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• Cities offer a phenological preview of nat-
ural forest response to global change.

• How much do urban tree planting prefer-
ences (e.g., species) influence phenology?

• We employ >400 PlanetScope images to

estimate individual tree phenology in
a city.

• Species and plant functional type mixtures
governed phenology more than heat.
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The elevated heat of urban areas compared to their surroundings makes humid temperate cities a useful preview of
future climate effects on natural forest phenology. The utility of this proxy rests on the expectation that trees in
urban areas alter their phenology in response to warmer site conditions in spring and fall. However, it is possible
that apparent lengthening of the growing season is instead governed by human-driven tree species selection and
plant functional type (PFT; trees, shrubs, turfgrass) heterogeneity typical of managed landscapes. Without the use of
highly spatially and temporally resolved remote sensing data, the roles of tree taxonomy and local site characteristics
(e.g., impervious cover) in controlling phenology remain confounded. To understand the drivers of earlier start of sea-
son (SOS) and later end of season (EOS) among urban trees, we estimated individual tree phenology using >130 high-

resolution satellite images per year (2018–2020) for ~10,000 species-labeled trees in Washington, DC. We found that

species identity alone accounted for 4 ×  more variability in the timing of SOS and EOS compared with a tree's planting
location characteristics. Additionally, the urban mix of PFTs may be more responsible for apparent advances in SOS (by
between 1.8 ±  1.3 and 3.5 ±  1.3 days) than heat per se. The results of this study caution against associating longer
growing seasons in cities—observed in moderate to coarse resolution remote sensing imagery—to within-species phe-

nological plasticity and demonstrate the power of high-resolution satellite data for tracking tree phenology in biodi-
verse environments.
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1. Introduction

Leaf phenology influences the fluxes of water and energy between the
Earth's surface and the atmosphere as it defines the period when trees are
physiologically active. Predicting changes in leaf phenology under global
change scenarios is therefore highly valuable for forecasting climate-
induced shifts in these fluxes. Cities present an empirical basis for quantify-
ing such effects because many cities are several degrees warmer than their
surroundings, meaning that urban trees currently exhibit phenological re-
sponses we might expect from non-urban forests several decades in the fu-
ture. Moreover, understanding environmental and biological controls on
tree phenology can help to optimize strategies for climate-ready urban
planning. The phenology of urban trees governs the availability of ecosys-
tem services for residents (Zhang and Brack, 2021), alters the surface en-
ergy balance (Penuelas et al., 2010), and mediates ecological niche
quality for urban fauna (Visser et al., 1998). Those who manage city land-
scapes therefore must understand the drivers and extents of phenological
change in order to manage for tree climate resilience and the continued pro-
visioning of ecosystem services (Núñez-Florez et al., 2019).

In temperate zones, urban trees generally have an earlier start of season
(SOS) and a later end of season (EOS) compared to rural surroundings (Li et
al., 2017a; Melaas et al., 2016). These phenological shifts have largely
been attributed to the urban heat island effect, which arises when a land-
scape dominated by transpiring vegetation is replaced with impervious sur-
faces and buildings (Oke, 1982). However, urban areas are extremely
heterogeneous atfine spatial scales with respect to site factors (e.g., air tem-
perature, substrate, water availability, shade) as well as the composition of
plant communities. Species identities and plant functional types (PFT,
e.g., trees, shrubs, turfgrass) can vary widely across urban areas because
they are often highly managed, reflecting historical planting and develop-
ment patterns. Thus, the extent to which urban tree phenology varies
might be attributed to site factors, spatial variation in plant composition,
or some combination of the two.

In North American broadleaf deciduous forests, satellite-based studies
have found urban-rural differences in growing season length (GSL) from 2
to upwards of 22 days. Overall, there has been greater certainty in estimates
of SOS compared to EOS, both in terms of timing and isolation of drivers
(Jochner and Menzel, 2015). While SOS can be linked to variability in win-
ter and spring temperatures (Jochner and Menzel, 2015; Melaas et al.,
2016), urban EOS is more difficult to characterize and is potentially driven
by summer or fall air temperatures (Lu and Keenan, 2022), local CO2 levels
(Wang et al., 2019), urban density (D. Li et al., 2022), light pollution, soil
conditions, irrigation, or nutrient availability (Wohlfahrt et al., 2020).
The influence of planting site on variation in phenological metrics (hereaf-
ter “phenometrics”) has thus far been examined largely independently of
species identity or PFT due to measurement limitations (both remote sens-
ing and ground-based). However, several studies have documented varia-
tion in phenometrics within individual species associated with urban site
conditions, namely the imperviousness of surroundings and the proximity
to urban canyons and water (Chi et al., 2022; Granero-Belinchon et al.,
2020).

Plant functional types and tree species identities are typically quite dif-
ferent between managed urban landscapes and surrounding rural or natural
landscapes. At a coarse taxonomic grain, urban and peri-urban develop-
ment choices determine the ratios of land cover types and thus the domi-
nant PFTs. In temperate regions, cultivated trees, shrubs, and turfgrass are
interspersed with varying quantities of natural vegetation and impervious
surface (Cadenasso et al., 2007). Moreover, the relative cover of turfgrass
vs. trees has implications for phenological analyses, as cultivated grass
often has earlier SOS and later EOS (Zipper et al., 2016). Understory spe-
cies, especially invasive or native shrubs, may also have distinct phenolog-
ical niches, thus influencing phenometrics (Fridley, 2012; Shustack et al.,
2009). Tree species composition also varies along urbanization gradients
—mediated by the strength of the local climate filter (Jenerette et al.,
2016; Swan et al., 2017)—typically with more introduced species present
at the urban end of the gradient. Community-level phenological research
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has been hindered by an inability to monitor all species within that
community (Cleland et al., 2007). This is particularly true for remote sens-
ing studies, in which large spatial extents preclude extensive, species-level
ground truthing. Yet, there is evidence of that coexisting species can exhibit
strong phenological differences and, at the same time, exhibit limited phe-
nological plasticity within species (Cleland et al., 2007; Tang et al., 2016).
The former adds noise to coarse to moderate pixel-scale analyses
(e.g., those using MODIS or Landsat imagery), obscuring the drivers of
change, while the latter implies that individual species may have more lim-
ited responses to urban heat than anticipated.

