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OBSERVABLE ERROR BOUNDS OF THE TIME-SPLITTING
SCHEME FOR QUANTUM-CLASSICAL MOLECULAR DYNAMICS*

DI FANG† AND ALBERT TRES VILANOVA‡

Abstract. Quantum-classical molecular dynamics, as a partial classical limit of the full quantum
Schrödinger equation, is a widely used framework for quantum molecular dynamics. The underlying
equations are nonlinear in nature, containing a quantum part (representing the electrons) and a
classical part (standing for the nuclei). An accurate simulation of the wave function typically requires
a time step comparable to the rescaled Planck constant h, resulting in a formidable cost when h⌧ 1.
We prove an additive observable error bound of Schwartz observables for the proposed time-splitting
schemes based on semiclassical analysis, which decreases as h becomes smaller. Furthermore, we
establish a uniform-in-h observable error bound, which allows for an O(1) time step to accurately
capture the physical observable regardless of the size of h. Numerical results verify our estimates.
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tion, semiclassical analysis
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1. Introduction. Molecular dynamics has been a long-standing topic in compu-
tational chemistry, physics, and biology. The ultimate goal is to solve the many-body
Schrödinger equation governed by the molecular Hamiltonian describing both elec-
trons and nuclei, direct simulation of which is known to be a formidable challenge
due to the curse of dimensionality. Mixed quantum-classical approaches are thus
proposed to tackle this issue. These methods treat the nuclei and electrons sepa-
rately, while a mathematically certain underlying tensor product ansatz is typically
assumed in deriving the coupled system. Such an approximation fully exploits the
multiscale structure, that is, the scale separation between the fast-varying electrons
and the slowly evolved nuclei. Some mixed approaches remain fully on the quantum
level, such as time-dependent self-consistent field methods [9, 37, 38, 45, 54] and other
time-dependent mean-field approximations [2, 35, 51, 52, 62, 64], while others com-
bine together with classical or semiclassical levels, such as the Born–Oppenheimer
(or adiabatic) approximation, the mean-field type treatments [49, 50], and trajectory
based surface hopping algorithms [25, 26, 27, 28, 40, 43, 59, 60, 61]. In the latter ap-
proaches, the nuclear degrees of freedom are described classically by a Newtonian flow
with the forces acting on the nuclei as feedback of the electronic structures calculated
“on-the-fly” (for detailed reviews, see, e.g., [8, 47, 48, 60]).

*
Received by the editors November 29, 2021; accepted for publication (in revised form) October

6, 2022; published electronically January 25, 2023.
https://doi.org/10.1137/21M1462349
Funding: This work is supported by NSF Quantum Leap Challenge Institute (QLCI) program

under Grant OMA-2016245, NSF DMS-2208416, and a grant from the Simons Foundation under
Award 825053. The work of the first author was also supported by the Department of Energy through
the Quantum Systems Accelerator program.

†
Department of Mathematics, Simons Institute for the Theory of Computing, and Challenge

Institute for Quantum Computation, University of California, Berkeley, CA 94720 USA (difang@
berkeley.edu).

‡
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720 USA

(albert.tres@berkeley.edu)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

26

D
ow

nl
oa

de
d 

05
/0

2/
23

 to
 1

36
.1

52
.1

43
.2

35
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1462349
mailto:difang@berkeley.edu
mailto:difang@berkeley.edu
mailto:albert.tres@berkeley.edu


OBSERVABLE ERROR BOUNDS FOR QCMD 27

We focus on the quantum-classical molecular dynamics (QCMD) as proposed and
justified in [11], also sometimes referred to as the Ehrenfest molecular dynamics [11,
12, 22, 60] whose equations of motion are given by a Newtonian flow (for the nuclei)
coupled with a Schrödinger equation (for the electrons):

ih@t 
h =�h

2

2
�x 

h + V (x, y (t)) h :=H
h

t
 
h
,  

h(0, x) =  
h

0 (x),(1.1)

ÿ (t) =�ryV
E

e
(y (t)) , y(0) = y0, y

0(0) = v0,(1.2)

where  h(t, x) 2 C(R+
t
,Rd

x
) is the wave function of the electrons, h is the rescaled

Planck constant, y(t)2C(R+
t
) is the position of the nucleus, V is a given potential of

the whole system, and

V
E

e
=

Z

Rd

V (x, y)
�� h(t, x)

��2 dx

is often called the Ehrenfest potential, given by the quantum dynamics of the electrons,
which vividly explains the spirit of the “on-the-fly” simulation.

QCMD is typically seen as an extension of the Born–Oppenheimer approximation
to the time-dependent situation that serves as a popular tool in chemical and engi-
neering applications (see, e.g., textbooks [7, 48, 62]). The basic assumption is that
the masses between particles di↵er significantlly, which leads to the heuristics that
the heavier particle can be modeled classically while the lighter ones remain quantum.
Interestingly, such heuristics can be justified on a rigorous level. Known as an ap-
proximation of full many-body quantum dynamics, it can be derived mathematically
as a partial classical limit of the full molecular Schrödinger equation by combining
the separation of the full wave function and short wave asymptotics [11].

The numerical di�culties associated with this type of semiclassical Schrödinger
equation lie in the oscillations of order 1/h in both time and spatial discretizations [5],
which need to be resolved for an accurate simulation of the wave function. However, it
has been observed and formally demonstrated in [5], using the Wigner analysis, that
for the linear Schrödinger equation with scalar potentials under suitable conditions, a
time-splitting spectral method can still capture the correct physical observables—not
the wave function—when the time step is much larger than h, although spatially one
still needs to resolve h. Such interesting observations have been recently justified on
a rigorous level by breakthrough results via di↵erent strategies: [31] investigates the
time-splitting algorithm for the von Neumann equation by measuring the Wasserstein
distance between the Husimi functions of the approximate and the exact quantum
density operators, and achieves an observable error bound of O(�t

2 + h
1/2) for the

second-order splitting; and, more recently, a direct observable expectation comparison
is considered in [39], resulting in a tighter bound of O(�t

2 + h
2).

