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Abstract—Graphics Processing Units (GPUs) have become
ubiquitous in today’s supercomputing clusters primarily because
of their high compute capability and power efficiency. Message
Passing Interface (MPI) is a widely adopted programming model
for large-scale GPU-based applications used in such clusters.
Modern GPU-based systems have multiple HCAs. Previously,
scientists have leveraged multi-HCA systems to accelerate inter-
node transfers between CPUs using point-to-point primitives. In
this work, we show the need for collective-level, multi-rail aware
algorithms using MPI Allgather as an example. We then propose
an efficient multi-rail MPI Allgather algorithm and extend it to
MPI Alltoall. We analyze the performance of this algorithm using
OMB benchmark suite. We demonstrate approximately 30%
and 43% improvement in non-personalized and personalized
communication benchmarks respectively when compared with
the state-of-the-art MPI libraries on 128 GPUs

Index Terms—MPI, DDT, GPU, HCA, Multi-HCA

I. INTRODUCTION

Graphics Processing Units (GPUs) are one of the accelera-
tors that are gaining prominence in modern super-computing
systems. This trend is evident from the fact that eight of the
top ten systems on the Top500 [11] list are empowered by
GPUs (at the time this paper was written). These accelerators
enable supercomputers to run massively parallel application
workloads from different domains such as scientific computing
and Deep-Learning.

In addition to highly efficient links, some modern GPU
systems, such as the NVIDIA-DGX, have multiple on-node
Host Channel Adapters (HCA) to enhance inter-node commu-
nication. The DGX-A100 systems, for example, feature eight
HDR (200 Gbps) InfiniBand HCAs for compute traffic and a
total of eight A100 GPUs. One can get 600 GBps NVLink
bandwidth per GPU, and a total of 4.8 TBps in full utilization
of the HCA channels.

Data exchange is essential to parallel applications that
run on dense GPU systems, with MPI being one of the
widely used programming models that enable communication
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for applications running on such systems. These applications
exchange data between MPI ranks using point-to-point and
collective primitives.

For traditional CPU-to-CPU communication, the multi-rail
capability has been used to optimize the MPI primitives.
Specifically, round-robin and striping based multi-rail designs
have been explored to optimize the inter-node data movement
[8]. These designs have been implemented at the point-to-
point level. However, if multi-rail designs are directly applied
to modern GPU-based clusters, MPI collectives may not able
to reap the complete benefits of multi-HCA GPU architecture.
This is further elaborated in the motivation section (Section
I-A).

A lot of past research has been done on optimizing col-
lectives such as Allreduce and Broadcast. However, dense
collectives such as personalized All-to-all (MPI Allgather)
and non-personalized All-to-all (MPI Alltoall), have not been
actively researched. MPI Alltoall operations widely are used
in Fast Fourier Transform (FFT) based applications. Allgather
operations are gaining traction recently for performing model
parallelism for deep neural network training on GPU clusters
[1], [9]. Given these advances, it is vital to conduct an in-depth
study and optimize the communication of these collectives on
current and next-generation dense-GPU systems. Therefore,
we propose a multi-HCA aware algorithm for MPI Allgather.
We then extend this to MPI Alltoall. We adopt a theoretical
model for the performance of the proposed algorithm as well
as a benchmark evaluation to substantiate our claims.

A. Motivation

We take MPI Allgather as a candidate collective for our
analysis. Hierarchical algorithms are the state-of-the-art al-
gorithms for GPU based allgather. These algorithms perform
exchanges at multiple levels. Typically, there are intra-node
exchanges at the first level and inter-node exchanges at the
second level. These algorithms employ some kind of overlap
between different levels in the hierarchy [5].

When these algorithms are employed in a GPU-based multi-
HCA system, they need to rely on point-to-point-based multi-



rail designs to utilize the benefits of multiple HCAs. In a GPU-
based system like the DGX-A100, such a point-to-point design
may not be completely able to use all the HCAs because
GPU-direct RDMA may not be supported for cross-socket
exchanges. For instance, in Figure 1, GPU0 may not be able
to directly send data to NIC4, NIC5, NIC6, and NIC7. This
means that the data has to be staged through the host which
will degrade the point-to-point performance. Therefore, it is
necessary for the GPU collectives to be able to directly use
GPUs to inject data to the closest HCAs.