Given the high degree of spatial heterogeneity and the rapid rates of
land cover change in urban environments, new methods are necessary for
mapping and monitoring ecosystem functions in cities (Zhu et al., 2019).
Urban air temperature is now quantifiable citywide at fine spatial resolu-
tion, allowing us to determine how local climate is modified by canopy
and impervious surface cover (Alonzo et al., 2021; Ziter et al., 2019). Con-
nections between these site conditions and phenology have been elusive
due to insufficient satellite resolution and a lack of information on sub-
pixel species composition (Zipper et al., 2016). In this study we present
and apply a method for monitoring urban leaf phenology using high-
resolution satellite imagery that is practical at regional extents yet imple-
mented at the scale of individual tree crowns. We implemented this method
to map all trees within our Washington, DC study area between 2018 and
2020. With this map, of tree-only phenology, we could then evaluate the in-
fluence of species and PFT mixing on Landsat and MODIS-scale
phenometrics. For a subset of ~10,000 street tree crowns—for which we
have field knowledge of species identity for 29 common species—we
followed a phylogenetic mixed modeling approach to quantify the contri-
bution of species and site factors to urban tree phenophase timing.

2. Materials and methods

The primary objective of this study was to compare the relative influ-
ence of plant functional type and species composition to those of planting
site characteristics on tree phenology in an urban setting. Doing this obser-
vationally required sampling many tree crowns spanning the range of com-
mon tree species across the widest-available gradient of planting conditions
(e.g., imperviousness of surroundings). Specifically, we quantified the phe-
nological timing (i.e., the start and end of season, or SOS and EOS, respec-
tively) for individual trees from satellite imagery at high temporal and
spatial resolution and covering much of Washington, DC, USA, through
three growing seasons (2018–2020; data aggregated). Statistical modeling
of tree-level variation in SOS and EOS was undertaken using ordinary
least squares regression when species information was not included or phy-
logenetic generalized least squares (PGLS; Revell, 2010) mixed models
when species identities were included. To understand the impact of spatial
resolution (and thus spectral mixtures) on these estimates, we compared
our crown-scale estimates to those made using either 30 m or 250 m simu-
lated pixels to reflect current, common methods. Finally, given our interest
in understanding the importance of species composition in driving urban
phenological signals, we sought to quantify species phenometric synchro-
nicity across years by conducting separate analyses on each of our three
years of satellite data.

2.1. Study area

The study area encompassed most of Washington, DC, USA (Fig. 1). DC
is a humid-subtropical city with a population of approximately 700,000 res-
idents (Beck et al., 2018). It has tree canopy cover of ~38 % and impervious
surface cover of ~39 % (Alonzo et al., 2021). The trees are predominantly
broadleaved deciduous species, with a small minority being conifers.

2.2. Geospatial data and processing

For each growing season in 2018–2020, we downloaded at least 130,
PlanetScope 4-band, top-of-atmosphere radiance images (<10 % cloud
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Fig. 1. A) Study area as determined by the minimum number of PlanetScope 4-band images available annually (n =  130). This area contained >63,000 street trees (from 29
important species) with labeled species identities. B) Tree canopy fraction for 100 m pixels in Washington, DC (Alonzo et al., 2021).

cover, <3 degrees off-nadir view angle) with nominal 3 m spatial resolution
(Planet, 2021). Images were radiometrically normalized using empirical
line correction–with spectrally invariant targets spanning a range of bright-
ness values (e.g., asphalt to white roof)–to a high-quality base image from
2019 (Schott et al., 1988). The normalized difference vegetation index
(NDVI; Tucker, 1979) was calculated for each image. To summarize
object-scale NDVI, polygons were created for the citywide dataset using
the simple linear iterative clustering (SLIC) image segmentation algorithm
(Achanta et al., 2012). In addition to crowns, we segmented low vegetation
and grass. For street trees, given accurately-geolocated center points, we
chose to forgo use of the SLIC segments and instead simply buffered each
point by 3 m to create the polygons. The 3 m distance was chosen based
on visual assessment, though 2 m buffers were tested and did not lead to ap-
preciably different modeling results. Finally, we extracted the NDVI pixel
values within each image object, including the crown polygons as well as n
=  2621 randomly distributed “Landsat like”, 30 m and n =  320
“MODIS like”, 250 m plots. Each image object, for a given date, was ulti-
mately assigned the 75th percentile NDVI pixel value as a means to limit
the inclusion of non-vegetation data (Alonzo et al., 2014).

