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Abstract

Let F be a CM number field. We prove modularity lifting theorems for

regular n-dimensional Galois representations over F without any self-duality

condition. We deduce that all elliptic curves E over F are potentially mod-

ular, and furthermore satisfy the Sato–Tate conjecture. As an application

of a different sort, we also prove the Ramanujan Conjecture for weight zero

cuspidal automorphic representations for GL2(AF ).

Contents

1. Introduction 898

1.1. A brief overview of the argument 899

Acknowledgments 904

1.2. Notation 905

2. Preliminaries on the cohomology of locally symmetric spaces and

Galois representations 909

2.1. Arithmetic locally symmetric spaces: generalities 909

2.2. Arithmetic locally symmetric spaces: the quasi-split unitary group916

2.3. Some automorphic Galois representations 935

2.4. Boundary cohomology 941

3. Local-global compatibility, l 6= p 953

3.1. Statements 953

3.2. The proof of Proposition 3.1.2 955

4. Local-global compatibility, l = p (Fontaine–Laffaille case) 964

4.1. Statements 964

4.2. A direct summand of the boundary cohomology 968

4.3. Cohomology in the middle degree 972

4.4. The degree shifting argument 975

4.5. The end of the proof 984

Keywords: Galois representations, automorphic forms

AMS Classification: Primary: 11F80, 11F55, 11F75, 11G18.

© 2023 Department of Mathematics, Princeton University.

897



898 ALLEN ET AL.

5. Local-global compatibility, l = p (ordinary case) 989

5.1. Statements 989

5.2. Hida theory 991

5.3. The ordinary part of a parabolic induction 1003

5.4. The degree shifting argument 1011

5.5. The end of the proof 1026

6. Automorphy lifting theorems 1028

6.1. Statements 1028

6.2. Galois deformation theory 1031

6.3. Avoiding Ihara’s lemma 1047

6.4. Ultrapatching 1053

6.5. The proof of Theorem 6.1.1 1061

6.6. The proof of Theorem 6.1.2 1074

7. Applications 1084

7.1. Compatible systems 1084

7.2. Proof of the main potential automorphy theorem 1098

References 1106

1. Introduction

In this paper, we prove the first unconditional modularity lifting theo-

rems for n-dimensional regular Galois representations without any self-duality

conditions. A version of these results were proved in [CG18] conditional on

two conjectures. The first conjecture was that the Galois representations con-

structed by Scholze in [Sch15] satisfy a strong form of local-global compatibility

at all primes. The second was a vanishing conjecture for the mod-p cohomol-

ogy of arithmetic groups localized at non-Eisenstein primes that mirrored the

corresponding (known) vanishing theorems for cohomology corresponding to

tempered automorphic representations in characteristic zero. We prove many

cases of the first of these conjectures in this paper. Our arguments crucially

exploit work of Caraiani and Scholze [CS19] on the cohomology of non-compact

Shimura varieties. (See also [CS17] for the compact version of these results.)

The details of this argument are carried out in Sections 4 and 5. (It turns

out that, in the easier case when l 6= p, one can argue more directly using the

original construction in [Sch15], and this is done in Section 3.) On the other

hand, we do not resolve the second conjecture concerning the vanishing of

mod-p cohomology in this paper. Rather, we sidestep this difficulty by a new

technical innovation: a derived version of “Ihara avoidance” that simultaneously

generalizes the main idea of [Tay08] as well as a localization in characteristic

zero idea first used in [KT17]. This argument, together with the proofs of the

main automorphy lifting theorems, is given in Section 6. The result is that

we are able to prove quite general modularity lifting theorems in both the
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ordinary and Fontaine–Laffaille case for general n-dimensional representations

over CM fields, in particular Theorems 6.1.1 and 6.1.2. Instead of reproducing

those theorems here (which require a certain amount of notation), we instead

reproduce here a few corollaries of our main theorems that are worked out in

Section 7. The first theorem is a special case of Corollaries 7.1.13 and 7.1.14:

Theorem 1.0.1. Let E be an elliptic curve over a CM number field F .

