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EQUATIONS ON Rd IN SPECTRAL BARRON SPACES*
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Abstract. Spectral Barron spaces have received considerable interest recently, as it is the
natural function space for approximation theory of two-layer neural networks with a dimension-
free convergence rate. In this paper, we study the regularity of solutions to the whole-space static
Schr\"odinger equation in spectral Barron spaces. We prove that if the source of the equation lies in
the spectral Barron space \scrB s(Rd) and the potential function admitting a nonnegative lower bound
decomposes as a positive constant plus a function in \scrB s(Rd), then the solution lies in the spectral
Barron space \scrB s+2(Rd).
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1. Introduction. Numerical methods using neural networks for solving high-
dimensional PDEs have achieved great success recently; see e.g., [4, 8, 10, 5]. A
key advantage of these neural network--based algorithms is that neural networks can
approximate functions in certain classes efficiently, meaning that the complexity grows
at most polynomially in the dimension. By contrast, conventional methods suffer from
the curse of dimensionality (CoD). For example, the complexity for approximating a
d-dimensional function using piecewise constant function with error tolerance \epsilon is
\scrO (\epsilon  - d), which scales exponentially in d.

The efficiency of neural networks for approximating high-dimensional functions
can even be observed for simple network structures, e.g., two-layer neural networks,

(1.1) gn(x) =
n\sum 

j=1

aj\sigma (w
\top 
j x+ bj) + c,

where \sigma is the activation function and n is the number of neurons. In the seminal
work of Barron [2], he shows that for a function g satisfying

(1.2) Cg :=

\int 
Rd

| \^g(\xi )| \cdot | \xi | d\xi <\infty ,
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558 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

it can be approximated by a two-layer neural network gn of the form (1.1) in the
L2-norm, where complexity n depends on the dimension d at most polynomially if Cg

is viewed as a constant.
Along the direction of [2], several specific types of function classes on which the

neural network approximation in various norms does not suffer from CoD have been
defined and illustrated in the literature, including particularly the spectral Barron
space [14, 18, 19], where the spectral Barron norms generalizing (1.2) are defined as
some weighted L1-norm of \^u or its discrete version, and the Barron space [6, 1], which
generalizes (1.1) into an integral representation with respect to an underlying proba-
bility measure on the parameter space and defines the Barron norm as a path norm
of the representation. With such function spaces specializing in high-dimensional
problems, a natural question for the study of PDEs is this:

If the coefficients of a PDE lie in (spectral) Barron space, can the solution to the
PDE also be guaranteed to be in (spectral) Barron space?

In this paper, we give a positive answer to the question above in the context of
solving the d-dimensional Schr\"odinger equation in the whole space:

(1.3)  - \Delta u+ V u= f in Rd.

Here V : Rd \rightarrow R is the potential energy and f : Rd \rightarrow R is the source term. Morally
speaking, our main result (Theorem 2.3) shows that if f is a spectral Barron function
and V , with a nonnegative lower bound on Rd, is the sum of a positive constant
and a spectral Barron function, then the unique solution u\ast to (1.3) is also in the
spectral Barron space, with the order of spectral Barron regularity increased by 2.
We remark that a function in the spectral Barron spaces we consider has Fourier
transform in L1(Rd), which implies that the function is bounded and decays to 0 at
infinity (by the Riemann--Lebesgue lemma). Therefore, Assumption 2.2 on V implies
that V is positive at infinity, which guarantees the uniqueness of the bounded solution
and the spectral Barron solution; see Proposition 3.8 for a precise statement. An
important consequence of Theorem 2.3 is that there exists a two-layer neural network
that approximates u\ast without CoD; see Theorem 2.4.

1.1. Related works. Regularity results of PDEs in Barron spaces have been
studied in some recent works. In [14], a solution theory for the Poisson equation
and the Schr\"odinger equation on the bounded domain \Omega = [0, 1]d with a homogeneous
Neumann boundary condition is established in a type of spectral Barron space defined
on \Omega via cosine expansions. The same regularity result is later extended to the
regularity estimate of the ground state of the Schr\"odinger operator in [13]. The work
[7] proved regularity results for the screened Poisson equation  - \Delta u + \lambda 2u = f and
some time-dependent equations in the Barron space based on integral representation.

Besides the regularity estimates, another direction is to investigate the complexity
of approximating PDE solutions using Barron functions or neural networks. Obtained
in [3] (representational) are Barron complexity estimates for a general class of whole-
space elliptic PDEs. A (deep) neural network complexity estimate for elliptic PDEs
with a homogeneous Dirichlet boundary condition is established in [15].

1.2. Notations. We use | x| for the Euclidean norm of a vector x \in Rd and use
Br(x) = \{ y \in Rd : | y  - x| < r\} for the open \ell 2 ball in Rd centered at x with radius
r. For i = 1,2, . . . , d, let ei \in Rd be the vector with the ith entry being 1 and other
entries being 0. For g :Rd \rightarrow R, we denote by \^g its Fourier transform, given by

(1.4) \^g(\xi ) =
1

(2\pi )d

\int 
Rd

g(x)e - ix\top \xi dx.
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 559

This is defined for g \in L1(Rd) and can be extended to tempered distributions. Note
that we included a multiplicative constant (2\pi ) - d in the definition (1.4) for the pur-
pose of getting a neater inverse Fourier transform:

(1.5) g(x) =

\int 
Rd

\^g(x)eix
\top \xi d\xi .

