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Exponential-Wrapped Distributions on Symmetric Spaces*
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Abstract. In many applications, the curvature of the space supporting the data makes the statistical modeling
challenging. In this paper we discuss the construction and use of probability distributions wrapped
around manifolds using exponential maps. These distributions have already been used on specific
manifolds. We describe their construction in the unifying framework of affine locally symmetric
spaces. Affine locally symmetric spaces are a broad class of manifolds containing many manifolds
encountered in the data sciences. We show that on these spaces, exponential-wrapped distributions
enjoy interesting properties for practical use. We provide the generic expression of the Jacobian
appearing in these distributions and compute it on two particular examples: Grassmannians and
pseudohyperboloids. We illustrate the interest of such distributions in a classification experiment on
simulated data.
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1. Introduction. Density estimation on manifolds has been the subject of theoretical
studies for several decades (Hall, Watson, and Cabrera, 1987; Hendriks, 1990; Huckemann
et al., 2010; Kim, 1998; Pelletier, 2005). More recently, probability densities on manifolds
have also become tools of major interest in applied data science, from classification of video
data on Grassmannian manifolds (Slama et al., 2015; Turaga et al., 2011), to modeling of
hierachical structures on hyperbolic spaces (Ding and Regev, 2020; Mathieu et al., 2019). An
important difficulty is to define statistical models adapted to practical use for broad classes
of manifolds; much of the focus has been on developing methods for specific manifolds, such
as the sphere (Fisher, 1953; Hauberg, 2018; Kato and McCullagh, 2020). On a Riemannian
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1348 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

manifold, a seemingly simple candidate family includes distributions whose densities with
respect to the Riemannian measure are the normalized indicator functions

\varphi p,r =
1

v(\scrB (p, r))
1\scrB (p,r),

where \scrB (p, r) is the ball centered at p of radius r and v is the Riemannian volume. However,
computing the normalization constant is typically nontrivial, as there are no closed form
expressions for the volume of balls.

In this article, we focus on statistical models defined by pushing probability densities sup-
ported on tangent spaces to the manifold, using an exponential map. Since there exist various
ways to push a density from a tangent space to the manifold, we refer to such densities as
``exponential-wrapped densities."" Exponential-wrapped densities have been studied and used
in many applications; see, for instance, Chevallier, Barbaresco, and Angulo (2015), Chevallier
et al. (2016); Ding and Regev (2020); Falorsi et al. (2019); Jona-Lasino, Gelfand, and Jona-
Lasino (2012); Kurtek et al. (2012); Mallasto and Feragen (2018); Mallasto, Hauberg, and
Feragen (2019); Mathieu et al. (2019); Pelletier (2005); Slama, Wannous, and Daoudi (2014);
Slama et al. (2015); Srivastava et al. (2005); Turaga et al. (2011). Most of these papers focus
on individual manifolds, where the exponential-wrapped densities enjoy interesting properties.
Our overarching contribution is to develop a unified framework, and corresponding theory and
methodology, for exponential-wrapped modeling on affine locally symmetric spaces (ALSS).
ALSS encompass most manifolds used in data science, including (pseudo-)Riemannian sym-
metric spaces and arbitrary Lie groups. For reasons mentioned later in the introduction,
ALSS are likely to form the most general setting on which exponential-wrapped densities
remain tractable.

Defining an exponential-wrapped density requires the existence of an exponential map.
The exponential map is commonly defined for Riemannian manifolds using geodesics, or for Lie
groups using one-parameter subgroups. However, both exponentials can be seen as exponential
maps of an underlying affine connection. In this article, symmetric spaces refer to affine
symmetric spaces in general, and not to Riemannian symmetric spaces.

Manifolds with affine connections are to Riemannian manifolds what affine spaces are to
Euclidean vector spaces: they have a notion of straight lines but no distance. It is interesting
to note that many statistical models on Rn do not depend on the Euclidean structure. For
instance, defining a Gaussian distribution relies only on the affine structure and not on the
distance. Similarly, exponential-wrapped models on Riemannian manifolds usually depend
only on the affine connection associated with the metric. The main difference between the
two settings is that the affine structure does not provide a notion of isotropic distributions.

In order to obtain tractable exponential-wrapped densities, it is important that the expo-
nential map, its inverse, and its Jacobian determinant (see Figure 1.1), admit simple expres-
sions. ALSS provide a broad class in which this is possible. First, exponential maps and their
inverses on injectivity domains can be computed at a reasonable cost: they can be identified
with a Lie group exponential. Second, we provide explicit expressions of the Jacobian determi-
nants for arbitrary symmetric spaces. The differential of the exponential map is governed by a
matrix second order differential equation: the equation of Jacobi fields. On locally symmetric
spaces this equation has constant matrix coefficients, which enables the computation of the
Jacobian determinant.
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1349

Figure 1.1. The infinitesimal volume change between the grey areas depends on how the neighboring
geodesics are deviating or getting closer. It is given by the absolute value of the Jacobian determinant of
the exponential map, and is determined by the curvature of the connection \nabla along the geodesic expp(tv).

Outside of ALSS, we expect this to happen on only a few specific manifolds. We are cur-
rently aware of only two examples of non-locally-symmetric manifolds appearing in data sci-
ence where the exponential map, its inverse, and Jacobian determinant can also be computed
easily: Gaussian distributions endowed with the Wasserstein Riemannian metric Chevallier,
Kalunga, and Angulo (2017) and Kendall shape spaces Nava-Yazdani et al. (2020).

In section 2, we describe exponential-wrapped distributions on ALSS. This setting encom-
passes and generalizes most previously considered settings, while preserving all the advantages
of wrapped distributions. In section 3 we give the formal definitions of ALSS and homogeneous
symmetric spaces, and set some notations. In section 4 we provide the general expression of
the Jacobian appearing in exponential-wrapped densities on ALSS, and compute it on two
original examples: Grassmannian manifolds and pseudohyperboloids. In section 5, we pres-
ent a classification experiment based on exponential-wrapped distributions. The experiment
shows the interest of using multiple tangent spaces to model data. Section 6 concludes the
paper.

2. Exponential-wrapped densities. Exponential-wrapped densities are traditionally used
to define distribution on the circle S1; see, for instance, Mardia (1972, p. 53). The density on
the circle is obtained by taking a density on R and by wrapping it around a circle. Formally,
if f is a density on R, the wrapped density can be defined as

f2\pi (\theta ) =

\infty \sum 
k= - \infty 

f(\theta + k2\pi ).

Wrapped densities on a circle can sometimes be written in closed form; it is the case
for instance when f is a Cauchy distribution. When the circle S1 is viewed as a Riemannian
manifold and R as a tangent space, the map x \mapsto \rightarrow x mod 2\pi can be interpreted as a Riemannian
exponential map. This point of view enables extension to more general manifolds endowed
with an exponential map. In the vocabulary of measure theory, the exponential-wrapped
probability is the pushforward of the probability in the tangent space by the exponential
map. When the dimension of the space is greater than one, wrapping a density from a
tangent space around the manifold usually requires taking into account a volume distortion.
Indeed, the exponential map is generally not an area preserving map between the tangent
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1350 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

space with a Lebesgue measure and the reference measure on the manifold. In this paper, we
focus on the cases where the probability distributions in the tangent spaces are contained in
injectivity domains of the exponential maps. This is a restrictive assumption on manifolds
such as spheres, where the injectivity domains are disks. However, as we will see in section 5.1,
it holds, at least approximately, for most exponential-wrapped distributions used in practice.
In this context, the difficulty does not lie in the computation of an infinite series as for most
standard wrapped densities on circles, but in the computation of the volume distortion.