Then E and all the symmetric powers of E are potentially modular. Conse-

quently, the Sato–Tate conjecture holds for E.

For an application of a different sort, we also have the following special

case of the Ramanujan conjecture (see Corollary 7.1.15):

Theorem 1.0.2. Let F be a CM field, and let π be a regular algebraic

cuspidal automorphic representation of GL2(AF ) of weight 0. Then, for all

primes v of F , the representation πv is tempered.

This is, to our knowledge, the first case of the Ramanujan conjecture to

be proved for which neither the underlying Galois representation V nor some

closely related Galois representation (such as V ⊗2 or Symm2 V ) is known to

occur as a summand of the étale cohomology of some smooth proper algebraic

variety over a number field; in such cases temperedness (at unramified primes)

is ultimately a consequence of Deligne’s purity theorem. Our proof, in contrast,

follows more closely the original strategy proposed by Langlands. Langlands

explained [Lan70] how one could deduce Ramanujan from functoriality; namely,

functoriality implies the automorphy of Symmn(π) and Symmn(π∨) as well as

the product Symmn(π)� Symmn(π∨). Then, by considering standard analytic

properties of the standard L-function associated to Symmn(π)� Symmn(π∨)

(and exploiting a positivity property of the coefficients of this L-function) one

deduces the required bounds. As an approximation to this, we show that

all the symmetric powers of π (and π∨) are potentially automorphic, and we

then invoke analytic properties of the Rankin–Selberg L-function (in the guise

of the Jacquet–Shalika bounds [JS81b]) as a replacement for the (potential)

automorphy of their product.

1.1. A brief overview of the argument. Let F/F+ be an imaginary CM

field, let K ⊂ GLn(A
∞
F ) be a compact open subgroup, let XK denote the

corresponding (non-Hermitian) locally symmetric space, let E/Qp denote a

finite extension with ring of integers O, and let V = Vλ denote a local system

on XK that is a lattice inside an algebraic representation of weight λ defined

over E. (For example, V could be the trivial local system O.) After omitting

a finite set of primes S containing the p-adic places (and satisfying some

further hypotheses), one may define a Hecke algebra T = TS as the image of

a formal ring of Hecke operators in EndD(O)(RΓ(XK ,V)), where D(O) is the
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derived category of O-modules. (This is isomorphic to the usual ring of Hecke

operators acting on H∗(XK ,V) up to a nilpotent ideal, but for technical reasons

it is better to work in the derived setting; cf. [NT16].) For a non-Eisenstein

maximal ideal m, the main result of [Sch15] guarantees the existence of a Galois

representation

ρm : GF,S → GLn(Tm/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius

elements at places v 6∈ S, where J is a nilpotent ideal whose exponent depends

only on n and [F : Q]. It is crucial for applications to modularity lifting

theorems (following the strategy outlined in [CG18]) to know that this Galois

representation satisfies local-global compatibility at all primes. (As usual, in

order to talk about local-global compatibility at a prime in S, one has to work

with variants of T including Hecke operators at these primes — we ignore all

such distinctions here). Since Tm/J is (in general) not flat over O, it is not
exactly clear what one should expect to mean by local-global compatibility.

For example, for primes l 6= p, a (torsion) representation that is Steinberg at l

need not be ramified at l. Instead, we ask that the characteristic polynomials

of ρm(σ) for σ ∈ Iv for v|l ∈ S and l 6= p have the expected shape. Such a

condition is amenable to arguments using congruences, and we prove a version

of this compatibility in Section 3 (see Theorem 3.1.1). Note that our theorem

only applies to a limited range of l; in particular, we assume that the level Kv

(for v|l ∈ S and l 6= p) satisfies the inclusions Iwv,1 ⊂ Kv ⊂ Iwv (where Iwv
and Iwv,1 are the Iwahori and pro-l Iwahori respectively) and additionally l

satisfies various splitting conditions relative to the field F . This suffices for

applications to modularity, where we make a soluble base change to ensure that

Theorem 3.1.1 applies to both Taylor–Wiles primes and the ramified primes S

away from p. This part of the argument requires only the construction of Galois

representations in [Sch15].