Fig. 1. GPU-HCA topology in DGX-A100 system. [4]

B. Contributions
In this work, we motivate the need to optimize MPI collec-

tive algorithms on modern GPU-enabled systems with multiple
HCAs by taking All-to-all personalized and non-personalized
collectives as a representative communication pattern. We
design multi-rail aware approaches for these collectives and
evaluate these designs at the micro-benchmark level with the
state-of-the-art MPI libraries.

To summarize, this paper makes the following contributions:
1) Motivate the need for a collective level multi-rail design

for multi-HCA GPU based systems.
2) Propose a basic and optimized multi-rail design MPI -

Allgather and extend it to MPI Alltoall.
3) Theoretically analyze the performance of the proposed

algorithm by providing performance models for the
multi-rail designs.

4) Demonstrate approximately 30% and 43% improvement
in non-personalized and personalized communication
benchmarks respectively when compared with the state-
of-the-art MPI libraries on 128 GPUs .

II. DESIGN AND IMPLEMENTATION

In this section, we describe the multi-rail aware collective
algorithms for MPI Allgather and MPI Alltoall.

A. Basic Framework
Collective algorithms start with each MPI process in a node

identifying the closest HCA to the GPU to which the process
is mapped. This HCA is then used by each MPI process for
all inter-node GPU communications. Each process is mapped
to a single HCA in this framework, where it will act as the
source of data for its inter-node communication, as opposed
to one process acting as a leader and exchanging data on the
behalf of other intra-node peers. This way all the HCAs in a
node will be utilized.
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Fig. 2. Steps in the basic multi-rail MPI Allgather design for a 2 Node, 2
GPU per node MPI Allgather

B. Proposed Basic Multi-Rail Design for MPI Allgather
The basic multi-rail design can be divided into inter-node

and intra-node part as shown in Figure 2. In the inter-node part,
each process first selects its inter-node peer ranks. In Figure 2,
GPU1 of nodes 1 and 2 form one inter-node group, and GPU2
of nodes 1 and 2 form another inter-node group. Following
this, an inter-node exchange of data happens among all the
inter-node groups. This completes the first step of the Multi-
Rail design. Now, all the processes in a node will exchange
the data obtained from the inter-node phase to complete the
Allgather.

Figure 3 shows the flow in the receive buffers after
localCopy method is called. Each receive buffer initially
has its own data marked by its rank number in Figure 3.
After the inter-node step, each rank has all the inter-node
data for that particular rail. After this, each node has all
the data required for MPI Allgather as each GPU has the
corresponding chunk inter-node data. In the next step, a
local exchange of data happens which ensures that the GPU
receive buffers have the entire set of data that completes the
MPI Allgather.
C. Proposed Optimized Multi-Rail Design for MPI Allgather

Next we make some observations to optimize the above
algorithms. In the above algorithm, one portion of the intra-
node exchange can be initiated even before the inter-node
phase for which the data source is locally present on the same
node. For instance, in Figure 3, in node1, GPU1 and GPU2 can
exchange their local data, 0 and 1 independent of the inter-
node exchange step. The next observation we make is that
since there is a data-dependency in the inter and intra node
steps, we can break it into multiple steps to achieve overlap
between inter and intra node exchanges.

This enhanced version is shown in algorithm 1. The
main allgatherOpt function uses the following functions
to achieve the overlap. First is localCopyInit function
which initiates a local copy from send to receive buffer.
Then, the localIntraExchangeInit function initiates
the intra-node exchange that was discussed earlier. The
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Fig. 3. Receive Buffer State after each step of basic multi-rail allgather algorithm

Algorithm 1: Proposed Optimized Multi-Rail All-
gather Algorithm

Input : sb — Send Buffer, rb — Receive Buffer, sz —
Size, GPN — GPUs per Node, numRanks —
Total processes

Output: rb — Receive Buffer
// Main Allgather Function

1 Function allgatherOpt(sb, rb, sz, GPN ,
numRanks):

2 ns Total Number of Steps;
3 stepSize sz/ns ;
4 localCopyInit(sb, rb, sz);
5 localIntraExchangeInit(sb, rb, sz, GPN ,

numRanks);
6 interExchangeInit(sb, rb, stepSize, sz, GPN ,

numRanks, 0);
7 interExchangeComplete(0);
8 step 1 ;
9 for step 1 to ns� 1 do

10 intraExchangeInit(sb, rb, stepSize, sz,
GPN , numRanks, step� 1);

11 interExchangeInit(sb, rb, stepSize, sz,
GPN , numRanks, step);

