Check for
Updates

High Performance MPI over the Slingshot Interconnect: Early
Experiences

Kawthar Shafie Khorassani
The Ohio State University
Columbus, USA
shafiekhorassani.1@osu.edu

Aamir Shafi
The Ohio State University
Columbus, USA
shafi.16@osu.edu

ABSTRACT

The Slingshot interconnect designed by HPE/Cray is becoming
more relevant in High-Performance Computing with its deploy-
ment on the upcoming exascale systems. In particular, it is the
interconnect empowering the first exascale and highest-ranked
supercomputer in the world, Frontier. It offers various features such
as adaptive routing, congestion control, and isolated workloads.
The deployment of newer interconnects raises questions about per-
formance, scalability, and any potential bottlenecks as they are
a critical element contributing to the scalability across nodes on
these systems. In this paper, we will delve into the challenges the
slingshot interconnect poses with current state-of-the-art MPI li-
braries. In particular, we look at the scalability performance when
using slingshot across nodes. We present a comprehensive eval-
uation using various MPI and communication libraries including
Cray MPICH, OpenMPI + UCX, RCCL, and MVAPICH2-GDR on
GPUs on the Spock system, an early access cluster deployed with
Slingshot and AMD MI100 GPUs, to emulate the Frontier system.

KEYWORDS
Slingshot, AMD GPUs, Interconnect Technology, MPL

ACM Reference Format:

Kawthar Shafie Khorassani, Chen-Chun Chen, Bharath Ramesh, Aamir
Shafi, Hari Subramoni, and Dhabaleswar K. Panda. 2022. High Performance
MPI over the Slingshot Interconnect: Early Experiences. In Practice and
Experience in Advanced Research Computing (PEARC °22), July 10-14, 2022,
Boston, MA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3491418.3530773

1 INTRODUCTION

The Frontier Supercomputer [7] deployed at the Oakridge Leader-
ship Computing Facility (OLCF), now leading the Top500 [5] list
of supercomputers in the world and officially recognized as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3530773

Chen-Chun Chen
The Ohio State University
Columbus, USA
chen.10252@osu.edu

Hari Subramoni
The Ohio State University
Columbus, USA
subramon@cse.ohio-state.edu

Bharath Ramesh
The Ohio State University
Columbus, USA
ramesh.113@osu.edu

Dhabaleswar K. Panda
The Ohio State University
Columbus, USA
panda@cse.ohio-state.edu

first exascale supercomputer, is empowered by the HPE Cray Sling-
shot Interconnect. In preparation for the vast demands of exascale
computing and moving to a slingshot-based networking environ-
ment, it is important to have an understanding of the interconnect
with respect to MPI communication. MPI libraries have been heav-
ily deployed and used on systems with an underlying InfiniBand
interconnect connecting nodes. They have been optimized and
extensively researched in this ecosystem. Now, with upcoming ex-
ascale systems choosing to deploy the Slingshot interconnect as
the underlying connection between nodes, it is crucial to have an
understanding of the interconnect technology and how it impacts
or improves the performance of communication at scale [11], [16].

In this paper, we provide an analysis of the performance of
various MPI libraries on a system with preliminary/experimental
deployment of the Slingshot Interconnect. As this is a new area
that has seldom been researched and is going to become a critical
component of future HPC deployment, it is important to have
this kind of detailed information and analysis that could provide a
better outlook on the needs for optimizations and enhancements on
these systems. This drives future research and innovations while
also providing scalable and competitive options in this ecosystem
that compare or improve upon existing innovations in the current
interconnect technology realms.

1.1 Motivation

Many of the top supercomputers [5] utilize InfiniBand network-
ing, with the deployment of the Mellanox InfiniBand Interconnect
to connect nodes across the network. This area has been heavily
evaluated and analyzed over the years with various MPI libraries
utilizing GPU-aware and CPU-based communication to scale out
performance onto multiple nodes. This understanding of the limita-
tions and advantages of the interconnect technology drove future
directions in research over the years related to communication op-
timization and performance analysis. With the deployment of the
Slingshot interconnect, it is just as important to develop an under-
standing of the advantages and features the interconnect introduces
in order to motivate future approaches in the communication realm.

The underlying interconnect technology is a critical component
in achieving high performance, low latency and high throughput,
at scale on next-generation exascale systems. This drives the moti-
vation to have a detailed analysis and understanding of the existing
MPI libraries and the performance they are able to demonstrate at

https://doi.org/10.1145/3491418.3530773
https://doi.org/10.1145/3491418.3530773
https://doi.org/10.1145/3491418.3530773
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491418.3530773&domain=pdf&date_stamp=2022-07-08

PEARC °22, July 10-14, 2022, Boston, MA, USA

certain scales, various configurations, and for different communi-
cation operations. Through this work, we demonstrate a need for a
thorough evaluation of communication over the newer Slingshot
Interconnect and its ecosystem in preparation for exascale systems
in order to achieve the scalability and efficiency that is promised
by the next generation of supercomputing.

