,(z)};2 is in the Nevai class N(a, c), then so is {0n (D)0,

6
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3. Christoffel transformation

In this section we consider Christoffel transformation and we discuss some properties of the
transformed polynomials and Jacobi matrices. In particular, we demonstrate that under certain
conditions the boundedness of Jacobi matrices as well as the ratio asymptotics are preserved
under Christoffel transformation. Note that such properties do not hold in general as can be
seen from the findings presented in [9].

Let £ be a positive-definite linear functional and let k € C \ R. Define the Christoffel
transformation of L at k as a linear functional £* such that for a polynomial p(z),

L[ p()] = LIz — ©)p2)].

In this case, P,(x) # O for any integer n > 0 and we can define the corresponding kernel
polynomials by the formula

Pn+l(K)

Py (k)

According to [7, Theorem L.7.1], {P}(k, 2)};2, is a monic OPS with respect to L£*. It is
worth stressing here that if k € Cy, £* is not positive-definite but it is possible to get some
information about the corresponding Jacobi matrix and OPS {P;(x, z)}72 . For example, using
the recurrence relation in (1.2) and the fact that any finite number of elements of the sequence

{P.(2)}72, form a linearly independent set, we have that the sequence {P)(k, z)}o2, satisfies
the following three-term recurrence relation:

2Pk, 2) = Pyl 2) + 6 (0 PG, 2) + gy () Py (6, 2),

where

)":4,.1(’() = An+1

Prc,z)=(z—x)"" [Pn+1(z) — P11(Z)] , n=0,1,2,....

Pop1(k) Py_1(k) Poyi(k) Pyyo(k)

3.

s C:+1(K) = Cpn42 —

P (k) Pu(k)  Puyi(c)
Thus, the underlying monic Jacobi matrix is
ci(k) 1 0

A(k) k) 1
WmO=1"0 " w0 aw 1]

where the subscript m stands for monic. From formulas (3.1) we get that boundedness is
preserved under the Christoffel transformation at « € C\R. In what follows we will omit the «-
dependence when it is clear from the context and we will call J; the Christoffel transformation
of J,.
Before we proceed with the properties of J and the corresponding polynomials, let us
consider an example.

Example 3.1. Recall that the monic Chebyshev polynomials {U,(x)};2, of the second kind
form an OPS with respect to the linear functional

1
L{px)] = / p)V1—x?dx
—1
and they satisfy the three-term recurrence relation

1
Un+](x)=xUn(x)_Z l’l—l(x)5 n= 152735"'

7
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with the initial conditions
Ux)=1, U;x)=nx.
These polynomials are related to the Fibonacci sequence via the formula

_2"U,(i/2)

Fn n=0,1,2,...,
ln
where Fp = 1, F; =1, F, =2, F3 = 3, ...is the Fibonacci sequence. Thus, setting «k = i/2,

(3.1) yields

% _an-HFn—l o _£E1+2Fn_Fn2+1
n+1 4 an ’ n+1 2 Fn Fn+1 ’

which taking into account the relation F, | F,_1 — Fn2 = (—=1)""! reduce to
. (=D 1 ) . (=Dt

LT 4F2 * g T l2FnFn+l'
The underlying monic matrix Jacobi is clearly a complex Jacobi matrix and is the simplest
representative of complex Jacobi matrices we consider in this paper as many families of
orthogonal polynomials can be explicitly evaluated at a given complex number.

Proposition 3.2. Let J,, be the monic Jacobi matrix corresponding to a monic OPS {P,(2)}72,
that is generated by a positive-definite linear functional. Assume that J,, is bounded, that is,
its entries A, and c, are bounded and let k € C\ R. Then J is bounded and as a result the
set of all zeros of the polynomials P} (k, z)’s is bounded.

Proof. From Proposition 2.1 and formulas (3.1) one concludes that the sequences A* and c;;
are also bounded. Thus, the Jacobi operator J,* is bounded in 0%, Then, the boundedness of
zeros follows from the fact that for a bounded complex Jacobi matrix the set of all zeros of
the corresponding polynomials are contained in a bounded convex set (e.g. see [3, Theorem
34 (@))). O

In the case of a Nevai class, one can say a bit more.

Proposition 3.3. If a monic Jacobi matrix J,, is in the Nevai class N (a, c), then the Christoffel
transformation J}: of J,, at k € C\ R is also in the same Nevai class N (a, c¢).

Proof. Note that if {P,(z)}° is in N(a, ¢), then for any z € C\ R we have the following
ratio asymptotic:

P.i1(2) S ) = (z—¢)++/(z—¢)* — 4a?
Py(2) . 2 '

where we take the branch of the square root such that /=0 = z + 0(%) near 7z = 00
(e.g. see [23] or [21]). Thus, it follows from (3.1) that A} — @ and ¢} — c¢. O

(3.2)

Remark 3.4. It should be emphasized that the condition x € C\ R is crucial here. Indeed, the
Stahl’s counterexample shows that the Christoffel transformation of the Chebyshev polynomials
at some real points leads to an unbounded Jacobi matrix (for details see [9]). In other words,
when « is real, neither boundedness nor the Nevai class have to be invariant under the

8
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Christoffel transformation at such «. Still, it is true for some real «’s, in which case it leads to
a real Jacobi matrix.

In the positive-definite case the zeros of orthogonal polynomials are real. However, the
Christoffel transformation at ¥ does not preserve positive-definiteness but we can still get some
estimates on the location of the zeros for the corresponding OPS.

Theorem 3.5. Let {P,(2)};2, be a monic OPS with respect to a positive-definite linear
functional. Let k € Ci. Then for the corresponding kernel polynomials {P;(x,z)}o2, and
n > 1 we have that

(i) if « € Cy, then the zeros of P}(k,z) lie in the horizontal strip
1

zeC — P, o
{ Im( y;’;(lk) )
(ii) if k € C_, then the zeros of P}(k, z) lie in the horizontal strip

0<Imz<-—

1
ZEC'—WSIIHZ<O .

Im( Pato) )

Proof. Let x and zy be such that « € C, and zp € C_. Assume by contradiction that
Pi(k, z0) = 0 for some n > 1. Then

Pn+l(K)
Py (k)
Since P,(z) has only real zeros, (3.3) can be rewritten as
P, (20) Py (k)

Pis1(zo)  Puri(6)
iti _Pule) _Palzo)_
By Proposition 2.1 we know Im(PHl(K)) < 0 thus from (3.4), Im(Pn+l(ZO)) < 0. Next,
applying Proposition 2.1 again, we must have Im (%

Since zo was arbitrary, we see P (k, z) has no zeros in C_ foranyn =1,2,....
Now suppose xo € R and there exists some n > 1 such that P}(x, x9) = 0. If xq is

not a zero of P,(z), then (3.4) holds, yet Im (%) = 0 while Im (%) < 0 which

is a contradiction. If xo is a zero of P,(z) then by the separation theorem for the zeros,
P,11(xp) # 0, hence (3.3) cannot hold. Thus P} («, z) has no real zeros for any n =1,2....
Finally, let zo € C, such that Imzg > — and suppose zq is a zero of P’(«, z)

P,,+1(Z0) =

P, (z0). 3.3)

(3.4)

) > 0 which is a contradiction.

P (k) Pu(k) Pu(z0)

T Pp_1(z0) _ 1 Pu_1(z0) *
Proposition 2.1, we have Im (—Pn(zo) ) <~z < Im (—Pn(zo) ) Thus, the zeros of P)(k, z)

for some n > 1. Then —ﬁ > Im (M) and Im (P”‘—I(K)> =Im (M) However, by

1
Im(Pr}l);(lk(;‘))
Since {P,(2)};2 is a sequence of real polynomials,
@. O

. This proves (i).

can only lie in {zEC:0<ImZ§—

Pac0)  _ _Pa(@)
Pyy1(z0) Put1(Z0)

so (ii) follows from

Remark 3.6. It is well known that the zeros of orthogonal polynomials are the eigenvalues
of the corresponding finite truncations of the Jacobi matrix. In this light, Theorem 3.5 gives

9
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0.06 -
0.05
.