We fit a 7-parameter double logistic function to the 3-year aggregated
NDVI time series extracted from each polygon (Fig. 2D; Elmore et al.,
2012). Fitting was accomplished using the Levenberg-Marquardt algo-
rithm, implemented via the R code library nlsLM. To increase the likelihood
of fit convergence, we removed outliers using a smoothing spline fit in the
previous step. Two of the finalfit parameters capture the day of year (DOY)
with the most rapid increase in NDVI in the spring and the most rapid de-
crease in NDVI in the fall. We define these days as the SOS and EOS
phenometrics. We additionally determined the pair of DOYs corresponding
to maximum concavity; these represent the initiation of green-up (SOSE,
where E is “early”) and the end of leaf senescence (EOSL, where L is
“late”; Fig. 2D). Uncertainty in each phenometric, reported as the 95 % con-
fidence interval, was quantified with bootstrapping (n =  1000 iterations)
when fitting the double logistic function (Elmore et al., 2012). This uncer-
tainty largely reflects variability in the fit due to data gaps on cloudy days.

In addition to the above, wefit the double logistic function to NDVI data
from each of the three years separately so we could compare our phenolog-
ical estimates with those from the Multi Source Land Surface Phenology
dataset (MS-LSP; Bolton et al., 2020). Annual fits were used to calculate
six additional NDVI percentile metrics capturing three stages each of

“green-up” (denoted g15, g50, and g90, where numbers indicate percen-
tiles) as well as senescence or “brown-down” (denoted b90, b50, and b15,
where numbers again indicate percentiles). These fits were only generated
on the subset of 30 m plots with high fractional vegetation cover to facili-
tate alignment with Harmonized Landsat-Sentinel (HLS) imagery, on
which the MS-LSP dataset was based. Given the high correspondence be-
tween spline and double logistic fits in this ecosystem, the percentile met-
rics calculated on the latter fit we assumed to adequately represent those
from the former. Nevertheless, we ultimately elected to use the percentile
metrics for validation purposes only, as the 7-parameter double logistic fit
was better suited for parsing the processes of summer greendown from
end of season. We found strong agreement spanning the growing seasons
between the annual, PlanetScope-derived metrics and MS-LSP (R2 =
0.94; Fig. S1). The level of correspondence found in this study is consistent
with previous imagery comparison efforts (Cheng et al., 2020; Moon et al.,
2021).

Additional geospatial datasets were acquired or created to serve as can-
didate predictor variables in statistical models of phenometrics (Table 1).
We sought to cover the range of spatial variables, of potential interest,
that relate to each tree's function in a given planting location. Of course,
not all variables can easily be measured at the citywide scale (e.g., soil mois-
ture), which is a limitation of this type of study. A dataset describing species
identity and geolocation for 63,019 street trees was obtained from the DC
Urban Forestry Department (Table 2). Species were chosen for this study
based on the occurrence frequency of street trees within our study area
(Fig. 1). There were 29 species with >100 individuals in the study area
(Table 2). In many cases, to create predictor variables, we extracted mean
pixel values from the relevant raster datasets (e.g., imperviousness,
tree_canopy) within a 90 m buffer around each crown polygon following
Alonzo et al. (2021). The air_temp variable came from a dataset collected
on August 28, 2018, when nine cars measured air temperature throughout
the city >70,000 times, which were used to spatially interpolate tempera-
ture maps at three times of day (predawn, afternoon, evening; Shandas et
al., 2019). Given that these data were collected on a single day, we con-
sider them to be a static depiction of the air temperature anomaly across the
study area, making them a useful characterization of the urban heat island.
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Fig. 2. Examples of crown-scale phenometrics, street tree diversity, and double logistic fits within the Capitol Hill neighborhood of Washington, DC. A) SOS colored by day of
year and B) EOS colored by day of year. C) Depiction of street tree diversity in Washington, DC where the legend shows the 5 most common genera. D) Two examples of
double logistic fits using aggregated data from 2018 to 2020; vertical dashed lines depict the four phenometrics used in this study and 95 % confidence intervals are

shown around the fitted curve. The inner box in A, B, and C is 500 m to provide visual scale.

2.3. Statistical modeling at plot and crown scales

For analysis at 30 m pixel (or “plot”) scale, we estimated phenometrics
at each plot as a proxy for existing moderate-resolution remote sensing
methods. These were mostly mixtures of trees, low vegetation, grass,
and/or impervious surfaces. Therefore, we also calculated average
phenometrics within each plot for trees alone, grass alone, and low vegeta-
tion alone using the crown-scale data. Determination of plant functional
types (PFT) within plots, as well as the fractional cover of trees within
each plot, came from a canopy height model of the study area derived
from lidar; heights <1 m were designated “grass”, between 1 and 4 m

were designated as “shrub”, and >4 m were designated “trees”. We
modeled the influence of standardized PFT and site characteristics on SOS
and EOS using ordinary least squares (OLS) regression. Site variables
(Table 1) were deemed to exhibit influence if they were in the model
with the lowest Bayesian Information Criterion (BIC). We evaluated both
PFT and site – in terms of their relative contributions to predicting SOS
and EOS – by creating three sets of models for each response variable.
These contained 1) only site variables, 2) only PFT variables (grass frac-
tional cover, canopy fractional cover), 3) both site and PFT variables.

To incorporate species information into our analyses, we estimated
crown-scale models. Given the near-nadir view, 3 m resolution, and low
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Table 1
Response and candidate predictor variables considered for modeling site controls
on phenometrics. The “Selected for” column notes which variables were ultimately

included in our models based on model selection criteria explained in the text.