Local–global compatibility for l = p is more subtle. Indeed, we are

not confident enough to formulate a precise conjecture of what local-global

compatibility means in general in the torsion setting. Instead, we restrict to

two settings where the conjectural formulation of local-global compatibility is

more transparent: the case when ρm should be Fontaine–Laffaille (assuming, in

particular, that p is unramified in F ) and the ordinary case (with no restriction

on F ); Sections 4 and 5 are devoted to proving such theorems. In both of these

cases, the underlying strategy is as follows. Associated to our data is a quasi-split

unitary group ‹G over F+ that is a form of GL2n that splits over F/F+. There is

a parabolic subgroup P of ‹G whose Levi subgroup G over F+ may be identified

with ResF/F+ GLn, and hence associated with the locally symmetric spaces XK

as above. The point of this construction is that ‹G may be associated to a

Shimura variety ‹X‹K (and thus to Galois representations of known provenance)
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whereas the cohomology of XK appears inside (in some non-trivial way) a

spectral sequence computing the cohomology of the boundary ∂‹X‹K of the

Borel–Serre compactification of ‹X‹K . One now faces several complications.

The first is that the cohomology of the boundary involves different parabolic

subgroups of ‹G besides P . This is resolved by the assumption that m is

non-Eisenstein. The second is separating inside the boundary cohomology

(associated to P ) the contribution coming from G and that coming from the

unipotent subgroup U of P . Fortunately, the unipotent subgroup U is abelian

and well understood, and we show (for p > n2) that the relevant cohomology

we are interested in occurs as a direct summand of the cohomology of ∂‹X‹K (see

Theorem 4.2.1). Note that for a general coefficient system V = Vλ on XK , there

are a number of different coefficient systems V
λ̃
on ‹X‹K for which H∗(∂‹X‹K ,Vλ̃)

can be related to H∗(XK ,Vλ), and this freedom of choice will be important in

what follows. By these arguments, we may exhibit RΓ(XK ,Vλ/$m)m up to

shift as a direct summand of RΓ(∂‹X‹K ,Vλ̃/$m)m̃. (Here m̃ is the corresponding

ideal of the Hecke algebra ‹T for ‹G, and ρm̃ is the corresponding (reducible)

2n-dimensional representation associated to m, from which ρm was constructed.)

Now suppose that d is the complex (middle) dimension of ‹X‹K . We now make

crucial use of the following theorem, which is the main theorem of [CS19]. (See

Theorem 4.3.3 for a more general statement.)

Theorem 1.1.1 (Caraiani–Scholze [CS19, Th. 1.1]). Assume that F+ 6=Q,

that m is non-Eisenstein, and that ρm̃ is decomposed generic in the sense of

Definition 4.3.1. Assume that for every prime l that is the residue characteristic

of a prime dividing S or ∆F , there exists an imaginary quadratic field F0 ⊂ F
in which l splits. Then

H i(‹X‹K ,Vλ̃/$)m̃ = 0 if i < d, and H i
c(
‹X‹K ,Vλ̃/$)m̃ = 0 if i > d.

This immediately gives a diagram as follows:

Hd(‹X‹K ,Vλ̃[1/p])m̃ ←↩ Hd(‹X‹K ,Vλ̃)m̃ � Hd(∂‹X‹K ,Vλ̃)m̃,
where the leftmost term can be understood in terms of automorphic forms

on Shimura varieties and, in particular, (under appropriate assumptions)

gives rise to Galois representations having the desired p-adic Hodge theo-

retic properties, and the rightmost term (by construction) now sees the part

of RΓ(∂‹X‹K ,Vλ̃/$m)m̃ that (after shifting) contributes in degree d, at least up

to a fixed level of nilpotence.