0.04 -

0.03 -

0.02 -
n=50

0.01F n=10
n=30

= L L A
-1.0 -0.5 0.0 0.5 1.0

Fig. 1. The behavior of the zeros of T (i,z) when n is increasing.

an estimate for such eigenvalues. Later, in Section 5, we will discuss what happens with the
spectrum of semi-infinite real Jacobi matrices under Christoffel transformation.

Example 3.7. Recall that the monic Chebyshev polynomials {7,(x)}52, of the first kind form
an OPS with respect to the linear functional
1

_1
LIpn)] = / p)(1 = x*)"2dx
-1
and they satisfy the three-term recurrence relation

1
Tl’l+1(x)='XTl’l('x)_Z n—l(x)a n=2537‘-'

with the first ones given by
To(x)=1, Ti(x)=x, To(x)=x>—1/2.

According to Theorem 3.5, for the monic Chebyshev polynomials {7, (x)}52, of the first kind,

the zeros of the corresponding kernel polynomials

7:r+l(hf)
T, (k)

lie in C; provided that k € C. Furthermore, using Mathematica we can see that when x =i

and k = 1 + i the zeros get closer to the real line when n is increasing (see Figs. | and 2).

THk,z) = (z — k) |:Tn+1(z) - Tn(z)}

It turns out that this is a typical behavior for a large class of kernel polynomials.

Theorem 3.8. Let {P,(2)};2, be a monic OPS with respect to a positive-definite linear
functional and with kernel polynomials {P)(k,z)}2o If {P.(2)},2, is in the Nevai class
N(a, c), then the imaginary part of the zeros of the polynomial P}(k,z) converges to zero
as n approaches infinity.

Proof. Assume « € C, and let z,1,2,2,...,2s, be the zeros of Pf(k,z). Note by
Theorem 3.5, we have Imz, ; > 0 forall n =1,2,.... Let z; be such that

Imz} = max{Imz,; : z,; is the jth zero of P’(x, z)} and let G,(z) = Pu1@ Pt

Pn(2) Pp(k) *
10
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0.030 -
0.025 -
0.020 -

0.015 n=10

0.010
° n=50

0.008
n=30

& I I
-1.0 -0.5 0.5 1.0

Fig. 2. The behavior of the zeros of 7,(1 + i, z) when n is increasing.

Since {P,(z)};2 is in the Nevai class N(a, ¢), G,(z) converges uniformly to f(z) — f(x)

where f(z) = Goorty/ mc) ~da” W and the square root is taken with Joo=z+ 0(%) near
z = oo (see [23, Theorem 2.1]). Since f(z) is injective in Cy, f(z) — f(x) has a Simple,
isolated zero at k. Let A be a sufficiently small neighborhood of x so that f(z) — f(k) # 0 in
A\ {k}. By Hurwitz’s Theorem, G, (z) has the same number of zeros in A as f(z) — f(«x) for
sufficiently large n so G,(z) has only a simple zero in A for large n. Since G, (k) = 0 for all
n=1,2,..., it must be the case that x is a simple zero of G,(z) for large n. Therefore, since
PY(k,z) = ﬁP,,(z)G,,(z) and (z — «) divides P,(z)G,(z), we have P (k, «) # 0 for large n.
Thus, for la}ge n, the zero set of G,(z) is {zn,j};?:l U {x}.!

Since the zeros {z;;}°2 | lie in a compact set due to Proposition 3.2, there exists a convergent
subsequence {z, }_,. Suppose z; — zo for some zo € C,. Then G,,(z; ) — f(z0) —
f(k) so by the injectivity of f, we must have zop = x. Now since P)(k,z) has the same
zeros as G,(z) except k, Pr(x,z) has no zeros in A for large n, contradicting the fact
that z; ~— «. Thus, zo must be real. Since Imz;, — 0 and Imz; = max{lmg,, ; :
Zny,.j 18 the jth zero of P; (k, z)} we must have that the imaginary part of the zeros of P, (k, z)
converge to 0.

The case when k € C_ follows similarly. [

Also, we know that in the case of Nevai class the ratio of two consecutive orthogonal
polynomials converges and it turns out that this ratio asymptotic is preserved under the
Christoffel transformation at « € C \ R.

Theorem 3.9. Let {P,(2)}52, be a monic OPS with respect to a positive-definite linear
Sfunctional and let {P}(k, 2)}°2, be the corresponding kernel polynomials for some k € C\ R.
If {Pu(2)}32, is in a Nevai class then

[ﬁ;{(sz) . I2+4(Z)
m — = lim ———
n— 00 Pn*(K’ Z) n—oo  P,(2)

= f(),
where the ratio converges on compact subsets of C\ R and f is defined in (3.2).

1|y denotes the disjoint union.

11
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Pn41(2) Put1(c)

Proof. Without loss of generality, let « € C; and let G,(z) = Po P

P(k,2)
P* (K )’
Pik,z2)  Py(2) Gu(2)
Pn*_l(’(v 2) Py_1(2) Gn—l(z)‘

Since G,(z) has a simple zero at z = k, we can write G,(z) = (z — x)g,(z) for a rational
function g,(z). Since { P, (z)};2, is in a Nevai class, G,(z) — f(z)— f («) uniformly on compact
subsets of C\ R as was mentioned in the proof of Proposition 3.3. Now let € > 0 and fix § > 0
such that the circle |z — k| = § lies entirely in C; and let K be a compact subset of C,. By
the uniform convergence of G,(z), we know there exists N > 0 such that

f@ = fw| _

I—K

as in the proof

of Theorem 3.5. Then rewriting we have

3.5)

&n(2) —

foralln > N and for all z € K N{z € C: |z —«| > 8}, hence g,(z) converges uniformly to
f<zz> [() en(2) — f(zz):{(w‘ -

L=
Z—kK

on compact subsets of C that do not contain «. In particular,
S@—f)
7—K

< € inside

on |z — k| = 4. Since has a removable singularity at «, ) gn(2) —
the disk {z € C : |z —«k]| < 8} for all n > N by the Maximum Principle. Therefore, g,(z)
converges uniformly to M on compact subsets of C,. Notice that g,(z) = g£,(Z) and

f(@) = f(2), so g,(z) converges uniformly to [&=fe) (Z) f “ on compact subsets of C\R. The same
holds for G,—1(z) = (z — k)gn—1(2).
Recall by Theorem 3.8, the zeros of g,(z) and g,_;(z) shrink to the real line, so re-writing
Eq. (3.5) as
Pik,z)  Py(2) gn(2)
k) Pas1(2) gn-1(2)

Py(x.,2)
Pr_ (k,2)

we have that converges uniformly to f(z) on compact subsets of C\ R. [

Remark 3.10. The new essential part of Theorem 3.9 is the observation that the ratio
asymptotic is preserved under the Christoffel transformation at x € C \ R, which opens up
a new perspective even for a real «. To be specific, it is clear that the Chebyshev polynomials
are in the Nevai class N(1/4, 0). Moreover, one can easily establish that the ratio asymptotic
holds true for the Chebyshev polynomials outside [—1, 1]. In fact, one can see that Theorem 3.9
holds true for any « outside the support of the orthogonality measure for {P,(z)}.2,. Thus, the
consecutive applications of Proposition 3.3 and Theorem 3.9 show that a measure of the form

ky € R\ [-1,1],

N
n(x _ Kk)d—x
palle V1T =2

o . dx . . .
which is an element of an orbit of —— with respect to one of the discrete dynamical

systems in question, is also in the Nevali clafcss N (1/4,0). Therefore, from this perspective the
Denisov—Rakhmanov theorem in the case of purely absolutely continuous measure is just the
limit case. This idea will be given some rigor and will be further developed in the case of
complex Jacobi matrices elsewhere.