2. Main results. Recall that regularity estimates for elliptic PDEs in Sobolev
spaces are classical: Suppose that Vmin \leq V (x)\leq Vmax \forall x\in Rd for some Vmin, Vmax \in 
(0,+\infty ) and that f \in Hs(Rd) with s\geq  - 1. Thanks to the Lax--Milgram theorem, the
Schr\"odinger equation (1.3) admits a unique solution u\ast \in H1(Rd). One can also obtain
higher regularity for u\ast using a standard bootstrap argument. More specifically, if

u\ast \in Hs
\prime 
(Rd) and V is sufficiently smooth, e.g., V \in W s,\infty (Rd), then it holds that

(I  - \Delta )u\ast = f  - u\ast  - V u\ast \in Hmin\{ s\prime ,s\} (Rd),

which implies that

u\ast = (I  - \Delta ) - 1(f  - u\ast  - V u\ast )\in Hmin\{ s\prime ,s\} +2(Rd).

Therefore, one can conclude u\ast \in Hs+2(Rd) with

\| u\ast \| Hs+2(Rd) \leq C \| f\| Hs(Rd) ,

where C is a constant depending on V , d, and s. Thus, u\ast has higher regularity than
the source term f . Similar regularity results have also been studied for elliptic PDEs
on bounded domains; see e.g., [11, Theorem 5.27].

Our focus is to establish regularity results in the spectral Barron spaces for the
Schr\"odinger equation (1.3). Let us first define the spectral Barron spaces as follows.

Definition 2.1. Given s \in R, for a function g : Rd \rightarrow R, its spectral Barron
norm is defined via

\| g\| \scrB s(Rd) :=

\int 
Rd

| \^g(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi .

The spectral Barron space is the collection of functions with the finite spectral Barron
norm:

\scrB s(Rd) =
\Bigl\{ 
g : \| g\| \scrB s(Rd) <\infty 

\Bigr\} 
.

The spectral Barron space with index s= 1 was first defined in the seminal work of
Barron [2] and has been further developed with general index s in recent literature; see
e.g., [14, 18, 19]. Spectral Barron spaces are of particular interest for high-dimensional
problems since a spectral Barron function can be efficiently approximated by a two-
layer neural network without CoD (see, e.g., [2]) for approximation in the L2-norm
and (see, e.g., [18]) for approximation in the Hk-norm. A related but different notion
of Barron space building upon integral representation was also proposed and studied
in [6, 1]; see also [16, 17] for a characterization of such space via Radon transform.

Notice that by definition, the spectral Barron space \scrB s(Rd) is a Banach space, and
the completeness follows from the fact that the spectral Barron norm is a weighted
L1-norm. A key difference between the spectral Barron space and the Sobolev space
is that \| g\| \scrB s(Rd) is the L

1-norm of \^g(\xi ) \cdot (1+ | \xi | 2)s/2, while \| g\| Hs(Rd) is the L
2-norm
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560 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

of \^g(\xi )\cdot (1+| \xi | 2)s/2. In particular, \scrB s(Rd) is not a Hilbert space. The lack of a Hilbert
structure complicates the analysis of the existence and uniqueness of solutions in the
spectral Barron space.

To state our regularity theory for PDEs in spectral Barron spaces, we make the
following assumption on the potential V .

Assumption 2.2. Assume that the potential function V satisfies the following:

(i) V (x)\geq 0 \forall x\in Rd;
(ii) V = \alpha +W, where \alpha > 0 is a constant and W \in \scrB s(Rd).

Our main theorem can then be stated as follows.

Theorem 2.3. Suppose that Assumption 2.2 holds with s \geq 0. Then for any
f \in \scrB s(Rd), there exists a unique solution u\ast in \scrB s+2(Rd), and in addition it satisfies

(2.1) \| u\ast \| \scrB s+2(Rd) \leq C \| f\| \scrB s(Rd) ,

where C is a constant depending on V , d, and s.

As a direct corollary of Theorem 2.3, the solution to the Schr\"odinger equation
(1.3) can be approximated efficiently by a two-layer neural network on any bounded
domain.

Theorem 2.4. Under the same assumptions of Theorem 2.3, let C be the constant
in Theorem 2.3. Then for any f \in \scrB s(Rd), any bounded domain \Omega \subset Rd, and any
n\in N+, there is a cosine-activated two-layer neural network with n hidden neurons,

un(x) =
1

n

n\sum 
j=1

aj cos(w
\top 
j x+ bj),

satisfying

(2.2) \| un  - u\ast \| H1(\Omega ) \leq 
C
\sqrt{} 
m(\Omega )\| f\| \scrB s(Rd)

n1/2
,

where u\ast is the unique solution to (1.3) in \scrB s+2(Rd) and m(\Omega ) is the Lebesgue measure
of \Omega .

Remark 2.5. The approximation in Theorem 2.4 is stated in the H1-norm.
However, stronger results could be expected. Since u\ast \in \scrB s+2(Rd), it holds that
u\ast \in Hs+2(\Omega ), and approximation in the Hs+2-norm could hold. We refer the reader
to [18] for details.