1.2 Key Insights and Contributions

The performance of GPU-aware approaches to communication
provided by the state-of-the-art communication libraries on the
Slingshot interconnect have yet to be explored. There is a lack of
thorough evaluation and analysis of performance comparing the
different communication operations and detailing the demands for
MPI at the application layer on a system with Slingshot Intercon-
nects. Additionally, the system used in this study includes AMD
MI100 GPUs, which are also a snapshot of the type of system and
ecosystem we can expect for the next-generation exascale systems.
Through this work, we make the following contributions:

e Comprehensive evaluation of GPU-aware communication

using various communication libraries, including OpenMPI

+ UCX, MVAPICH2-GDR, Cray MPICH, and RCCL on the

Spock system with the Slingshot-10 interconnect, AMD

MI100 GPUs, and AMD EPYC Rome CPUs for point-to-point

and collective benchmarks.

Application-level evaluation using state-of-the-art communi-

cation libraries for rocHPCG and for the heFFTe application

using the rocfft backend for AMD GPUs.

o Discuss the challenges that the current Slingshot-10 Intercon-
nect brings about in terms of communication performance
and what challenges to consider for future deployment of
MPI libraries on systems with the upcoming Slingshot-11
Interconnect, in preparation for new exascale systems such
as Frontier.

2 BACKGROUND

2.1 State-of-the-art Interconnect Technologies

Achieving high performance for complex HPC workloads that ben-
efit from high levels of parallelism requires efficient and scalable
network interconnects. Modern interconnects such as InfiniBand,
RoCE, Omni-Path, etc., were introduced into the market to address
communication bottlenecks by achieving low latency and high
throughput between nodes. In recent years, InfiniBand and high-
speed Ethernet represent the gold standard for high-performance
network interconnects. For instance, Summit@ORNL (ranked 4th
on the June 2022 Top500 list [5]), uses Dual-rail Mellanox EDR
InfiniBand as the underlying interconnect. Approximately 35% of
supercomputers in the Top500 utilize InfiniBand networking (in-
cluding Sierra@LLNL, Selene@NVIDIA, etc.), and about 48% deploy
Gigabit Ethernet networking (including Perlmutter@NERSC, Po-
laris@ANL, etc). The adoption rates for interconnects in upcoming
exascale systems are rapidly changing due to an increased number
of choices and evolving interconnect standards.

Shafie Khorassani, et al.

2.2 Slingshot Interconnect

HPE Slingshot [11] is a high-performance network designed by
HPE Cray for upcoming exascale-era systems, and is based on Eth-
ernet. It provides flexibility and capabilities to enable users to run
a wide mix of workflows. The switches support a high-radix and
up to 12.8Tb/s bandwidth. While the latency of Ethernet networks
is slightly worse when compared to InfiniBand systems in gen-
eral, Ethernet networks claim the advantage of wider adoption
across application domains. HPE Slingshot delivers low latency and
high throughput for HPC workloads, and minimizes the number of
switch hops in large networks (for instance, by employing the use
of the Dragonfly [12] topology). The interconnect features adap-
tive routing techniques to help maintain the balanced traffic flows
through fine-grained optimization. HPE Slingshot also introduces
a fully automatic and hardware-implemented congestion control
mechanism to minimize the impact of congestion when multiple
workloads run at the same time. It is currently empowering the
first official exascale supercomputer in the world, Frontier@OLCEF,
and in the works to be deployed on future exascale supercomputers
as well, such as El Capitan@LLNL.

2.3 State-of-the-art Communication Libraries

The Message Passing Interface (MPI) is a multi-processing para-
digm that enables communication among processes on parallel
architectures. The communication primitives can be categorized
as one-sided, point-to-point, and collective operations. One-sided
communication indicates the use of only one process to move data
to a remote process (without the remote process’s involvement).
Hence, it’s also referred to as remote memory access (RMA). It de-
couples the process synchronization during data transfer. MPI_Put,
MPI_Get, and MPI_Accumulate are well-known one-sided commu-
nication operations. The MPI standard also supports expressing
point-to-point communication operations using two-sided seman-
tics using MPI_Send, MPI_Recv, MPI_Isend, and MPI_Irecv. Collec-
tive communication operations defined by the MPI standard provide
convenient abstractions for multiple processes/threads to efficiently
communicate with one another. These operations can involve com-
puting operations (in reduction collectives such as MPI_Allreduce
and MPI_Reduce) or just communication to represent common
patterns such as a broadcast, scatter, gather, and others.

Aside from the MPI interface, there are other communication
libraries that use and expose a different underlying API to transfer
messages. For example, the NVIDIA Collective Communication
Library (NCCL), provides optimized communication primitives for
GPU to GPU communication within as well as across the node for
NVIDIA GPUs. ROCm Communication Collectives Library (RCCL)
is the communication library based on NCCL for AMD GPUs, pro-
viding primitives that enable GPU to GPU communication on AMD
ROCm supported systems, similar to what NCCL achieves on sys-
tems with NVIDIA GPUs.