Variables  Selected      Description

for

Response

Science of the Total Environment 884 (2023) 163818

63,019 to 10,358 crowns. After filtering, we fit two types of models to
SOS and EOS: 1) OLS models where fixed effects were site characteristics
and 2) phylogenetic generalized least squares (PGLS; Revell, 2010)
mixed-effects models where fixed effects were species identity or species
identity plus site characteristics and random effects were species or species
nested within year. PGLS was used to account for residual correlation due to
species relatedness. For both PFT and crown-scale models, models were run

SOS                       NA

EOS                       NA

Predictor

air_temp EOS

elevation SOS and

EOS

imperviousness     SOS and

EOS

income

insolation

landform

Start of season (day of year)

End of season (day of year)

Air temperature from August 2018 field campaign

averaged within 90 m radius of tree

Elevation from lidar DTM

Impervious surface fraction within 90 m radius of tree

from local planimetric data

Median household income for DC census tracts

Modeled solar insolation in summertime, proxy for shade

map, used lidar DSM

Concave, convex, or flat topography classes based on lidar

DTM

100 times with a subset of observations (n =  750) to minimize spatial au-
tocorrelation of the crown-scale residuals and to generate plausible ranges
for model coefficients and fit metrics (e.g., R2 and median absolute differ-
ence). Further details on PGLS and model details such as mitigation of spa-
tial autocorrelation appear in Supplementary materials S2.

Although the core models in this study use data aggregated by year
(2018–2020) to focus on the time-independent effects of species and site
on phenometrics, we also ran year-specific models. The primary motiva-
tions were to: 1) assess the explanatory power of the integrated model com-
pared to one that included year and 2) facilitate further examination of the
importance of species in determining the timing of SOS and EOS (i.e., do
species alter their phenology in concert from year to year?). Note: All uncer-

latitude

longitude

patch

planting_space

tree_canopy

SOS and      Latitude to mitigate spatial autocorrelation and account for

EOS unexplained spatial variation

SOS and      Longitude to mitigate spatial autocorrelation and account

EOS for unexplained spatial variation

Percent cover by a large patch of canopy within 90 m

Size of tree box or strip for street trees in square meters

EOS Tree canopy fractional cover within 90 m of tree

tainty in this research is presented as 95 % confidence interval of the statis-
tic in question unless otherwise stated.

3. Results

3.1. Crown-scale analysis improves phenological mapping capabilities

Table 2
Species included in the study. Initially there were 63,019 street trees and 29 species
included in the dataset. After filtering by tree size and other criteria, 10,358 trees
and 26 species were retained for use in the PGLS models.

Species botanical name Count PGLS count

Acer platanoides 1669 43

Acer rubrum 8389 752

Acer saccharum 2725 222

Celtis occidentalis                                                               830 7

Cercis canadensis 1058 –
Ginkgo biloba 4015 820

Gleditsia triacanthos                                                          788 26

Gymnocladus dioicus                                                         341 –
Lagerstroemia indica 1874 –
Liquidambar styraciflua 1456 124

Liriodendron tulipifera                                                      366 131

Nyssa sylvatica                                                                   918 6

Platanus occidentalis                                                         770 236

Platanus ×  acerifolia 3756 77

Prunus serrulata ‘Kwanzan’                                                 714 6

Prunus yedoensis 644 9

Compared to simulated 30 m pixels, phenometric uncertainty at the
crown scale was lower by 14 % for both SOS (from ±5.41 to ±
4.66 days) and EOS (from ±6.82 to ±5.87 days). This reduction in median
uncertainty (crown/pixel 95 % confidence interval on the double logistic
fit) highlights the improved ability of the high-resolution spatial analysis
to isolate tree species and plant functional types. Also, this is likely a conser-
vative estimate of uncertainty reduction because it does not account for the
higher temporal resolution of PlanetScope imagery compared to best-
available 30 m data (e.g., Harmonized Landsat-Sentinel; Bolton et al.,
2020). Moreover, thefine-scale maps (Fig. 2) yielded more usable measure-
ments, particularly in densely built-up areas. Specifically, the phenological
curve fitting failure rate due to environmental noise or sensor issues was
30.9 % when aggregating the 3 m Planet data to 30 m pixels but for only
12.6 % when aggregating to the individual crown scale.

Over the last several decades, MODIS has provided the best-available
temporal resolution for phenological monitoring (1–2-day revisit interval)
but MODIS data have a coarse spatial resolution (250 or 500 m pixel size)
and images are commonly composited over 8-day periods (Adole et al.,
2019; Ganguly et al., 2010). When comparing our crown-scale dataset
with simulated 250 m MODIS pixels (Fig. S2), there was strong agreement
between SOS and EOS at the pixel-scale and the averaged crown-scale

Quercus acutissima

Quercus bicolor

Quercus coccinea

Quercus lyrata

Quercus palustris

Quercus phellos

Quercus rubra

Tilia americana

Tilia cordata

Tilia tomentosa

Ulmus americana

Ulmus parvifolia

Zelkova serrata

Total

807 79

1247 13

1589 433

612 22

5596 2196

5838 2130

2955 968

678                                       201

1827                                       165

742 6

5170 1375

2255 25

3390 286

63,019 10,358

values contained within, but only for pixels with high tree canopy fractions
(Fig. 3); above 50 % cover, the average difference was 1.1 days for SOS and
1.5 days for EOS. However, most locations in urban areas have canopy frac-
tions <50 % and, under these conditions, the difference increased to
2.4 days for SOS and 4.7 days for EOS (Fig. 3). Understanding the magni-
tude and drivers of phenological variability is thus hindered by large pixels
that have low vegetation fractional cover, intermix plant functional types,
and contain multiple tree species in heterogeneous assemblages.