3. Proofs. This section is devoted to the proof of Theorem 2.3. Due to the
lack of a Hilbert structure in the spectral Barron space \scrB s(Rd), the standard Lax--
Milgram theorem used to prove the well-posedness of elliptic equations in Sobolev
spaces cannot be applied to the Barron spaces. Instead, we follow [14] and rewrite
(1.3) as an integral equation of the second kind,

(3.1) u+ \scrT \alpha ,W (u) = (\alpha  - \Delta ) - 1f,

where

(3.2) \scrT \alpha ,W (u) = (\alpha  - \Delta ) - 1(Wu).

Our approach is to apply the Fredholm alternative to the integral equation (3.1);
thus, the existence of solution follows from its uniqueness. To this end, the essential

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 561

step is to prove the compactness of \scrT \alpha ,W . The compactness was established in [14] for
PDEs on bounded domains, but it becomes more challenging for unbounded domains,
e.g., the whole space in our setting. In fact, when W = 1, it is well known that
\scrT \alpha ,1 = (\alpha  - \Delta ) - 1 with \alpha > 0 is not compact on L2(Rd) since it has a continuous
spectrum. On the contrary, we shall show that \scrT \alpha ,W is indeed compact on \scrB s(Rd)
provided that \^W \in L1(Rd), which is implied by Assumption 2.2 (ii) with s\geq 0.

3.1. Preliminary lemmas. We first present some preliminary lemmas for prop-
erties of the spectral Barron spaces and the operator \scrT \alpha ,W .

Lemma 3.1. The following embeddings hold:

(i) \scrB 0(Rd) \lhook \rightarrow L\infty (Rd) with \| g\| L\infty (Rd) \leq \| g\| \scrB 0(Rd);

(ii) \scrB s\prime (Rd) \lhook \rightarrow \scrB s(Rd) with \| g\| \scrB s(Rd) \leq \| g\| \scrB s\prime (Rd) if s\leq s\prime .

Proof. They follow directly from Definition 2.1 and (1.5).

Lemma 3.2. If \alpha > 0, then for any g \in \scrB s(Rd), it holds that\bigm\| \bigm\| (\alpha  - \Delta ) - 1g
\bigm\| \bigm\| 
\scrB s(Rd)

\leq 1

\alpha 
\| g\| \scrB s(Rd)

and that

(\alpha  - \Delta ) - 1g\scrB s+2(Rd) \leq 
1

min\{ \alpha ,1\} 
\| g\| \scrB s(Rd) .

Proof. Denote h= (\alpha  - \Delta ) - 1g. Then \^h(\xi ) = 1
\alpha +| \xi | 2 \^g(\xi ). One can hence compute

that

\| h\| \scrB s(Rd) =

\int 
Rd

| \^h(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi \leq 1

\alpha 

\int 
Rd

| \^g(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi =

1

\alpha 
\| g\| \scrB s(Rd)

and that

\| h\| \scrB s+2(Rd) =

\int 
Rd

| \^h(\xi )| \cdot (1 + | \xi | 2)
s+2
2 d\xi =

\int 
Rd

| \^g(\xi )| \cdot 1 + | \xi | 2

\alpha + | \xi | 2
\cdot (1 + | \xi | 2) s

2 d\xi 

\leq 1

min\{ \alpha ,1\} 

\int 
Rd

| \^g(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi =

1

min\{ \alpha ,1\} 
\| g\| \scrB s(Rd) .

Remark 3.3. Since g \in \scrB s(Rd) is a real-valued function, (\alpha  - \Delta ) - 1g with \alpha > 0
must also be real-valued. This is because  - \Delta u+ \alpha u = 0 only has a trivial solution
in the space of tempered distributions, which can be seen directly by taking Fourier
transform \^u= 0

\alpha +| \xi | 2 = 0.

Lemma 3.4. Suppose that W \in \scrB s(Rd) with s \geq 0. Then for any u \in \scrB s(Rd), it
holds that

\| Wu\| \scrB s(Rd) \leq 2
s
2 \| W\| \scrB s(Rd) \| u\| \scrB s(Rd) .

Proof. It follows from

\widehat Wu(\eta ) = \^W \ast \^u(\eta ) =

\int 
Rd

\^W (\xi )\^u(\eta  - \xi )d\xi 
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562 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

that

\| Wu\| \scrB s \leq 
\int 
Rd\times Rd

| \^W (\xi )| \cdot | \^u(\eta  - \xi )| \cdot (1 + | \eta | 2) s
2 d\xi d\eta 

\leq 
\int 
Rd\times Rd

| \^W (\xi )| \cdot | \^u(\eta  - \xi )| \cdot (1 + 2| \xi | 2 + 2| \eta  - \xi | 2) s
2 d\xi d\eta 

\leq 2
s
2

\int 
Rd\times Rd

| \^W (\xi )| \cdot | \^u(\eta  - \xi )| \cdot (1 + | \xi | 2) s
2 \cdot (1 + | \eta  - \xi | 2) s

2 d\xi d\eta 

= 2
s
2

\int 
Rd

| \^W (\xi )| \cdot (1 + | \xi | 2) s
2 d\xi 

\int 
Rd

| \^u(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi 

= 2
s
2 \| W\| \scrB s \| u\| \scrB s .