For nonlinear Schrödinger equations, nevertheless, one still needs to resolve h tem-
porally in general, as was numerically demonstrated in [6]. However, for the QCMD
and other Ehrenfest models, numerical evidence presented in [24, 36] suggests the exis-
tence of a temporal meshing strategy independent of h for the physical observables as-
sociated with these nonlinear Schrödinger type systems. Though heuristic arguments
based on the Wigner transform have been provided in both works, no rigorous error
analysis was carried out for such nonlinear problems, which is the focus of this work.

Contribution: At the continuous level, though the semiclassical limit of the Ehren-
fest dynamics has been rigorously proved in [36] in the weak-⇤ sense, the distance
between the Ehrenfest dynamics and its semiclassical limit has not been understood.
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28 DI FANG AND ALBERT TRES VILANOVA

As the first contribution, we establish the distance of the observable expectations
between such two dynamics and show that the error is O(h2). This Egorov-type
estimate also holds when the momentum part or the potential part in the electron
dynamics is absent, which serves as a building block for the numerical analysis with
the time-splitting scheme.

As the second contribution of this paper, we prove the observable error bounds
of this momentum-potential type operator splitting scheme, as proposed in [24, 36],
for the QCMD model, which extends the linear result in [39] to a weakly nonlinear

Schrödinger system. Inspired by [39], the proof utilizes the observable error bounds of
the QCMD model on the continuous level. Di↵erent from the observable estimates
obtained from the wave function that exhibits h scaling in the denominator, this new
observable error bound, taking advantage of its semiclassical limit, removes h in the
denominator and exhibits an additive scaling instead. Moreover, combing two types
of estimates, we present a uniform (in h) observable error bound of the second-order
time-splitting scheme for the QCMD, which serves as our third contribution.

Organization: The rest of this paper is organized as follows. In section 2 we in-
troduce some preliminaries of the semiclassical descriptions for the QCMD model,
including the Wigner transform and Husimi functions, and two important lemmas
that are used in later proofs. We then derive the observable error bounds between
the QCMD and its semiclassical limit in section 3. Section 4 discusses the time-
splitting scheme for the QCMD and analyzes the numerical errors of the observable
resulting from the time-splitting strategy. Finally, we provide the numerical evidence
supporting our analytical results in section 5.

2. Preliminaries. In this section we first introduce the tools to describe the
semiclassical limit of QCMD and then some preliminary lemmas used in later proofs.

2.1. The Wigner transform and the semiclassical limit. We revisit the
Wigner transform [30, 41, 63] and the semiclassical limit of the QCMD (or the Ehren-
fest dynamics) shown in [36]. Let us first recall that the h-scaled Wigner transform
[30, 41, 46] associated with any continuously parametrized family  h ⌘ { h}0h1 2
L
2(Rd) is given by

w
h[ h] (x, ⇠) =

1

(2⇡)d

Z

Rd

 
h

✓
x� h

2
y

◆
 h

✓
x+

h

2
y

◆
e
i⇠·y

dy.

By Plancherel’s theorem and a change of variables one easily finds

��wh[ h]
��
L2(R2d)

=
1

(2⇡)d/2 hd

�� h
��2
L2(Rd)

.

After Wigner transforming the Schrödinger equation, one finds that wh(t, x, ⇠) :=
w

h[ h](t, x, ⇠) satisfies the following nonlocal kinetic equation (see, e.g., [41]),

@tw
h + ⇠ ·rxw

h +⇥h[V h]wh = 0, w
h(0, x, ⇠) =w

h[ h

0 ],

ÿ(t) =�
Z

R
ryV (x, y(t))wh(t, x, ⇠)dxd⇠, y(0) = y0, y

0(0) = v0,

where ⇥h[V h] is the pseudodi↵erential operator

�
⇥h[V h]wh

�
(t, x, ⇠) =

i

h(2⇡)d

Z

Rd

✓
V

h

✓
x+

h

2
z, y(t)

◆
(2.1)

� V
h

✓
x� h

2
z, y(t)

◆◆
bwh(t, x, z)eiz·⇠dz
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OBSERVABLE ERROR BOUNDS FOR QCMD 29

with bwh denoting the Fourier transformation of wh with respect to the second variable
only. It was shown in [36] that one can pass the limit h! 0+ and get its semiclassical
limit consisting of a Liouville equation coupled with a Newtonian flow,

@tµ+ ⇠ ·rxµ�rxV (x, y(t)) ·r⇠µ= 0,(2.2)

ÿ (t) =�
Z

Rd

ryV (x, y(t))µ(t, x, ⇠)dxd⇠,

where w
h

h!0+�! µ and the convergence is in the weak-⇤ sense. Because the measure
converges in the weak-⇤ topology, a direct evaluation of the distance between w

h and
its limit µ becomes a nontrivial task. A framework based on the Wasserstein distance
has been proposed for the linear von Neumann equation in [31].

2.2. The Weyl quantization and Husimi functions. An alternate way to
view the connection between quantum dynamics and its classical analog is through
the Weyl quantization. For a Schwartz funcion a :R2d !R, a= a(x, ⇠), we define its
Weyl quantization [67] to be the operator op(a) acting on  2L

2(Rd) by the formula

(2.3) op(a) =
1

(2⇡h)d

Z

R2d

a

✓
x+ y

2
, ⇠

◆
e
i⇠·(x�y)/h

 (y)d⇠ dy,

so that the expectation values of an operator A = op(a) can be written in terms of
the Wigner transform as

(2.4) hAi = h |A| i=
Z

R2d

a(x, ⇠)wh[ ](x, ⇠)dxd⇠.