3.2. Pixels containing diverse PFT may overstate the advance of SOS

We found that moderate and coarse resolution remote sensing methods

nominal positional uncertainty of PlanetScope data (2.6 m), there was good
spatial registration of crowns from one image to the next. However, to min-
imize noise in this study we chose to only retain large trees with diameter at
breast height >50.8 cm (20 in) and height >10 m (Table 2; full datafiltering
details in Supplementary materials S1). This reduced the sample size from

can overstate the influence of an urban setting on tree phenology by mixing
plant functional types within pixels. In Washington, DC, grass and other
vegetation <1 m in height covered 11.9 % of the land area whereas trees
covered 34.5 %. Median grass SOS (Fig. S3) was estimated to occur at
DOY 95.5 ±  1.9 whereas tree SOS occurred >16 days later at 111.8 ±
0.62 (with shrubs between 1 and 4 m at DOY 109.4 ±  0.76). Urban 30 m
pixels commonly contain a mixture of surface materials and/or vegetation,
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cover within 90 m explained only 7 % of the variation in crown-scale SOS
(Fig. 4A; Table 3). Inclusion of PFT information increased model explana-
tory power to 18 % with grass cover as the critical addition (see standard-
ized coefficients in Table 3). Contrary to expectations, site conditions
(e.g., local imperviousness) had no bearing on the timing of EOS. However,
accounting for sub-pixel grass and tree cover raised EOS models' predictive
power modestly (R2 =  0.10; Fig. 4A) and also allowed us to identify the ef-
fects of local air temperature and imperviousness, which were not differen-
tiable from zero in the mixed-pixel dataset. The standardized coefficients
suggest that, when PFT is known, grass cover relates to earlier pixel-level
senescence while sub-pixel tree cover, imperviousness, and temperature
anomaly all serve to delay EOS (Table 3). Thus, it is clear that the composi-
tion of PFTs in the city is a relevant driver of EOS, but the spatial predictive
power of these models is low, potentially highlighting the importance of
species variability that is obscured when working with 30 m pixels.

3.3. Species composition governs urban SOS and EOS more than site factors

Fig. 3. Difference between MODIS-scale and crown-scale phenology across a
gradient in canopy fractional cover. Agreement is depicted as the median absolute
difference (in days) between simulated 250 m MODIS pixel-scale and summarized
crown-scale estimates of SOS and EOS across ten fractional cover bins. The
histogram in the background depicts the distribution of canopy cover across
Washington, DC.

possibly including trees, grass, and shrubs in a single pixel. As a result, esti-
mates of “tree” SOS in cities could be 1.8 ± 1.3 days early. In the case of the
early measure of start of season (SOSE; akin to 15 % green-up, Fig. 2D;
Moon et al., 2021) the potential deviation increased to 3.5 ±  1.3 days,
highlighting the earlier initiation of green-up by grass but also its slower
progression. The divergence is smaller for measures of EOS, where grass
senesces 9.6 ±  3.1 days earlier than trees, on average, and a mixed-PFT
pixel assessment may understate the delay in tree EOS by 0.9 ±  1.8 days.
Therefore, it seems plausible that PFT, more than within-city locational
context, may exert a strong influence on estimates of urban vegetation phe-
nology.

We modeled SOS and EOS at 30 m resolution (the highest spatial reso-
lution of typical remote sensing time series; equivalent to Landsat) using
OLS regression to assess the relative contributions of PFT and site factors
(e.g., imperviousness, elevation, air temperature spatial anomaly; Table 1;
Table 3). Site factors contributed only minimally to variation in SOS and
negligibly to that in EOS. Surrounding tree canopy and impervious surface

For large trees that were consistently observable by the PlanetScope sat-
ellite constellation, the timing of both SOS and EOS were primarily
governed by variation in species identity. We used a phylogenetic mixed
model to differentiate the effects of species from each tree's planting site
and found that the combination of species and site information explained
51 % and 52 % of variation in SOS and EOS across the study area, respec-
tively (Fig. 4B). The dominant contribution to these models' explanatory
power was species identity (the random effect), as evidenced by species-
only models explaining 47 % and 42 % of SOS and EOS timing. Contribu-
tions of site factors were clearly limited in SOS models (they reduced the
median absolute difference or, MAD, from 3.1 to 3.0 days) but, as antici-
pated, were more relevant for EOS (and reduced MAD from 5.8 to 5.0
days; Fig. 4D). Using a BIC-based variable selection process, the final
model included information about local air temperature, imperviousness,
tree canopy, and elevation, where temperature was the most important pre-
dictor (see standardized coefficients in Table 3 and coefficient confidence
intervals in Fig. S4). Specifically, we found that, on average, for every 1
°C of increase in local air temperature, EOS was delayed by 1.3 ±  1.2
days. Further, we found that impervious cover within 90 m of each tree,
which we interpret as an aggregate measure of urban density, was as-
sociated with a 0.44 ±  0.50-day delay in EOS for each 10 % increase in im-
perviousness, after accounting for variation in air temperature. Some
species were more susceptible to site factors than others, as indicated by
model explanatory power (Fig. S5) with median R2 values ranging from
<0.1 (e.g., Ulmus americana) to ~0.3 (e.g., Liquidambar styraciflua). These

Table 3
Standardized coefficients of ordinary least squares (OLS) and phylogenetic generalized least squares (PGLS) mixed models of SOS or EOS based on site factors, species, or
both. Models were constructed at either the “30 m pixel” or “crown” scales through, in both cases, aggregation of 3 m Planet data. All variables except for longitude and lat-

itude were always significantly different from zero at p < 0.001 (non-significant values in red). R2 is the median from all model runs. MAD is the median absolute difference in
days (also median from all model runs). Variable explanations appear in Table 1.