3.2. Compactness of \scrT \alpha ,W . Lemmas 3.2 and 3.4 imply that the operator \scrT \alpha ,W
defined in (3.2) is bounded in \scrB s(Rd) if \alpha > 0 and W \in \scrB s(Rd) with s \geq 0. We now
show that this operator is compact with a more careful analysis.

Proposition 3.5. Suppose that \alpha > 0 and W \in \scrB s(Rd) with s \geq 0. Then the
operator \scrT \alpha ,W :\scrB s(Rd)\rightarrow \scrB s(Rd) defined in (3.2) is compact.

To prove that \scrT \alpha ,W : \scrB s(Rd) \rightarrow \scrB s(Rd) is compact, it suffices to show that the
image of the closed unit ball in \scrB s(Rd),

(3.3)
\Bigl\{ 
\scrT \alpha ,W (u) : \| u\| \scrB s(Rd) \leq 1

\Bigr\} 
,

is relatively compact in \scrB s(Rd). Notice that \scrB s(Rd) is complete, which implies that a
subset of \scrB s(Rd) is relatively compact if and only if it is totally bounded. Therefore,
it suffices to prove the total boundedness of

(3.4) \scrF :=
\Bigl\{ 

̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s
2 : \| u\| \scrB s(Rd) \leq 1

\Bigr\} 
\subset L1(Rd),

where we translate the \scrB s-norm into the usual L1-norm. The following Kolmogorov--
Riesz theorem will be useful for establishing the total boundedness.

Theorem 3.6 (Kolmogorov--Riesz theorem [12, Theorem 5]). For p \in [1,\infty ), a
subset \scrF \subset Lp(Rd) is totally bounded if and only if the following three conditions hold:

(i) \scrF is bounded;
(ii) for any \epsilon \rightarrow 0, there exists R\rightarrow 0 such that\int 

| x| \rightarrow R

| f(x)| pdx< \epsilon p \forall f \in \scrF ;

(iii) for any \epsilon \rightarrow 0, there exists \delta \rightarrow 0 such that\int 
Rd

| f(x+ y) - f(x)| pdx< \epsilon p \forall f \in \scrF , | y| < \delta .

We then prove Proposition 3.5 using Theorem 3.6.

Proof of Proposition 3.5. As discussed above, the compactness of \scrT \alpha ,W follows
from the total boundedness of \scrF defined in (3.4). Therefore, it suffices to verify the
three conditions in Theorem 3.6 for \scrF . We verify them one by one.
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 563

\bullet Verification of condition (i) in Theorem 3.6: For any \| u\| \scrB s(Rd) \leq 1, since

̂\scrT \alpha ,W (u)(\xi ) =
1

\alpha + | \xi | 2
\widehat Wu(\xi ),

we have that \bigm\| \bigm\| \bigm\| ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s
2

\bigm\| \bigm\| \bigm\| 
L1(Rd)

\leq 
\bigm\| \bigm\| (\alpha  - \Delta ) - 1Wu

\bigm\| \bigm\| 
\scrB s(Rd)

\leq 1

\alpha 
\| Wu\| \scrB s(Rd)

\leq 2
s
2

\alpha 
\| W\| \scrB s(Rd) \| u\| \scrB s(Rd)

\leq 2
s
2

\alpha 
\| W\| \scrB s(Rd) ,

where we used Lemmas 3.2 and 3.4. Therefore, \scrF is bounded in L1(Rd).
\bullet Verification of condition (ii) in Theorem 3.6: For any \epsilon \rightarrow 0, there exists R\rightarrow 0

such that 1
\alpha +| \xi | 2 < \epsilon for any | \xi | \rightarrow R. Then for any \| u\| \scrB s(Rd) \leq 1, it holds that\int 

| \xi | \rightarrow R

| ̂\scrT \alpha ,W (u)(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi \leq 

\int 
| \xi | \rightarrow R

1

\alpha + | \xi | 2
\cdot | \widehat Wu(\xi )| \cdot (1 + | \xi | 2) s

2 d\xi 

\leq \epsilon 

\int 
| \xi | \rightarrow R

| \widehat Wu(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi 

\leq \epsilon \| Wu\| \scrB s(Rd)

\leq \epsilon 2
s
2 \| W\| \scrB s(Rd) \| u\| \scrB s(Rd)

\leq \epsilon 2
s
2 \| W\| \scrB s(Rd) ,

where we also used Lemma 3.4.
\bullet Verification of condition (iii) in Theorem 3.6: Since condition (ii) in Theorem

3.6 holds, for any \epsilon \rightarrow 0, there exists R\rightarrow 0 such that

(3.5)

\int 
| \xi | \rightarrow R

| ̂\scrT \alpha ,W (u)(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi \leq \epsilon \forall \| u\| \scrB s(Rd) \leq 1.

Set

(3.6) L1 := max
| \xi | \leq 2R

(1 + | \xi | 2) s
2

\alpha + | \xi | 2
and L2 :=

\int 
| \xi | \leq 2R

d\xi .

