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A REGULARITY THEORY FOR STATIC SCHRODINGER
EQUATIONS ON R¢ IN SPECTRAL BARRON SPACES"
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Abstract. Spectral Barron spaces have received considerable interest recently, as it is the
natural function space for approximation theory of two-layer neural networks with a dimension-
free convergence rate. In this paper, we study the regularity of solutions to the whole-space static
Schroédinger equation in spectral Barron spaces. We prove that if the source of the equation lies in
the spectral Barron space B* (Rd) and the potential function admitting a nonnegative lower bound
decomposes as a positive constant plus a function in B (]Rd)7 then the solution lies in the spectral
Barron space B51T2(R%).
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1. Introduction. Numerical methods using neural networks for solving high-
dimensional PDEs have achieved great success recently; see e.g., [4, 8, 10, 5. A
key advantage of these neural network—based algorithms is that neural networks can
approximate functions in certain classes efficiently, meaning that the complexity grows
at most polynomially in the dimension. By contrast, conventional methods suffer from
the curse of dimensionality (CoD). For example, the complexity for approximating a
d-dimensional function using piecewise constant function with error tolerance e is
O(e~?), which scales exponentially in d.

The efficiency of neural networks for approximating high-dimensional functions
can even be observed for simple network structures, e.g., two-layer neural networks,

n

(1.1) gn(oz):Zajo(ij:r+bj)+c,

j=1

where o is the activation function and n is the number of neurons. In the seminal
work of Barron [2], he shows that for a function g satisfying

(1.2 Cyi= [ 1)1l < .
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it can be approximated by a two-layer neural network g, of the form (1.1) in the
L2-norm, where complexity n depends on the dimension d at most polynomially if C,
is viewed as a constant.

Along the direction of [2], several specific types of function classes on which the
neural network approximation in various norms does not suffer from CoD have been
defined and illustrated in the literature, including particularly the spectral Barron
space [14, 18, 19], where the spectral Barron norms generalizing (1.2) are defined as
some weighted L!-norm of 4 or its discrete version, and the Barron space [6, 1], which
generalizes (1.1) into an integral representation with respect to an underlying proba-
bility measure on the parameter space and defines the Barron norm as a path norm
of the representation. With such function spaces specializing in high-dimensional
problems, a natural question for the study of PDEs is this:

If the coefficients of a PDE lie in (spectral) Barron space, can the solution to the
PDE also be guaranteed to be in (spectral) Barron space?

In this paper, we give a positive answer to the question above in the context of
solving the d-dimensional Schrédinger equation in the whole space:

(1.3) ~Au+Vu=f inR

Here V : R? — R is the potential energy and f:R? — R is the source term. Morally
speaking, our main result (Theorem 2.3) shows that if f is a spectral Barron function
and V, with a nonnegative lower bound on R?, is the sum of a positive constant
and a spectral Barron function, then the unique solution «* to (1.3) is also in the
spectral Barron space, with the order of spectral Barron regularity increased by 2.
We remark that a function in the spectral Barron spaces we consider has Fourier
transform in L'(R?), which implies that the function is bounded and decays to 0 at
infinity (by the Riemann-Lebesgue lemma). Therefore, Assumption 2.2 on V implies
that V' is positive at infinity, which guarantees the uniqueness of the bounded solution
and the spectral Barron solution; see Proposition 3.8 for a precise statement. An
important consequence of Theorem 2.3 is that there exists a two-layer neural network
that approximates u* without CoD; see Theorem 2.4.

1.1. Related works. Regularity results of PDEs in Barron spaces have been
studied in some recent works. In [14], a solution theory for the Poisson equation
and the Schrédinger equation on the bounded domain € = [0, 1]¢ with a homogeneous
Neumann boundary condition is established in a type of spectral Barron space defined
on () via cosine expansions. The same regularity result is later extended to the
regularity estimate of the ground state of the Schrédinger operator in [13]. The work
[7] proved regularity results for the screened Poisson equation —Au + A2y = f and
some time-dependent equations in the Barron space based on integral representation.