Start by giving a precise definition of exponential-wrapped distributions. Let \scrM be a
manifold with a reference measure vol, and an exponential map expp : Tp\scrM \rightarrow \scrM at p, a
point in \scrM . Given \lambda , a probability distribution on Tp\scrM , the corresponding exponential-
wrapped distribution is defined as the pushforward of \lambda by the exponential

(2.1) \Lambda = expp\ast \lambda ,

where the \ast refers to the pushforward by expp: \Lambda (A) = \lambda (exp - 1
p (A)). In the rest of the paper,

we assume that \lambda is supported on a domain U \subset Tp\scrM on which expp is injective, and that it
has a density h with respect to a Lebesgue measure \nu p of Tp\scrM . Under these assumptions, the
density f of \Lambda can be expressed from h and a volume change term. When q= expu, we have

(2.2) f(q) =
d\Lambda 

dvol
(q) =

dexpp\ast (\nu p)

dvol

d\Lambda 

dexpp\ast (\nu p)
(q) =

dexpp\ast (\nu p)

dvol
(q)h(u),

and when q /\in expp(U), f(q) = 0. The volume change term is determined by the Jacobian
determinant of the differential of the exponential map, expressed in a suitable basis. Its
computation is addressed in section 4.

Note that the density with respect to vol given by

(2.3) f(q) = h(u)

when q = expu and f(q) = 0 when q /\in expp(U), can also be turned into a probability density
by adding a global normalization factor

(2.4) f(q) =
1

\alpha 
h(u) with \alpha =

\int 
q\in \mathrm{e}\mathrm{x}\mathrm{p}p(U)

h(logp(q))dvol.

Equations (2.2), (2.3), and (2.4) have sometimes been confused in the literature; see, for
instance, Slama, Wannous, and Daoudi (2014); Slama et al. (2015); Srivastava et al. (2005);
Turaga et al. (2011). Before focusing on wrapped densities, it is interesting to note that after
being normalized, the density of (2.4) enjoys interesting properties in specific contexts. For
instance, when \scrM is a noncompact Riemannian symmetric space of dimension d, the densities

(2.5) f(q | p,\Sigma )\propto h(logp(q)) = e - 
1

2
\mathrm{l}\mathrm{o}\mathrm{g}p(q)

T\Sigma  - 1 \mathrm{l}\mathrm{o}\mathrm{g}p(q), p, q \in \scrM ,\Sigma \in SPD(d),

where logp(q) is a coordinate expression of the inverse of the exponential map, have two re-
markable properties: (i) f is the maximum entropy distribution for fixed Frechet average and
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1351

covariance; see Pennec (2006), and (ii) when \Sigma is isotropic the maximum likelihood estimator
of p is the empirical Frechet average; see Said et al. (2017a,b). However, probability densities
obtained from (2.4) often suffer from several practical limitations. (1) The normalization con-
stant can be computed explicitly only in exceptional cases. (2) Sampling from the distribution
is not straightforward, and may require numerical approximations. (3) The link between the
parameter \Sigma and the covariance of the distribution is not explicit.

As we will see, these practical limitations do not hold for exponential-wrapped densities
on symmetric spaces, which makes them particularly adapted to many practical situations.

Densities are explicit. On an arbitrary Riemannian manifold, such densities are hard to
compute, since the exponential map and its inverse have no explicit forms. However, as we
will see in the next section, on ALSS exponential maps are locally identified with Lie groups
exponentials and are hence efficiently computed. Furthermore, we show in section 4 that
on these spaces, the volume distortion induced by the exponential map is always tractable.
Hence, the density itself is tractable.

Sampling is straightforward. In order to sample from f , it suffices to sample from h: if
U1, . . . ,Un are identical and indepenently distributed (i.i.d.) random variables on a tangent
space Tp\scrM following the density h, then X1 = expp(U1), . . . ,Xn = expp(Un) are i.i.d. random
variables on \scrM following the density f . Since the exponential map can be computed in closed
form, exponential-wrapped densities on ALSS are trivial to sample from as long as one can
sample from the pullback density on the tangent plane. This is in sharp contrast to the
very substantial problems that are often faced in sampling from distributions supported on
manifolds.

Correspondence between moments of f and h. A mean, or exponential barycenter, of a
probability density f on \scrM can be defined as a point \=p satisfying

Ef [log\=p(q)] =

\int 
q\in \scrM 

log\=p(q)f(q)dvol= 0\in T\=p\scrM ;

see Pennec (2019). Hence, if the mean
\int 
uh(u)du of h is 0\in Tp\scrM , then it can be checked that

p is a mean of f . Higher intrinsic moments of the density f at p are usually defined as

(2.6) mk
p =Ef [logp(q)

\otimes k] =

\int 
y\in \scrM 

logp(q)
\otimes kf(q)dvol=

\int 
u\in Tp\scrM 

u\otimes kh(u)du,

where the second equality is obtained by the change of variable u= logp(q). Hence the higher
moments of f at p are the same as those of h. An important consequence is that the moments
of h can be estimated by the empirical moments of f . This property does not hold for densities
defined from (2.4) due to the absence of the volume correction.

3. Symmetric spaces.

3.1. Affine connections and ALSS. Let \scrM be a manifold endowed with an affine con-
nection \nabla . Recall that the connection enables differentiation of vector fields: given two vector
fields X and Y on \scrM , (\nabla Y X)(p)\in Tp\scrM defines the derivative of the field X in the direction
of the field Y at p, a tangent vector at p. This connection enables transportation of a vector
u \in Tc(0)\scrM along a differentiable curve c(t) by imposing \nabla 

c\prime (t)u(t) = 0; this is parallel trans-

port of u along the curve c. A path \gamma is called geodesic if \gamma \prime (t) is the parallel transport of
\gamma \prime (0) along \gamma :

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1352 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

\nabla 
\gamma \prime (t)\gamma 

\prime (t) = 0.

Assume that \gamma (0) = p. The geodesics define an exponential map from tangent spaces to the
manifold: expp(\gamma 

\prime (0)) = \gamma (1).
Each affine connection has a torsion tensor T defined as

T (u, v) =\nabla uv - \nabla vu - [u, v] = 0,

where u, v are vector fields and [., .] the Lie bracket between vector fields. For every Riemann-
ian manifold there is an affine connection which has the same geodesics and exponential maps.
If the affine connection is chosen with null torsion, the connection is unique and called the
Levi-Civita connection. In the rest of the paper, it is always assumed that the torsion T of \nabla is
null:

T = 0.

Though the expression of the torsion tensor does not appear explicitly in the rest of the
paper, this assumption plays an important role in our main result through the equation of
Jacobi fields.

Affine connections also have a curvature tensor defined by

R(u, v)w=\nabla u\nabla vw - \nabla v\nabla uw - \nabla [u,v]w,

where u, v,w are three vector fields. ALSS are defined as manifolds with an affine connection
such that the derivative of the curvature tensor with respect to any vector field is always
null:

\nabla R= 0.

The assumptions T = \nabla R = 0 encompass a large variety of spaces. An important case
that we will address in this paper is when the connection \nabla arise from a (pseudo-)Riemannian
metric. The manifold is then called a (pseudo-)Riemannian ALSS. As is described in Pennec
and Lorenzi (2020), ALSS also contain another important class of spaces: arbitrary Lie groups
endowed with their 0-connection.

They are a particularly interesting class of spaces since exponentials and logarithms can
be identified with matrix counterparts, and the Jacobian of the exponential can be computed
explicitly.