Remark 3.11. As is known, for a complex Jacobi matrix from a Nevai class, the ratio
asymptotic holds true for the corresponding polynomials (see [3] and references therein).

12
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However, one must exclude a discrete set of points some of which could be in C \ R and
this set needs to be determined, which is not always an easy task. The fact that we have a
ratio asymptotic on C \ R uses the specifics of J. On top of that, it suggests that the Jacobi
matrix corresponding to the kernel polynomials should not have non-real spectrum, which will
be rigorously proved in Section 5.

If one wants to implement the idea described in Remark 3.10 for complex Jacobi matrices,
one has to understand general iterations of Christoffel transformations, in which case it is not
clear for what choice of such transformations an OPS exists. Thus the first question would be
to give a reasonable description of the cases when we can guarantee the existence of an OPS.
Let us concentrate on the case of the second iteration and consider the iterated functional

L7 (@) = LI(z — k2)(z — k1) f (2]

In this case we can prove the following extension of the Christoffel theorem to the non-positive
definite case (see [18, Chapter 2.2.7] for more details about the classical Christoffel theorem).

Theorem 3.12. Let L be a positive-definite linear functional and let d . be the corresponding
measure, that is,

Llp] = / p(x)du(x).
R

Also, let k1 € Cy and ky € Cy. Then the OPS {P;*(k1, k2, 2)}oc, With respect to L** exists.
Equivalently, the complex measure

(x — k1)(x — K2)d ju(x)

generates a system of monic orthogonal polynomials P;*(k1, k2, z) and, thus, a monic Jacobi
matrix J}*(k1, k2). In particular, we have that

Poii(kr)  Pu(xr)

Anler, 2) = 1p () Pa(ic)

£0, n=01,2,...

and

Poyo(k1)  Puyi(kr)  Pu(kr)
Puya(ka)  Puyi1(ka)  Pu(k2)
1 Pn+2(Z) PnJrl(Z) Pn(Z)

fﬂq< 5 3 =
. (K1, K2, 2) (z — k1)(z — k2) An(Kl, K2)

Proof. To begin with, note that P,(z) and P,+1(z) have only real zeros. Therefore, we have

P, P,
B
n—+ n+

which is not zero due to Proposition 2.1. We thus see that the polynomials

Pl (k1 k2)

P** (ki k2, 2) = (z — k2) V| PF (k1. 2) —
(K1, k2, 2) = ( 2) 1K1, 2) Prer )

Pk, z)i| (3.6)

13
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are correctly defined for any nonnegative integer n. As a result, the orthogonality is immediate.
Then

P (k1, k2)
Pk, k2)

1 1 P,
- [ (P,Hz(z) - ﬂml(z)) -

T r— Pyyi(kr)
Pr (k1 k) 1 Puy1(k)
Pk K2) ¢ — 1 (P”“(Z)_ Py (i) P"(Z))]
_ 1 (Pn+2(K1)Pn(K2) — Puia(i2) Pulic1)
=[P -
(z — K1)z — K2) Po1(k1) Po(k2) — Poy1(k2) Pa(cr)
(Pn+2(K1)Pn+1(K2) — Pn+2(K2)Pn+1(K1)> P (z)]
Puy1(k1) Py(i2) — Py (i2) Py(k1) "
and the expression in the square brackets can be recast as the determinant divided by
Ay(kr, k). O

P12, 2) = (2 — 12)”! |:P:+1(K1a Z) — P (K1, Z)} (3.7

) PnJrl(Z)

Remark 3.13. If x| = k, € C\ R, we have that (x — x;)(x — k) > 0 for all x € R and
thus the statement of the theorem reduces to the classical Christoffel theorem. However, when
K| # K2, the quadratic polynomial (x — k1 )(x — x7) is not positive on the real line and the fact
that the resulting functional for the specified choice of «’s is quasi-definite is new.

Since the boundedness is preserved under the Christoffel transformation provided we choose
the points appropriately, starting with a bounded monic Jacobi matrix J,, one can pick «3 to be
outside the numerical range of J'*(k, k2) and so on. The latter is not easy to find explicitly
in the general situation and so it would be nice to find a generalization of Theorem 3.12 for
3 and more points, which would provide us with a universal way of picking the points for
consecutive iterations.

4. Geronimus transformation

In this section we will consider a transformation that is inverse to the Christoffel transfor-
mation at k € C, and we will mostly follow the same scheme we implemented in the previous
section. Let £ be a complex-valued linear functional. Define its Geronimus transformation at
k as a linear functional £~* whose Christoffel transformation at « is £, that is, (L™*)* = L
More precisely, the definition reads as follows

L7z — ©)p(2)) = L(p(2),

where p(z) is any polynomial. It is not so hard to see from the above relation that for any
polynomial p(z) we have that

- p(z) — pk) -
L7(p) =L (ZT + pU)L7H(D),
where £7*(1) is not uniquely determined by the definition and therefore it can be an arbitrary
constant.
From the point of view of orthogonality, it is sometimes more convenient to have forms
(for instance, see [12]) and given a linear functional £ one can actually define a bilinear form.

More precisely, for two polynomials p(z) and ¢(z) we define

(P, @)o = L(p(2)q(2)).
14
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In the same way, £~* generates the bilinear form [, -]; that satisfies

[¢ —©)p,qg =[p, ¢ —x)g]li = (p. g

for the real variable t.
In case the given linear functional has an explicit representation of the form

b
Lp@) = / p(t)du(r), 4.1

where dpu(t) is a positive measure, whose support is contained in the interval [a, b]C R, one
can also be more specific about its Geronimus transformation.

Proposition 4.1. Let L be of the form (4.1) and let k € C. Then the Geronimus transformation
L™* of L at k corresponds to the bilinear form [-, -1; that admits the representation

b d ba
[p.ql =/ p(t)q(t) #) + (SS —/ tu(t)> pl)q(c), p,q € Clz], 4.2)

t—kK — K

where si is an arbitrary complex number.

Proof. The proof follows like that of Proposition 2.2 in [12] with the substitution t — ¢ — «,
but note that  — k is no longer real. [

It is important to note that although s; can be an arbitrary complex number, not all numbers
lead to OPSs. For example, if we set s; = 0 we get that

L7 =[1,1; =0,

which shows that the corresponding OPS does not exist and so the case when s; = 0 should
be excluded from our considerations.

In order to define a sequence of monic polynomials orthogonal with respect to £, we need
to introduce new polynomials R, (z). Let {P,(z)};2, be an OPS with respect to a quasi-definite
linear functional £ and let {Q,(z)}72, be defined by (2.2). Let R,(z) be the polynomial of
degree n given by

1
Rn(2) = Pu(2) + = On(2) 4.3)
0

for 55 € R\ {0}. Obviously, y, = R,(z) verifies the same difference equation (2.3) but with a
different set of initial data
1
Rox)=1, Ri(@)=z—c1+ .
So
Note that if £ is positive-definite then by Favard’s theorem {R,(z)};2 is an OPS with respect
to some positive-definite linear functional as well. Also, if {P,(z)};2, is in the Nevai class
N(a, ¢), then so is {R,(2)}32,.
Next, one can easily verify that the monic polynomial

P (K, 2) = Py(z2) + Ay Pooi(2),
where
o Pu(ic) + On() R0

CSiP1 () 4+ Qui(6)  Ry_i(k)
15
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is orthogonal to the monomials 1, z. ..., z"~! with respect to £~* provided that s§ P,—1 (k) +
Q,-1(k) # 0 (for details see [12] or [15]).

The next statement guaranties that under certain conditions the functional £™* is regular or,
which is the same, quasi-definite.