Besides the regularity estimates, another direction is to investigate the complexity
of approximating PDE solutions using Barron functions or neural networks. Obtained
in [3] (representational) are Barron complexity estimates for a general class of whole-
space elliptic PDEs. A (deep) neural network complexity estimate for elliptic PDEs
with a homogeneous Dirichlet boundary condition is established in [15].

1.2. Notations. We use |z| for the Euclidean norm of a vector z € R? and use
B.(r) = {y € R%: |y — x| < r} for the open {3 ball in R? centered at x with radius
r. For i =1,2,...,d, let e; € R? be the vector with the ith entry being 1 and other
entries being 0. For g:R? — R, we denote by § its Fourier transform, given by

3(E) = —— x)e"®
(14) 90 = g | o) S

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/23 to 128.119.47.182 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BARRON REGULARITY FOR SCHRODINGER EQUATIONS 559

This is defined for g € L!'(R?) and can be extended to tempered distributions. Note
that we included a multiplicative constant (27r)~¢ in the definition (1.4) for the pur-
pose of getting a neater inverse Fourier transform:

(1.5) ota) = [ al)eede,

2. Main results. Recall that regularity estimates for elliptic PDEs in Sobolev
spaces are classical: Suppose that Vi, <V (2) < Vipax Vo € R for some Vigin, Vinax €
(0,+00) and that f € H*(R%) with s > —1. Thanks to the Lax—Milgram theorem, the
Schrédinger equation (1.3) admits a unique solution u* € H'(R?). One can also obtain
higher r/egularity for u* using a standard bootstrap argument. More specifically, if
u* € H* (RY) and V is sufficiently smooth, e.g., V € W% (R%), then it holds that

(I _ A)u* =f—u"—Vu e Hmin{s’,s}(Rd),
which implies that
= (I _ A)_l(f —ut— VU*) c Hmin{s/,s}+2(Rd).

Therefore, one can conclude u* € H**2(R%) with

Hu*||H5+2(Rd) <C ||fHHs(Rd) s

where C' is a constant depending on V', d, and s. Thus, u* has higher regularity than
the source term f. Similar regularity results have also been studied for elliptic PDEs
on bounded domains; see e.g., [11, Theorem 5.27].

Our focus is to establish regularity results in the spectral Barron spaces for the
Schrodinger equation (1.3). Let us first define the spectral Barron spaces as follows.

DEFINITION 2.1. Given s € R, for a function g : R* — R, its spectral Barron
norm is defined via

(L [¢]*) 3 de.

ol sy = [ 1366

The spectral Barron space is the collection of functions with the finite spectral Barron
norm:

B (®") = {g:g]

The spectral Barron space with index s = 1 was first defined in the seminal work of
Barron [2] and has been further developed with general index s in recent literature; see
e.g., [14, 18, 19]. Spectral Barron spaces are of particular interest for high-dimensional
problems since a spectral Barron function can be efficiently approximated by a two-
layer neural network without CoD (see, e.g., [2]) for approximation in the L?-norm
and (see, e.g., [18]) for approximation in the H*-norm. A related but different notion
of Barron space building upon integral representation was also proposed and studied
in [6, 1]; see also [16, 17] for a characterization of such space via Radon transform.

Notice that by definition, the spectral Barron space B°(R?) is a Banach space, and
the completeness follows from the fact that the spectral Barron norm is a weighted
L'-norm. A key difference between the spectral Barron space and the Sobolev space
is that ||g||gs (re) is the L'-norm of §(¢) - (1+ |¢[?)*/2, while [|g| - (za) is the L2-norm

BS(Rd) < OO} .
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of §(&)-(14]¢|?)*/2. In particular, B*(R?) is not a Hilbert space. The lack of a Hilbert
structure complicates the analysis of the existence and uniqueness of solutions in the
spectral Barron space.

To state our regularity theory for PDEs in spectral Barron spaces, we make the
following assumption on the potential V.