One defines the Husimi function �h[ ] :R2d ! [0,1) as

(2.5) �
h[ ](x, ⇠) =

�
w

h[g(0,0)] ⇤wh[ ]
�
(z) =

1

(2⇡h)d
|hg(x,⇠)| i|2,

where g(x,⇠)(·) is the Gaussian wave packet (or the coherent state)

g(x,⇠)(y) =
1

(⇡h)d/4
exp

✓
� 1

2h
|y� x|2 + i

h
⇠ · (y� x)

◆
.

We remark that the Husimi function of  with k k = 1 is in fact a nonnegative
probability density on the phase space, and is the modulus squared of the so-called
Fourier–Bros–Iagolnitzer transform acting on  . The expectation of A = op(a) can
be described by the Husimi function,

hAi =

Z

R2d

✓
a� h

4
�a

◆
(x, ⇠)�h[ ](x, ⇠)dxd⇠ +O(h2),

as detailed in Lemma 2.2.

2.3. Important lemmas. We review two lemmas to be used in the proof of the
paper. The first lemma is the stationary phase [67], which is used in the proof of
Theorem 3.1.

Lemma 2.1 (stationary phase lemma). Assume that a2C
1
c
(R2d). Then for each

positive integer N, we have

Z

R2d

e
i
h hx,⇠i

a(x, ⇠)dxd⇠ = (2⇡h)d
 

N�1X

k=0

h
k

k!

✓
hrx,r⇠i

i

◆k

a(0,0) +O(hN )

!

as h! 0, where h·, ·i stands for the usual inner product.
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30 DI FANG AND ALBERT TRES VILANOVA

The second lemma describes the approximation error of the observable expecta-
tions in terms of the Husimi function [39, Theorem 6.11], which is used in the proof
of Corollary 3.3.

Lemma 2.2 (expectations in terms of Husimi functions). Assume the function

a :R2d !R that defines the observable A= op(a) is smooth and bounded together with

all its derivatives. Then, for all  2L
2(R), we have

����hAi �
Z

R2d

✓
a(x, ⇠)� h

4
�a(x, ⇠)

◆
�
h[ ](x, ⇠)dxd⇠

����Ch
2k k2

L2(Rd), 0< t T,

where C � 0 depends only on the derivative bounds of a.

3. Error between its limit in observables. We quantify the distance between
the QCMD and its semiclassical limit by a direct investigation on the observable
expectations. When the Hamiltonian is linear and time independent, the observable
bounds (also called Egorov’s theorem) is a consequence of the semiclassical expansion
and commutator estimates. On an intuitive level, one has

@t

⇣
e
iHt/h

Ae
�iHt/h

⌘
= e

iHt/h
i

h
[H,A]e�iHt/h

,

and the commutator follows the semiclassical expansion (see, e.g., [67, Theorem 4.12]
and [39, Proposition 6.2])

(3.1) [H,A] =
h

i
op ({H, a}) +O(h3)

for any H and A that are Weyl quantizations of the phase space funtions (symbols)
H(x, p) and a(x, p), respectively, where [H,A] =HA�AH is the commutator of the
operators H and A, and {H, a} = rpH ·rxa�rxH ·rpa is the Poisson bracket of
the corresponding functions H and a. Note that here we follow the notation of [67]
that is of the opposite sign compared to that in [39]. More precisely, for the linear
case (see, e.g., [39, Proposition 6.3] and [67, Section 11]), we can estimate in terms of
the operators,

e
iHt/h

Ae
�iHt/h � op(a �⌅t) =

Z
t

0
@s

⇣
e
iHs/hop(a �⌅t�s)e�iHs/h

⌘
ds

=

Z
t

0
e
iHs/h

✓
i

h
[H,op(a �⌅t�s)]

� op({H, a �⌅t�s})
◆
e
�iHs/h

ds,

where we use ⌅t to denote the flow governed by the Hamiltonian H at time t. Thanks
to (3.1), the di↵erence between e

iHt/h
Ae

�iHt/h and its semiclassical limit op(a�⌅t) in
the operator norm from L

2 to L
2 is bounded by O(h2). However, when H depends on

the wave function itself, it is not su�cient to deal with linear operators. Our goal here
is also to perform the semiclassical expansion, but due to the time dependence in the
potential and nonlinearity of the problem, we consider such an expansion in terms of
the wave function (that is, the solution), instead of the operators. One certainly does
not hope such results hold for arbitrary nonlinearity. Fortunately, here the observable
expectations still exhibit the semiclassical behavior thanks to the structure of the
QCMD system.
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OBSERVABLE ERROR BOUNDS FOR QCMD 31

In order to discuss the classical counterpart of the QCMD system, we consider
the following ODE with its flow map denoted as �t,

(3.2)

8
>>><

>>>:

ẋ= ⇠,

⇠̇ =�rxV (x, y),

ẏ= v,

v̇=�ryV (x, y),

which can be viewed as the Lagrangian description of the semiclassical limit (2.2). In

other words, �t is governed by the total Hamiltonian H0 :=
|⇠|2
2 + |v|2

2 + V (x, y). We
are now ready to state and prove the Egorov-type theorem for the QCMD.

Theorem 3.1 (Egorov’s theorem for the QCMD). Let a(x, ⇠) be a Schwartz func-

tion that defines the observable A = op(a), and the potential function V be smooth

with its derivatives of order � 2 all bounded. Then there exists some constant C � 0
depending on the derivative bounds of a and independent of h and  0 so that

|hAi h(t,·) � hop(a ��t)i
 

h
0 (·)|Cth

2
.