2.4 Limitations of State-of-the-art Approaches

Existing MPI libraries provide support for various network fea-
tures such as Omni-Path, RoCE, InfiniBand, etc. With the expected
growth in deployment of the Slingshot Interconnect across up-
coming systems, this will be added to the growing list of features

High Performance MPI over the Slingshot Interconnect: Early Experiences

that MPI libraries will need to add functionality and optimizations
for. HPE designed the Slingshot Interconnect in such a way to be
ethernet compatible in order to provide ease of interoperability
with existing systems. This enables a direct connection between
the switches for Slingshot and ethernet networks and storage de-
vices [11]. It also provides support for features such as adaptive
routing, congestion control, and isolated workloads. These fea-
tures provide several challenges and possibilities to explore and
enhance state-of-the-art communication libraries. The limitations
of current state-of-the-art approaches will be made more clear
with the deployment of Slingshot-11. Current accessibility and de-
ployment on early access Slingshot systems provide an ecosystem
with Slingshot-10 interconnection amongst nodes. The second gen-
eration of Slingshot, Slingshot-11, is deployed over a Slingshot
fabric and adapter, while the current deployment of Slingshot-10
is running over a Slingshot Network with a Mellanox InfiniBand
adapter. This second-generation deployment introduces additional
challenges for communication libraries to develop functionality
over the underlying adapter and fabrics.

3 EVALUATION AND ANALYSIS

In this section, we provide details of the Spock system (Figure 1)
used for the experiments and evaluations and the software envi-
ronment on this system. We also provide additional details specific
to the MPI and communication libraries used in the evaluation. We
include a detailed analysis of communication performance using
various MPI libraries at the benchmark and application layers.

3.1 System and Software Details

The performance evaluation is done on the Spock system deployed
at the Oakridge Leadership Computing Facility(OLCF) [15]. This
is an early access system provided in preparation for the exascale
system, Frontier [7]. This preparation for the deployment of exas-
cale systems allows for experiments and evaluations to be done in
order to develop an understanding of what to expect in terms of
communication library performance on the upcoming exascale sys-
tems, and the challenges in relation to communication on a system
with Slingshot Interconnects and the latest AMD GPUs.

Table 1: Spock System Details and Usage

PEARC °22, July 10-14, 2022, Boston, MA, USA

Slingshot-10 interconnect, providing 12.5 GB/s bandwidth across
nodes. The latest version of ROCm deployed on the system is ROCm
5.0.2. This information is detailed in the Spock compute node pre-
sented in Figure 1. More details of the communication libraries and
software stack versions used on this system for this evaluation are
provided in Table 1.

3.1.1 MPI Libraries —. Table 2 details the various MPI libraries
used and configuration details specific to each of the libraries. The
MVAPICH2-GDR library v2.3.7 was used for the evaluations done
on GPUs (MVAPICH2-GDR optimized for GPU-aware communi-
cation). This library provides downloadable options from the site
or through the user forum in order to execute on the system. Spe-
cific configuration was not required here. The MVAPICH2-GDR
installation is linked to ROCm 5.0.2, the latest version of ROCm
on the Spock system. OpenMPI version 4.1.4 and UCX version
1.12.1, the latest versions of the stack were used in the performance
evaluation. The configuration details of UCX to link with ROCm
and enable optimizations and the details for linking OpenMPI to
this UCX installation are demonstrated in the table. Cray MPICH
8.1.14 is the MPI library deployed on the Spock system by default.
It required a load of the existing module, adding ROCm into the
path, and loading an additional module to detect the architecture.
These modules are detailed in the table below. Finally, the ROCm
Collectives Communication Library (RCCL) was used as well in the
evaluation of GPU-aware communication.

Table 2: MPI Libraries Configuration and Installation De-
tails

Communication | Configuration & Installation
Libraries Details
MVAPICH2-GDR 2.3.7 + ROCm
MVAPICH2-GDR 5.0.2 for GPUs

237 Run: MV2_USE_ROCM=1

UCX: --with-rocm=<path-to-rocm>
--without-knem --without-cuda
--enable-optimizations

OpenMPI: --with-ucx=<path-to-ucx>
--without-verbs

Run: -x UCX_RNDV_THRESH=128
module load craype-accel-amd-gfx908

OpenMPI 4.1.4
+UCX 1.12.1

The Spock cluster consists of 64-core AMD EPYC 7662 Rome
CPUs, and 4 AMD MI100 GPUs with 32 GB HBM2 per node. The
GPUs are connected within a node via Infinity Fabric and con-
nected to the CPU via PCle Gen4. The nodes are connected via the

Software Version | Reference Cray MPICH 8.1.14 | module load cray-mpich/8.1.14
MPI Open MPI 4.1.4 [10] Run: MPICH_GPU_SUPPORT_ENABLED=1
& Ucx 1.12.1 [6] RCCL 5.0.2 CXX=<path-to-rocm>/bin/hipcc
Communication|_Cray MPICH 8.1.14 [19]
Libraries RCCL 502 [4]
MVAPICH2-GDR 2.3.7 (17] 3.2 OSU Micro-Benchmarks
Platform ROCm 5.0.2 [2] . L .
To compare the performance of various communication operations
Benchmarks . Osu 59 [8] on the Spock cluster using different MPI libraries, we utilize the
& Micro-benchmarks OSU Micro-Benchmarks (OMB) suite version 5.9. It reports intra-
Applications heFFTe 2.0 1] and inter-node point-to-point latency and bandwidth, and the per-

formance of MPI collective operations at different message sizes.

3.3 Micro-Benchmark Evaluation on GPUs

In this section, we delve into the GPU-based evaluation utilizing
GPU-aware MPI and communication libraries. We evaluate the

PEARC 22, July 10-14, 2022, Boston, MA, USA

Spock Compute Node
Out to network
NVMe SSD NVMe SSD

Shafie Khorassani, et al.