Model Type
SOS site OLS 0.26
SOS PFT OLS
SOS full OLS 0.22
EOS site OLS 0.09
EOS PFT OLS
EOS full OLS 0.15
SOS site OLS        -0.04
SOS spp      PGLS
SOS full      PGLS -0.07
EOS site OLS         0.05
EOS spp     PGLS
EOS full      PGLS 0.06

0.11
0.21

0.09
0.11

0.11 -0.04

0.29 0.08 0.1  NA NA
0.11        -0.34

0.14 0.07 0.1 0.16 -0.29
0        -0.01        NA           NA

0.12 -0.18
0.03      -0.03 0.29 -0.11
0.24      -0.02

0.14      -0.03
0.11      -0.15

0.04 0.13      -0.13

R2 MAD
0.07        7.2
0.15        7.2
0.18        6.8
0.01      11.2
0.06      12.3
0.10      10.7

NA 0.09 3.9
Yes 0.47 3.1
Yes 0.51 3.0
NA 0.10 7.7
Yes 0.42 5.8
Yes 0.52 5.0
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Fig. 4. Model comparisons. (A and B) Model explanatory power (R2) and (C and D) mean model difference (in days) when modeling SOS and EOS using site factors only
(denoted Site), species identity or plant functional type only (denoted PFT or Species, respectively), or combined, mixed models (denoted Full). Error bars are standard
deviations of these quantities across 100 model fits on random subsets of the data. In (A and C), phenometrics were derived from pixels aggregated to the resolution of

Landsat imagery (30 m); in (B and D), phenometrics come from crown-scale data.

results highlight species sensitivity to conditions with, for example, local
temperature potentially playing a strong role in certain species' EOS timing.

3.4. Species rank order of phenological events maintained across years

Spring and summer temperatures and precipitation conditions were dis-
tinctly different in 2018, 2019, and 2020 (Fig. 5), providing a means to ex-
amine how synchronous or divergent responses to environmental
conditions were across species. Maintenance of phenometric rank order

Fig. 5. Weather data for 2018–2020. Temperature (solid) and precipitation (dashed) trends in the study area for each year. A) Daily minimum air temperature values (°C,
smoothed) for DOY 1–180; B) daily maximum temperatures for DOY 180–300; C) cumulative precipitation (cm), full year.
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(Geng et al., 2020) in this environment could imply lower within-species
phenological plasticity driven by site conditions and an elevated impor-
tance of urban species composition in governing spatial variability in our
phenological response variables. Species rank order was most stable during
green-up as evaluated using SOS: Spearman rank correlations were consis-
tently high and internal stability was strong (based on Cronbach's α being
≥0.95; Figs. 6A, 7A). As expected, given the increased influence of site
and accumulated stress during the growing season, rank order stability de-
clined somewhat for EOS (Figs. 6B, 7B) but still was generally high. SOS av-
erage pairwise rank correlation was 0.89 compared to an EOS value of 0.76,
highlighting the comparatively high level of green-up stability. Genera that
flushed relatively early, such as Zelkova, leafed out progressively earlier
each year, aligning with year-by-year increases in average daily minimum
March temperatures (Figs. 5A, 7A). In contrast, the late-flushing genus
Platanus appeared to respond more to late April average daily minimum
temperatures wherein 2019 was much warmer than either other year
(Figs. 5A, 7A). Although this study focuses primarily on the relative impor-
tance of species versus site effects, it is worth noting that the explanatory
power of an SOS model incorporating year and species as nested random ef-
fects was substantially higher than the year-aggregated model (R2 =  0.70
nested versus R2 =  0.51 aggregated), owing to the well-established impor-
tance of winter and spring conditions on the timing of leaf development.
EOS generally tracks late summer temperature trends, most notably with
the latest average EOS in 2019 (when temperatures were highest from

Science of the Total Environment 884 (2023) 163818

September onward) and the largest variation in EOS (i.e., greatest interspe-
cific differences in the timing of senescence) corresponding to an early but
gradual cooling in 2020 (Figs. 5B, 7B). In models of EOS, accounting for
year was less valuable, only negligibly raising the full model R2.

4. Discussion

We were able to distinguish species and site controls on urban tree phe-
nology by leveraging high-resolution remote sensing workflows and draw-
ing on ground-level data for thousands of trees. Our core finding is that SOS
and EOS, when derived from satellite remote sensing data, primarily vary
with species composition or PFT rather than environmental characteristics
of the planting location. This implies that, in cities, tree phenological
change in response to changing temperature regimes may be smaller than
has been estimated using moderate-resolution phenological observations.
Still, tree location did influence the timing of EOS; local air temperature,
impervious surface cover, surrounding tree canopy, and elevation all exhib-
ited significant effects on EOS. It is important to note that this study exam-
ined fine-scale, within-city variation in site factors and did not span the full
urban-rural gradient. Nonetheless, our urban setting provided a data-rich
laboratory for addressing questions of phenological plasticity in biodiverse
environments, likely applying well beyond cities. Moreover, our dataset
and workflow may be a launching point for projects seeking to characterize
and map invasive species distributions (especially of understory plants), the
health status of urban trees, and urban ecosystem productivity (Fang et al.,
2020; Granero-Belinchon et al., 2020; Singh et al., 2018).