Theorem 4.2. Let L be a positive-definite linear functional and let {P,(2)}52,, be the
corresponding monic OPS. Also, let {Q,(2)}:2,, be the polynomials defined by (2.2). If k € C4
and sy = L7*(1) € @:F \ {0} then s5Py_1(k) + Qu_1(x) #0 forn =1,2,3,... and thus the
corresponding Geronimus transformation L™ at k is a quasi-definite functional.

Proof. Since the zeros of Q,_;(z) and P,_(z) interlace, similarly to what was done in the
proof of Proposition 2.1 we can conclude that

Im« Im (M) <0, (44)
Pnfl(K)

Without loss of generality let k € C, and s; € C_. Then (4.4) implies that Im (sg)k + %n:ll((”:))) <
0 hence s P,—1(k) + Qn_1(k) #0. O

We are going to also refer to the polynomials P, *(«, z)’s as the Geronimus transformation
of the polynomials P,(z)’s at .

One of the consequences of Theorem 4.2 is that the resulting polynomials {P, *(k, z)}52
corresponding to Geronimous transformation satisfies

Pk, 2) = P, (k,2) + ¢, PRk, 2) 4+ A P (K, 2). (4.5)
Thus, we can see that £L~* corresponds to the following monic Jacobi matrix:
o1 0
S |
e
=1 o YRR B
where
R R,_ R R
AT = o n()R, 2(/<), €y = ot — n () nt1 () 4.6)

R2_ (k) Ri_1(k)  Ry(k)
Under the proper conditions the boundedness of the Jacobi matrix is preserved under the
Geronimus transformation.

Proposition 4.3. Let {P,(2)};2, be a monic OPS with respect to a positive-definite linear
functional and let J,, be the corresponding monic Jacobi matrix. Assume that J,, is bounded,
that is, its entries A, and c, are bounded and let k € C. and s; € @:F \ {0}. Then the
corresponding J,* is bounded and as a result the set of all zeros of the polynomials P, *(k, z)’s
is bounded.

Proof. First, notice that

* Qn+l(’()
Rip1(0)  Paate) S0+ 35w

Rn(K) B Pn(K) Sak+g:((:(()) .

4.7)

16
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From the Markov theorem (see [18, Theorem 2.6.2]) we get that

On(x)
P(ic)
where w € C; for k¥ € C. Thus, in addition to Theorem 4.2, we also know that s5 + w 7% 0.
Ry (k) Ry (x)
and
. Ry—1(k) Ry11(x) .
it follows from (4.7) that the sequences A, * and ¢, * are also bounded. Thus, the corresponding

Jacobi operator is bounded in £% and as before the boundedness of zeros follows from [3,
Theorem 3.4 (a)]. O

Just as in the case of the Christoffel transformation of the polynomials P,(z) at k € C\ R,
we have that a Nevai class is invariant under the Geronimus transformation.

— W

’

Hence, Proposition 2.1 and (4.6) yield that

are bounded sequences. Then

Proposition 4.4. Let {P,(2)};2, be a monic OPS with respect to a positive-definite linear
functional and let k € C\ R. If {P,(2)}*°, is in the Nevai class N(a,c), then so is
{P,*(k, 2)}52, provided the latter exists.

0,(2)

Proof. According to the Markov theorem (see [18, Theorem 2.6.2]), the sequence

Z
converges uniformly on compact subsets of C \ R. Consequently, it follows from (4.7) "that

Rg(‘;;) — f(z), where f(z) is defined in the proof of Proposition 3.3. Thus, we see from (4.6)

that A,* — a and c,* — c. Hence, {P, *(x, 2)}°%, is in N(a,c). O

One can be more specific about locations of zeros for each n.
Theorem 4.5. Let {P,(2)};2, be a monic OPS with respect to a positive-definite linear
functional, let P *(k,z) be the Geronimus transformation of {P,(2)}2, and let R,(z) =
Py(2) + & 0u(2) with s € R\ {0}. Forn > 1,
0
(i) If « € C4, then the zeros of P, *(k, 2) lie in the horizontal strip

S B
(152

(ii) If k € C_, then the zeros of P, *(k, z) lie in the horizontal strip

ze(C'O<Imz§—

ZE(C' — - <Imz < 0y.
{ tm( T ))

Proof. Let « € C, and suppose P, *(k, zo) = 0 for some zp € C_ and some n > 1. Then

Po(20) (5§ Pa—1(k) + Qu_1(k)) = Pu_1(z0) (54 Pu(ic) + Qn(K)) . (4.8)

Since P,(z) has only real zeros for n = 1,2, ..., Eq. (4.8) is equivalent to
Pu_1(z0)  Ru—i1(x)
Pi(zo)  Rak)

By Proposition 2.1, Im (P’;,;(IZ(;;’)) > 0 yet since {R,(2)}2, is a monic OPS, Im (RI”Q;(IK(';)> <0
which is a contradiction. Thus the zeros of P, *(k, z) must lie in C; foralln =1,2,....

Now suppose xo € R and there exists n € N such that P, *(«, xo) = 0. Then
R, (k)
Rn—l(K)

4.9)

P, (xg) = Py 1(x0). (4.10)

17
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n=10
Qat N n=30
n=50

-1.0 -0.5 0.0 0.5 1.0

Fig. 3. The behavior of the zeros of 7, *(z) for s =1 and « =i when n is increasing.

If x¢ is not a zero of P,(z) then (4.9) holds however Im (%X)‘S)) = 0 while Im (RI"!;—('K(';)) < 0.
If x¢ is a zero of P,(z) then (4.10) implies xo must be a zero of P,_;(z) since by Theorem 4.2,
SoRn(k) = 55 Pa(k) + Qn(k) # 0 for any n = 1,2, ..., contradicting the fact that the zeros of
P,(z) and P,_,(z) interlace.

Now if zg is a zero of P, *(k, z) for some n such that Imzy > —

1 <Rn1(K)> (Pnl(Z0)>
— >Im|——)=Im| ——
Im zq Ry (x) P,(z0)

but by Theorem 3.5, Im (M) > 1

Pn(z0) T Imzg-

, then

1
Im( R%;(IK(;) )

Therefore, the zeros of P, *(k, z) can only lie in {z eC:0<Imz< —W } This
Im( 4=

Rn (k)
proves (i).
: Pu_1(z0) _ Pa_1(z0) Ry—1(z0) __ Ru—1Z0) : .
Since P = Pico) and Ko = R , (ii) follows from (i). O

In the case of a Nevai class, one can get more information about the asymptotic behavior
of zeros.

Theorem 4.6. Let {P,(2)}52, be an OPS in a Nevai class and let P, *(k, z) be it Geronimus
transformation at k € Cy. for some s5 € R\ {0}. Then there exists a sequence of zeros {§,},-
such that &, is a zero of P, *(k, z) and &, — « while the imaginary part of the remaining zeros
of the polynomial P, *(k, z) converge to zero.

Example 4.7. Consider the monic Chebyshev polynomials {7, (x)}2, as in Example 3.7 and
put s; = 1. According to Theorem 4.5, the zeros of

Tni*(iv 2)=Ty(2)+ Ay T,-1(2)
lie in C; and by Theorem 4.6, they cluster at i as can be seen in Figs. 3 and 4.

A similar behavior takes places if xk = 1 4+ i (see Figs. 5 and 6).

Proof. Without loss of generality let k € C,. Notice that P, *(x, z) can be re-written as
Ry (x)
Ry—1(x)
where Ry(2) = Pu(2)+ 55 (@) as in (4.3). Let Hy(2) = 525 — g5 Then H,(z) is defined
on C\R and H,(z) and P, *(«, z) have the same zeros. Now since {P,(z)};- and {R,(2)};2,

18
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1.0010 -
1.0005 -
n=50
1.0000+ n=30
n=10
0.9995 -
-1.0 05 0.0 05 1.0

Fig. 4. The behavior of the zeros of 7, *(z) at the neighborhood of i for s§ =1 and x¥ =i when n — oo.