Proof. In this proof, we drop the superscript h in the wave function  h for nota-
tional simplicity. One starts by looking at the integrands of the expectations,

 ̄(t, x) op(a) (t, x)�  ̄0(x)op(a ��t) 0(x) =

Z
t

0

d

ds

�
 ̄(s) op(a ��t�s) (s,x)

�
ds

=

Z
t

0
@s ̄(s,x) op(a ��t�s) (s,x) +  ̄(s,x) op(a ��t�s)@s (s,x)

�  ̄(s,x)@t op(a ��t�s) (s,x)ds

=

Z
t

0

ih

2

�
��x ̄(s,x) op(a ��t�s) (s,x) +  ̄(s,x) op(a ��t�s)�x (s,x)

�
ds

+

Z
t

0

i

h

�
V (x, y(s)) ̄(s,x) op(a ��t�s) (s,x)

�  ̄(s,x) op(a ��t�s)V (x, y(s)) (s,x)
�
ds

+

Z
t

0
 ̄(s,x)op({a ��t�s

,H0}) (s,x)ds :=
Z

t

0
(I) + (II) + (III)ds,

where we use (1.1) and the fact that @t op(a � �t�s) = �op({a � �t�s
,H0}). Denote

b= a ��t�s, one then computes the terms one by one. Starting from the momentum
terms, we have

�x ̄(s,x) op(b) (s,x) = (2⇡h)�d

Z

R2d

�x ̄(s,x)b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h

 (s, q)dq dp

and it follows from the definition of Weyl quantization and integration by parts that

 ̄(s,x)op(b)�x (s,x)

= (2⇡h)�d

Z

R2d

 ̄(s,x)b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h�q (s, q)dq dp

= (2⇡h)�d

Z

R2d

 ̄(s,x)�q

✓
b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h

◆
 (s, q)dq dp.
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32 DI FANG AND ALBERT TRES VILANOVA

Following the chain rule by changing the di↵erentiation variable from q to x, one has

 ̄(s,x)op(b)�x (s,x)

= (2⇡h)�d

Z

R2d

 ̄(s,x)�x

✓
b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h

◆
 (s, q)dq dp

+ (2⇡h)�d

Z

R2d

2i

h
 ̄(s,x)rqb

✓
x+ q

2
, p

◆
· peip·(x�q)/h

 (s, q)dq dp,

where the fact that rqb
�
x+q

2 , p
�
=rxb

�
x+q

2 , p
�
is also used. Therefore, one has

Z
(I)dx=� ih

2
(2⇡h)�d

Z

R3d

�x ̄(s,x)b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h

 (s, q)dq dpdx

+
ih

2
(2⇡h)�d

Z

R3d

 ̄(s,x)�x

✓
b

✓
x+ q

2
, p

◆
e
ip·(x�q)/h

◆
 (s, q)dq dpdx

+ (2⇡h)�d

Z

R3d

 ̄(s,x)rqb

✓
x+ q

2
, p

◆
· peip·(x�q)/h

 (s, q)dq dpdx

=

Z

Rd

 ̄(s,x)op(rxb · p) (s,x)dx,

where the first two terms cancel thanks to the integration by parts in x. Note that
there is no approximation error in the momentum terms and this is essentially because
the Laplacian is a quadratic observable.

Next we compute the potential terms. Since V (x, y) is not necessarily quadratic,
one expects some approximation errors entering the calculations:

(II) =
i

h

�
V (x, y(s)) ̄(s,x) op(b) (s,x)�  ̄(s,x) op(b)V (x, y(s)) (s,x)

�

=
i

h
(2⇡h)�d

Z

R2d

b

✓
x+ q

2
, p

◆
(V (x, y(s))

� V (q, y(s)))eip·(x�q)/h
 ̄(s,x) (s, q)dq dp

=� i

h
(2⇡h)�d

Z

R2d

b

⇣
x� q

2
, p

⌘
(V (x, y(s))

� V (x� q, y(s)))eip·q/h ̄(s,x) (s,x� q)dq dp.

Apply Lemma 2.1, one has

�(II) =  ̄(s,x)hrq,rpi
⇣
b

⇣
x� q

2
, p

⌘
(V (x, y(s))� V (x� q, y(s))) (s,x� q)

⌘
|q=p=0

(3.3)

+  ̄(s,x)
h

2i
hrq,rpi2

✓
b

✓
x� q

2
, p

◆
(V (x, y(s))

� V (x� q, y(s))) (s,x� q)

◆
|q=p=0 +O(h2)

=  ̄(s,x)rpb(x,0) ·rxV (x, y(s)) (s,x) +O(h2)

+  ̄(s,x)
h

2i
hrq,rpi2

✓
b

✓
x� q

2
, p

◆
(V (x, y(s))

� V (x� q, y(s))) (s,x� q)

◆
|q=p=0.
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OBSERVABLE ERROR BOUNDS FOR QCMD 33

On the other hand,

op(rpb ·rxV ) (s,x)

= (2⇡h)�d

Z

R2d

rpb

✓
x+ q

2
, p

◆
rxV

✓
x+ q

2
, y(s)

◆
e
ip·(x�q)/h

 (s, q)dqdp

= (2⇡h)�d

Z

R2d

rpb

⇣
x� q

2
, p

⌘
rxV

⇣
x� q

2
, y(s)

⌘
e
ip·q/h

 (s,x� q)dqdp

=rpb(x,0)rxV (x, y(s)) (s,x)

+
h

i
rq ·

⇣
rprpb

⇣
x� q

2
, p

⌘
rxV

⇣
x� q

2
, y(s)

⌘
 (s,x� q)

⌘
|q=p=0 +O(h2),

where the stationary phase lemma is applied in the last line. One can check that
 ̄(s,x)op(rpb ·rxV ) (s,x) and (II) share the same O(1) and O(h) terms and, hence,

(3.4) (II) =� ̄(s,x)op(rpb ·rxV ) (s,x) +O(h2).