It follows from W \in \scrB s(Rd) with s\geq 0 that \^W \in L1(Rd). According to [9, Proposition
8.17], there exists \varphi \in C\infty 

c (Rd) satisfying

(3.7)
\bigm\| \bigm\| \bigm\| \^W  - \varphi 

\bigm\| \bigm\| \bigm\| 
L1(Rd)

\leq \epsilon 

L1
.

Note that \xi \mapsto \rightarrow (1+| \xi | 2)
s
2

\alpha +| \xi | 2 is continuous and is hence uniformly continuous on any

compact subsets of Rd. One also has that \varphi \in C\infty 
c (Rd) is uniformly continuous on

Rd. Thus, there exists some \delta <R, such that

(3.8)

\bigm| \bigm| \bigm| \bigm| (1 + | \xi | 2) s
2

\alpha + | \xi | 2
 - (1 + | \xi \prime | 2)s/2

\alpha + | \xi \prime | 2

\bigm| \bigm| \bigm| \bigm| \leq \epsilon \forall | \xi | \leq 3R, | \xi \prime | \leq 3R, | \xi  - \xi \prime | < \delta 
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564 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

and that

(3.9) | \varphi (\xi ) - \varphi (\xi \prime )| < \epsilon 

L1L2
\forall \xi , \xi \prime \in Rd, | \xi  - \xi \prime | < \delta .

Consider any | y| < \delta <R and any \| u\| \scrB s(Rd) \leq 1. We have that

\int 
Rd

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi 
\leq 
\int 
| \xi | \rightarrow 2R

| ̂\scrT \alpha ,W (u)(\xi + y)| \cdot (1 + | \xi + y| 2) s
2 d\xi 

+

\int 
| \xi | \rightarrow 2R

| ̂\scrT \alpha ,W (u)(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi 

+

\int 
| \xi | \leq 2R

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi 
\leq 2

\int 
| \xi | \rightarrow R

| ̂\scrT \alpha ,W (u)(\xi )| \cdot (1 + | \xi | 2) s
2 d\xi 

+

\int 
| \xi | \leq 2R

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi 
\leq 2\epsilon +

\int 
| \xi | \leq 2R

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi ,

(3.10)

where the last inequality follows from (3.5). Then we estimate the second term in the
last line above. We have that

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \widehat Wu(\xi + y) \cdot (1 + | \xi + y| 2) s
2

\alpha + | \xi + y| 2
 - \widehat Wu(\xi ) \cdot (1 + | \xi | 2) s

2

\alpha + | \xi | 2

\bigm| \bigm| \bigm| \bigm| 
\leq | \widehat Wu(\xi + y)| \cdot 

\bigm| \bigm| \bigm| \bigm| (1 + | \xi + y| 2) s
2

\alpha + | \xi + y| 2
 - (1 + | \xi | 2) s

2

\alpha + | \xi | 2

\bigm| \bigm| \bigm| \bigm| + (1+ | \xi | 2) s
2

\alpha + | \xi | 2
\cdot | \widehat Wu(\xi + y) - \widehat Wu(\xi )| .

(3.11)

According to (3.8) and Lemma 3.4, it holds that

\int 
| \xi | \leq 2R

| \widehat Wu(\xi + y)| \cdot 
\bigm| \bigm| \bigm| \bigm| (1 + | \xi + y| 2) s

2

\alpha + | \xi + y| 2
 - (1 + | \xi | 2) s

2

\alpha + | \xi | 2

\bigm| \bigm| \bigm| \bigm| d\xi 
\leq \epsilon 
\int 
| \xi | \leq 2R

| \widehat Wu(\xi + y)| d\xi \leq \epsilon \| Wu\| \scrB 0(Rd) \leq \epsilon \| W\| \scrB 0(Rd) \| u\| \scrB 0(Rd)

\leq \epsilon \| W\| \scrB s(Rd) \| u\| \scrB s(Rd) \leq \epsilon \| W\| \scrB s(Rd) .

(3.12)
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 565

By (3.6), (3.7), and (3.9), it holds that\int 
| \xi | \leq 2R

(1 + | \xi | 2) s
2

\alpha + | \xi | 2
\cdot | \widehat Wu(\xi + y) - \widehat Wu(\xi )| d\xi 

=

\int 
| \xi | \leq 2R

(1 + | \xi | 2) s
2

\alpha + | \xi | 2
\cdot 
\bigm| \bigm| \bigm| \bigm| \int 

Rd

\^u(\eta ) \^W (\xi + y - \eta )d\eta  - 
\int 
Rd

\^u(\eta ) \^W (\xi  - \eta )d\eta 

\bigm| \bigm| \bigm| \bigm| d\xi 
\leq L1

\int 
| \xi | \leq 2R

\int 
Rd

| \^u(\eta )| \cdot | \^W (\xi + y - \eta ) - \^W (\xi  - \eta )| d\eta d\xi 

\leq L1

\int 
| \xi | \leq 2R

\int 
Rd

| \^u(\eta )| \cdot | \varphi (\xi + y - \eta ) - \varphi (\xi  - \eta )| d\eta d\xi 

+L1

\int 
| \xi | \leq 2R

\int 
Rd

| \^u(\eta )| \cdot | \^W (\xi + y - \eta ) - \varphi (\xi + y - \eta )| d\eta d\xi 