0.030 -
°

0.025 -

0.020 -

0.015

n=10
0.010 -

n=30
. 0.005%

n=50

-1.0 -0.5 0.0 0.5 1.0

Fig. 5. The behavior of the zeros of 7,7*(z) for s =1 and x = 1 +i when n is increasing.

are in the same Nevai class, we see that H,(z) converges uniformly to f(z) — f(x) on compact

subsets of C, where f(z) = ooty emomda W. Letr >0andlet A, ={z€C:|z—«| <r}
Then since f(z) — f(k) # 0, k is an isolated zero of f(z) — f(x) and thus f(z) — f(x) has no
zeros in A, \ {«} for any r sufficiently small. Just as in Theorem 3.8, we have by Hurwitz’s
Theorem that H,(z) has only a simple zero in A, for large n. Since r can be taken arbitrarily
small, we see that there is a subsequence {z,, };2, = {&n, }7o Of zeros of {H,(z)};2, (and hence
of {P*(k,2)}22,,) converging to k.

Let z, be such that ImZ, = max{Imz, ; : z,; is a zero of P, *(x,2), zu,; # &, }. Then
there exists a convergent subsequence {Z,, };,, with limit zo € C. As before, if zo € C then
H,(Zy,) = f(20) — f(«) so by the injectivity of f(z), it must be the case that zo = «. Fixing
r > 0, we know by Hurwitz’s Theorem that P, *(k, z) has only a simple zero in A, which
is &,,. Since P, *(k, z) has no other zeros in A, for large n, 2,,k cannot converge to k. Thus,
since Z,, € Cy, it follows that Imz; — 0. By definition of Z,, this shows that the imaginary
part of the remaining zeros of {P, *(k, z)},2,, must converge to 0. [

19



R. Bailey and M. Derevyagin Journal of Approximation Theory 288 (2023) 105876

1.010
1.005 - n=10
1.000 - n=50
n=30
0.995 -
0.990 - ‘ - -
0.990 0.995 1.000 1.005 1.010

Fig. 6. The behavior of the zeros of 7,7 *(z) at the neighborhood of 1+ for s§ =1 and k = 1+i when n — oo.

In1n -1l
ooy L L L | L L L | L L L | L L L | L L L | n
e, 20 40 60 80 100
50|
-100 |-
-150 |-

Fig. 7. The graph of In|§, —i| for n =1,2,...,100.

Remark 4.8. Theorem 4.6 suggests that the Jacobi matrix corresponding to the Geronimus
transformation at k should have « as an eigenvalue and it will be shown later in Section 5 that
the latter statement holds true in general and it is not specific for Nevai classes. Also, note that
in Fig. 4, there is a cluster point of zeros at z = i. However, the convergence to i occurs at
too quick of a rate for Mathematica to distinguish. Thus, it makes sense to consider a different
scale. In particular, Fig. 7 suggests that £, — « at an exponential rate. Besides, apparently, an
estimate for |&, — «| similar to [13, Theorem 4.3] holds in this case too.

For the Geronimus transformation at k € C \ R, the ratio asymptotic is preserved at all
points except for k and we will see later that « is in the spectrum of the underlying Jacobi
matrix.
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Theorem 4.9. Let {P,(2)};2,, be a monic OPS with respect to a positive-definite linear func-
tional £ and let {P;*(k, 2)},, be the corresponding OPS for the Geronimus transformation
L7*. Let f(z2) be defined as in the proof of Theorem 3.8. If { P,(2)}32, is in a Nevai class then

Pyt (,2)

P ey Converges uniformly to f(z) on compact subsets of C\ (R U {«}).
n—1\"%

Pu@) _ _Rule)

Proof. Without loss of generality, let k € C and let H,(z) = 3 SO T R

of Theorem 4.6. Then
P *(k,z)  Pyi1(z) Hu(2)
P,,__*l (K, 2) Py 2(z) H,—1(2) ’

Recall that H,(z) and P, *(x, z) have the same zeros thus by Theorem 4.6, H,(z) is non-zero
on compact subsets of C \ R not containing « by taking n large enough. Therefore, HHf—(lZ()) is
holomorphic on compact subsets of C \ (R U {«}) for large n. Since {P,(z)};2, is in a Nevai

class, H,(z) converges uniformly to f(z) — f(x), therefore, HHf—(lZ()Z) — 1 uniformly on compact

subsets of C \ (R U {«}) and as a result, If”%((’:?) — f(z) uniformly on compact subsets of
C\(RU«}). O -

as in the proof

n

In principle, as in the case of Christoffel transformation, one can iterate Geronimus
transformations. Say, if k1 € C; and sj = £L7*(1) € C_ \ {0}, then according to Theorem 4.2
the OPS {P,*(x, 2)},2,, where

1 Ry 1(k)  Ry(x)
Rn_l(K) Pn—l(z) Pn(Z)
and R,(z) is defined by Eq. (4.3), exists. If, in addition, we have a complex number «, and

another complex number si* = L7**(1) such that s;*P % (ki, k2) + O, (ki,k2) # 0 for
n=1,2,3,..., we see that the polynomials

Pk, 2) =

3

55" Pulien 2) + 0,2 (e k)55 Bt k2) + 0 ks 12)
P\ (k1,2) P *(k1,2)

S§¥P N (k1, k) + O, (k1 K2)

P, (k1 K2, 2) =

.11

are correctly defined for any nonnegative integer n and so they are orthogonal with respect
to L7 = (L7*)7*. To conclude we are going to formulate a statement about iterations of
Geronimus transformations corresponding to the evolution

du(t) du()
—
t—k |t —«k]?

du(t) —

and it will be used in Section 6.

du(t
Theorem 4.10. Given a linear functional of the form (4.1), let k € Cy and s; = fb M ).

a

Then the corresponding polynomials P, *(k, z) are correctly defined for each n and they are
orthogonal with respect to the complex-valued measure du(t)/(t — k). Also, if we further set
sgF = f: l’tii"(ctl)z, the resulting iterated polynomials P, **(k, k, z) are correctly defined for each
n and they are orthogonal with respect to the positive measure du(t)/|t — k|*.
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b dp(r)

Remark 4.11. It should be emphasized here that if x € C. then s; = f e C4 and

therefore the statement about P, *(k, z) complements Theorem 4.2.
Proof. By contradiction, assume that P, *(x, z) cannot be defined for some n, which is

equivalent to

86 Pu1(k) + Quo1(6) =0

which using (2.2) can be rewritten as

b
f L 1(t>d" O _,,

Furthermore, since P,,_l is orthogonal with respect to du, by induction we get that
b
du(t
f Puca(Ot MO o k=01,.n1.
a — K

Therefore,

b
/ 1(t)a’u(t) 0

or taking the imaginary part

b
d
[ R f“)l ~0,

which is impossible. As a result, P, *(x, z) is defined for each n and according to (4.2) the
orthogonality measure is du(t)/(t — «). Finally, if we then set s5* = f b d“—(’l)z, (4.2) shows

a |t—k

that the measure is dju(r)/|t — «|* and thus the polynomials P " (k, ¥k, z) are correctly defined
since the measure is finite and positive-definite. [

It is worth pointing out that one can also consider so-called multiple Geronimus trans-
formations that lead to more general orthogonal systems [10,12] such as Sobolev orthogonal
polynomials and derive similar results.

5. Symmetric Jacobi matrices

Here we analyze the underlying complex symmetric Jacobi matrices and their spectra. In
particular, we show that the Christoffel transformation at « is isospectral and that the Geronimus
transformation at x adds the nonreal « to the spectrum.