Combing (3.3) and (3.4), we have
Z

R
(I) + (II) + (III)dx

=

Z

Rd

 ̄(s,x) (op(rxb · p)� op(rpb ·rxV ) + op({b,H0})) (s,x)dx+O(h2)

=O(h2).

Integrating both sides, we get the desired result.

Remark 3.2.

1. It follows from the proof that a similar observable bound also holds for the
Schrödinger equation with only the kinetic part or potential part. In par-
ticular, the O(h2) error only comes from the potential part and there is no
asymptotic error in the kinetic part.

2. Note that the proof also works with minor modifications for the linear time-
dependent Hamiltonian

�h
2

2
�+ V (t, x),

provided that V is smooth with all derivatives bounded, as well as the con-
trolled Hamiltonian in quantum control problems [1, 44, 56, 66],

�h
2

2
u1(t)�+ u2(t)V (x),

where u1, u2 2 [0,1] are the control functions and V (x) smooth with all deriva-
tives bounded. But note that for these linear cases, it can be more convenient
to directly work with operators. Specifically, the Hamiltonian corresponds to
the Weyl quantization of time-dependent symbols, and Egorov’s theorem in
such cases can be found in, e.g., [67, section 11].

3. The proof only works for Schwartz functions a(x, ⇠). An extension to a more
general symbol class S�(m) (see [67, Chapter 11]) may be possible and is left
for future study.

Theorem 3.1, together with (2.4) and Lemma 2.2 provides the Egorov-type results
in terms of the Wigner and Husimi functions.
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34 DI FANG AND ALBERT TRES VILANOVA

Corollary 3.3 (Egorov’s theorem in the Wigner functions and Husimi func-
tions). Under the conditions of Theorem 3.1, the observable expectations in terms of

the Wigner and Husimi functions satisfy
����hAi h(t,·) �

Z

R2d

a ��t(x, ⇠)wh[ h

0 ](x, ⇠)dxd⇠

����Cth
2
,(3.5)

����hAi h(t,·) �
Z

R2d

✓
a� h

4
�a

◆
��t(x, ⇠)�h[ h

0 ](x, ⇠)dxd⇠

����Cth
2
,(3.6)

respectively, where C � 0 is some constant depending on the derivatives of a and V

but independent of h and  
h

0 .

4. Numerical schemes and observable errors.

4.1. Time-splitting schemes. The time-splitting algorithm is proposed as fol-
lows: From time t= tn = n�t to t= tn+1 = (n+ 1)�t, with �t given, the QCMD is
split into two subsystems. One contains the kinetic contributions

(4.1)

8
>><

>>:

ih@t 
h =�h

2

2
�x 

h
,

ẏ= v,

v̇= 0,

whose unitary propagation of the wave function from time t = a to t = b is denoted
as UT (a, b), and the numerical flow in this step is denoted as �b�a

T
from time t= a to

time t= b. The other is associated with the potential contributions

(4.2)

8
>>><

>>>:

ih@t 
h = V (x, y(t)) h

,

ẏ= 0,

v̇=�
Z

Rd

ryV (x, y)| h(t, x)|2 dx,

and we denote the unitary evolution of the wave function following this potential state
from time t= a to t= b as UV (a, b), and the numerical flow in this step is denoted as
�b�a

V
from time t = a to time t = b. Note that in the evolution UV (a, b), | h(t, x)|2

does not change with respect to time. This observation is crucially important in
the consideration of its classical counterpart, which makes the resulting ODE an
autonomous one. A first-order Lie splitting then corresponds to evolving (4.1) from
time tn to tn+1, followed by the evolution of (4.2) from time tn to tn+1. Here, we
focus on the discussion of the Strang splitting given as

 
h

n+1 =UV (tn +�t/2, tn+1)UT (tn, tn+1)UV (tn, tn +�t/2) h

n
,(4.3)

(yn+1
, v

n+1) =⌃�t/2
V

�⌃�t

T
�⌃�t/2

V
(yn, vn) :=⌃�t

SV
(yn, vn),(4.4)

where the scheme for the Newtonian part (y, v) is in fact the Störmer–Verlet integrator
(denoted as SV), which will be detailed in section 4.2. To be more precise, the second-
order time-splitting from time tn to tn+1 reads

 
h

⇤ = e
�i�tV (x,yn)/(2h)

 
h

n
, y

⇤ = y
n
, v

⇤ = v
n � �t

2

Z
ryV (x, yn)| h

n
(x)|2 dx,

 
h

⇤⇤ = e
ih�t�x/2 

h

⇤ , y
⇤⇤ = y

⇤ + v
⇤�t, v

⇤⇤ = v
⇤
,

 
h

n+1 = e
�i�tV (x,y⇤⇤)/(2h)

 
h

⇤⇤, y
n+1 = y

⇤⇤
,

v
n+1 = v

⇤⇤ � �t

2

Z
ryV (x, y⇤⇤)| h

⇤⇤(x)|2 dx,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
23

 to
 1

36
.1

52
.1

43
.2

35
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



OBSERVABLE ERROR BOUNDS FOR QCMD 35

where one can use Fourier spectral methods to implement the exponentiation of the
Laplacian and trapezoidal rules for the numerical quadrature. We focus on the time-
splitting strategy (in the semidiscrete setup) and a detailed discussion on the spatial
discretization is rather standard (see, e.g., [5, 6, 24]) and beyond the scope of this
paper. Nevertheless, we point out that when employing the spectral discretization
spatially, one gets an unconditionally stable scheme because the mass of the system
can be shown to be conserved, following the strategies as proposed in [5, 24], which
we do not detail here.