The idea is then to choose the weight λ̃ so that V
λ̃
on ‹X‹K is related to Vλ

on XK by the action of a Weyl group as in Kostant’s formula [Kos61, Th. 5.14]

(to do this integrally, we need to assume that p is sufficiently large), and that by

varying λ̃ we may see all of the cohomology of RΓ(XK ,Vλ/$m)m in the degree d
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cohomology of RΓ(∂‹X‹K ,Vλ̃/$m)m̃. This idea only works for some weights and

degrees, so to get around this, we first deepen the levels K and ‹K at some other

place above p that allows us to modify the weight λ at the corresponding embed-

dings without changing the Hecke algebra. For the modified λ, we can then find

λ̃ and a Weyl group element giving us to access to Hq(XK ,Vλ)m for q ≥ bd2c
(see Proposition 4.4.1), and we handle the remaining degrees by taking duals.

This part of the argument (including the invocation of Theorem 1.1.1) requires

various local assumptions on F that can always be achieved after a soluble base

change but are not generally satisfied. (In particular, they are not satisfied

when F+ = Q.) We then extract the relevant properties of ρm from those of

the determinant associated to m̃. This summarizes the argument of Section 4.

In Section 5, we prove a different local-global compatibility theorem in

the ordinary case. Although not strictly necessary for our main theorems

(for compatible families, by taking sufficiently large primes, one can always

reduce to the Fontaine–Laffaille case), this allows us to prove a modularity

lifting theorem that may have wider applicability — in particular, the main

local-global compatibility result of this section (Theorem 5.5.1) applies to any

prime p, provided F contains an imaginary quadratic field in which p splits. The

general approach in this section is similar to that of Section 4. However, instead

of exhibiting RΓ(XK ,Vλ/$m)m up to shift as a direct summand (as a Hecke

module) of RΓ(∂‹X‹K ,Vλ̃/$m)m̃ (whose proof in Section 4 required p > n2), we

make arguments on the level of completed cohomology and exploit a version of

Emerton’s ordinary parts functor. A key computation is that of the ordinary

part of a parabolic induction from P to ‹G in Section 5.3 following arguments

of Hauseux [Hau16]. Because only part of the cohomology of the unipotent

radical U is ordinary, only relative Weyl group elements appear in the degree

shifts (see Theorem 5.4.3) and consequently we only obtain shifts by multiples

of [F+ : Q] in this way. We get around this by a trick using the center of G,

showing that the Hecke algebra acting on H∗(XK ,Vλ) can be understood in

terms of the Hecke algebra acting only in degrees that are multiples of [F+ : Q]

(Lemma 5.4.16). As in the Fontaine–Laffaille case, we can then extract the

relevant properties of ρm from those of the determinant associated to m̃.

We now turn to the modularity lifting theorems of Section 6. A key

hypothesis of [CG18] was the truth of a vanishing conjecture for integral

cohomology localized at a non-Eisenstein maximal ideal m outside a prescribed

range (mirrored by the characteristic zero vanishing theorems of Borel and

Wallach [BW00]). This conjecture remains unresolved. Instead, we exploit a

localization in characteristic zero idea first employed in [KT17]. This requires

a slightly stronger residual modularity hypothesis — namely, that ρm actually

comes from an automorphic representation rather than one merely associated to

a torsion class — but this will be satisfied for our applications, and it is at any
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rate required at other points at the argument (for example to know that the

residual modularity hypothesis is preserved under soluble base change). Two

points remain. The first, which is mostly technical, is to show that the approach

of [CG18] and [KT17] is compatible with the fact that we only have Galois

representations to T/J for some nilpotent ideal J . The second, which is more

serious, is to show that the localization argument of [KT17] is compatible with

the “Ihara avoidance argument” of [Tay08] and the (essentially identical) l0 > 0

version of this argument in [CG18]. (Here l0 is the parameter of [BW00] that

measures the failure of the underlying real group to admit discrete series and

that plays plays a fundamental role in [CG18].) To explain the problem, we

briefly recall the main idea of [Tay08] in the l0 = 0 setting. (The difficulties are

already apparent in this case.) One compares two global deformation problems

that (for exposition) differ only at an auxiliary prime v with l = N(v) ≡ 1

mod p, and that at all other primes have smooth local deformation conditions.