At first, for the convenience of the reader, recall that for an OPS {P,(z)}72,, the normalized
polynomials

P, (2)
VIR Nt

where one can, in fact, take either of the two values of the square root of the complex number
Aj, satisfy the relation

@ P12+ i P2) + ax 1 Pi(z) = 2Pi(z), k=1,2,3..., (5.1)

P.(z) =

with the initial conditions

Pi2)=1, Pi(z)=(z—bo)/ar. (5.2)
22
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Then the symmetric Jacobi matrix

b() ap 0
a b a
J = .. (5.3)

0 aq bz

is the matrix representation of the operator of the multiplication by z

JIp(2) = zp(2), (5.4)

where p(z) = (ﬁo(z), ﬁl(z), ﬁz(z), ...)"T. We will say that J corresponds to the underlying
quasi-definite linear functional L. In the standard way, such a Jacobi matrix generates a closed
linear operator acting in the Hilbert space £> and we will also denote this operator by J. Note
that this operator J is Hermitian in case L is positive-definite and otherwise is non-Hermitian.
Next, let us consider the following form of the LU-factorization of the tridiagonal matrix
J—«l

J —kl = £k)DK)L (), (5.5)
where D(x) = diag(do(x), d (k), ....) is a diagonal matrix and £(x) is a lower bidiagonal
matrix

1 0 0
vo(K) 1 0
LK) =

0 vi(k) 1

whose entries depend on k. Comparing the entries of (5.5) gives

do(k) =bo —k, djjk)=a;, dji(k)=bj1 —K— dj(fc)vf(lc). (5.6)
Writing (5.1) in the form
P; Pi_
ajM =Kk—bj—aj_, L I(K),
Pj(k) Pj(k)
we get
p. p,
a6 = —a; )y = - B 5.7)
P;(k) Pjy1(x)
In fact, it is now more convenient to have (5.5) as follows
J —«I = L)L (k) (5.8)
with
Vdy 0 0
o wvdy A0
L=¢D" = . , 5.9
0 uvd V& 69
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where one can actually take either of the two values of the square root of the complex number
d;. In order to relate this construction to the Christoffel transformation discussed before, we
are going to formulate and to prove a standard result (e.g. see [6]) in the explicit form where
we emphasize the existence condition.

Proposition 5.1. Let J be a Jacobi matrix corresponding to a positive-definite linear
Sfunctional L and let k € Cy. Then the factorization

J—«xl=LL" (5.10)
exists and the tridiagonal matrix

Jo(k)=LTL +«I
corresponds to the quasi-definite functional L* and thus Jc (k) is a symmetrization of the monic

Jacobi matrix J* (k).

m

Proof. From (5.7) we conclude that the factorization exists if and only if Isj(/c) # 0 for
all admissible j, which is true since the polynomials P;(z)’s correspond to a positive-definite
functional and hence they have only real zeros. Next, using (5.4) one can see that

(J —«Dp(t) =t —i)p(t) = LL  p(t) = (t — k)p(t) =
= (LTL)L p(t) = (t — k)L p(1) = Je(e)L" p(t) = tL" p(0).
The latter relation suggests that LT p(¢) should be a vector of the orthogonal polynomials

corresponding to Jc(x). However, the entries of LT p(t) vanish at t = « and so LT p(t) does
not satisfy the proper initial condition, which is Py = 1. Nevertheless, introducing

- 1 ~ o~
@) = :LTp(t) = (P(t), Pi(t),...)"

resolves the issue and it leads to the polynomials
5 Pt p
Pj(r) — B0 Pjyi(7)

Pi(t) = \/d;(x) =

which are proportional to P («x, z) and so they are orthogonal with respect to £*. [

Evidently, the matrix L also defines a closed linear operator on £2 and it turns out that this
operator, which will be denoted by L as well, is bounded.

Proposition 5.2. Let J be a Jacobi matrix corresponding to a positive-definite linear
Sfunctional L. If J is a bounded operator, that is, the two sequences a, and b, are bounded,
then L is a bounded operator.

Proof. Since L is a banded matrix, that is, it has only two nonzero diagonals, it suffices to
show that the entries of L are bounded. To this end, note that the nonzero elements of L are
expressed in terms of the two sequences

Pio(c)  Piio) P() P;(x)
dA — —: ]A+1 — — Jt s . = —— J = —a; J .
j(K) a] P/(K) PJ(K) v](K) Pj+](K) a] Pj+1(K)

As a result, the nonzero entries of L are bounded due to (5.9) and statement (iii) of
Proposition 2.1. O
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Remark 5.3. It is worth mentioning here that for some real « the decomposition (5.10) exists
but the corresponding L is unbounded (see [9])

To give another flavor to Proposition 5.1, recall that the m-function or Weyl function of the
Jacobi operator J is the function

m(J;2) = ((J —zI)" e, €02,

where ¢y = (1,0, ...,0,...)" € £2. It is well known and is not so hard to see that the function
m(J; z) is holomorphic on the resolvent set p(J) of the operator J. Moreover, if J is bounded
we have

o0

J
mJi0= -3 L0 gy, (5.11)

Jj+1
PR

Note that if the underlying functional £ is normalized in the way that £(1) = 1 then
L)) = (T ey, e0)2, j=0,1,2,...

(see [3] for more details). Since the functionals £ and £* are related, there is a simple formula
that also relates the m-functions of J and J¢(k), which is a way to show that J¢ (k) corresponds
to (x —k)du(x), where dp generates J, based on the definition of J¢ (k) given in this section.

Proposition 54. Let J be a Jacobi matrix corresponding to a positive-definite linear
Sfunctional L. If J is bounded then

m(Je(k); z) =

[(z —Im(J;2) + 1] (5.12)
bo — K

for all complex numbers z, whose absolute value |z| is sufficiently large.

Proof. It is worth starting by stressing that if J is bounded then Proposition 2.1 and formulas
(3.1) give the boundedness of Jc(k). Thus, m(Jc(k); z) and m(J; z) are holomorphic in a
neighborhood of co. Now, we are to prove that the asymptotic expansions of the right-hand
and left-hand sides of (5.12) coincide and this yields the desired result. In other words, we
need to show

((J’”rl —kJ)eg, eo)g2 = (by — K)JckY e, e0)2,  j=0,1,2,.... (5.13)
To this end, we are going to prove by induction that

JIH — k) =LJck) LT, j=0,1,2,...,
which is evident when j = 0. Next, assuming the relation is true for j = k, we get

T2 e g = g — kY = TLJe(Y LT = (LLT + kDLJc(k) LT

=LL"L +kDJc()*LT = LIc()*T'LT,

which shows the validity of (5.13). Finally, it remains to observe that

(LJc(k) L ey, e0)2 = (Je(k)Y LT eg, LTeg) 2 = (bo — €)(Jc(k) eq, €0)p2
since LTey = /dpep. O

The above observations allow us to prove that the Christoffel transformation at « preserves
the spectrum o (J) of the underlying Jacobi operator J.
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Theorem 5.5. If J is a bounded operator then for any k € C1 we have

o(J) = o(Jc(x)).

Proof. It is well known that for bounded operators A and B, we have
o(AB)\ {0} = o(BA)\ {0}

(for example see [2]). This fact, Proposition 5.2, and the fact that o(J) cannot have nonreal
numbers in it immediately give

o(Je()\ {k} = a(J).

Finally, by way of contradiction, assume that k € o(Jc(x)). Then, it follows from [3,
Theorem 2.14] that m(Jc(k); z) has a pole at k, which is impossible due to (5.12). Thus,
Kk €o(Je(k)). O

Example 5.6. Let us consider the symmetrization of the monic Jacobi matrix introduced in
Example 3.1, that is, the symmetric complex Jacobi matrix J, whose entries are

1 [=1y —1y"
P Lo S el A T
2 E1+l 21:1an+1

Theorem 5.5 then implies that o (J) = [—1, 1]. Note that in this case the Jacobi matrix is in
the Nevai class and using the usual spectral tool, Weyl’s theorem, one can only conclude that
Oess(J) = [—1, 1].