4.1. High spatial and temporal resolution, satellite-based phenological analysis

Investigations of land surface phenology using cameras or other sensors
are now common, but there are trade-offs among spatial resolution, spatial
extent, and frequency of observations. Ground-based phenocam networks
provide sub-daily imagery across a wide range of ecosystems, albeit with
overrepresentation of North America and Europe (Richardson et al.,
2018). Satellite-based studies allow for continental and global scale estima-
tion at near-daily temporal resolution (Adole et al., 2019; Bolton et al.,
2020; Ganguly et al., 2010) but usually at 500 m pixel size. In our study, in

areas of high vegetation cover, there was strong agreement (R2 =  0.94)
between our estimates of SOS and EOS and those derived from Multi-
Source Land Surface Phenology (MS-LSP) data which is estimated from
harmonized Landsat-Sentinel imagery (HLS; Fig. S1; Moon et al., 2021).
However, 3-m pixel data from PlanetScope can resolve features
~1/100th the size of those observable with HLS datasets and with scenes
nominally available daily at mid-latitudes, instead of ~ 3  days (Bolton et
al., 2020; Moon et al., 2021, 2022). This allows for the retrieval of
phenometrics from individual trees even in densely built-up urban environ-
ments, representing areas previously avoided due to low vegetation cover
(Melaas et al., 2016; Zhang et al., 2004). With the methods established in
this study and similar datasets recently released by Moon et al. (2022),
there is a path towards a more process-based understanding underpinning
regional scale carbon, water, and energy fluxes; efforts previously ham-
pered by imprecise or spatially constrained land surface phenology
datasets. A dataset of this resolution also offers increased viability, in het-
erogeneous landscapes, for upscaling approaches from plot-based land-
scape phenology to coarse resolution land surface phenology from
satellite (Liang et al., 2011).

4.2. Mixing of PFTs at sub-pixel scale can cause overestimates of SOS advance

Fig. 6. Rank order stability in phenometrics. Pairwise (by year) species rank order
stability for 2018–2019, 2018–2020, and 2019–2020 for A) SOS and B) EOS

phenometrics accompanied by Spearman's rank correlation (ρ) and Cronbach's

alpha (α) with 95 % confidence intervals.

Although there is an apparent relationship between urban density and
an extended growing season at moderate to coarse spatial scales (Li et al.,
2019; Li et al., 2017a; Li et al., 2017b; Meng et al., 2020; Zhang et al.,
2004), our results suggest that this relationship is, at least in part, an artifact
of sub-pixel PFT mixtures. In measurements focusing on SOSE, the effect
was most pronounced, with mixed 30 m pixels showing green-up timing
3.5 days earlier than tree-only pixels. Our results highlight potential
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Fig. 7. Interannual variation in phenological responses by genus. Median day of year of A) SOS and B) EOS for genera in 2018, 2019, and 2020.

contributions of phenologically unique understory vegetation such as turf-
grass or shrubs in the overall signal (Shustack et al., 2009; Singh et al.,
2018). For SOS, the difference of 1.8 days is still substantial in light of the
current magnitude of detected urban-rural differences in GSL from decidu-
ous and mixed forest landscapes of 2 to 2.8 days (Li et al., 2017a). At coarse
resolution, there is also substantial noise in the annual phenological signal
in densely built urban zones (i.e., locations with greater PFT mixtures and
more impervious surface), increasing the uncertainty of phenometric esti-
mates (Li et al., 2017b). We found that, at a 250 m pixel size, the quality of
relationship between MODIS-scale and crown-scale estimates of
phenometrics was largely a function of tree fractional cover within that
pixel (Fig. 3). Along an urban to rural gradient, land cover (and particularly
the dominance of turfgrass in suburban developments) has been found to
strongly control the observed timing of start and end of season
phenometrics (Zipper et al., 2016). Beyond the city as well, phenological
shifts may be driven by PFT compositional shifts such as understory shrub
invasion or, plausibly, overstory vine proliferation (Fridley, 2012; Polgar
et al., 2014). Given the recent widespread availability of lidar data in
urban and peri-urban environments, a straightforward improvement in re-
motely sensed phenological inquiry could be to partition the landscape by
height class as a proxy for PFT. Still, PFT delineation does not fully account
for either species' genetic differences or preferential planting legacies that
continue to undercut the precision of landscape-scale phenological inquiry
(Buyantuyev and Wu, 2012).

4.3. Species composition and spring weather variability control the timing of SOS

Species effects largely governed the SOS signal in this biodiverse study
area, highlighting the strong linkage between genetic and functional diver-
sity and the necessity of higher resolution data to study species-level varia-
tion (Cleland et al., 2007). During spring green-up, models of SOS were
accurate at the crown scale regardless of whether site factors were included
(MAD =  3.0 days full model; MAD =  3.1 days for species only; Fig. 4B).
This is consistent with evidence from imaging spectroscopy demonstrating
that intra-specific variability in functional trait diversity is lower than inter-
specific variation, even along strong environmental gradients (Asner et al.,
2014). This may be due to limited intra-species phenological plasticity
across temperature or photoperiod gradients (Tang et al., 2016).