Physical CPU Core ID (hw thread ID, hw thread ID)

4= PCleGend (32+32 GB/s)
@=—=pp |nfinity Fabric (46+46 GB/s)
<— Slingshot-10 (12.5+12.5 GB/s)

256 GB §
(DDR4) | ip
8

Rl i o [69 [s | st | oxtons | om0 | wsomoror | sromors

MI100 GPU MI100 GPU

MI100 GPU MI100 GPU

Figure 1: Spock Compute Node Details (Courtesy [16])

20
—e—MVAPICH2-GDR 2.3.7
~4—OpenMPI 4.1.4 + UCX 1.12.1

~=—Cray MPICH 8.1.14

8 16 32 e 18 26 S22 K K &K ™
Message Size (Bytes)

—e—MVAPICH2-GDR 2.3.7
80 | —4-OpenMPI4.1.4+UCX 1.12.1
—s—Cray MPICH 8.1.14

7

Latency (us)
Latency (us)

2

16K

ek u sk
Message Size (Bytes)

sk M

(a) Small Message Point-to-Point Latency (b) Large Message Point-to-Point Latency

Figure 2:

—e—MVAPICH2-GDR 2.3.7
—4—OpenMPI 4.1.4 + UCX 1.12.1
~s—Cray MPICH 8.1.14

—e—MVAPICH2-GDR 2.3.7
—4—OpenMPI 4.1.4 + UCX 1.12.1
~#—Cray MPICH 8.1.14

Latency (us)

—a—a

4 8 16 2 64 18 26 S22 K K 4K 8K

Message Size (Bytes)

1K 3K 6K 18K 256K

Message Size (Bytes)

sk M

(a) Small Message Point-to-Point Latency (b) Large Message Point-to-Point Latency

Bandwidth (GB/s)

Bandwidth (GB/s)

100

20

N
=]
3

EMVAPICH2-GDR 2.3.7 EMVAPICH2-GDR 2.3.7
W OpenMPI4.1.4 +UCX 1.12.1

= Cray MPICH 8.1.14

W OpenMPI 4.1.4 + UCX 1.12.1
mCray MPICH 8.1.14

N
3
3

Bandwidth (GB/s)
o

8K 16K 32K 64K 128K 256K 512K 1M

Message Size (Bytes)

8K

16K 32K 64K 128K 256K 512K 1M
Message Size (Bytes)

(c) Large Message Bandwidth (d) Large Message Bi-Directional Bandwidth

Intra-Node Point-to-Point Performance on GPUs over Infinity Fabric

40

EMVAPICH2-GDR 2.3.7 EMVAPICH2-GDR 2.3.7
W OpenMPI4.1.4 + UCX 1.12.1

= Cray MPICH 8.1.14

W OpenMPI 4.1.4 + UCX 1.12.1
mCray MPICH 8.1.14

Bandwidth (GB/s)

512K 1M

K 32K 64K 128K 256K 512K 1M
Message Size (Bytes)

32K 64K 128K 256K
Message Size (Bytes)

(c) Large Message Bandwidth (d) Large Message Bi-Directional Bandwidth

Figure 3: Inter-Node Point-to-Point Performance on GPUs over Slingshot-10 Interconnect

point-to-point performance of communication between two GPUs
within the same node on the same socket, and two GPUs across
nodes connected by the Slingshot-10 interconnect over the network.
We also evaluate the performance of collective communication on

the Spock system on up to 64 GPUs (16 Nodes with 4 GPUs per
node).

3.3.1 Intra-Node Point-to-Point —. In Figure 2, we present an eval-
uation of intra-node point-to-point benchmark-level performance
comparing MVAPICH2-GDR, OpenMPI + UCX, and Cray MPICH
on AMD MI100 GPUs. The evaluation is done between two GPUs
within one node for latency (osu_latency), bandwidth (osu_bw), and
bi-directional bandwidth (osu_bibw). For small message latency
shown in Figure 2(a), MVAPICH2-GDR, OpenMPI + UCX, and Cray
MPICH achieve 2.01 us, 3.79 us, and 2.44 us latency, respectively.
This configuration involves two AMD MI100 GPUs within the same
node, on the same socket, connected by Infinity Fabric. The trends
in performance for intra-node communication between GPUs here
reflects on protocols typically used for this configuration within

MPI libraries such as: a GPU memory copy that utilizes the LargeBar
feature of AMD GPUs and the ROCm driver for small message sizes,
and ROCm IPC for larger message sizes [18]. The Infinity Fabric
connection provides (46 + 46 GB/s) peak bandwidth. In Figure 2(c),
MVAPICH2-GDR achieves a peak bandwidth at 1MB of 52 GB/s,
OpenMPI + UCX achieving 30 GB/s, and Cray MPICH at 88 GB/s.