Now, let us find a U L-factorization of the tridiagonal matrix J — [
J — kIl =UK)DEU (k), (5.14)

where D(k) = diag (ty(k), t;(«), ....) is a diagonal matrix and U(«x) is an upper bidiagonal
matrix
uo(K) 1 0
0 u (k) 1

uw=1 0 usk)

whose entries depend on «. The decomposition (5.14) yields the relations

ti1(0) = by — i — ;03 (k), (i) =aj,  j=0,1,2,..., (5.15)

which resemble (5.6) but are fundamentally different. Namely, the first relation #,(x) =
by — k — to(k)u}(x) has a free parameter in it. To be definite, let 1y = 1 and uj = 1/s;.
Then, invoking (4.3) we get

R (k) R (k)
1) = —aj ) = — =L (5.16)
R (k) R;(x)
As before, we can rewrite (5.14) in the following manner
J—kl =U@)U (k) (5.17)
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with

uo/to N/t 0
0 ui/ti o

— 12 _
U=UD'" = 0 0 wys | (5.18)

where one can take either of the two values of the square root of the complex number ;. Now
we will proceed similarly to the case of Christoffel transformation.

Proposition 5.7.  Let J be a Jacobi matrix corresponding to a positive-definite linear
functional L. Also, let k € C. and let sj = L7*(1) € C4 \ {0}. Then the factorization

J—xl=UU" (5.19)
exists and the tridiagonal matrix
Jok)=U"U +«I

corresponds to the quasi-definite functional L£*

Proof. Using (5.4) and (5.19) one can see that
(J—xD)pt) =@ —1)pt) = UU p(t) =t —i)p(t) =
= UTUU " pt) = —)U " p(t) = Jo)U " p(t) =tU" p(0).

Note that the entries of U " p(t) are proportional to P, *(k, z) and so they are orthogonal with
respect to £7*. Thus, Jg(x) corresponds to £L7*. [

As before, the matrix U also defines a closed linear operator on £2 and it turns out that this
operator, which will denote by U as well, is bounded.

Proposition 5.8. Let J be a Jacobi matrix corresponding to a positive-definite linear functional
L. Also, let k € Cy and let s§ = L7*(1) € Cx \ {0}. If J is a bounded operator then U is a
bounded operator.

Proof. The result follows from the reasoning given in Proposition 5.2 and the fact that the
ratios of two consecutive polynomials R;’s are bounded (see the proof of Proposition 4.3). [
The functionals £ and £~* are related and so are the m-functions of J and Jg (k).

Proposition 5.9. Let J be a Jacobi matrix corresponding to a positive-definite linear functional
L. Also, let k € C1 and let s; = L7*(1) € C£ \ {0}. If J is bounded then

1 J; 1
oty = D - (5.20)
0

for all complex numbers z, whose absolute value |z| is sufficiently large.

Proof. This statement is another form of Proposition 5.4. Namely, substituting J — J; and
Jc — J into (5.12) we get (5.20) by taking into account that

1
bO(]G) — k==
0
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Now we are in the position to prove the result about the spectrum of J; (k) that corresponds
to the Geronimus transformation at «.

Theorem 5.10. Let J be a Jacobi matrix corresponding to a positive-definite linear functional
L. Also, let k € Cy and let sj; = L7*(1) € C: \ ({0} U {m(J; 1)}). If J is a bounded operator
then

o(Jo(k)) = a(J) U {k}.

Proof. Analogously to the proof of Theorem 5.5, we get

o(Jo() \ {k} = o (J).

Notice if we had « € p(Jg(k)) then m(Jg(k); z) given by (5.20) would be holomorphic at «
but that could only happen when s; = m(J; k), which is excluded by the assumptions. []

In conclusion, note that it was not essential for us to start with a Jacobi matrix that
corresponded to a positive-definite linear functional. Most of the results can be adapted to
just the case when the corresponding transformation exists and thus it gives rise to a number
of iterations starting with a real Jacobi matrix. It is even possible to proceed when the
decomposition (5.10) (or (5.19)) does not exist, see [11]). In principle, one can generalize
some results that hold for real Jacobi matrices to the case of complex ones. For instance,
one can mimic the operator proof of [23, Theorem 2.1] for the complex case, which, in a
way, was done in [3]. However, one has to replace the spectrum of an operator with the
numerical range of the operator, which is essentially larger than the spectrum. At the same
time, the results of this section along with the results derived in Sections 3 and 4 show that
for J¢, Jo and their iterations, we can still get the results such as ratio asymptotic just outside
the spectrum. Furthermore, for such complex Jacobi matrices, one can construct reasonable
functional calculus (e.g. see [2, Theorem 7]).

6. R;- and R;;-recurrence relations

In this section we will show how Darboux transformations can lead to R;- and R;;-
recurrence relations, which were introduced in [19] and were shown to be related to bi-
orthogonal rational functions. Also, the results of this section provide a different approach
to the findings from [14] as well as extend some of those.

To begin with, note that the polynomial of degree n + 1

Tpi1(2) = Pop1(2) + Apy 1 Pu(2) 6.1)

is orthogonal to the monomials 1, z, ..., 2" for any choice of A~n+1 € C. Recall that such
a polynomial is called quasi-orthogonal of order 1. The following statement gives a relation
among quasi-orthogonal polynomials, orthogonal polynomials, and kernel polynomials.

Proposition 6.1.  Let {P,(2)};2, be a monic OPS with respect to a quasi-definite linear
Sfunctional L and let T,11(z) be a quasi-orthogonal polynomial of order 1 that has the form
(6.1). Assume that the entire sequence {P)(k, z)}o2, of the corresponding kernel polynomials
exists for some k € Cy. Then there exist unique sequences of constants o, and B8, such that

Ty1(2) — (2 — an) Pa(2) + Bu(z — k)P, (K, 2) = 0. (6.2)
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Proof. Using the definitions of kernel and quasi-orthogonal polynomials yields

Th11(2) — (2 — ) Pu(2) + Ba(z — k)P, (k, 2) (6.3)
- Pa(x)
= Pon@= (2= Aur1 — ey = B) Po@) = Pu o Pt 2),
Py_i(x)

where P,_;(x) # 0 since the kernel polynomials exist for any nonnegative integer n. Next, one
can rewrite (1.2) as follows

PnJrl(Z) - (Z - Cn+1)Pn(Z) + )‘nJranfl(Z) =0.
Hence, putting

Ang1 Pr_1(x) x Py (k)
n— T T n = Cn - An An
B (<) Ay = Cpt1 +1 + Auta ()

one arrives at the desired relation (6.2). [

In particular, we can apply Proposition 6.1 to the case where the polynomials 7,41(z)
correspond to the Geronimus transformation at some point.

Corollary 6.2. Let {P,(2)}32, be a monic OPS with respect to a positive-definite linear
Sfunctional L and let { P} (k1, 2)}02, be the corresponding kernel polynomials for some k| € Cy.
Assume that K, € Cy is chosen so that the entire sequence {P*(k2, 2)},2, corresponding to
the Geronimus transformation at k, exists. Then we have that

P k2, 2) — (2 — an) Po(2) + Bulz — k1) Py (k1, 2) = 0, (6.4)
where
g, = _)\n+1Pn71(K1)’ Gy = cor Ry11(k2) " Pn71(K1)_
Py (k1) Ry (k2) Py (k1)

Proof. From Theorem 4.2 we know that
P (K2, 2) = Py(2) + Ay Pi1(2),

where
80 Pug1(k2) + Qngi(k2) _ Rugi(k2)

5o Pa(k2) + Qulka) — Ru(ka)
Therefore, setting A, = A, in Proposition 6.1 gives (6.4). [

An =

The explicit formulas for the coefficients of (6.4) also yield the following.

Corollary 6.3. If in addition to the assumptions of Corollary 6.2 we assume that {P,(z)}52,
is in the Nevai class N(a, ¢), then the sequences a, and B, are convergent and

lim @, = ———.  lim B, = c+ f(ka) + ——.

n—>00 flen)'  n—eo Gy
where f is explicitly given in (3.2).