The corresponding local deformation rings R
(1)
v and R

(2)
v at the prime v are

taken to be tame local deformation rings that the image of tame inertia

has minimal polynomial (X − 1)n or (X − ζ1) . . . (X − ζn) respectively for

distinct roots of unity ζi ≡ 1 mod v. The corresponding patched modules H
(1)
∞

and H
(2)
∞ constructed via the Taylor–Wiles method ([TW95], [Kis09]) have

the expected depth over S∞. On the one hand, the generic fibre of R
(2)
v is

geometrically irreducible, which forces H
(2)
∞ to have full support over R

(2)
v . On

the other hand, there is an isomorphism R
(1)
v /$ = R

(2)
v /$, and this gives an

identification H
(1)
∞ /$ ' H

(2)
∞ /$. But now, the ring R

(1)
v has the convenient

property that any irreducible component of its special fibre comes from a unique

irreducible component of the generic fibre, and from this a modularity result

is deduced in [Tay08] using commutative algebra. Suppose we now drop the

hypothesis that the integral cohomology is concentrated in a single degree (still

in our l0 = 0 setting), but we continue to assume this holds after inverting p.

Now we can no longer control the depth of the S∞-modulesH
(1)
∞ andH

(2)
∞ , and so

knowing H
(2)
∞ [1/p] 6= 0 and H

(1)
∞ /$ = H

(2)
∞ /$ does not imply that H

(1)
∞ [1/p] 6=

0. For example, it could happen that H
(1)
∞ = H

(1)
∞ /$ = H

(2)
∞ /$. The resolution

of this difficulty is not to simply compare the patched modules in fixed (final)

degree, but the entire patched complex in the derived category. The point

is now that these complexes in characteristic p (which are derived reductions

of perfect S∞-complexes for the ring of diamond operators S∞) remember

information about characteristic zero. As a simple avatar of this idea, if M is a

finitely generated Zp-module, then M [1/p] is non-zero if and only if M ⊗L Fp
has non-zero Euler characteristic over Fp. The main technical formulation of

this principle that allows us to prove a version of Ihara avoidance in our setting

is Lemma 6.3.4.
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Finally, in Section 7, we apply the results of previous sections to prove

Theorems 1.0.1 and 1.0.2. We begin with some preliminaries on compatible

systems in order to show there are enough primes such that the corresponding

residual representations satisfy hypotheses of our modularity lifting theorems.

As expected, the arguments of this section make use of the p-q switch ([Wil95],

but first exploited in the particular context of potential automorphy in [Tay02])

and a theorem of Moret-Bailly [MB89].
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1.2. Notation. We write all matrix transposes on the left; so tA is the

transpose of A. We will write charA for the characteristic polynomial of a

matrix A. We write GLn for the usual general linear group (viewed as a

reductive group scheme over Z) and Tn ⊂ Bn ⊂ GLn for its subgroups of

diagonal and of upper triangular matrices, respectively. We will write O(n)

(resp. U(n)) for the group of matrices g ∈ GLn(R) (resp. GLn(C)) such that
tgcg = 1n.

If R is a local ring, we write mR for the maximal ideal of R.

If ∆ is an abelian group, we will let ∆tor denote its maximal torsion

subgroup and ∆tf its maximal torsion free quotient. If ∆ is profinite and

abelian, we will also write ∆(l) for its Sylow pro-l-subgroup, which is naturally

isomorphic to its maximal pro-l continuous quotient. If Γ is a profinite group,

then Γab will denote its maximal abelian quotient by a closed subgroup. If

ρ : Γ → GLn(Ql) is a continuous homomorphism, then we will let ρ : Γ →
GLn(Fl) denote the semi-simplification of its reduction, which is well defined

up to conjugacy (by the Brauer–Nesbitt theorem). If M is a topological abelian

group with a continuous action of Γ, then by H i(Γ,M) we shall mean the

continuous cohomology.