12 intraExchangeComplete(step� 1);
13 interExchangeComplete(step);
14 intraExchangeInit(sb, rb, stepSize, sz, GPN ,

numRanks, ns� 1);
15 intraExchangeComplete(ns� 1);

interExchangeInit and intraExchangeInit func-
tions each take two additional parameters — step size(sz)
and step number(step). These functions initiate the respective
operations for a particular chunk of the data that is transferred
for a given step. Each of these init methods has a corre-
sponding complete method that waits for the operations to
complete. The allgatherOpt function divides the message
into ns chunks. Then using localCopyInit the intra-node
exchange is initiated. Then the inter-node exchange for the
first chunk is completed. After this, for ns�1 times, the intra-
node exchange of chunk step�1 is overlapped with inter node
exchange of chunk step. Finally, the intra-node exchange of
each chunk is completed for the last chunk.

D. Performance Modeling of the Multi-Rail Design
In the equations that follow, Tns, Tng refer to the startup

time for a single network, GPU transfers respectively. Sim-

ilarly, Bn, Bg refer to the Bandwidth of the network, GPU
inter-connect respectively. N refers to the total node count
and GPN refers to the number of GPUs in a Node. The total
time for the basic multi-rail scheme can be modeled as the
sum of inter and intra-node as shown in equation 1.

Tmrail = Tinter + Tintra (1)

In the inter-node phase, GPN groups of inter-node ex-
changes happen at the same time. The cost depends on the
type of exchange algorithm used. The inter-node cost using
the direct algorithm is:

Tinter = N ⇥ (Tns +
M

Bn
) (2)

In the intra-node phase, we use a direct exchange method to
take advantage of the NVLINK interconnects between GPUs.
In this scheme, each GPU exchanges N ⇥ M bytes of data.
The total cost for this phase is :

Tintra = N ⇥GPN ⇥ (Tgs +
M

Bg
) (3)

Thus, the total cost is :
Tmrail = N ⇥ (Tns +

M

Bn
)+

N ⇥GPN ⇥ (Tgs +
M

Bg
)

(4)

In the multi-rail optimized scheme, we split the message
into s segments of size m bytes each (which is M

s ). We first
calculate the cost of doing local intra-node exchange, single
inter-node, and intra-node segment exchange.

The cost of a local intra-node exchange is :

Tintra�local = GPN ⇥ (Tgs +
M

Bg
) (5)

The cost of a single inter-node segment exchange is :
Tinter�single = N ⇥ (Tns +

m

Bn
) (6)

The cost of a single intra-node segment exchange is :
Tintra�single = (N � 1)⇥GPN ⇥ (Tgs +

m

Bg
) (7)

In the above equation, we note that the multiplier is N �
1 unlike Equation 3, because we initially do the local-intra-
node exchange for the entire message size. Now that we have
Tintra�single, Tinter�single, and Tintra�single, the final cost
for the multi-rail optimized scheme is :
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Tmrail�opt = max(Tintra�local, Tinter�single)+

(s� 1)⇥max(Tinter�single, Tintra�single) + Tintra�single

(8)

E. Extension of the Optimized Multi-Rail Design for MPI -
Alltoall

We extend algorithm 1 to support MPI Alltoall. First, the
send buffer size becomes N ⇥GPN ⇥ sz it has personalized
data for each remote process. In each of the exchange func-
tions, the step size StepSize becomes (N⇥GPN⇥sz)

ns . Each of
these chunks of the send buffer will contain the data to be sent
to many processes within the same remote node. Therefore
in the interExchangeInit each process receives the
combined data in a stage buffer from a different node. In the
intraExchangeInit phase each process scatters the data
to multiple processes based on the offsets. The only difference
here is each process gets a different set of data. Therefore,
the amount of data exchanged in personalized All-to-all is
N ⇥GPN times more than in the non-personalized version.

III. PERFORMANCE EVALUATION

Fig. 4. Performance of Optimized Multi-Rail Scheme for different number
of segments

We implement the proposed multi-rail schemes in a GPU-
aware MPI library. In this section, we analyze the perfor-
mance of the proposed multi-rail schemes using MPI All-
gather benchmark from the OSU Micro-Benchmarks (OMB)
suite [10]. We also compare the performance of our multi-
rail scheme with the performance of other CUDA-Aware
MPI libraries such as OpenMPI 4.1.3 with UCX 1.12.1,
MVAPICH2-GDR V2.3.7, and NCCL 2.12.10-1. For all our
experiments, we report an average of 100 iterations, excluding
the 10 warm-up iterations, in three consecutive back-to-back
trials per experiment.