3.2. Homogeneous symmetric spaces. Alternatively, a homogeneous symmetric space
can be characterized algebraically. It is a homogeneous space G/K with an involution \sigma which
has the following properties: G is a connected Lie group, \sigma is an involutive automorphism,
and K is an open subgroup of the set of fixed points of \sigma . Such a homogeneous space has a
unique canonical connection which verifies that \nabla is equivariant under the action of G, T = 0,
and \nabla R = 0. Hence, homogeneous symmetric spaces are also ALSS. The Lie algebra of the
Lie group G can be decomposed into a direct sum g= k\oplus m, where k and m are the +1 and  - 1
eigenspaces of d\sigma . Hence, k is the Lie algebra of K, and m can be identified with the tangent
space at eK of the quotient manifold, m\sim TeKG/K, where e is the identity of the group.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1353

A key feature for practical use of homogeneous symmetric spaces is that for u \in m,
exp(u)K = expeK(u), where the first exponential is the group exponential while the sec-
ond is the exponential of the canonical affine connection; see Nomizu (1954, section 10). The
exponential of the connection at an arbitrary point gK can be computed from the Lie group
exponential by

expgK(u) = g exp(g - 1.u)K,

where g - 1.u\in TeKG/K \sim m is the action of g - 1 on the tangent vector u\in TgKG/K. Another
important feature is that the action of exp(u \in m) on a tangent vector v \in TgKG/K is the
parallel transport of v from gK to exp(u)gK along exp(tu)gK.

3.3. Identifications and notations. Nomizu showed in Nomizu (1954) showed that for an
affine locally symmetric space \scrM , there is a neighborhood Np around each p \in \scrM such that
Np is isomorphic to a neighborhood of a homogeneous symmetric space. In the rest of the
paper,

\bullet \scrM is a differentiable manifold with a connection \nabla such that T = 0 and \nabla R= 0, and
p is an arbitrary reference point;

\bullet Np is a neighborhood of p identified with a neighborhood of a homogeneous symmetric
space G/K with p \sim eK. The tangent space Tp\scrM is identified with m, where m is
defined above in section 3.2.

4. The Jacobian of the exponential map.

4.1. Main ingredient. In this section we provide a general expression for the Jacobian
determinant of the exponential map on ALSS. This expression is not entirely original, since
it can be derived from Taniguchi (1984). However, it was never mentioned in the statistics
and data science literature. Theorem 4.1 is expressed for an arbitrary point q \in \scrM . We
have that dexpq(u) : Tq\scrM \rightarrow T\mathrm{e}\mathrm{x}\mathrm{p}q(u)

\scrM . On an arbitrary ALSS, there is no reference basis,
scalar product, or volume measure in the tangent spaces. In order to define the Jacobian
determinant

Jq(u) = det(dexpq(u)),

we set an arbitrary basis e1, . . . , ed of Tq\scrM and parallel transport it to T\mathrm{e}\mathrm{x}\mathrm{p}q(u)
\scrM along the

geodesic expq(tu). Check that Jq is independent of the choice of basis e1, . . . , ed of Tq\scrM . Note
\tau t : Tq\scrM \rightarrow T\mathrm{e}\mathrm{x}\mathrm{p}q(tu)

\scrM , the parallel transport between Tq\scrM and T\mathrm{e}\mathrm{x}\mathrm{p}q(tu)
along expq(tu). By

definition the matrix of \tau 1 in e1, . . . , ed and \tau 1(e1), . . . , \tau 1(ed) is the identity, hence

Jq(u) = det(\tau 1 \circ \tau  - 1
1 \circ dexpq(u)) = det(\tau  - 1

1 \circ dexpq(u)).

Since \tau  - 1
1 \circ dexpq(u) is an endomorphism of Tq\scrM , its determinant is independent of a

basis, hence Jq(u) is independent of the basis of Tq\scrM .
Let Ru : Tq\scrM \rightarrow Tq\scrM be the linear map given by Ru(v) = R(v,u)u, where R is the

curvature tensor. Using the equation of Jacobi fields on ALSS the author of Taniguchi (1984)
shows that the differential of the exponential is given by

dexpq(u) = \tau 1 \circ 
\infty \sum 
0

( - Ru)
n

(2n+ 1)!
.

Triangularizing the matrix of Ru over C leads to the following result.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1354 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

Theorem 4.1. Let Ru be the linear map defined above. Note its ith complex eigenvalue
\lambda i(Ru) and its algebraic multiplicity ni. The Jacobian determinant Jq of the exponential map
at u in the basis e1, . . . , ed and \tau 1(e1), . . . , \tau 1(ed) is given by

(4.1) Jq(u) =
\prod 
i

\left(  sinh
\Bigl( \sqrt{} 

 - \lambda i(Ru)
\Bigr) 

\sqrt{} 
 - \lambda i(Ru))

\right)  ni

,

with
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}

\Bigl( \surd 
 - \lambda i(Ru)

\Bigr) 
\surd 

 - \lambda i(Ru)
= 1 when \lambda i(Ru) = 0.

The proof is provided in Appendix A.1. Recall that sinh(\bfi x) = \bfi sin(x), hence the hyper-
bolic sine becomes a sine when the eigenvalue \lambda i is real positive.

The formula for the case of Riemannian symmetric spaces, that can be found in Helgason
(1979, p. 294), has a similar structure but the eigenvalues are roots of the complexified Lie
algebra gC of G. Since our formula derives directly from the equation of the Jacobi fields,
it is naturally expressed using the curvature tensor. A benefit is that it can be used and
understood without knowledge of roots systems of semisimple Lie algebras. Nontheless, it is
sometimes interesting to relate the \lambda i to algebraic quantities. The curvature tensor at the
point p relates to the Lie bracket of the Lie algebra of the group G in a simple way; see
Nomizu (1954):

(4.2) \forall u, v,w \in Tp\scrM \sim m, R(u, v,w) = - [[u, v],w].

Recall also that adu(v) = [u, v]. Hence at the point p\sim eK, Ru(v) = - [u, [u, v]] = - ad2u(v)
and the eigenvalues of Ru are the eigenvalues of  - ad2u restricted to m. Due to the homogeneity
of G/K, the Jacobian Jp determines the Jacobian of all other exponential maps expq.

Corollary 4.2. The Jacobian determinant of expq at v in a parallel transported basis is

Jq(v) = Jp(kg
 - 1.v),

where k is arbitrary element of K. Here kg - 1.v is understood as the differential of the action
of kg - 1 applied to v.

The proof is given in Appendix A.1. This formula enables one to always turn the compu-
tation of the Jacobian into a computation of eigenvalues of  - ad2. In the rest of the paper the
Jacobian Jp is simply noted J .

The formula (4.1) is given in a parallel transported basis and does not rely on other
properties of the connection \nabla other than T = 0 and \nabla R = 0. In sections 4.2 and 4.3 we
give particular attention to two classes of symmetric spaces: (pseudo-)Riemannian locally
symmetric spaces and Lie groups endowed with their Cartan--Schouten connection. In both
contexts the additional structures enable one to state adapted results for the construction of
exponential-wrapped probability densities. We address the use of the Jacobian for exponential-
wrapped densities on arbitrary locally symmetric spaces in section 4.4.

4.2. Riemannian and pseudo-Riemannian symmetric spaces. Assume that the connec-
tion\nabla of the manifold\scrM is the Levi-Civita connection of a Riemannian or pseudo-Riemannian
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1355

metric g. \scrM has a natural volume measure vol induced by the metric. Let e1, . . . , ed \in Tp\scrM be
an orthonormal basis (| g(ei, ej)| = \delta ij), and let \nu p denote the corresponding Lebesgue measure.
Since parallel transport is an isometry, the Jacobian determinant J is related to the volume
change of (2.2) in the following way,

d expp\ast (\nu p)

dvol
(exp(u)) = | J(u)|  - 1.