Assumption 2.2. Assume that the potential function V satisfies the following;:

(i) V(z)>0 Vz e RY
(i) V =a+ W, where a >0 is a constant and W € B*(R%).

Our main theorem can then be stated as follows.

THEOREM 2.3. Suppose that Assumption 2.2 holds with s > 0. Then for any
f €B*(RY), there exists a unique solution u* in B5+2(R%), and in addition it satisfies

(2.1) HU*||35+2(Rd) <C ||f||Bs(Rd) )
where C is a constant depending on V', d, and s.

As a direct corollary of Theorem 2.3, the solution to the Schrédinger equation
(1.3) can be approximated efficiently by a two-layer neural network on any bounded
domain.

THEOREM 2.4. Under the same assumptions of Theorem 2.3, let C' be the constant
in Theorem 2.3. Then for any f € B*(R?), any bounded domain Q C RY, and any
n € N, there is a cosine-activated two-layer neural network with n hidden neurons,

1 n
up(z) = - Z a; cos(ijx +0b;),

j=1
satisfying

i} Cv/m() || f | g (me
(2.2) |, — u ||H1(Q) < ey ( )’

where u* is the unique solution to (1.3) in B5+2(R%) and m(2) is the Lebesgue measure

of Q.

Remark 2.5. The approximation in Theorem 2.4 is stated in the H'-norm.
However, stronger results could be expected. Since u* € B**2(R?), it holds that
u* € H*+2(Q), and approximation in the H**2-norm could hold. We refer the reader
to [18] for details.

3. Proofs. This section is devoted to the proof of Theorem 2.3. Due to the
lack of a Hilbert structure in the spectral Barron space B*(R?), the standard Lax—
Milgram theorem used to prove the well-posedness of elliptic equations in Sobolev
spaces cannot be applied to the Barron spaces. Instead, we follow [14] and rewrite
(1.3) as an integral equation of the second kind,

(3.1) u+ Tow(uw)=(a—A)"f,
where
(3.2) Tow(u) = (a— A)"H(Wa).

Our approach is to apply the Fredholm alternative to the integral equation (3.1);
thus, the existence of solution follows from its uniqueness. To this end, the essential
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step is to prove the compactness of 7, . The compactness was established in [14] for
PDEs on bounded domains, but it becomes more challenging for unbounded domains,
e.g., the whole space in our setting. In fact, when W = 1, it is well known that
Ta1 = (@ — A)~! with @ > 0 is not compact on L?(R) since it has a continuous
spectrum. On the contrary, we shall show that 7, is indeed compact on B*(R¢)
provided that W e L'(R?), which is implied by Assumption 2.2 (ii) with s > 0.

3.1. Preliminary lemmas. We first present some preliminary lemmas for prop-
erties of the spectral Barron spaces and the operator 7o w .
LEMMA 3.1. The following embeddings hold:

(1) BY(R?) < L®(R?) with ||g]| 1 (ra) < [l9ll50 ey
(i) B (R?) <= B*(RY) with ||g| g:ra) < |9 B (re) if S8

Proof. They follow directly from Definition 2.1 and (1.5). d
LEMMA 3.2. If a >0, then for any g € B*(R?), it holds that

1
a4 <Ly

Bs(R4)

and that

(@ = A) " gpeiapa) < Bs(RY) -

; gl

min{a, 1

Proof. Denote h=(a — A)~'g. Then h(£) = a+1‘5‘2§(§). One can hence compute
that

||h|Bst)f/ ()] (1+ Je2) Fde < - /|g (IR TdE = gl
and that
1Jr|§|2 2\ £
Il = [ 1@+ e Fde = [ 101 S5 - (14l
S — /|g AT EdE = — gl
mln{a 1} min{a, 1} 718" (R o

Remark 3.3. Since g € B*(R?) is a real-valued function, (o — A)~!g with a > 0
must also be real-valued. This is because —Au + au = 0 only has a trivial solution
in the space of tempered distributions, which can be seen directly by taking Fourier
transform @ = %Mlg =0.