3.3.2 Inter-Node Point-to-Point —. In Figure 3 we present an eval-
uation of inter-node point-to-point benchmark-level performance
comparing MVAPICH2-GDR, OpenMPI + UCX, and Cray MPICH
on AMD MI100 GPUs. The evaluation is done between two GPUs
on two different nodes connected by the Slingshot-10 interconnect
for latency (osu_latency), bandwidth (osu_bw), and bi-directional
bandwidth (osu_bibw). In Figure 3(a) and Figure 3(b), we see that
MVAPICH2-GDR and Cray MPICH achieve 3.73 us and 3.8 us
latency at 4B and 115.26 us and 148.08 us at 1MB, respectively.
With this configuration over the Slingshot-10 interconnect, with
12.5GB/s peak achievable bandwidth, MVAPICH2-GDR has peak

g
i

Latency (us)

H

Latency (us)

High Performance MPI over the Slingshot Interconnect: Early Experiences

0 0
20
200 .\/"‘-\\\//\
150

—e—MVAPICH2-GDR 2.3.7 J

100 OpenMPI 4.1.4 + UCX 1.12.1
16 32 64 18 2% S22 K K 4K 8K 16K

~s-Cray MPICH 8.1.14
Message Size (Bytes)

=+—RCCL5.0.2
(a) REDUCE - Small Message Sizes

—e—MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4 + UCX 1.12.1
~s—Cray MPICH 8.1.14
——RCCL5.02

Latency (ms)

50

o

a8 2 6K 18K 286K S1K M

Message Size (Bytes)

(b) REDUCE - Large Message Sizes

Latency (us)

§

§

g

g

g

(c) ALLREDUCE - Small Message Sizes

PEARC 22, July 10-14, 2022, Boston, MA, USA

——MVAPICH2-GDR 2.3.7

OpenMPI4.1.4 + UCX 1.12.1
—s—Cray MPICH 8.1.14
——RCCL5.0.2

—e—MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4 + UCX 1.12.1
~—Cray MPICH 8.1.14
——RCCL5.02

Latency (ms)

16 32 6 128 2% 512 K 2K 4K 8K
Message Size (Bytes)

a8 16C 3K 64K 128K 26K SIK M

Message Size (Bytes)

(d) ALREDUCE - Large Message Sizes

Figure 4: Performance of MPI Collectives MPI_Reduce and MPI_Allreduce Operations on 64 GPUs (16 Nodes, 4 GPUs Per Node)

—e—MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4 + UCX 1.12.1
60| —s—Cray MPICH8.1.14
——RCCL5.02

=

K e 18K 26K SIK M
Message Size (Bytes)

N e

—e—MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4 + UCX 1.12.1

H

H
Latency (ms)

~=—Cray MPICH 8.1.14
——RCCL5.02 »

6 3: e 1 2 sz K K &K M
Message Size (Bytes)

4 8 16K

(a) GATHER - Small Message Sizes (b) GATHER - Large Message Sizes

(c) ALLGATHER - Small Message Sizes

Latency (ms)

100

—e—MVAPICH2-GDR 2.3.7

OpenMPI 414 + UCX 1.12.1
~s—Cray MPICH 8.1.14
——RCCL5.0.2

—e—MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4 + UCX 1.12.1
~#—Cray MPICH8.1.14
——RCCL5.02

2
//,r:_;

1 :2 e 18 2% S22 K K 4K M
Message Size (Bytes)

Latency (ms)
s 3 2

16K 3K e 18K 26K SIK M

Message Size (Bytes)

(d) ALLGATHER - Large Message Sizes

Figure 5: Performance of MPI Collectives MPI_Gather and MPI_Allgather Operations on 64 GPUs (16 Nodes, 4 GPUs Per Node)

300 1000

~e—MVAPICH2-GDR 2.3.7
OpenMPI4.1.4 + UCX 1.12.1 —e———

———

— £ o o=

~#—Cray MPICH8.1.14
50 | ——RCCL5.0.2

4 8 16 32 e 128 2% S22 K K 4 B 16K
Message Size (Bytes)

—e—MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4 + UCX 1.12.1

—aCray MPICH 8.1.14 -
——RCCL5.0.2 //

Latency (us)

2 e e 2K sk am
Message Size (Bytes)

(a) BCAST - Small Message Sizes (b) BCAST - Large Message Sizes

Latency (ms)

(c) ALLTOALL - Small Message Sizes

—e—MVAPICH2-GDR 2.3.7
OpenMPI 4.1.4 + UCX 112.1 100

~=—Cray MPICH 8.1.14
o
)

~—4—=RCCL5.0.2
— o
4 8 16 2 64 18 25 S22 K XK 4K M
Message Size (Bytes)

—e—MVAPICH2-GDR 2.3.7

OpenMPI 4.1.4 + UCX 1.12.1
—s—Cray MPICH8.1.14
——RCCL5.02

Latency (ms)
g

16K 32K B 18K 256K SIK M

Message Size (Bytes)

(d) ALLTOALL - Large Message Sizes

Figure 6: Performance of MPI Collectives MPI_Bcast and MPI_Alltoall Operations on 64 GPUs (16 Nodes, 4 GPUs Per Node)

uni-directional bandwidth performance at 32KB with 11 GB/s per-
formance, OpenMPI + UCX at 1MB with 9.8 GB/s and Cray MPICH
with 9.2 GB/s performance. In particular, we see lower bandwidth
and bi-directional bandwidth for Cray MPICH in the message range
between 8KB and 512 KB as demonstrated in Figures 3(c) and 3(d).