4.2. Observable errors of the Strang splitting. In this section, we aim to
provide a direct error bound of the observable for the Strang splitting. The strategy
is to convert the error estimate of the microscopic solver into an estimate of three
parts: the errors of the macroscopic numerical solver, and the asymptotic errors of
both the continuous and discrete multiscale limit, as is commonly used in the error
analysis of the asymptotic preserving schemes (see, e.g., [29, 33, 42]) and asymptoti-
cally compatible schemes [19, 57]. Note that the corresponding classical counterparts
of (4.1) and (4.2) are given as

(4.5)

8
>>><

>>>:

ẋ= ⇠,

⇠̇ = 0,

ẏ= v,

v̇= 0,

and

8
>>><

>>>:

ẋ= 0,

⇠̇ =�rxV (x, y),

ẏ= 0,

v̇=�ryV (x, y),

respectively, and denote the corresponding flow map from time t= a to time t= b as
�b�a

T
and �b�a

V
. We further define

��t

SV
:=��t/2

V
���t

T
���t/2

V
.

Therefore, the Strang splitting of the QCMD as proposed in (4.3) corresponds to the
second-order SV integrator of the Hamiltonian system governed by the Hamiltonian
htotal =

|⇠|2
2 + |v|2

2 + V (x, y), namely,

x
⇤ = x

n
, ⇠

⇤ = ⇠
n � �t

2
rxV (xn

, y
n), y

⇤ = y
n
, v

⇤ = v
n � �t

2
ryV (xn

, y
n),

x
⇤⇤ = x

⇤ +�t⇠
⇤
, ⇠

⇤⇤ = ⇠
⇤
, y

⇤⇤ = y
⇤ + v

⇤�t, v
⇤⇤ = v

⇤
, x

n+1 = x
⇤⇤
,

⇠
n+1 = ⇠

⇤⇤ � �t

2
rxV (x⇤⇤

, y
⇤⇤), y

n+1 = y
⇤⇤
, v

n+1 = v
⇤⇤ � �t

2
ryV (x⇤⇤

, y
⇤⇤).

We provide two cases as proofs for our main theorem. One is in the simplified case
where the initial wave function is a complex Gaussian and in this proof we only use
the Wigner function; the second proof is for the general case, where when the Wigner
function loses its nonnegativity, we are forced to turn to the Husimi functions. Both
proofs employ the observable estimate of the QCMD Theorem 3.1 and its consequence
Corollary 3.3, which bridge the quantum observables with a classical Hamiltonian flow,
and the numerical errors of the SV integrator of this classical counterpart.

Theorem 4.1 (observable convergence of the Strang splitting). Let the observ-

able A= op(a) be the Weyl quantization of a Schwartz function a :R2d !R, and the

potential function V be smooth with its derivatives of order � 2 all bounded. Then the

global error in the expectation value of A can be estimated as

(4.6) |h h

n
|A| h

n
i � h h(T )|A| h(T )i|CT (�t

2 + h
2)

for some CT depending on tn = T and the derivatives of a and V .
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36 DI FANG AND ALBERT TRES VILANOVA

Proof of the case with an initial complex Gaussian. From tn to tn+1, because of
the construction of the scheme

 
h

n+1 =UV (tn +�t/2, tn+1)UT (tn, tn+1)UV (tn, tn +�t/2) h

n

=UV (tn +�t/2, tn+1)UT (tn, tn+1) 
h

⇤ =UV (tn +�t/2, tn+1) 
h

⇤⇤

and Theorem 3.1, one has

h h

n+1|A| h

n+1i= hAiUV (tn+�t/2,tn+1) h
⇤⇤

= hop(a ���t/2
V

)i h
⇤⇤

+O(�th
2)

= hop(a ���t/2
V

���t

T
i h

⇤
+O(�th

2)

= hop(a ���t/2
V

���t

T
���t/2

V
)i h

n
+O(�th

2)

= hop(a ���t

SV
)i h

n
+O(�th

2).

One can repeat this procedure for each time interval and obtain

h h

n
|A| h

n
i=
D
op
⇣
a �
�
��t

SV

�n⌘E

 
h
0

+O(Th2)

=

Z

R2d

⇣
a �
�
��t

SV

�n⌘
(q, p)wh[ h

0 ](q, p)dq dp+O(h2),(4.7)

where in the last line we used the relationship of the Wigner function and Weyl quanti-
zation. Note that since  h

0 is a complex Gaussian, its Wigner function is nonnegative,
i.e., wh[ h

0 ]� 0 and
Z

R2d

w
h[ h

0 ]dq dp= k h

0 k2 = 1.

On the other hand, applying Corollary 3.3 to the exact solution  h(tn), we have

h h(tn)|A| h(tn)i=
Z

R2d

�
a ��tn

�
(q, p)wh[ h

0 ](q, p)dq dp+O(h2),(4.8)

and hence it su�ces to compare the di↵erence in the a
0
s following the two di↵erent

classical flows. The error bounds of the SV integrator of the classical Hamiltonian
system read

ka ��tn � a � (��t

SV
)nkL1(R2d) C�t

2

for some constant C depending on tn = T . As an immediate consequence, one has
Z

R2d

⇣
a �
�
��t

SV

�n � a ��tn

⌘
(q, p)wh[ h

0 ](q, p)dq dpC�t
2
.

Combining (4.7) and (4.8), we arrived at the desired result.

For general initial data, one no longer has the nonnegativity of the Wigner func-
tion w

h[ h

0 ]� 0, but fortunately, the Husimi function is still nonnegative. Therefore,
we perform the proof using the Husimi function instead.

Proof of the general case. Similar to the proof using the Wigner function, we have

h h

n
|A| h

n
i=
D
op
⇣
a �
�
��t

SV

�n⌘E

 
h
0

+O(Th2)

=

Z

R2d

✓
a �
�
��t

SV

�n � h

4
�a �

�
��t

SV

�n
◆
(q, p)�h[ h

0 ](q, p)dq dp+O(h2),
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OBSERVABLE ERROR BOUNDS FOR QCMD 37

where in the last line we used Lemma 2.2 to represent the expectation in the Husimi
function. On the other hand, thanks to Corollary 3.3, we also have a similar result
for the exact solution,

h h(tn)|A| h(tn)i=
Z

R2d

✓
a ��tn � h

4
�a ��tn

◆
(q, p)�h[ h

0 ](q, p)dq dp+O(h2).