We now provide the expression of the Jacobian on an example of a Riemannian symmet-
ric space: real Grassmanian manifolds, and an example of a pseudo-Riemannian symmetric
space, pseudohyperboloids. We are currently not aware of references containing these formu-
las. Moreover, the Jacobian on Grassmannians was omitted at several occasions in the densi-
ties of wrapped distributions; see, for instance, Slama, Wannous, and Daoudi (2014); Slama
et al. (2015); Srivastava et al. (2005); Turaga et al. (2011).

4.2.1. Real Grassmanians.
The Grassmanian of vector subspaces. The Grassmanian Grk(n) denotes the spaces of k

dimensional vector subspaces of Rn. We first describe the homogeneous symmetric structure
of Grassmanians, as done in section 3.2 for the general case.

Let O denote the groups of orthogonal matrices and SO their subgroups of determinant
1. Clearly O(n) acts transitively on subspaces of dimension k. Furthermore it is easy to see
that block diagonal matrices with the first block in O(k) and the second in O(n  - k) leave
stable the vector spaces spanned by the k first basis vectors. Hence

Grk(n)\sim O(n)/(O(k)\times O(n - k)).

This quotient can be simplified to Grk(n)\sim SO(n)/S(O(k)\times O(n - k)), where S(O(k)\times O(n - 
k)) refers to the block diagonal matrices of determinant 1, with the first block in O(k) and
the second in O(n - k).

The involutive automorphism of the symmetric structure is given by

(4.3) \sigma (X) =

\biggl( 
Ik 0
0T  - In - k

\biggr) 
X

\biggl( 
Ik 0
0T  - In - k

\biggr) 
.

It can be checked that S(O(k)\times O(n - k)) is an open subgroup of the set of fixed points of
\sigma , hence the involution makes SO(n)/S(O(k)\times O(n - k)) a homogeneous symmetric space.
Since S(O(k) \times O(n  - k)) is compact, the quotient admits an invariant Riemannian metric
and is a homogeneous Riemannian symmetric space, see Helgason (1979).

The Lie algebra of SO(n) is decomposed on eigenspaces of d\sigma at identity,

so(n) = k\oplus m.

It can be checked that the  - 1 eigenspace m is given by,

m=

\biggl\{ 
XB =

\biggl( 
0 B

 - BT 0

\biggr) 
, B \in Matk,n - k(R)

\biggr\} 
,

where Matk,n - k(R) are real k by n  - k matrices. Recall that on matrix groups adX(Y ) =
XY  - Y X. The computations shown in Appendix B.1 of the eigenvalues of the adjoints ad2

restricted to m lead to the following Jacobian at p\sim In.S(O(k)\times O(n - k)),
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1356 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

(4.4) J(XB) =
\prod 
i<j

sin(\sigma i  - \sigma j)

\sigma i  - \sigma j

sin(\sigma i + \sigma j)

\sigma i + \sigma j

\prod 
i

\biggl( 
sin(\sigma i)

\sigma i

\biggr) | n - 2k| 
,

where \sigma i are the singular values of B counted with multiplicity one, and where each fraction
is replaced by 1 when the denominator is 0.

Note that S(O(k)\times O(n - k)) has two components and that the identity component SO(k)\times 
SO(n - k) is also an open subgroup of the set of fixed points of \sigma . Hence SO(n)/(SO(k)\times 
SO(n - k)) is another homogeneous symmetric space: the oriented real Grassmanian. Since
m and adXB

remain the same, the Jacobian also has the same expression.
The Grassmanian of affine subspaces. Let Graffk(n) be the set of affine subspaces of di-

mension k of Rn. It is clear that the set of isometries of Rn, noted E(n), acts transitively
on Graffk(n). Furthermore, the stabilizer of the subspace generated by the first k vectors is
given by E(k)\times O(n - k): a rigid motion of the subspace and a rotation of the complement.
Hence, Graffk(n) is a homogeneous space,

Graffk(n)\sim E(n)/(E(k)\times O(n - k)).

Authors of Lim, Wong, and Ye (2021) show that the geometry of this quotient is nicely
described by an embedding in the Grassmanian of vector subspaces Grk+1(n+ 1). Let V be
a k dimensional vector subspace and b be a vector of Rn. The following map j,

j ((V, b)) = span(V \cup \{ b, en+1\} ),

where en+1 is the last basis vector of Rn+1, embeds Graffk(n) in Grk+1(n+1). The canonical
Riemannian metric on Graffk(n) is then the metric induced by Grk+1(n+ 1). Furthermore,
j(Graffk(n)) is an open subset of Grk+1(n+1). Since Grk+1(n+1) is homogeneous Riemannian
symmetric, this embedding makes Graffk(n) a Riemannian locally symmetric space. Hence
we have locally Graffk(n)\sim Grk+1(n+1)\sim O(n+1)/(O(k+1)\times O(n - k)) and the Jacobian
can be computed with (4.4).

4.2.2. Pseudohyperboloids. We now provide the Jacobian on pseudohyperboloids.They
are pseudo-Riemannian manifolds recently used in Law and Stam (2020), where the authors
show their relevance for graph embedding problems. Let us start by describing pseudohyper-
boloids, following the approach of Law and Stam (2020).

For p, q\geq 0, let Rp,q+1 be the space Rp \times Rq+1 endowed with the pseudo-Euclidean scalar
product

\langle x, y\rangle =
p\sum 

i=1

xiyi  - 
p+q+1\sum 
j=p+1

xiyi.

Define the pseudohyperboloid \scrQ p,q
\beta as

\scrQ p,q
\beta = \{ x\in Rp,q+1, \langle x,x\rangle = \beta \} ,

where \beta < 0. Pseudospheres are defined with \beta > 0, but note that \scrQ p,q
\beta and \scrQ q+1,p - 1

 - \beta are
anti-isometric. Furthermore, since all \beta < 0 lead to homotetic pseudohyperboloids, we set
\beta = - 1.
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1357

As described in section 3.2, we can now exhibit the symmetric space structure of \scrQ p,q
\beta and

compute the Jacobian determinant of the exponential map. Let O(p, q + 1) be the indefinite
orthogonal group which preserves the pseudoscalar product of Rp,q+1. The group O(p, q + 1)
acts transitively by isometries on \scrQ p,q

 - 1. Since the stabilizer of the last basis vector ep+q+1 \in \scrQ p,q
 - 1

is the subgroup O(p, q), we have that \scrQ p,q
 - 1 \sim O(p, q+1)/O(p, q). Consider an involution similar

to the one defined in (4.3):

(4.5) \sigma (X) =

\biggl( 
 - Ip+q 0

0 1

\biggr) 
X

\biggl( 
 - Ip+q 0

0 1

\biggr) 
.

\sigma is an involution of O(p, q + 1) and it can be checked that O(p, q) is an open subgroup of
the set of fixed points of \sigma . Hence it gives O(p, q + 1)/O(p, q), a homogeneous symmetric
structure. The Lie algebra can be decomposed on the eigenspaces of d\sigma at identity,

o(p, q + 1) = k\oplus m,

and it can be checked that the  - 1 eigenspace m is given by,

m=

\left\{   Xv,w =

\left(  0 0 v
0 0 w
vT  - wT 0

\right)  , v \in Rp,w \in Rq

\right\}   .

Again, on a matrix group adX(Y ) =XY  - Y X. The computations of the eigenvalues of the
ad2 restricted to m given in Appendix B.2 lead to the following Jacobian at p\sim Ip+q+1.O(p, q),

(4.6) J(Xv,w) =

\Biggl\{ \Bigl( 
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}(\| v\| 2 - \| w\| 2)

\| v\| 2 - \| w\| 2

\Bigr) p+q - 1
if \| v\| \not = \| w\| ,

1 if \| v\| = \| w\| ,

where \| v\| and \| w\| are the Euclidean norms of v and w.