3.3.3 Collective Operations — We evaluate various collective
operations including MPI_Reduce, MPI_Allreduce (Figure 4),
MPI_Gather, MPI_Allgather (Figure 5), MPI_Bcast, and MPI_Alltoall
(Figure 6) using the OSU-Micro-benchmarks suite. Various tests are
included here specific to each MPI operation. The performance eval-
uation demonstrates a comparison between four different communi-
cation libraries (MVAPICH2-GDR, OpenMPI + UCX, Cray MPICH,
and RCCL) on 64 AMD MI100 GPUs (16 nodes, 4 GPUs per node). In
Figures 4, 5, and 6, one particular trend we noticed is that RCCL per-
formance is typically not optimal for smaller message sizes between
4B-4KB, but performs well for large message allgather, and alltoall.
For large message allreduce latency performance, MVAPICH2-GDR
achieves 1.4 ms, OpenMPI + UCX achieves 160 ms, Cray MPICH
demonstrates 1.8 ms, while RCCL performs at 1.5 ms. In Figure 6(a),
we demonstrate small message broadcast performance for each of
the libraries with MVAPICH2-GDR at 8.1 us, OpenMPI + UCX at
12.39 us, Cray MPICH at 12.06 us, and RCCL with 174.7 us at 4
Bytes.

We demonstrate the importance of efficient Alltoall collective
operation performance in Section 3.4 with the heFFTe application

which is heavily reliant on MPI_Alltoall or MPI_Alltoallv communi-
cation. In figure 6(c), we evaluate the performance of small message
GPU-aware Alltoall performance for MVAPICH2-GDR at 27.09 us,
OpenMPI + UCX at 182.42 us, Cray MPICH at 40.21 us, and RCCL
at 909.4 us at 4 Bytes.

Overall, the performance discrepancies presented here for dif-
ferent libraries can be a result of various components including,
but not limited to: protocol changes, lack of tuning specific to a
system or architecture, or underutilization of interconnect/link
bandwidth. Through this evaluation, we highlight various areas
that need to be optimized or accounted for in terms of communi-
cation performance. In particular, the difference between the peak
achievable performance for MPI libraries compared to the available
link bandwidth presented by Infinity Fabric between GPUs and the
Slingshot-10 network between nodes demonstrates the importance
of link utilization and taking advantage of the vast performance
made possible by these interconnects.

3.4 Application-Level Evaluation

In this section, we evaluate the various MPI libraries at the ap-
plication level. We use the heFFTE application detailed below to
demonstrate GPU-aware MPI libraries’ performance. In this case,
the datatype required by heFFTe is not supported by RCCL and
therefore RCCL is not included in the evaluation below. Due to
compilation issues at the application layer with CrayMPICH and
cmake, CrayMPICH is also emitted from this evaluation. We use

GFlops/s

PEARC °22, July 10-14, 2022, Boston, MA, USA

80 [BMVAPICH2-GDR 237
CIOpenMPI 4.1.4 + UCX 1.12.1
60 48388

40
114

128%3
Problem Size

[@MVAPICH2-GDR 2.3.7

68.62
65163 [10penMPI 4.1.4 + UCX 1.12.1

50
130 1.46
P — 0

25673 51273

13593 13058

%.33 ELM

25673 5123

GFlops/s
=
15
3

40.15
16.03 2321

V 094

6473

3.65

. 094 115
[Z

3273 6473 12873
Problem Size

20

39059
—

3273

(a) heFFTe - 16 GPUs (alltoall) (b) heFFTe - 16 GPUs (alltoallv)

GFlops/s

=
S
38

H
- 5
&
E 14
»
5
GFlops/s
.
- B

Shafie Khorassani, et al.

1000

EIMVAPICH2-GDR 2.3.7
E10penMPI 4.1.4 + UCX 1.12.1
37.63

@MVAPICH2-GDR 2.3.7
[0penMPI4.1.4 + UCX 1.12.1
a8.71

12873 25673 51273
Problem Size

14110 18724

=
S
]

1450 1873

3.82

3283

n

e

3273

243

1.90 1.98

/=]

6473

6473 12873

Problem Size

25673

(c) heFFTe - 32 GPUs (alltoall) (d) heFFTe - 32 GPUs (alltoallv)

Figure 7: Performance of heFFTe Application using the rocfft backend for different problem sizes on 16 GPUs (4 nodes, 4 GPUs
per node), and 32 GPUs (8 nodes, 4 GPUs per Node). Two different communication methods are shown including MPI_Alltoall
[-a2a] (7(c)) and MPI_Alltoallv [-a2av] (7(d)) using various MPI libraries including MVAPICH2-GDR, and OpenMPI + UCX.

2
EIMVAPICH2-GDR 2.3.7
.5 COpenMPI 4.1.4 + UCX 1.12.1
=5
g1 0.97 1.00 0.69 0.68 0.66
= = 0.71 b
(= 0.38 029 7= | 01) 0.:8
0.5 0.38 w2 HEH e e e
72=B7=R7=07=
0 ﬁ = o= = fi=

Total

(a) rocHPCG - 8 GPUs (2 nodes, 4 ppn)

TFlops/s

5
1.97 EIMVAPICH2-GDR 2.3.7

4 2.02 B0penMPI 4.1.4 + UCX 1.12.1
3 1.37 1.33 1.25
2 | 073 057 — 1.38 1.34 127
1 0.71 0.55 //;E Z=R7=7=
7= l7Z=M7=07=/=W7=

DDOT WAXPBY SpMV MG Total Final

Operation

(b) rocHPCG - 16 GPUs (4 nodes, 4ppn)

Figure 8: Performance of rocHPCG on 8 GPUs and 16 GPUs

the rocHPCG application as well to compare the GPU-aware MPI
libraries.