At this point we can easily show the connection to R;-recurrence relations. Let £ be a
positive-definite linear functional generated by a probability measure du, whose support is
contained in the finite interval [a, b], that is,

b
Lp@) = / p(t)du(r)
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for any polynomial p(#). Next, assume that we have an infinite sequence k|, k7, ... of distinct
numbers in C \ R such that each functional in the sequence

L. L% LR £73* S (‘C,**),*
is quasi-definite. In other words, the polynomial
P Kty ey Ky )

that corresponds to the mth iteration of Geronimus transformation is correctly defined for any
nonnegative integers n and m. One of such choices could be x| = ki, ko = ki, k3 = ko,
k4 = ka, ..., in which case Theorem 4.10 guarantees the existence of P, "*(ki, ..., ky, z) for
any nonnegative integers n and m. Thus, we have a table of polynomials. By looking at the
diagonal of this table

I(z) = P, (k1, ..., Kkn, 2)
one can notice that its elements satisfy the relation
Hy41(2) = (2 = @) 11(2) + Buz = kn-)) -1 (2) = 0

with some sequences {&,}°, and {/§,, o o- The latter relation is exactly an R;-recurrence
relation (see [19] for the definition). Moreover, every diagonal in the table of polynomials
P, satisfies a similar relation.

To get to the next level, observe that

Su11(2) = Put1(2) + Cu Pa(z) + Dy Pu_1(2) (6.5)

is orthogonal to the monomials 1, z, ..., 7"2 for any choice of D,,, én € C. Such a polynomial
is called quasi-orthogonal of order 2 and in this case we also have a relation that involves a
quasi-orthogonal polynomial of order 2 and an iterated kernel polynomial.

Theorem 6.4. Let {P,(2)}52, be a monic OPS with respect to a positive-definite linear
functional L and let k1 € Ci and ky € C+. Also, let {P*(k1, k2, 2)}-, be the corresponding
iterated kernel polynomials and let S,11(z) be a quasi-orthogonal polynomial of order 2 whose
degree is n + 1. Then there exist unique sequences of constants y,, v, and p, such that

Sn41(2) = (0nz — V) Pa(2) + Un(z — k1)(2 — k2) P (K1, K2, 2) = 0. (6.6)

Proof. Using the definition of the entries, the left-hand side of (6.6) takes the form

Sn11(2) = (Pnz — V) Pu(2) + vp(z — k1 )2 — k2) Py (K1, K2, 2) = (6.7)
P11+1(Z) + CMvnpn(z) + DnPn—l(Z) - IonZPn(Z) + ynPn(Z) + UnPn-H(Z)
Puyi(k1) Py ki, k2) Pr(ki, k2)  Pu(ky)

—Uy————Py(2) — vy ——"P,(2) + v
" Pk " "Pr (k1K) " "P* (K1, K2) Pui(k1)

Since zP,(z) = Py+1(2) + cny1 Pu(2) + Xyy1 Po—1(2), substituting we have the right-hand side
of Eq. (6.7) equals

_ Py1(k1) P k1, k2)
1—pp+v)P, + | Co — PuCng1 + ¥V — Un + - By
(I = pn + V) Pry1(2) < PnCnt1 T ¥n = U < Py(icr) Py (ks kea) ©

) Pnfl(z)~

Pn—l(Z)-

Py(k,k2)  Pylir)
P (i1, k2) Pa_i(ky)
30

+ ([)n - pn)"n+l + Uy
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Setting this equal to zero and using the linear independence of P, (z), P,(z) and P,_1(z), we
see that the sequences
)Ln-‘rl - bn

Pi(k1,62)  Pulicr) —A ’
P (k1,k2) Py_1(c1) n+l

Uy = pn=1+vn

and

Popi(kr)  Prkr,k2) ) _é
P, (k1) Pr_ (K1, Kk2)
satisfy Eq. (6.6). Let us stress here that v, is well defined. Indeed, we have that
Pi(ki,k2)  Pulkr)  Pu1(k2) Pa(ic1) — Pug1(k1) Pa(k2)
Pr (k1 k2) Puci(k1)  Pu(k2) Pu1(c1) — Pu(k1) Puci(k2)

where P,(k2) P,—1(k1) — Py(k1)P,—1(k2) # 0 because P *(xy, k2, z) exists. Then one can see
that

VYn = PnCn+1 + U <

Zn Pj(kp)Pj(ky)

Poy1(k2) Pu(k1) — Puyi (K1) Pu(k) J=0 TR

= Y 1 PGP (k1)
Pn(Kz)Pn_l(Kl) - Pn(Kl)Pn—l(KZ) " Z;l;(l) %ﬁjj’l‘l)
Pn(KZ)Pn(Kl)

anl Pj(k)Pj(k1)
Jj=0 AleAjtd

= Apt1 | 1

# )‘-n-‘rlv

where the last line follows from the fact that «, k, € C1 and P,(z) has only real zeros for all
n=12,.... O

Since P, **(x», k2, z) has the form (6.5), one can consider the following particular case of
Theorem 6.4 that gives a different derivation and another proof of the recurrence relations
obtained in [14].

Corollary 6.5. Let {P,(2)}32, be a monic OPS with respect to a positive-definite linear
functional L of the form (4.1) and let ki,ky € Cy. Also, let {P}*(k1, k1, 2)}52, be the
corresponding iterated kernel polynomials and let {P,**(k2, k2, 2)},2, be the polynomials
corresponding to

. f" dut) . /” du(t)
Sy = , 8§y = —_—.
0 a T —K2 0 a |t - K2|2

Then we have the following relation
P k2, 62, 2) — (1 + v)z — Y) Pu(2) + vn(z — k)2 — KD P" (k1. K1, 2) = 0. (6.8)

According to formula (4.2), the choice of the coefficients s; and s;* guarantees the existence
of {P,**(k2, k2, 2)},2, and, in fact, the sequence is an OPS with respect to the measure
dpu(1)
It =kl
Using Theorem 4.10 and the formulas derived in the proof of Theorem 6.4, one can also prove

that the sequences of constants v, and y, are convergent provided that {P,(z)};2 is in a Nevai
class.
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To finalize the relation to R;;-recurrence relations, consider an infinite sequence k7, k3, ... of
distinct numbers in C,. Next, let P,(z) denote the nth orthogonal polynomial with respect to
the measure

du(t)
It — k1P|t — kol |t — kal*
that is,
b
du(t
/Pn(t)tm . “(2) S=0, m=0,1,....n—1. (6.9)
a [t — k17|t — a2 .. [t — Kyl

Therefore, the polynomials P, (z)’s are orthogonal with respect to the varying measure and, at
the same time, each of them is derived by consecutively applying the Geronimus transforma-
tions described in Corollary 6.5 at the corresponding points. For example, if we start with the
Chebyshev polynomials of the first or second kind, the corresponding polynomial P, coincides
with the extremal polynomial introduced by Bernstein (see [1, pp. 249-254]). Applying (6.8)
to this particular choice of transformations we get

Pu+1(2) = (A + 0p)z = Y)Pu(@) + Un(z — kn—1)(z — Kp—1)Pp-1(2) = 0.

The latter relation is an R;;-recurrence relation and it was shown to be related to multipoint
Padé approximants (see [14], where it is also shown how exactly this relation corresponds to
a pair of Jacobi matrices). Finally, to demonstrate the relation to orthogonal rational functions
note that (6.9) can be rewritten as

b Palt) "
a =kt —k2)...(t —Kkn) (1 =KD —K2)...(t —Kp)
which implies that the rational function
Pu(1)
(t — k)t —K2) ... (T —Ky)
is orthogonal to 1/(t — «;), j =1, ..., n with respect to d .

du(t) =0,

R,(1) =
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