Notice that �h[ 0] is a nonnegative function and satisfies
Z

R2d

�
h[ h

0 ]dq dp= k h

0 k2 = 1,

and hence besides the comparison of a following the flows �tn and (��t

SV
)n, we also

need to compare that of �a. Fortunately, the error bounds of the SV integrator [32]
of the classical Hamiltonian system satisfy

|�tn(q, p)� (��t

SV
)n(q, p)|C�t

2
, |D�tn(q, p)�D(��t

SV
)n(q, p)|C�t

2

for some constant C depending on tn = T and independent for n and �t thanks to
the symplecticity of the integrator. Thus,

ka ��tn � a � (��t

SV
)nkL1(R2d) C�t

2
,

and

k�a ��tn ��a � (��t

SV
)nkL1(R2d)

 kD (�a)kL1(R2d)kD�tn �D(��t

SV
)nkL1(R2d) C�t

2
.

Therefore,

|h h(tn)|A| h(tn)i � h h

n
|A| h

n
i|CT (�t

2 + h
2),

as desired.

Note that Theorem 4.1 is not a uniform bound due to the presence of h on the
right-hand side, but it drastically improves the result using a direct estimate of the
wave function �t

2
/h

2 or �t
2
/h depending on the regularity of the initial condition

(see, e.g., [5, 20, 21]). Nevertheless, we remark that it is possible to achieve an
estimate uniform in h combining the two kind of error bounds, namely, the error can
be chosen as the minimum value between them,

(4.9) min
0<h1

⇢
�t

2 + h
2
,
�t

2

h

�
,

and in the worst case scenario when h = O(�t
2/3), one has the error bound of

O(�t
4/3). We summarize the result in the following corollary.

Corollary 4.2 (a uniform observable estimate of the Strang splitting). Let the
observable A = op(a) be the Weyl quantization of a Schwartz function a : R2d ! R,
and the initial wave function  

h

0 (x) is of the WKB type with bounded amplitude and

phase. Under the assumptions of Theorem 4.1, we have the uniform-in-h estimate of

the global error in the expectation value of A as

|h h

n
|A| h

n
i � h h(T )|A| h(T )i|CT�t

4/3
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38 DI FANG AND ALBERT TRES VILANOVA

for some CT depending on tn = T , the functions a and V, and the initial wave packet

 
h

0 .

Remark 4.3.

1. We remark that the additional assumption on the initial wave function comes
from the condition of the result for the wave function error estimate. To be
specific, for the WKB type initial condition  h

0 , one has h
jk 0kHj Mj with

some constant Mj for j = 1,2, which is the assumption of the initial condition
for the vector norm bound of such semiclassical problems [20, 21].

2. More importantly, we remark that the convergence rate of 4/3 is not sharp.
The optimal rate is unknown in the literature even for the linear case. We
conjecture that the optimal uniform-in-h rate is �t

2 at least for the linear
case, and the improvement of the estimate is left for future work.

3. We also clarify that these results are for the time-splitting (Trotter) errors
with spatial degrees of freedom kept continuous. The spatial discretization
error is not characterized here. In the numerical examples, we implement
the spatial discretization via the Fourier-based pseudospectral discretization
with �x = O(h), which has high accuracy (spectral accuracy). To prove a
uniform error bound with spatial discretization is a more delicate issue, and
there is so far no rigorous result in the literature even for the linear case,
which remains as an important open question in this field. The description
for the nonlinear case is beyond the scope of this paper. Nevertheless, it
is worth mentioning that we have recently discovered an approach directly
analyzing the observable error bounds in the spatially discrete setting via
discrete microlocal analysis [13, 18, 23], which is a work in progress by one of
the authors [14].

5. Numerical results. In this section, we shall report on a few numerical exam-
ples, which illustrate our theoretical results, in particular, the observable error bounds
presented in Theorem 4.1 and the errors of the wave function depicted in (4.9).

To this end, we choose an interaction potential of the form V (x, y) = sin(x2+y
2),

and the initial condition as

(5.1)  
h

0 =Z exp
�
�12.5(x+ 1)2 + i50(x+ 1)

�
,

where Z is the normalization factor such that k h

0 kL2 = 1. The computational domain
is [�⇡,⇡] with �x = 2⇡h/32. The numerical solutions are computed by the time-
splitting methods till T = 0.5 and the trapezoidal rules are applied spatially for the
quadrature that are known to be spectrally accurate for periodic functions. We present
the absolute error of the wave functions  h at tn = T which are computed by

(�x)1/2k h

n
� 

h(tn)k2 ⇡ k h

n
(·)� 

h(tn, ·)kL2 ,

and for the observable expectations are computed using absolute values between the
reference and numerical values as defined on the left-hand side of (4.6). We use the
numerical results computed by a very small step size �t = 10�5 as the reference
solution.

Besides the wave function, we consider the expectation hAi h(t,·) of the following
observables:

• The position operator x̂, defined as multiplication by x, namely, x̂ = x .
• The momentum operator p̂=�ihrx.
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OBSERVABLE ERROR BOUNDS FOR QCMD 39

(a) Wavefunction  h
, y and v (b) Observable expectations

Fig. 1. Errors versus various time steps. Left: Log-log plot of the errors of the wave functions
 , y, and v. Right: Log-log plot of the errors of the position, momentum, and Gaussian observable
expectations. All errors are of second-order convergence in time.

• The Gaussian observable (labeled as “Gaussian” in the figures) defined as the
multiplication by e

�4x2

.
• The Schwartz observable (labeled as “xGaussian” in the figures) defined as

the multiplication by xe
�4x2

.
• Kinetic operator 1

2 p̂
2 =� 1

2h
2�x.