3.4.1 heFFTE —. The heFFTe application is a highly efficient Fast
Fourier transform (FFT) library for exascale systems. It uses GPU-
aware MPI for communication and is provided as an open-source
application. It provides the GPU kernel implementation with effi-
cient scalability on large-scale clusters for 2-D and 3-D FFT libraries.
Based on FFTMPI and SWFFT libraries, it presents so-called pencil-
to-pencil methodology to compute 3-D FFT.

We evaluate the performance of the heFFTe application as a
measure of GFlops/s with different problem sizes. The application
can be run with either an alltoall-based or alltoallv-based problem.
When running heFFTe on GPUs using GPU-aware MPI libraries,
we utilize the rocFFT backend provided for the heFFTe benchmarks
with support for ROCm. We demonstrate the performance of heFFTe
on GPUs in Figures 7(c) and 7(d) for alltoall with 65 GFlops/s and
alltoallv with 187 GFlops/s using MVAPICH2-GDR for a problem
size of 5123, in contrast to 3.17 GFlops/s and 3.28 GFlops with
OpenMPI + UCX for altoall and alltoallv, respectively, for the same
problem size.

3.4.2 rocHPCG —. rocHPCG [3] is a ROCm runtime benchmark
based on the High-Performance Conjugate Gradients (HPCG) ap-
plication for AMD GPUs. HPCG benchmark is used as a metric
for the Top500 systems since it simulates the computational and
data-access patterns of a variety of scientific applications, and com-
munication patterns, including MPI point-to-point and collective
operations and OpenMP supports. rocHPCG consists of different
sub-operation metrics, including global dot product (DDOT), vector
update (WAXPBY), sparse matrix-vector multiplication (SpMV),

multigrid preconditioner (MG), etc. We demonstrate the perfor-
mance of each phase separately in the evaluation done in Figure 8
comparing MVAPICH2-GDR performance with OpenMPI + UCX.

4 RELATED WORK

The HPE Cray Slingshot Interconnect will be deployed on the up-
coming exascale systems. De Sensi et. al [9] proposed early research
investigating Slingshot for large-scale computing systems. They
described Slingshot as the next-generation large-scale system and
summarized the key features as the following: high-radix Ethernet
switches, adaptive routing, congestion control, and QoS manage-
ment. They evaluated the system performance using Slingshot with
both individual and concurrent workloads to close the real HPC
system usage. They found less congestion on Slingshot and the
control algorithm is effective for most HPC and data center applica-
tions. Also, a lower impact on performance from allocation policies
was reported. Furthermore, Slingshot guarantees the bandwidth
for jobs in different traffic classes.

The details of HPE Cray MPI are described in [14], including the
latest implementation overview, HPE Cray MPI tuning and place-
ment, GPU support, and its GPU-NIC asynchronous features. It also
delves into the current support status with AMD and NVIDIA GPUs,
including intra-node IPC and inter-node RDMA. Moreover, it intro-
duced the GPU-NIC Async proposals, which decouples CPU-GPU
control and data paths to reduce the CPU-GPU synchronization
frequency and overheads.

Melesse Vergara et. al [13] elaborated on their experience of
porting the current kernels of main applications to a novel plat-
form with AMD GPUs and HPE/Cray programming environment.
They ported GENASIS, Minisweep, and Sparkler to the HIP-based
kernel and compared the performance. The experience of porting
applications from CUDA-based to HIP-based kernel proved that

High Performance MPI over the Slingshot Interconnect: Early Experiences

the porting procedure is easy, but there could be limitations, such
as OpenMP support. Plus, additional tuning is required for fully
utilizing the computing power on AMD GPUs. This work provided
good examples for users to further port other kernel applications
using HIP on AMD GPUs. Shafie Khorassani et. al [18] proposed
an early research and designed a ROCm-aware MPI Library for the
upcoming exascale systems, such as Frontier and El Capitan. They
focused on Radeon Open Compute (ROCm) platform that adopts
AMD GPUs. They utilized the ROCm features such as PeerDirect,
ROCm-IPC, and large-BAR mapped memory to design a ROCm-
aware MPI. An abstract communication layer with CUDA or ROCm
backend allowed adaptability for the MPI runtime.

5 CONCLUSION

Next-generation exascale systems, and the first exascale and leading
Supercomputer in the world, Frontier, are equipped with nodes con-
nected by the HPE Cray Slingshot Interconnect. This interconnect
technology is relatively new in the High-Performance Comput-
ing realm and is seldom evaluated at the communication layer. In
this work, we delved into a comprehensive evaluation and analy-
sis of various state-of-the-art MPI libraries including MVAPICH2-
GDR, OpenMPI+UCX, Cray MPICH, and RCCL on a system, Spock,
equipped with the Slingshot-10 Interconnect to connect nodes over
the network and with AMD MI100 GPUs. We demonstrate the
performance of various point-to-point communication operations
for latency and bandwidth and various collective operations on
AMD Rome CPUs and GPU-aware communication on AMD MI100
GPUs. Due to the limitations of access to systems with the Sling-
shot interconnect arising from its relatively new introduction, and
limited accessibility of early access systems that emulate the ex-
pected ecosystem of upcoming exascale systems, our evaluation is
based on our early experiences with the system and with Slingshot-
10 interconnect technology. In the future, we plan to extend this
evaluation to cover additional applications with high demand for
efficient communication performance, evaluate at a larger scale
on a larger number of nodes based on system access, and ensure
that state-of-the-art MPI and communication libraries provide the
functionality, support, and efficiency that is to be expected with
the growing demand and the rollout of Slingshot-11 networking.