+L1

\int 
| \xi | \leq 2R

\int 
Rd

| \^u(\eta )| \cdot | \^W (\xi  - \eta ) - \varphi (\xi  - \eta )| d\eta d\xi 

\leq \epsilon 

L2

\int 
| \xi | \leq 2R

d\xi 

\int 
Rd

| \^u(\eta )| d\eta + 2L1

\bigm\| \bigm\| \bigm\| \^W  - \varphi 
\bigm\| \bigm\| \bigm\| 
L1(Rd)

\int 
Rd

| \^u(\eta )| d\eta 

\leq 3\epsilon 

\int 
Rd

| \^u(\eta )| d\eta \leq 3\epsilon \| u\| \scrB s(Rd) \leq 3\epsilon .

(3.13)

Combining (3.11), (3.12), and (3.13), we obtain that\int 
| \xi | \leq 2R

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi 
\leq (3 + \| W\| \scrB s(Rd)) \cdot \epsilon ,

which, combined with (3.10), yields that\int 
Rd

\bigm| \bigm| \bigm| ̂\scrT \alpha ,W (u)(\xi + y) \cdot (1 + | \xi + y| 2) s
2  - ̂\scrT \alpha ,W (u)(\xi ) \cdot (1 + | \xi | 2) s

2

\bigm| \bigm| \bigm| d\xi 
\leq (5 + \| W\| \scrB s (Rd)) \cdot \epsilon 

for any | y| < \delta and \| u\| \scrB s(Rd) \leq 1. This completes the proof.

3.3. Proof of the main results. We finish the proof of Theorem 2.3 in this
subsection. We first need to establish the existence of the solution to (3.1) that is
equivalent to the original PDE (1.3) in \scrB s(Rd).

Proposition 3.7. Suppose that Assumption 2.2 holds with s \geq 0. Then the
operator

(I + \scrT \alpha ,W ) - 1 :\scrB s(Rd)\rightarrow \scrB s(Rd)

is bounded.

Since \scrT \alpha ,W : \scrB s(Rd) \rightarrow \scrB s(Rd) has been proved as compact in Proposition 3.5,
I + \scrT \alpha ,W is a Fredholm operator. Therefore, to show that I + \scrT \alpha ,W has a bounded
inverse, it suffices to show that I + \scrT \alpha ,W is injective, which is established in the
following proposition.
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566 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

Proposition 3.8. Suppose that Assumption 2.2 holds with s \geq 0. Then the
operator

I + \scrT \alpha ,W :\scrB s(Rd)\rightarrow \scrB s(Rd)

is injective.

Proof. Suppose that there exists some u\in \scrB s(Rd) such that

u+ \scrT \alpha ,W (u) = 0,

which is equivalent to

 - \Delta u+ V u= 0,

where V = \alpha +W . Since s\geq 0, we have that u\in L\infty (Rd) by Lemma 3.1. Furthermore,
u and V are both continuous, as the Fourier transform of a function in \scrB s(Rd) is in
L1(Rd).

Suppose that u is not identically zero, which means that u(x0) \not = 0 holds for
some x0 \in Rd. It follows from \^W \in L1(Rd) and the Riemann--Lebesgue lemma that
lim| x| \rightarrow \infty W (x) = 0, which implies that there exists some R\geq | x0| such that

inf
| x| \geq R

V (x)\geq \alpha 

2
.

Note that Assumption 2.2 (i) states that V (x) \geq 0 \forall x \in Rd. According to the weak
maximal principle, we have for r\rightarrow 0 that

(3.14) sup
| x| \leq r

| u(x)| = sup
| x| =r

| u(x)| .

By (3.14), there is a sequence \{ xk\} \infty k=1 \subset Rd with

(3.15) | xk| =R+ k and | u(xk)| \geq | u(x0)| .

Let us set

\psi k(r) =

\int 
\partial B1(0)

u2(rx+ xk)dS = r - (d - 1)

\int 
\partial Br(xk)

u2dS \geq 0.

Then it holds that

\psi k
\prime (r) =

\int 
\partial B1(0)

\partial 

\partial r
u2(rx+ xk)dS =

\int 
\partial B1(0)

\bigl\langle 
\nabla u2(rx+ xk), x

\bigr\rangle 
dS

= r - (d - 1)

\int 
\partial Br(0)

\Bigl\langle 
\nabla u2(x+ xk),

x

r

\Bigr\rangle 
dS = r - (d - 1)

\int 
Br(xk)

\Delta (u2)dx

= 2r - (d - 1)

\int 
Br(xk)

(u\Delta u+ | \nabla u| 2)dx\geq 2r - (d - 1)

\int 
Br(xk)

u\Delta udx

= 2r - (d - 1)

\int 
Br(xk)

V u2dx.