4.3. Lie groups. As pointed out by Taniguchi (1984), the differential of the exponential
map on symmetric spaces can be used to derive the differential of the exponential map on Lie
groups. We describe here how the Jacobian determinants relate to each other.

Remarkably, every Lie group has an affine connection \nabla compatible with the group struc-
tures, called the 0-connection, which makes it an ALSS. Since the symmetric structure of the
0-connection was only described very recently in the data science literature (see Pennec and
Lorenzi, 2020), we recall the most important facts. Let \scrX be a manifold equipped with a Lie
group structure with identity o\in \scrX .

Proposition 4.3. Let \nabla be the bi-invariant connection defined by

\nabla \~u\~v=
1

2
[u, v], u, v \in To\scrX ,

where \~u and \~v are the left invariant vector fields generated by u and v, and [., .] is the Lie
bracket associated with the Lie group structure on \scrX . \nabla is called the 0-connection, or 0-
Cartan--Schouten connection. We have,
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1358 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

(i) (\scrX ,\nabla ) is an affine locally symmetric space;
(ii) one parameter subgroups are geodesics: at o, the group exponential and the exponential

of the connection coincide;
(iii) the curvature and the Lie bracket are related by

\forall u, v,w \in To\scrX R(u, v,w) = - 1

4
[[u, v],w],

(iv) the parallel transport from o to exp(u) of the vector v is given by

\Pi \mathrm{e}\mathrm{x}\mathrm{p}(u)
o v=dL\mathrm{e}\mathrm{x}\mathrm{p}(u

2
) \circ dR\mathrm{e}\mathrm{x}\mathrm{p}(u

2
)(v),

where dL and dR are the differential of the left and right multiplications.

Proofs can be found in Pennec and Lorenzi (2020). Assume now that the manifold \scrM 
has a Lie group structure of identity p, and that \nabla is the 0-Cartan--Shouten connection.
We show how Theorem 4.1 leads to the formula of the Jacobian on Lie groups, given for
instance in Falorsi et al. (2019). Note that the Lie bracket [., .] in Proposition 4.3 is not the
same as the one coming from the identification Tp\scrM \sim m \subset TeG, where G is the Lie group
involved in the local identification \scrM \sim G/H. Similarly to (4.2), using (iii) we can write
Ru(v) = - 1

4 [u, [u, v]] = - 1
4ad

2
u(v), but where adu is now the adjoint map of the Lie algebra of

\scrM . This relation enables us to obtain an algebraic expression of the Jacobian which involves
only the structure of \scrM and not of the Lie group G.

On a Lie group the differential of the group exponential is usually computed in a basis
transported by left (or right) multiplication. As a result, the Jacobian determinant is a volume
change between a Lebesgue measure on the Lie algebra and a Haar measure. As (iii) shows,
parallel transported bases are not simply obtained by left or right multiplication, hence the
Jacobian determinant of Theorem 4.1 is not a volume change with respect to a Haar measure.
However, a simple calculation shown in Appendix A.3 enables us to relate the two Jacobians
and to obtain the following corollary of Theorem 4.1.

Corollary 4.4. Set a basis B = (e1, . . . , ed = u) of Tp\scrM and let u\in Tp\scrM . Let BL be the basis
of T\mathrm{e}\mathrm{x}\mathrm{p}(u)\scrM obtained by left multiplication of B. The Jacobian determinant of the exponential
map expressed in B and BL is given by

\~Jp(u) =
\prod 
i

\biggl( 
1 - e\alpha i(u)

\alpha i(u)

\biggr) mi

,

where \alpha i(u) are the eigenvalues of adu and mi their multiplicities.

The proof is given in Appendix A.3. Let \nu p be the Lebesgue measure on Tp\scrM and vol be
the left Haar measure on \scrM generated by the basis B. We have

dexp\ast (\nu p)

dvol
(exp(u)) = | \~Jp(u)|  - 1.

Similarly to Corollary 4.2 expressing the Jacobian at arbitrary points, it can be checked
that on Lie groups, the Jacobian in a left-transported basis computed at an arbitrary q is
given by

\~Jq(u) = \~Jp(dLq - 1 .u).
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1359

Figure 4.1. The dotted lines represent the parallel transport between p, q, and r. The term H in (4.7) is
the determinant of the red basis in the blue basis.

4.4. The general case. We are currently not aware of practical problems in data science
or physics involving a random phenomenon on a symmetric space which is not Riemannian,
pseudo-Riemannian, or a Lie group. However, such spaces remain an interesting class, with
some interesting special cases. For example, the connection \nabla on R2 whose Christoffel's
coefficients are all zeros except \Gamma 2

11(x, y) = y is symmetric but does not correspond to a
Riemannian or Lie structure. We outline the use of the Jacobian on a general affine locally
symmetric space but we do not provide proofs of the results in this paper.

In both the Riemannian and Lie group settings we interpreted the Jacobian as a volume
change between a Lebesgue measure of the tangent space and a reference measure on the
manifold. On general symmetric spaces there might not be such a reference measure. In that
case, exponential-wrapped probability distributions do not have a natural notion of density,
even when they are absolutely continuous with respect to the Lebesgue measures of the charts
of \scrM . However, relative densities between exponential-wrapped probability distributions can
still be computed. Let p, q \in \scrM and \scrU \subset \scrM be such that logp and logq are well defined on \scrU .
Let \lambda p and \lambda q be two probability distributions supported on logp(\scrU ) and logq(\scrU ), respectively.
Set an arbitrary reference basis on Tp\scrM and parallel transport it to Tq\scrM . If \lambda p and \lambda q have
densities hp and hq with respect to the corresponding Lebesgue measures, then for any r \in \scrU 
it can be shown that

(4.7)
dexpq\ast \lambda q

dexpp\ast \lambda p
(r) =H.

Jp(log(r))

Jq(logp(r))

hq(logq(r))

hp(logp(r))
,

where H is the determinant of the holonomy map along the geodesic triangle r\rightarrow q\rightarrow p\rightarrow r;
see Figure 4.1. Furthermore, as mentioned in section 3.2, the parallel transport on a symmetric
space is obtained by the action of elements of exp(m). This enables us to compute H explicitly.

5. A classification experiment using exponential-wrapped distributions. Outside cases
where laws are modeled using a fixed tangent space, the analysis of the convergence of density
estimators based on exponential-wrapped distributions is still in early development.

As suggested in section 2, exponential-wrapped distributions are sometimes conveniently
estimated with moment matching estimators. The study of the theoretical properties of
moment matching estimators is out of the scope of this paper. However, the module
\bff \bfr \bfe \bfc \bfh \bfe \bft \.\bfm \bfe \bfa \bfn of the python package \bfG \bfe \bfo \bfm \bfs \bft \bfa \bft \bfs (see Miolane et al., 2020), now enables
the computation of the empirical moments on several symmetric spaces in a simple way.
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1360 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

Taking advantage of this python package, we present a classification experiment on sim-
ulated data drawn in two Riemannian symmetric spaces: the real Grassmannian of two-
dimensional subspaces of R4 and the space of 2\times 2 symmetric positive definite matrices.

On both spaces, we consider four equiprobable classes. For a class Ci, a training set
and a test set are drawn from an exponential-wrapped density fi. Each training set is then
modeled by an estimated exponential-wrapped distribution \^fi, and samples from test sets
are classified according to the maximum a posteriori probability. Several approaches are
compared, depending on the number, and location, of tangent spaces used to model the data.
In model 1, the training sets are modeled with exponential wrapped distributions originating
from different tangent spaces, while in models 2 and 3, the training sets are modeled with
exponential-wrapped distributions originating from the same tangent space. In models 2
and 3, the Jacobians between the tangent spaces and the manifold are not involved in the
classification, since all the data are classified in the same tangent space. The classification
results show the interest of model 1 over models 2 and 3. All the computations necessary to
the classification are achieved with the package \bfG \bfe \bfo \bfm \bfs \bft \bfa \bft \bfs .