To demonstrate Theorem 4.1, we present the numerical results of varying both �t

and h. In the first test, we fix h= 0.04 and take the step sizes �t= 2�6
,2�7

, · · · ,2�11.
The numerical errors of the wave function  h and the macroscopic quantities y and
v are plotted in Figure 1(a), while Figure 1(b) plots the errors in the expectations
of the position, momentum, and Gaussian observables. In can be seen that all errors
are of second-order convergence in time, which confirms the scaling in �t as shown in
(4.6). However, the errors in the wave function are of a magnitude larger than those
of the observable expectations and the macroscopic quantities y and v. This implies
that to capture the correct physical observables, one may choose a larger step size
compared to the wave function.

We then vary the size of the semiclassical parameter h. In this test, we fix
�t= 0.001 and take h= 2�4

,2�5
, · · · ,2�10. The errors of the observable expectations

are recorded in Figure 2. It can be seen in Figure 2(a) that the errors of the Gaussian
and Schwartz observables are of second order in h, which agrees with (4.6). Besides
the Schwartz observables, we also test other non-Schwartz observables such as the
position, momentum, and kinetic operators. Note that, although, in these cases,
our main theorem can no longer be applied, we still observe additive error bounds
in h. In particular, the errors of the expectations for the position and momentum
operator scale as O(h) as shown in Figure 2(b) and that for the position operator
scales as O(h2). It is worth pointing out that we define the Weyl quantization (2.3)
for Schwartz functions a and the lemma on expectation Lemma 2.2 also requires a

to be Schwartz, and hence a proof of rigorous observable error bounds for such non-
Schwartz observables or polynomials of x̂ and p̂ is beyond the current framework,
which is left as an interesting future direction.

Finally, we present the error of the wave function when varying h. Figure 3 plots
the errors of the wave function  h for h= 2�7

,2�8
, · · ·2�13. It can be seen the scaling

is h�1 as given in (4.9), which is used to generate the uniform error bound. This h�1

scaling is interesting in the following two perspectives. First, it helps to demonstrate
the uniform error bounds. To be specific, note that the uniform-in-h observable error
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(a) Schwartz observables and Kinetic operators (b) Position and momentum operators

Fig. 2. Errors for various h. Left: Log-log plot of the errors of the expectations for the Schwartz
observables and kinetic operator. Right: Log-log plot of the errors of the position and momentum
operators. For Schwartz observables, the error scales as h2, which matches our theoretical bounds
as in (4.6). For non-Schwartz observables, a scaling of h↵ (with ↵> 0) is observed.

Fig. 3. Log-log plot of the errors of the wave function  h.

bounds in Corollary 4.2 are not tight and hence di�cult to be directly numerically
verified. Here we verify both terms in (4.9) numerically instead. Furthermore, the
error grows as h increases which is the opposite of the observable and this further
illustrates that capturing the correct physical observables allows one to take an O(1)
time step, much larger than that of the wave function calculations.

6. Conclusion and discussion. In this work, we investigate the distance be-
tween the QCMD and its semiclassical limit by a careful estimate of the observable
expectations. This observable results on the continuous level are then rewritten using
both the Wigner and Husimi functions. We then discuss the time-splitting strategies
for this quantum-classical mixed dynamics, and prove the observable error bounds of
the Strang splitting using the continuous-level result. In particular, the observable
error bounds present an additive scaling as �t

2 + h
2, which drastically improves the

estimate compared to a direct estimation via the errors in the wave function that
scales as �t

2
/h. Finally, a uniform observable error bound is provided by combining

both estimation strategies.
Possible future directions branch into three di↵erent streams. One is to go be-

yond the Strang splitting and consider higher-order time-splitting strategies such as
Suzuki construction [55], Yoshida’s triple jump [65], symmetric Zassenhaus splitting
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[34], symmetric-conjugate composition [10], for this nonlinear system. The other is to
investigate such observable estimates for other linear and nonlinear systems with their
corresponding numerical schemes, such as the surface hopping methods with matrix
potentials [15, 16, 25, 43], the time-dependent self-consistent field equations [9, 36,
37, 38, 45], and other mean-field systems. We point out that the QCMD preserves its
total energy and, hence, in the semiclassical limit an autonomous Hamiltonian flow
is arrived at. However, when the total energy is not preserved or the symbol H0 of
the total energy is time dependent, one gets a nonautonomous ODE system instead.
Even though the Egorov’s theorem Theorem 3.1 on the continuous level could still
hold, the analysis for the time-splitting schemes may require a correspondence be-
tween the time-splitting strategy with some symplectic integrator for nonautonomous
Hamiltonian system, which could bring some challenges to the analysis. Nevertheless,
such nonautonomous cases would be an interesting future direction. The last is to
consider non-Schwartz functions, such as polynomials of the position and momentum
operators, which is left for future study.

Our paper focuses on the observable error bounds in terms of the time discretiza-
tion. On a separate matter, to estabilish a uniform error bound of the observables in
the spatially discrete setting is an important open problem even for the linear cases.
Though beyond the scope of this paper, we have recently discovered a promising ap-
proach directly analyzing the observable error bounds with spatial discretizations via
discrete microlocal analysis [13, 14, 18, 23], which is a work in progress by one of the
authors. As for implimentations of the high-dimensional PDE grids, recent advances
of quantum algorithms for unbounded Hamiltonian simulation [1, 3, 4, 17, 53, 58] pro-
vide new prospects for e�cent implementations and the combination of the observable
error bounds and quantum implementations is an interesting future direction.

Acknowledgment. The authors acknowledge the hospitality of Kavli Institute
for Theoretical Physics (KITP) supported by the National Science Foundation under
Grant NSF PHY-1748958.
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