Note that V (x)\geq \alpha 
2 holds on Bk(xk). We have for any r\leq k that

\psi k
\prime (r)\geq 2r - (d - 1)

\int 
Br(xk)

V u2dx\geq \alpha r - (d - 1)

\int 
Br(xk)

u2dx

= \alpha r - (d - 1)

\int r

0

\int 
\partial Bt(xk)

u2dSdt= \alpha 

\int r

0

\biggl( 
t

r

\biggr) d - 1

\psi k(t)dt\geq 0,
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 567

which implies that \psi k is monotonically increasing on [0, k]. For any n\in \{ 1,2, . . . , k - 1\} 
and any r \in [n,n+ 1], we have that

\psi k
\prime (r)\geq \alpha 

\int r

0

\biggl( 
t

r

\biggr) d - 1

\psi k(t)dt\geq \alpha 

\int r

n

\biggl( 
t

r

\biggr) d - 1

\psi k(t)dt

\geq \alpha (r - n) \cdot 
\biggl( 

n

n+ 1

\biggr) d - 1

\psi k(n)

and hence that

\psi k(n+ 1) = \psi k(n) +

\int n+1

n

\psi k
\prime (r)dr

\geq 

\Biggl( 
1 + \alpha 

\int n+1

n

(r - n)dr \cdot 
\biggl( 

n

n+ 1

\biggr) d - 1
\Biggr) 
\psi k(n)

\geq 
\Bigl( 
1 +

\alpha 

2d

\Bigr) 
\cdot \psi k(n).

Thus, it holds that

\psi k(k)\geq 
\Bigl( 
1 +

\alpha 

2d

\Bigr) k - 1

\cdot \psi k(1)\geq 
\Bigl( 
1 +

\alpha 

2d

\Bigr) k - 1

\cdot \psi k(0)

=
\Bigl( 
1 +

\alpha 

2d

\Bigr) k - 1

\cdot u(xk)2 \geq 
\Bigl( 
1 +

\alpha 

2d

\Bigr) k - 1

\cdot u(x0)2 \forall k \in N+,

(3.16)

where we used the monotone property of \psi k on [0, k] and (3.15).
Note that u\in L\infty (Rd). So \{ \psi (k)\} \infty k=1 must be bounded, which contradicts (3.16),

as u(x0) \not = 0. We therefore can conclude that u = 0, which proves the injectivity of
I + \scrT \alpha ,W .

Remark 3.9. We remark that the standard proof of the uniqueness of H1-solutions
to elliptic PDEs does not apply to the Barron solutions. In fact, the uniqueness in
H1(Rd) of solutions of the equation  - \Delta u+ V u = 0 follows from a standard energy
estimate. Noticing that  - \Delta u+V u= 0\in H - 1(Rd), which is the dual space of H1(R),
one has that 0 =

\int 
Rd( - \Delta u+ V u)u=

\int 
Rd | \nabla u| 2 + V u2, which implies u= 0. However,

such an energy estimate in general does not apply to Barron functions in \scrB s(Rd) since
in general \scrB s(Rd)*H1(Rd). To give a concrete example, let us consider the function
u, whose Fourier transform is defined by

\^u(\xi 1, . . . , \xi d) =

\Biggl\{ 
| \xi 1|  - 

1
2 if \xi \in ([ - 1,1]\setminus \{ 0\} )\times [ - 1,1]d - 1,

0 otherwise.

Then
\int 
Rd | \^u(\xi )| \cdot (1 + | \xi | 2)s/2d\xi < \infty , while

\int 
Rd | \^u(\xi )| 2 \cdot (1 + | \xi | 2)d\xi = \infty , i.e., u \in 

\scrB s(Rd)\setminus H1(Rd).

Proposition 3.7 is then a direct corollary.

Proof of Proposition 3.7. The result follows directly from Propositions 3.5 and
3.8 and the Fredholm alternative.

We can finally prove Theorem 2.3.

Proof of Theorem 2.3. Let u\ast be the unique solution to (1.3) or (3.1). Notice that
by Proposition 3.7 and Lemma 3.2,

u\ast = (I + \scrT \alpha ,W ) - 1
\bigl( 
(\alpha  - \Delta ) - 1f

\bigr) 
\in \scrB s(Rd),
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568 Z. CHEN, J. LU, Y. LU, AND S. ZHOU

with

\| u\ast \| \scrB s(Rd) =
\bigm\| \bigm\| (I + \scrT \alpha ,W ) - 1

\bigl( 
(\alpha  - \Delta ) - 1f

\bigr) \bigm\| \bigm\| 
\scrB s(Rd)

\leq 1

\alpha 

\bigm\| \bigm\| (I + \scrT \alpha ,W ) - 1
\bigm\| \bigm\| 
\scrB s(Rd)\rightarrow \scrB s(Rd)

\| f\| \scrB s(Rd) .
(3.17)

It follows from Lemmas 3.2 and 3.4 and (1.3) that

\| u\ast \| \scrB s+2(Rd) \leq 
1

min\{ \alpha ,1\} 
\| (\alpha  - \Delta )u\ast \| \scrB s(Rd)

=
1

min\{ \alpha ,1\} 
\| Wu\ast  - f\| \scrB s(Rd)

\leq 1

min\{ \alpha ,1\} 
(\| Wu\ast \| \scrB s(Rd) + \| f\| \scrB s(Rd))

\leq 1

min\{ \alpha ,1\} 

\Bigl( 
2

s
2 \| W\| \scrB s(Rd) \| u

\ast \| \scrB s(Rd) + \| f\| \scrB s(Rd)

\Bigr) 
.