The training set and test set of the class Ci are obtained by sampling from an isotropic
exponential-wrapped normal density fi = f(.;pi, vi), which we describe in the next paragraph.

5.1. Isotropic exponential-wrapped normal distributions. Define the distribution
\scrN \scrM (p, v) as

\scrN \scrM (p, v) = expp\ast 

\Bigl( 
\scrN 
\Bigl( 
0,

v

d
\langle ., .\rangle p

\Bigr) \Bigr) 
,

where \scrN is a multivariate normal distribution, \langle ., .\rangle p is the inner product of Tp\scrM , and d the
dimension of \scrM . Note f(.;p, v), the density of \scrN \scrM (p, v). When the manifold \scrM is a space of
symmetric positive definite matrices, the exponential map is a bijection between each tangent
space and \scrM . After particularizing (2.2), we obtain that the density fi(.) = f(.;pi, vi) is given
by

(5.1) fi(q) =
1

Jpi
(logpi

(q))

1\sqrt{} 
(2\pi wi)d

e
 - d(q,pi)

2

2wi ,

where wi =
vi

d . When \scrM is a real Grassmannian manifold, the exponential maps are surjective
but not injective. In the current experiment, the normal distributions on the Grassmannian are
taken with small variances, which enables us to neglect the mass outside the injectivity radius.
This hypothesis is often made in practice; see Falorsi et al. (2019); Fletcher et al. (2003);
Mallasto and Feragen (2018), and avoid the technicalities of truncated normal distributions
used in Slama et al. (2015); Turaga et al. (2011). This assumption enables us to approximate
the density by using (5.1).

As pointed out in the end of section 2, an important aspect of such an exponential-
wrapped normal density, with respect to other types of normal densities on manifolds, is that
the parameters p and v correspond to empirical moments of \scrN \scrM (p, v). Indeed, the change of
variable u= logp(q) leads to\int 

\scrM 
logp(q)f(q;p, v)dvol=

1\sqrt{} 
(2\pi w)d

\int 
Tp\scrM 

ue - 
\| u\| 2

2w2 du= 0,

where vol is the Riemannian volume and w= v
d . Hence p is a mean of \scrN \scrM (p, v).
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1361

The same change of variable also gives\int 
\scrM 

d(q, p)2f(q;p, v)dvol=
1\sqrt{} 

(2\pi w)d

\int 
Tp\scrM 

\| u\| 2e - 
\| u\| 2

2w2 du= v.

Hence v is the variance of \scrN \scrM (p, v). This allows us to estimate the parameters p and v by
empirical moments. Note that on symmetric spaces with positive curvature, such as Grass-
mannian manifolds, the uniqueness of the mean is not guaranteed when the distribution is not
sufficiently concentrated. Hence the convergence of the estimation of p by an empirical mean
is also not guarenteed. The small variance hypothesis enables us to neglect this phenomenon.

5.2. The Grassmannian \bfitG \bfitr \bftwo (\bffour ). We now give the expression of the Jacobian on the
Grassmannian of two-dimensional vector subspaces of R4, noted as Gr2(4), as well as the
parameters of the four classes Ci. Gr2(4) is a four-dimensional manifold described in section
4.2.1. It is identified with the quotient

O(4)/(O(2)\times O(2)),

and its tangent space at I.O(2)\times O(2) is identified with

m=

\biggl\{ 
XB =

\biggl( 
0 B

 - BT 0

\biggr) 
, B \in Mat2,2(R)

\biggr\} 
.

The Jacobian becomes

J(XB) =
sin(\sigma 1  - \sigma 2)

\sigma 1  - \sigma 2

sin(\sigma 1 + \sigma 2)

\sigma 1 + \sigma 2
,

where \sigma 1 and \sigma 2 are the singular values of B. On Gr2(4) the parameters of the distributions
of the four classes are chosen as pi = expI(XBi

) with

B1 =

\biggl( 
0 0
0 0

\biggr) 
,B2 =

\biggl( 
0 0
 - \pi 

2 0

\biggr) 
,B3 =

\biggl( 
0  - \pi 

2
0 0

\biggr) 
,B4 =

\biggl( 
0 0
0  - \pi 

2

\biggr) 
,

and

v1 = v2 = v3 = v4 = 0.6.

For this choice of variance, a Monte Carlo sampling shows that in the tangent spaces,
99.8\% of the mass lies in the injectivity ball B(\pi 2 ) and 60\% lie in the ball B(\pi 4 ),

\pi 
2 being the

injectivity radius of Gr2(4). This distribution of mass is consistent with the approximation
made in (5.1), and ensures in practice the uniqueness of the mean.

5.3. The space of 2\times 2 symmetric positive definite matrices. Before providing the ex-
pression of the Jacobian and the parameters of the classes Ci, we start with a brief description
of the structure of symmetric space. Note Sym(2) and SPD(2) are the spaces of 2 \times 2 sym-
metric and symmetric positive definite matrices. Since SPD(2) is an open subset of the vector
space Sym(2), all the tangent spaces of SPD(2) are identified with Sym(2). Endow SPD(2)
with the following Riemannian metric

g\Sigma (X,Y ) = trace(\Sigma  - 1X\Sigma  - 1Y ),
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1362 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

where \Sigma \in SPD(2) and X,Y \in Sym(2). The metric g makes SPD(2) a Riemannian symmetric
space, whose detailed presentation can be found in Terras (1984). Let us simply give the
identifications introduced in section 3.3. SPD(2) is identified with GL(2)/O(2) by the map
\Sigma \mapsto \rightarrow \Sigma 1/2.O(2), where \Sigma 1/2 is the symmetric square root of \Sigma , and the tangent space of
GL(2)/O(2) at I.O(2) is itself identified with

m=Sym(2).

This leads to an identification of TI SPD(2) and m given by X \mapsto \rightarrow 1
2X. For X in TI SPD(2),

the computation of the eigenvalues of ad21
2
X
:m\rightarrow m gives the following Jacobian,

J(X) = 2
sinh(\sigma 1 - \sigma 2

2 )

\sigma 1  - \sigma 2
,

where \sigma 1 and \sigma 2 are the eigenvalues of X: see also Chevallier, Kalunga, and Angulo (2017).
On SPD(2), the parameters of the distributions of the four classes are chosen as

p1 = expI

\biggl( \biggl( 
3 0
0  - 3

\biggr) \biggr) 
, p2 = expI

\biggl( \biggl( 
3 0.3
0.3  - 3

\biggr) \biggr) 
,

p3 = expI

\biggl( \biggl( 
 - 3 0
0 3

\biggr) \biggr) 
, p4 = expI

\biggl( \biggl( 
 - 3  - 0.3
 - 0.3 3

\biggr) \biggr) 
,

and

v1 = v2 = v3 = v4 = 2.

5.4. Estimation of exponential-wrapped normal distributions. The test sets are modeled
according to three procedures.

\bullet In model 1, the parameters of the density fi = f(.;pi, vi) of the class Ci are estimated
by the empirical mean and variance \^pi, \^vi. The test set of the class Ci is then modeled
by the density \^fi = f(.; \^pi, \^vi).