LEMMA 3.4. Suppose that W € B*(R?) with s > 0. Then for any u € B*(R?), it
holds that

Proof. 1t follows from

Wu(n) =W +i(n) = » W (§)a(n —&)dg
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that
Wale < [ W)t~ O] (1+ o) ded
R4 xR
< [, WO Jal = 1 - (1+21e* + 200 — )2 dedn
<2t [ Qi - O] (L+ )3 (1 - ) ded
Rd xRd
_os [ [l 2y3 A6 - 2y3
—?/RdW(é“)I (1-+lePyiag [ a1+ ¢t
=25 |W ] [lull. - U

3.2. Compactness of 7, . Lemmas 3.2 and 3.4 imply that the operator T4 w
defined in (3.2) is bounded in B*(R?) if a >0 and W € B*(R?) with s > 0. We now
show that this operator is compact with a more careful analysis.

PROPOSITION 3.5. Suppose that a > 0 and W € B*(R?) with s > 0. Then the
operator Tow : B¥(R?) — B*(RY) defined in (3.2) is compact.

To prove that T, w : B*(RY) — B*(R?) is compact, it suffices to show that the
image of the closed unit ball in B*(R?),

(3.3) {Taw(w:]u

s <1}

is relatively compact in B*(R9). Notice that B*(R%) is complete, which implies that a
subset of B*(R?) is relatively compact if and only if it is totally bounded. Therefore,
it suffices to prove the total boundedness of

(3.4) Fim{Tar @)(©) - (L4 ) 0l ooy < 1} € L' (RY),

where we translate the 3°-norm into the usual L'-norm. The following Kolmogorov—
Riesz theorem will be useful for establishing the total boundedness.

THEOREM 3.6 (Kolmogorov—Riesz theorem [12, Theorem 5]). For p € [1,00), a
subset F C LP(RY) is totally bounded if and only if the following three conditions hold:

(i) F is bounded;
(ii) for any e — 0, there exists R — 0 such that

/ |f(@)|Pde <€ V feF;
|z| =R
(iii) for any e — 0, there exists § — 0 such that

/Rd|f(:c+y)—f(;v)|pdx<ep VY FeF, |yl <o

We then prove Proposition 3.5 using Theorem 3.6.

Proof of Proposition 3.5. As discussed above, the compactness of 7T, s follows
from the total boundedness of F defined in (3.4). Therefore, it suffices to verify the
three conditions in Theorem 3.6 for F. We verify them one by one.
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e Verification of condition (i) i y <1, since
Toow (0 — W
we have that
— % _ 1
[Tewtm@-a+iei] | < lio= 2 Wallp g

1

<—|
«
23

< o W g (R4) [[ull = (R4)

2%
< — IWllse gay

where we used Lemmas 3.2 and 3.4. Therefore, F is bounded in L!(R9).
e Verification of condition (ii) in Theorem 3.6: For any € — 0, there exists R — 0
such that ﬁlflz < for any [¢| = R. Then for any ||ul|g:ge) <1, it holds that

1
le»r @+ [€]?
sE/ ()] - (1+|¢[*) 3 de

[£|l—=R
< e [Wallg. o)
< €25 ||W || g ay 1]
<e2% HWHBS(Rd) )

/K| T @O (1+[€P) s < Aae)]- (1 + €)de

Bs(Rd)

where we also used Lemma 3.4.
o Verification of condition (iii) in Theorem 3.6: Since condition (ii) in Theorem
3.6 holds, for any € — 0, there exists R — 0 such that

(3.5) [ Taw@l o g <o <1
[§|—R
Set
ey _
(36) Ll. |£|<2R a+‘€|2 and L2 ./§<2Rd§.