(3.18)

Combining (3.17) and (3.18), we obtain that

\| u\ast \| \scrB s+2(Rd) \leq 
1

min\{ \alpha ,1\} 

\Biggl( 
2

s
2 \| W\| \scrB s(Rd)

\alpha 

\bigm\| \bigm\| (I + \scrT \alpha ,W ) - 1
\bigm\| \bigm\| 
\scrB s(Rd)\rightarrow \scrB s(Rd)

+ 1

\Biggr) 
\| f\| \scrB s .

Hence, (2.1) holds with

C =
1

min\{ \alpha ,1\} 

\Biggl( 
2

s
2 \| W\| \scrB s(Rd)

\alpha 

\bigm\| \bigm\| (I + \scrT \alpha ,W ) - 1
\bigm\| \bigm\| 
\scrB s(Rd)\rightarrow \scrB s(Rd)

+ 1

\Biggr) 
,

which completes the proof.

Theorem 2.4 then follows directly from Theorem 2.3 and some techniques for
establishing approximation without CoD in previous literature.

Proof of Theorem 2.4. This proof uses techniques from [2, 6] and is similar to [3,
Theorem 2.5]. Note that s \geq 0. According to Theorem 2.3 and Lemma 3.1, it holds
that

\| u\ast \| \scrB 0(Rd) \leq \| u\ast \| \scrB 2(Rd) \leq \| u\ast \| \scrB s+2(Rd) \leq C \| f\| \scrB s(Rd) .

Denote \^u\ast (\xi ) = | \^u\ast (\xi )| ei\theta (\xi ), and let \mu be a probability distribution on Rd with density
being | \^u\ast (\xi )| /\| \^u\ast \| L1(Rd) = | \^u\ast (\xi )| /\| u\ast \| \scrB 0(Rd). Then the real-valued function u\ast can
be represented as

u\ast (x) =

\int 
Rd

\^u\ast (\xi )ei\xi 
T xd\xi =

\int 
Rd

| \^u\ast (\xi )| ei(\xi 
T x+\theta (\xi ))d\xi 

=

\int 
Rd

| \^u\ast (\xi )| cos(\xi Tx+ \theta (\xi ))d\xi = \| u\ast \| \scrB 0(Rd)E\xi \sim \mu 

\bigl[ 
cos(\xi Tx+ \theta (\xi ))

\bigr] 
.

Note that \^u\ast \in \scrB 2(Rd), which implies that \mu has finite first-order and second-order
moments. Therefore,

\partial 

\partial xk
u\ast (x) = - \| u\ast \| \scrB 0(Rd)E\xi \sim \mu [\langle \xi , ek\rangle sin(\xi Tx+ \theta (\xi ))].
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BARRON REGULARITY FOR SCHRODINGER EQUATIONS 569

Let \xi 1, \xi 2, . . . , \xi n be independently and identically distributed samples from \mu , and let

un(x) =
1

n

n\sum 
j=1

aj cos(w
\top 
j x+ bj),

where aj = \| u\ast \| \scrB 0(Rd), wj = \xi j , and bj = \theta (\xi j). Then it holds that

E\mu \otimes n \| u\ast  - un\| 2H1(\Omega )

=E\mu \otimes n

\Biggl[ \int 
\Omega 

| u\ast (x) - un(x)| 2dx+
d\sum 

k=1

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \partial \partial xk u\ast (x) - \partial 

\partial xk
un(x)

\bigm| \bigm| \bigm| \bigm| 2 dx
\Biggr] 

=\| u\ast \| 2\scrB 0(Rd)

\int 
\Omega 

Var\mu \otimes n

\left[  1

n

n\sum 
j=1

cos(\xi \top j x+ \theta (\xi j))

\right]  dx
+ \| u\ast \| 2\scrB 0(Rd)

d\sum 
k=1

\int 
\Omega 

Var\mu \otimes n

\left[  1

n

n\sum 
j=1

\langle \xi j , ek\rangle sin(\xi \top j x+ \theta (\xi j))

\right]  dx
=
\| u\ast \| 2\scrB 0(Rd)

n

\int 
\Omega 

Var\xi \sim \mu 

\bigl[ 
cos(\xi \top x+ \theta (\xi ))

\bigr] 
dx

+
\| u\ast \| 2\scrB 0(Rd)

n

d\sum 
k=1

\int 
\Omega 

Var\xi \sim \mu 

\bigl[ 
\langle \xi , ek\rangle sin(\xi \top x+ \theta (\xi ))

\bigr] 
dx

\leq 
\| u\ast \| 2\scrB 0(Rd)

n

\int 
\Omega 

E\xi \sim \mu 

\Biggl[ 
1 +

d\sum 
k=1

\langle \xi , ek\rangle d
\Biggr] 
dx

=
\| u\ast \| \scrB 0(Rd)

n

\int 
\Omega 

\int 
Rd

| \^u\ast (\xi )| \cdot (1 + | \xi | 2)d\xi dx

\leq 
m(\Omega )\| u\ast \| \scrB 0(Rd) \| u\ast \| \scrB 2(Rd)

n

\leq 
m(\Omega ) \cdot C2 \| f\| 2\scrB s(Rd)

n
,

which implies (2.2).
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