\bullet In model 2, all the data points are first lifted into a single tangent space Tp0
\scrM by the

logarithm logp0
. The point p0 is chosen to be a mean of all the training sets. Each

lifted training set is then modeled by an isotropic normal density h(.; \^\mu i, \^vi) on Tp0
\scrM 

of parameters

\^\mu i =
1

N

\sum 
i

logp0
(qi) and \^vi =

1

N

\sum 
i

\| logp0
(qi) - \mu i\| 2p0

,

where N is the size of the training sets.
\bullet Model 3 differs from model 2 in the choice of the lifting point p0, which is now set as

the mean of the training set of the first class.
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1363

5.5. Classification results. Data are classified according to the maximum a posteriori
probability. Since we consider equiprobable classes, maximizing the posterior probability is
equivalent to maximizing the likelihood of the observation. Hence, a data point at q \in \scrM is
classified as

C(q) =

\biggl\{ 
argmaxi f(q; \^pi, vi) (model 1),
argmaxi h(q; \^\mu i, \^vi) (models 2 and 3).

On both spaces, we consider four equiprobable classes with a training set of size 4 \times 50
and a test set of size 4 \times 50. The classification is repeated 5000 times. The following table
shows the average rate of good classifications, plus or minus a standard deviation.

model 1 model 2 model 3

Gr2(4) 0.838\pm 0.026 0.777\pm 0.031 0.501\pm 0.052
SPD(2) 0.816\pm 0.028 0.682\pm 0.050 0.618\pm 0.035

On both spaces, the results illustrate the advantage of working with multiple tangent
spaces over a global linearization of the space. In the case of a global linearization, choosing
an off-centered tangent space (model 3) led to lower classification results than those obtained
with a centered tangent space (model 2).

6. Discussion. Exponential-wrapped distributions had previously been defined and used
on specific manifolds. In this paper we showed that ALSS are a broad class of manifolds where
exponential-wrapped densities can be computed in closed form, under an injectivity condition.
These distributions have then been used in a classification experiment on simulated data.
Further studies should more deeply investigate the impact of the various factors affecting
the classification results, such as the curvature tensor of the manifold or the number and
locations of classes. In order to provide a theoretical background to these results, future
work will also focus on the study of the convergence of estimators based on exponential-
wrapped distributions. An important problem remains open in the case where the tangent
space used to model data is not fixed in advance: differentiating the likelihood of densities
with respect to the base point of the tangent space. The differentiation involves the double
exponential expansion, whose expression on arbitrary affine manifolds can be found in Pennec
(2019, section 3.2) and Gavrilov (2007). Our future efforts will focus on understanding the
implications of this formula for density estimation with exponential wrapped densities.

Appendix A. Proofs of the general forms of Jacobians.

A.1. Proof of Theorem 4.1. The main part of the proof is similar to Taniguchi (1984).
Chose a basis e1, . . . , ed of Tq\scrM with ed = u. Expressed in e1(0), . . . , ed(0) and e1(t), . . . , ed(t),
we have

J(tu) = det(dexpp(tu)) = det

\biggl( 
\partial exp

\partial e1
(ted), . . . ,

\partial exp

\partial ed
(ted)

\biggr) 
.

On manifolds with null torsion, the

Yi(t) = t
\partial exp

\partial ei
(ted), i= 1, . . . , d,
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1364 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

are solutions of the Jacobi equations Yi
\prime \prime (t) +Red(t)(Yi(t)) = 0 with initial conditions Yi(0) =

0 and Yi
\prime (0) = ei. Y

\prime \prime (t) refers here to the second covariant derivative along the geodesics
exp(tu) and Red(t) to the map R(ed(t), .)ed(t). Given a tensor field T along exp(tu), note that
[T ] is its coordinates in the basis e1(t), . . . , ed(t). Since the manifold is locally symmetric,
[Red(t)] = [Red(0)] = [Ru]. The Jacobi equation becomes a second order differential equation in

Rd with constant coefficients:

[Yi]
\prime \prime + [Ru][Yi] = 0.

In the rest of the proof, the matrix [Ru] is simply noted as R. Let Ft :Rd \rightarrow Rd be the linear
map defined by Ft(X) = v(t) with v the unique solution of the Cauchy problem\left\{   

v\prime \prime +Rv= 0,
v(0) = 0,
v\prime (0) =X.

It can be checked that 1
tdFt is the matrix expression of linear map dexpp(tu), hence

J(u) = det(F1). First turn the differential equation into a first order differential equation. We
get \biggl( 

v\prime 

v\prime \prime 

\biggr) 
=

\biggl( 
0 I

 - R 0

\biggr) \biggl( 
v
v\prime 

\biggr) 
.

Letting A=

\biggl( 
0 I
R 0

\biggr) 
, the solution is given by

\biggl( 
v(t)
v\prime (t)

\biggr) 
= etA

\biggl( 
v(0)
v\prime (0)

\biggr) 
. It is easy to check that

etA =

\biggl( 
Et Ft

Gt Ht

\biggr) 
, where Ft is the linear map defined previously. Hence, we want to compute

the determinant of the upper right block of eA. Compute first the powers of A. It can be
checked by induction that for k \in N,

A2k = t2k
\biggl( 
( - R)k 0

0 ( - R)k

\biggr) 
and A2k+1 =A2k+1

\biggl( 
0 ( - R)k

( - R)k+1 0

\biggr) 
.

We can deduce that F1 = 0 + I + 0 +  - R
3! + 0 + ( - R)2

5! + \cdot \cdot \cdot + 0 + ( - R)2k

(2k+1)! + \cdot \cdot \cdot , which is

analogous to the formula provided in Taniguchi (1984). Hence we have that the matrix of the
differential of the exponential map at the tangent vector u in a parallel transported basis is
given by

dexpp(u) =

\infty \sum 
0

( - R)n

(2n+ 1)!
.

Recall that a matrix can always be triangularized over C. Let R= PTP - 1 with T an upper
triangular matrix. Recall also that the diagonal elements of T are the complex eigenvalues

\lambda i of R. We have dexpp(u) = P
\Bigl( \sum \infty 

0
( - T )n

(2n+1)!

\Bigr) 
P - 1 and det(dexpp(u)) = det

\Bigl( \sum \infty 
0

( - T )n

(2n+1)!

\Bigr) 
.

Since
\sum \infty 

0
( - T )n

(2n+1)! is upper triangular we have that

(A.1) J(u) = det(dexpp(u)) =
\prod 
i

\Biggl( \infty \sum 
0

( - \lambda i)
n

(2n+ 1)!

\Biggr) ni

=
\prod 
i

\biggl( 
sinh(

\surd 
 - \lambda i)\surd 

 - \lambda i

\biggr) ni

,
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1365

where ni is the multiplicity of \lambda i, and where \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}(0)
0 = 1. Note that since sinh is odd, it is clear

that changing the choice of square root
\surd 
 - \lambda i to  - 

\surd 
 - \lambda i does not affect the determinant.

A.2. The Jacobian at an arbitrary base-point : Proof of Corollary 4.2. Recall that
the connection \nabla is equivariant under the action of G. Hence g. expq(u) = expg.q(g.u) and
g.dexpq(u) = dexpg.q(g.u). Let B be a basis of Tp\scrM and B\prime its parallel translation to T\mathrm{e}\mathrm{x}\mathrm{p}p(u)

along expp(u). We have that g.B and g.B\prime are bases of Tg.q\scrM and Tg. \mathrm{e}\mathrm{x}\mathrm{p}p(g.u)
\scrM and that

the determinant of d expq(u) in B and B\prime is the same as the determinant of g.dexpq(u) in
g.B and g.B\prime . Moreover, the equivariance of the connection gives that g.B and g.B\prime are also
related by parallel transport. In other words, Jq(u) = Jg.q(g.u). In section 4.1, the function J
is defined at p\sim eK. Hence if q\sim gK, we have kg - 1.gK = eK for all k \in K and

Jq(u) = J(kg - 1.u).