It follows from W e B%(R?) with s > 0 that W € L!(R%). According to [9, Proposition
8.17], there exists p € C°(RY) satisfying
€

3.7 .
(3.7) LY (R4 — Ly

Note that & — (ngl J) is continuous and is hence uniformly continuous on any

compact subsets of R One also has that ¢ € C2°(R?) is uniformly continuous on
R?. Thus, there exists some § < R, such that

(L+1€P)E A+

B8 et T aier

<e V[ <3R, |E'|<3R, [£-¢ <6
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and that

€

/ d et
L, VeEERY [E-¢l<a

(3.9) lp(€) — (&)l <
Consider any |y| <d < R and any [|u|g:(gs) < 1. We have that

(3.10)
Taw (W(E+y) - L+ 1€+ 92 = Taw(@)() - (1+[¢%)F | de

J.

s/ T (W)€ + )| - (1 + |6 +y]?) 3 de
€]—=2R

+ / T ) (€)] - (1 + J€[2) e
€] —=2R

+/ Tow (@E+) - (L |E+31%)F - Tamw@)(©) - (1+[¢[2)% | de
[£]<2R
<2 / T (W)(€)] - (1 + [€]2) 5 de
€= R
s Tt (I yP)E — Taw ) (4 I6)% de
[£]<2R
<t [ [T+ (e + D - Taww)(©)- (14 67)5 ] de
[€|<2R

where the last inequality follows from (3.5). Then we estimate the second term in the
last line above. We have that

(3.11)
Taw @ (E+y) - (L+1E+y?)? = Taw@)(€) - (L+[¢*)?

— 1+[E+y[?):  — 1+ ¢?)2
= acer CCEEELDE ~ o L5

— 1 2)3 1 2)3 1 Nz~ —
<Ia(e + )| | R - CEL R CHEEE . Wt ) - o).

According to (3.8) and Lemma 3.4, it holds that

= A+le+yP):  (A+[¢)?
w . — d
/|§<2R| ule+)l ‘ a+|E+yl? a+[¢[? <

3.12 =
(312 /€<2R|Wu<£+y>dssWu||Bo<Rd) < €Wl go gy Il 0

<e[|W]

Bs (R4) ||U||Bs(Rd) <€ HW”BS(Rd) :
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By (3.6), (3.7), and (3.9), it holds that

/5 AHED® e 4 ) — Wa(e)lae

<er -+ [§?

g Qi)
ej<ar @+ [E[2

<I, /WR /R d W(E+y— ) — W(E - n)|dnde

/ )W (E +y — n)dn — / )W (€ — n)dn| de
Rd Rd

(3.13) <L1/<2R/]Rdun p(§+y—n) — @(§ —n)|dnd§

+L1/£|<2R/Rd la(n)| - W (€ +y—n) — o(&+y —n)|dnde
+ I / [ )] (& =) e = m)ldnde
[EI<2R

<< [ aef jaw )|d77+2L1HW S - O

" L2 Jig<or T Jre

§3e/ ) dn < 3¢ ull g < 3e.
Rd

L1(R%)

Combining (3.11), (3.12), and (3.13), we obtain that
/§<23

which, combined with (3.10), yields that

Toow (W(E+y) - (14 €+ y2)F = Taw (W)(€) - (1+[¢1%)3|d

< B+ Wllgsgay) - €

P (W(E+y) - A+ 1€+ y2)F = Taw@)(©) - (1+¢1%)3 | de
< (54 W]z (RY) - €

for any |y| <0 and [Jul|gs(ray < 1. This completes the proof. d

3.3. Proof of the main results. We finish the proof of Theorem 2.3 in this
subsection. We first need to establish the existence of the solution to (3.1) that is
equivalent to the original PDE (1.3) in B*(R9).

PRrROPOSITION 3.7. Suppose that Assumption 2.2 holds with s > 0. Then the
operator

I+ Taw) " B*(R?Y) = B*(RY)

18 bounded.