When disaggregated by year, the primary driver of SOS timing was cor-
related with interannual variation, as judged by large increase in explana-
tory power when species was nested within year in a hierarchical model.
Depending on seasonal patterns, species phenological synchronicity can
be high (e.g., anomalously warm late winter) or low (e.g., protracted cool
spring), promoting larger interspecific differences (Geng et al., 2020). In
2019, a rapid increase in spring temperatures drove synchronous

green-up of all individuals thus limiting the manifestation of a
site-based phenological gradient. By contrast, in 2020, temperatures were
stable from February through April, facilitating divergent green-up among
species and along a gradient of imperviousness (Fig. 7A). With high syn-
chronicity, site factors (e.g., urban heat island) have limited impact on
phenometrics but when synchronicity is low, site factors can explain a
higher proportion of phenological variability (Zipper et al., 2016). While
green-up timing and synchronicity changed from year-to-year, species
rank order was largely unchanged reflecting coincident response based on
genetic similarity (Fig. 6A). For example, our data show that early flushing,
non-native genera such as Zelkova and Prunus and later flushing Platanus
were pushed to even earlier or later SOS timings respectively when late
winter was warm but mid-spring was cool (Fig. 7A). This is consistent
with findings elsewhere that early budburst species with warmer initial
ranges tend to advance start of season more rapidly in response to warming
(Gunderson et al., 2012). A dataset such as in this study applied to other
landscapes could help to clarify drivers of species phenological plasticity
through large-N observational monitoring. There remains uncertainty sur-
rounding the extent to which, for example, early flushing species will con-
tinue to green-up earlier under warming or whether this shift will be
limited to minimize freeze risk or by intrinsic photoperiod constraints
(Geng et al., 2020; Rollinson and Kaye, 2012; Tang et al., 2016).

4.4. Species and site factors contribute the timing of urban tree EOS

The timing and drivers of EOS for trees is less certain than for SOS in
both urban and natural environments (Jochner and Menzel, 2015; Zhang
et al., 2004). In the urban environment there is time for local environmental
stressors to accumulate and enhance variability in EOS timing. Alterna-
tively, the atmospheric urban heat island effect may be minimized in late
summer and early fall time periods, thus muting variability along the
urban-rural gradient (Jochner and Menzel, 2015). We found EOS timing
also to be largely controlled by species albeit with more contribution
from site fixed effects compared to SOS models (Fig. 4). Although full

EOS model explanatory power (R2 =  0.52) was similar to that of the SOS
model (R2 =  0.50), the reduction in explanatory power when only consid-
ering species is more pronounced (species only R2 = 0.42 for EOS; Fig. 4A).
Local air temperature within a 90 m buffer was the key driver of within-
species delay in EOS (Table 3). Although temperature-driven delay in
EOS is consistent with current literature employing either land surface tem-
perature or imperviousness as urban heat proxies (Chi et al., 2022; Li et al.,
2019; Zhang et al., 2004), the relationship may reverse under extreme heat,
water limitation, or high vapor pressure deficit conditions, resulting in a
form of “accelerated leaf senescence” (Bertold et al., 2019). Here, we ob-
served almost all species with a positive relationship between temperature
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and EOS, with several exceptions (Fig. S5). However, for species exhibiting Data availability
an earlier EOS with warmer air temperatures, the ability to model EOS was
generally quite low, potentially because they are small or otherwise diffi-
cult to observe from satellite (e.g., Celtis occidentalis). There is thus a need
for additional inquiry into species that may respond differently to warming.
Similarly, more detailed study of local site conditions is needed across
urban morphologies and regions (Li et al., 2022). While we found a signif-
icant influence of air temperature and imperviousness, many other spatial
predictors (e.g., insolation, landform, planting space characteristics;
Table 1) did not meet thresholds for model inclusion, and still other poten-
tially important variables (e.g., soil conditions, nighttime lights) remained
out of scope (Wohlfahrt et al., 2020).

4.5. Limitations and summary

This high-resolution workflow allows for previously impractical analy-
ses that are simultaneously fine-scale and at large spatial extents. However,
there are limitations that point to opportunities for future work. Although
we had access to >60,000 street trees, this data source also represents a lim-
itation since it only represents street trees and it is constrained to the urban
environment (i.e., does not represent a full urban to rural gradient.) Both
factors constrain the range of planting site variables (e.g., air temperature,
imperviousness). Future studies might add a ground data collection compo-
nent (e.g., single species transects along the gradient of urban built density)
or incorporate tree inventories from multiple, adjoining municipalities. It is
also challenging to fully characterize planting site characteristics. Previous
research makes it clear that temperature and imperviousness can be impor-
tant, but it is additionally likely that variables relating to soil properties and
site-specific moisture regimes would also play a role in tree phenology.
Concerning remote sensing data, future studies will benefit from improved
radiometry of commercial satellite data. Consistent with Moon et al.
(2022), we found that that PlanetScope red-band reflectance did not corre-
spond well for all years with co-located HLS red values (though NIR align-
ment was good). This was notable in 2020 and thus added uncertainty to,
particularly, our EOS 2020 phenometric values. More recently launched in-
struments (e.g., PS2.SD, PSB.SD) employ newer technologies that will likely
yield improvements in radiometric precision and accuracy.

In summary, this paper highlights the importance of high-resolution
data for resolving phenological patterns in urban as well as other heteroge-
neous environments (J. Wang et al., 2020; Zhao et al., 2022). We found that
despite high temporal resolution offered by coarser platforms, inability to
isolate PFTs in mixed pixels can lead to phenometric bias that can be exac-
erbated in dense urban (i.e., low cover but biodiverse) landscapes. Increas-
ing spatial resolution while maintaining temporal frequency allowed us to
disentangle the relative importance of species and canopy composition ver-
sus site factors in driving spatial variability in both SOS and EOS. Thus, we
conclude that part of the apparent lengthening of the urban tree growing
season could be attributable to differing planting preferences in urban
core versus suburban or rural landscapes as well as fine-scale mixtures of
plant functional types. Our workflow provides a template for a wide
range of new applications to better understand the role of warming climate
on urban, agricultural, and heterogeneous natural ecosystem dynamics.
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