A. Experimental Platforms and Setup
We used the ThetaGPU cluster for all our experiments.

The ThetaGPU cluster, deployed at the Argonne Leader-
ship Computing Facility (ALCF), contains 24 DGX-A100
nodes with AMD-EPYC processors. The NVIDIA DGX A100
GPU has 40GB HBM2. The GPUs are connected with the
third generation NVIDIA NVLink and the second generation
NVIDIA NVSwitch. The detailed hardware specifications of
these clusters are shown in Table I.

TABLE I
HARDWARE SPECIFICATION OF OUR TEST-BED CLUSTER

Specification ThetaGPU
Processor Family AMD EPYC
Processor Model EPYC 7742

Clock Speed 3.4 GHz
Sockets 2

Cores Per socket 64
NUMA nodes 8

CCX Per NUMA 4
RAM (DDR4) 1 TB
Interconnect IB-HDR(200G) - 8 HCAs

GPU Processor NVIDIA A100⇥8
GPU Memory 40GB

Interconnects between GPUs NVLink-3 and NVSwitch
NVIDIA Driver Version 470.82.01

B. Impact of number of segments

First, we look at the performance of Multi-Rail scheme with
OMB Allgather (see section II-D for details). Figure 4 shows
the OSU Allgather latency for different number of chunks
on four nodes having eight GPUs per node. We observe that
2 is the optimal number of segments and the performance
degrades beyond this. This is attributed to the fact that the
total inter-node cost (Tinter�single ⇥ s) dominates the intra-
node cost based on our observation. This also means that
the inter-node cost increases as we increase the number of
chunks. As explained before, once the increase in this cost
outweighs the benefits obtained due to intra-node overlap, the
performance starts degrading. This is the trade-off of splitting
the messages into multiple chunks. In the subsequent section,
we use “Proposed” to denote the optimized multi-rail scheme
with the optimal chunk size of two (2).

C. Performance of the Proposed compared to other MPI
libraries

Figure 5 shows the performance of the proposed multi-rail
MPI Allgather scheme compared to other MPI libraries on 4,
8 and 16 nodes. On four nodes we observe that the proposed
scheme performs up-to 42% better than NCCL and at least
2X better than OpenMPI+UCX and MVAPICH2-GDR. On
eight nodes, we observe that the proposed scheme performs
up-to 60% better than NCCL and at least 3X better than
OpenMPI+UCX and MVAPICH2-GDR. On 16 nodes having
128 GPUs, the proposed scheme performs up to 2X better than
NCCL.

Figure 6 shows the comparison the propose multi-rail algo-
rithm with MPI Alltoall on 4, 8 and 16 nodes. We observe that
on 128 GPUs, the proposed scheme performs up-to 85% better
than OpenMPI+UCX and 88% better than MVAPICH2-GDR.

IV. RELATED WORK

Several researchers have targeted dense GPU systems fea-
turing multiple HCAs, such as those enhancing the reduction
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Fig. 5. Performance comparison of MPI Allgather on ThetaGPU across MPI libraries
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Fig. 6. Performance comparison of MPI Alltoall on ThetaGPU across MPI libraries

and broadcast steps of PageRank [3], Alltoall communica-
tion for FFTs [13], and Allreduce for Deep Learning work-
loads [12]. However, the approaches adopted by these works
were compute-centric and did not consider extending the MPI
collectives to exploit multiple HCAs.

Other work includes topology-aware [2], [6] and memory-
aware collective algorithms [7], though these approaches are
limited by the hardware of the time and may require upgrades
as new hardware and topologies emerge.

V. CONCLUSION
Modern Supercomputers are increasingly using GPU-based

compute nodes to accelerate the performance of parallel MPI-
based applications. In this work, we used a multi-HCA-
based GPU cluster to motivate the need for multi-rail aware
algorithms at the collective level. We used MPI Allgather,
MPI Alltoall as a use case to propose basic and optimized
multi-rail aware algorithms. We performed a theoretical and
empirical analysis of the proposed algorithm by modeling it
and evaluating the performance using different MPI libraries.
The proposed scheme shows approximately 30% and 43%
improvement in non-personalized and personalized communi-
cation benchmark respectively when compared with the state-
of-the-art MPI libraries.
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