ACKNOWLEDGMENTS

We thank Dr. Sameer Shende (University of Oregon) for providing
access to the Spock system. This research is supported in part by
NSF grants #1818253, #1854828, #1931537, #2007991, and XRAC
grant #NCR-130002. This research used resources of the Oak Ridge

PEARC °22, July 10-14, 2022, Boston, MA, USA

Leadership Computing Facility at the Oak Ridge National Labora-
tory, which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-000R22725.

REFERENCES

[1] 2021. Highly Efficient FFT for Exascale (HeFFTe) library. https://github.com/af-
ayala/heffte. Accessed: June 13, 2022.

[2] 2021. Radeon Open Compute (ROCm) Platform. https://rocmdocs.amd.com.
Accessed: June 13, 2022.

[3] 2021. rocHPCG. https://github.com/ROCmSoftwarePlatform/rocHPCG. Ac-
cessed: June 13, 2022.

[4] 2021. ROCm Communication Collectives Library (RCCL).

https://github.com/ROCmSoftwarePlatform/rccl. Accessed: June 13, 2022.
[5] 2021. TOP 500 Supercomputer Sites. http://www.top500.org.

[6] 2021. Unified Communication X. http://www.openucx.org/. Accessed: June 13,
2022.

[7] 2022. Frontier: ORNL’s exascale supercomputer designed to deliver world-leading

performance in 2021. https://www.olcf.ornl.gov/frontier/. Accessed: June 13,

2022.

D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda. 2012. OMB-GPU:

A Micro-benchmark Suite for Evaluating MPI Libraries on GPU Clusters. In

Proceedings of the 19th European Conference on Recent Advances in the Message

Passing Interface (Vienna, Austria) (EuroMPI’12). 110-120.

Daniele De Sensi, Salvatore Di Girolamo, Kim H. McMahon, Duncan Roweth,

and Torsten Hoefler. 2020. An In-Depth Analysis of the Slingshot Interconnect.

In SC20: International Conference for High Performance Computing, Networking,

Storage and Analysis. 1-14. https://doi.org/10.1109/SC41405.2020.00039

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,

Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S.

Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting.

Budapest, Hungary, 97-104.

[11] HPE. 2022. HPE SLINGSHOT INTERCONNECT.
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html.
Accessed: June 13, 2022.

[12] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. 2008. Technology-

Driven, Highly-Scalable Dragonfly Topology. In 2008 International Symposium

on Computer Architecture. 77-88. https://doi.org/10.1109/ISCA.2008.19

Veronica Melesse Vergara, Reuben Budiardja, and Wayne Joubert. 2021. Early

Experiences Evaluating the HPE/Cray Ecosystem for AMD GPUs. (7 2021).

https://www.osti.gov/biblio/1817474

[14] OLCF. 2021. HPE CRAY MPI - SPOCK WORKSHOP.

https://www.olcf.ornl.gov/wp-content/uploads/2021/04/HPE-Cray-MPI-

Update-nfr-presented.pdf. Accessed: June 13, 2022.

OLCF. 2022. Oakridge National Laboratory: Leadership Computing Facility.

https://www.olcf.ornl.gov. Accessed: June 13, 2022.

[16] OLCF. 2022. Spock Quick-Start Guide.
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html. Accessed:
June 13, 2022.

[17] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-

madreza Bayatpour. 2020. The MVAPICH project: Transforming research into

high-performance MPI library for HPC community. Journal of Computational

Science (2020), 101208. https://doi.org/10.1016/j.jocs.2020.101208

Kawthar Shafie Khorassani, Jahanzeb Hashmi, Ching-Hsiang Chu, Chen-Chun

Chen, Hari Subramoni, and Dhabaleswar K. Panda. 2021. Designing a ROCm-

Aware MPI Library for AMD GPUs: Early Experiences. In High Performance

Computing, Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and

Piotr Luszczek (Eds.). Springer International Publishing, Cham, 118-136.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of

Collective Communication Operations in MPICH. The International Journal of

High Performance Computing Applications 19, 1 (2005), 49-66. https://doi.org/10.

1177/1094342005051521 arXiv:https://doi.org/10.1177/1094342005051521

—
&

—
)

[10

=
&

[15

=
&

[19

https://doi.org/10.1109/SC41405.2020.00039
https://doi.org/10.1109/ISCA.2008.19
https://www.osti.gov/biblio/1817474
https://doi.org/10.1016/j.jocs.2020.101208
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://arxiv.org/abs/https://doi.org/10.1177/1094342005051521

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Key Insights and Contributions

	2 Background
	2.1 State-of-the-art Interconnect Technologies
	2.2 Slingshot Interconnect
	2.3 State-of-the-art Communication Libraries
	2.4 Limitations of State-of-the-art Approaches

	3 Evaluation and Analysis
	3.1 System and Software Details
	3.2 OSU Micro-Benchmarks
	3.3 Micro-Benchmark Evaluation on GPUs
	3.4 Application-Level Evaluation

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