Since To.w : B*(R?) — B*(R?) has been proved as compact in Proposition 3.5,
I+ 74w is a Fredholm operator. Therefore, to show that I + 7, w has a bounded
inverse, it suffices to show that I 4+ 7, w is injective, which is established in the
following proposition.
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PROPOSITION 3.8. Suppose that Assumption 2.2 holds with s > 0. Then the
operator

I+ Tow :B*(RY) — B*(RY)
18 injective.

Proof. Suppose that there exists some u € B°(R¢) such that

U+ To,w(u) =0,

which is equivalent to

—Au+Vu=0,

where V = a+W. Since s > 0, we have that u € L>°(R?) by Lemma 3.1. Furthermore,
u and V are both continuous, as the Fourier transform of a function in B%(R%) is in
LY(RY).

Suppose that u is not identically zero, which means that u(zo) # 0 holds for
some xo € R Tt follows from W € L'(RY) and the Riemann-Lebesgue lemma that

lim|g| 00 W(x) =0, which implies that there exists some R > |z¢| such that
inf V(z)>2
lz|>R

5"
Note that Assumption 2.2 (i) states that V(z) > 0 Vz € R, According to the weak
maximal principle, we have for r — 0 that

(3.14) sup |u(x)| = sup |u(x)|.

|z|<r |z|=r
By (3.14), there is a sequence {z}}3°, C R? with
(3.15) |zl =R+k and |u(xg)| > |u(zo)l
Let us set

U (1) :/ u?(re 4 xp)dS =~ (@Y / u?dS > 0.
8B1(0) OB (xy)

Then it holds that
Ui’ (1) :/ §u2(rz+:rk)d5:/ (Vu?(rz +zy),2) dS
9B1(0) dB1(0)

r

:r*(dfl)/ <Vu2(x+1:k)7£>d5‘:r7(d71)/ A(u®)dx
9B,(0) " B

r(zk)
=2p~(d=1) / (uAu + |Vu)?)dz > 2r~ (@D / uAudz
B,(zk) Br (k)
= 2r*(d*1)/ Vutdz.
B»,«(Ik)
Note that V() > % holds on By (zj). We have for any r < k that

Vi’ (1)

o
2

27°_(d_1)/ Vuldz Zar_(d_l)/ uldz
By (xk) By (zy)

N . d—1
¢
S e () be(t)dt > 0,
0 JoB,(xx) o \T”

v

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/23 to 128.119.47.182 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BARRON REGULARITY FOR SCHRODINGER EQUATIONS 567

which implies that ¢, is monotonically increasing on [0, k]. For any n € {1,2,...,k—1}
and any r € [n,n + 1], we have that

V' (r) > oz/or (;) o Uy (t)dt > a/nr <:>d_1 Uy (t)dt

2atr-m- (725) i

and hence that

n+1
Y(n + 1) =y (n) + / O (r)dr
+1

> <1 +a/nn (r—n)dr- (n_r:l)d_l) Vi (n)

Q@
> (1 + ﬁ) “Pr(n).
Thus, it holds that

o 2005) 2 ()
' :(1+%)k_1-u(xk)22<1+%)k_1~u(x0)2 VkeN,,

where we used the monotone property of ¢, on [0, k] and (3.15).

Note that u € L>°(R?). So {¢(k)}$2, must be bounded, which contradicts (3.16),
as u(xg) # 0. We therefore can conclude that u = 0, which proves the injectivity of
I+Tow. a

Remark 3.9. We remark that the standard proof of the uniqueness of H'-solutions
to elliptic PDEs does not apply to the Barron solutions. In fact, the uniqueness in
H'(R?) of solutions of the equation —Awu + Vu = 0 follows from a standard energy
estimate. Noticing that —Au+ Vu=0¢& H~*(R?), which is the dual space of H!(R),
one has that 0= [o,(—Au+ Vu)u = [, |Vu|*> + Vu?, which implies u = 0. However,
such an energy estimate in general does not apply to Barron functions in B%(R%) since
in general B°(R?) ¢ H'(R?). To give a concrete example, let us consider the function
u, whose Fourier transform is defined by

_1

&l77 it e (=L 1\{0}) x [-1,1]*7,

0 otherwise.