A.3. The Lie group formula : Proof of Corollary 4.4. At exp(u), the two bases BL and BT

obtained, respectively, by left invariance and parallel transport are given by: BL =dL\mathrm{e}\mathrm{x}\mathrm{p}(u).B

and BT = dL\mathrm{e}\mathrm{x}\mathrm{p}(u

2
)dR\mathrm{e}\mathrm{x}\mathrm{p}(u

2
)B. We have \~J(u) = J(u).detBL

(BT ), hence we need to compute
detBL

(BT ):

det
BL

(BT ) = det
\mathrm{d}L\mathrm{e}\mathrm{x}\mathrm{p}( - u)BL

(dL\mathrm{e}\mathrm{x}\mathrm{p}( - u)BT ) = det
e1,...,ed

(dL\mathrm{e}\mathrm{x}\mathrm{p}( - u

2
)dR\mathrm{e}\mathrm{x}\mathrm{p}(u

2
).B) = det(Ad\mathrm{e}\mathrm{x}\mathrm{p}( - u

2
)).

Since Ad\mathrm{e}\mathrm{x}\mathrm{p}( - u

2
) = e - 

1

2
adu , detBL

(BT ) = e - 
1

2

\sum 
i \alpha i(u). On the other hand,

e - 
1

2
\alpha i(u)

sinh
\bigl( 
1
2\alpha i(u)

\bigr) 
1
2\alpha i(u)

= e - 
1

2
\alpha i(u)2

e
1

2
\alpha i(u)  - e - 

1

2
\alpha i(u)

2\alpha i(u)
=

1 - e - \alpha i(u)

\alpha i(u)
,

which lead to the desired formula.

Appendix B. Eigenvalues of \bfita \bfitd \bftwo 
\bfitX on specific examples.

B.1. The real Grassmannian. Let XB1
=

\biggl( 
0 B1

 - BT
1 0

\biggr) 
and XB2

=

\biggl( 
0 B2

 - BT
2 0

\biggr) 
. Let us

first compute adXB1
(XB2

). We obtain

adXB1
(XB2

) =XB1
XB2

 - XB2
XB1

=

\biggl( 
B2B

T
1  - B1B

T
2 0

0 BT
2 B1  - BT

1 B2

\biggr) 
.

Hence,

adXB1
(adXB1

(XB2
))

=

\biggl( 
0 2B1B

T
2 B1  - B1B

T
1 B2  - B2B

T
1 B1

BT
1 B1B

T
2 +BT

2 B1B
T
1  - 2BT

1 B2B
T
1 0

\biggr) 
.

Let \varphi B1
(B2) = 2B1B

T
2 B1  - B1B

T
1 B2  - B2B

T
1 B1. Let B1 = UDV be the singular value

decomposition of B1. We have

\varphi B1
(B2) = 2B1B

T
2 B1  - B1B

T
1 B2  - B2B

T
1 B1

= 2UDV BT
2 UDV  - UDV V  - 1DTU - 1B2  - B2V

 - 1DTU - 1UDV,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
23

 to
 1

28
.1

19
.4

7.
18

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



1366 EMMANUEL CHEVALLIER, DIDONG LI, YULONG LU, AND DAVID DUNSON

\varphi B1
(UB2V ) = 2UDV V  - 1BT

2 U
 - 1UDV  - UDDTU - 1UB2V  - UB2V V  - 1DTDV

= 2UDBT
2 DV  - UDDTB2V  - UB2D

TDV

=U(2DBT
2 D - DDTB2  - B2D

TD)V =U\varphi D(B2)V,

which shows that the eigenvalues of \varphi B1
and \varphi D are the same. We assume now that B1 =D

with diagonal \sigma 1, . . . , \sigma q, where q=min(k,n - k). Let Ei,j be the canonical basis of k by n - k
matrices. Assuming i, j \leq q, a short calculation shows that

\varphi D(Eii) = 0,

\varphi D(Eij +Eji) = - (\sigma i  - \sigma j)
2(Eij +Eji),

\varphi D(Eij  - Eji) = - (\sigma i + \sigma j)
2(Eij  - Eji).

When k > n - k, we can have i > n - k and \varphi D(Eij) = - \sigma 2
jEij , while when k < n - k and

j > k, \varphi D(Eij) = - \sigma 2
iEij . Hence the singular value \sigma i appears k - (n - k) times or (n - k) - k

times. Since Ru(v) =  - ad2u(v), (4.1) can be rewritten with
\sqrt{} 

 - \lambda i(Ru) =
\sqrt{} 

\lambda i(ad
2
u) and the

Jacobian becomes

(B.1) J(XB) =
\prod 
i<j

sin(\sigma i  - \sigma j)

\sigma i  - \sigma j

sin(\sigma i + \sigma j)

\sigma i + \sigma j

\prod 
i

\biggl( 
sin(\sigma i)

\sigma i

\biggr) | n - 2k| 
.

B.2. Pseudohyperboloids. Let Xv1,w1
=

\left(  0 0 v1
0 0 w1

vT1  - wT
1 0

\right)  and Xv2,w2
=\left(  0 0 v2

0 0 w2

vT2  - wT
2 0

\right)  . Let us first compute adXv1,w1
(Xv2,w2

). We obtain

adXv1,w1
(Xv2,w2

) =Xv1,w1
Xv2,w2

 - Xv2,w2
Xv1,w1

=

\left(  v1v
T
2  - v2v

T
1 v2w

T
1  - v1w

T
2 0

w1v
T
2  - w2v

T
1 w2w

T
1  - w1w

T
2 0

0 0 0

\right)  .

Hence we have adXv1,w1
(adXv1,w1

(Xv2,w2
)) = \cdot \cdot \cdot \left(  0 0 0

0 0 0
vT1 v1v

T
2  - vT1 v2v

T
1  - wT

1 w1v
T
2 +wT

1 w2v
T
1 vT1 v2w

T
1  - vT1 v1w

T
2  - wT

1 w2w
T
1 +wT

1 w1w
T
2 0

\right)  +

\left(  0 0  - v1v
T
2 v1 + v2v

T
1 v1  - v2w

T
1 w1 + v1w

T
2 w1

0 0  - w1v
T
2 v1 +w2v

T
1 v1  - w2w

T
1 w1 +w1w

T
2 w1

0 0 0

\right)  .

Note \varphi is the map on vectors

\biggl( 
v2
w2

\biggr) 
\in Rp+q induced by ad2Xv1,w1

. The matrix of \varphi is

M\varphi =

\biggl( 
 - v1v

T
1 + (\| v1\| 2  - \| w1\| 2)Ip v1w

T
1

 - w1v
T
1 w1w

T
1 + (\| v1\| 2  - \| w1\| 2)Iq

\biggr) 
.
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EXPONENTIAL-WRAPPED DISTRIBUTIONS 1367

Hence, M\varphi =

\biggl( 
v1
w1

\biggr) \biggl( 
 - v1
w1

\biggr) T

+ (\| v1\| 2  - \| w1\| 2)I. The matrix A=

\biggl( 
v1
w1

\biggr) \biggl( 
 - v1
w1

\biggr) T

is rank

one and has 0 as an eigenvalue with multiplicity at least p+ q - 1. When (\| w1\| 2 - \| v1\| 2) \not = 0,
the matrix A can be diagonalized with (\| w1\| 2  - \| v1\| 2) in the first index and 0 on the rest of
the diagonal. M\varphi can then be diagonalized with 0 in the first index and (\| v1\| 2  - \| w1\| 2) on
the p+ q - 1 remaining indices. When (\| w1\| 2 - \| v1\| 2) = 0, the matrix A is not diagonalizable
and 0 is its only eigenvalue. Hence M\varphi only has eigenvalue 0. Since the 0 eigenvalues do not
affect the Jacobian, it can always be written as

J(Xv,w) =

\biggl( 
sinh(\| v\| 2  - \| w\| 2)

\| v\| 2  - \| w\| 2

\biggr) p+q - 1

.
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