ﬁ(fl,---,ﬁd)z{

Then [ga|@(€)] - (1 +[€*)*/2d¢ < oo, while [oa |[a(§)* - (1 + [€]*)dE = oo, ie., u €
B (RY\H' (RY).

Proposition 3.7 is then a direct corollary.

Proof of Proposition 3.7. The result follows directly from Propositions 3.5 and
3.8 and the Fredholm alternative. ]

We can finally prove Theorem 2.3.

Proof of Theorem 2.3. Let u* be the unique solution to (1.3) or (3.1). Notice that
by Proposition 3.7 and Lemma 3.2,

u =1+ Tow) " ((a—A)71f) € BY(RY),
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with
™l s (may = [(I+ Taw) ™ ((a = A)71f)] Bs(RY)
(3.17) 1 .
< a ||(I+ %,W) | B (R4)—Bs (R4) ”f‘ Bs(R4) *
Tt follows from Lemmas 3.2 and 3.4 and (1.3) that
u*|l gsregay < min{a, 1} [(a = A)u™[| o (ay
1
= W Flley
(3.18) mln{la, 1}
< m(”wu 15smay + 1 fll = (ray)
1 s *
< m (22 W”Bs(Rd) [Ju”] Be(Rd) T ] BS(JRd)) :

Combining (3.17) and (3.18), we obtain that

i 1 22 | Wl| g gy _1
||u ‘ Bst2(R4) S min{a, 1} ( o ||(I+7:JL,W) | B (R4)—Bs (R4) +1 ||f| Bs -
Hence, (2.1) holds with
1 23 | Wl| g ay 1
~ min{a, 1} ( a 1T+ Taw) ™ e ety ey +1 )
which completes the proof. ]

Theorem 2.4 then follows directly from Theorem 2.3 and some techniques for
establishing approximation without CoD in previous literature.

Proof of Theorem 2.4. This proof uses techniques from [2, 6] and is similar to [3,
Theorem 2.5]. Note that s > 0. According to Theorem 2.3 and Lemma 3.1, it holds
that

||u*||BU(Rd) < ||u*||l32(]Rd) < lu”] Bs+2(Rd) = Cllf Bs(R4) *

Denote u* (&) = [u*(£)[e?(©), and let i be a probability distribution on R? with density
being [u*(&)|/||u*|| L1 ray = [u*(€)|/||u*||oray- Then the real-valued function u* can
be represented as

wo)= [ @ de= [ i@l g
Rd RY
= /. [ (§)] cos(€™ @ + 0(8))dE = [|u*[| go gy Benpe [cos(§7 2 +0(8))] -
Note that u* € B*(R?), which implies that y has finite first-order and second-order

moments. Therefore,

0

(@) = = [0 sy Be (6, ) sin(€ ™ +0(©))].
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Let &1,&,,...,&, be independently and identically distributed samples from u, and let

1 n
up () = - Z a; Cos(w;rx +0b;),
j=1

where a; = ||u*||go(ray, wj =¢&;, and bj = 0(;). Then it holds that

2
E,en Ju* — Un“Hl(Q)

—FE,0n /Q|u*(x)—un(x)2

* 1 -
=|ju ||%0(Rd)/QVaru®n HZcos(gjﬁo(gj)) da
j=1

d n
N 1
[l lgo ey Y /Q Varuen |03 (6 en)sin(El o +00)) | do
k=1 Jj=1

112
u 0
ZHE(M / Varg., [cos(€ "z +6(¢))] da
Q

o™ 10 (ay & :
+$2/ Vare~y, [(f,e@sm({%—&—&({))] dz
k=179
HU*H%O(]}W) d d
_7 E€~u 1+ Z(f,ek> dx
k=1

1 eecasy | [l 0+ lgasaa

<m( Hu ||BO(Rd) [Ju” HB?(Rd)

n
<m(Q) -C? ”f“?’j’S(JRd)

n
which implies (2.2). o0
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