If R is a (possibly non-commutative) ring, then we will write D(R) for

the derived category of R-modules. By definition, an object of D(R) is a

cochain complex of R-modules. An object of D(R) is said to be perfect if it is

isomorphic in this category to a bounded complex of projective R-modules.

If R is a complete Noetherian local ring, C ∈ D(R) is a perfect complex,

and T → EndD(R)(C) is a homomorphism of R-algebras, then the image T of T

in EndD(R)(C) is a finite R-algebra, which can therefore be written as a product

T =
∏

m Tm of its localizations at maximal ideals. There is a corresponding

decomposition 1 =
∑

m em of the unit in T as a sum of idempotents. Since

D(R) is idempotent complete, this determines a decomposition C = ⊕mCm in

D(R). The direct summands Cm are well defined up to unique isomorphism.

We usually reserve the symbol C• to refer to an element in the category of

cochain complexes, although hopefully statements of the form C• = 0 in D(R)

will not cause any confusion.

If G is a locally profinite group, and U ⊂ G is an open compact subgroup,

then we write H(U,G) for the algebra of compactly supported, U -biinvariant

functions f : G → Z, with multiplication given by convolution with respect

to the Haar measure on G that gives U volume 1. If X ⊂ G is a compact

U -biinvariant subset, then we write [X] for the characteristic function of X, an

element of H(U,G).
If G is a reductive group over a field k and T ⊂ G is a split maximal torus,

then we write W (G, T ) for the Weyl group (the set of k-points of the quotient

NG(T )/T ). For example, if F/Q is a number field, then we may identify
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W ((ResF/QGLn)C, (ResF/Q Tn)C) with S
Hom(F,C)
n . If P ⊂ G is a parabolic

subgroup that contains T , then there is a unique Levi subgroup L ⊂ P that

contains T . We write WP (G, T ) for the absolute Weyl group of this Levi

subgroup, which may be identified with a subgroup of W (G, T ).

Suppose that G comes equipped with a Borel subgroup B containing T .

Then we can form X∗(T )+ ⊂ X∗(T ), the subset of B-dominant characters.

If P is a parabolic subgroup of G that contains B, with Levi L as above,

then B ∩ L is a Borel subgroup of L and we write X∗(T )+,P for the subset of

(B ∩ L)-dominant characters. The set

WP (G, T ) = {w ∈W (G, T ) | w(X∗(T )+) ⊂ X∗(T )+,P }
is a set of representatives for the quotient WP (G, T )\W (G, T ).

Galois representations. If F is a perfect field, we let F denote an algebraic

closure of F and GF the absolute Galois group Gal(F/F ). We will use ζn to

denote a primitive nth-root of 1. Let εl denote the l-adic cyclotomic character

and εl its reduction modulo l. We will also let ωl : GF → µl−1 ⊂ Z×l denote

the Teichmüller lift of εl. If E/F is a separable quadratic extension, we will let

δE/F denote the non-trivial character of Gal(E/F ). We will write BrF for the

Brauer group of F .

We will write Qlr for the unique unramified extension of Ql of degree r

and Zlr for its ring of integers. We will write Qnr
l for the maximal unramified

extension of Ql and Znr
l for its ring of integers. We will also write Ẑnr

l for the

l-adic completion of Znr
l and “Qnr

l for its field of fractions.

If K is a finite extension of Qp for some p, we write Knr for its maximal

unramified extension, IK for the inertia subgroup of GK , FrobK ∈ GK/IK for

the geometric Frobenius, and WK for the Weil group. If K ′/K is a Galois

extension, we will write IK′/K for the inertia subgroup of Gal(K ′/K). We will

write ArtK : K×
∼−→W ab

K for the Artin map normalized to send uniformizers to

geometric Frobenius elements. We will write ωl,r for the character GQlr
→ Z×lr

such that ωl,r ◦ ArtQlr
sends l to 1 and sends a ∈ Z×lr to the Teichmüller lift

of a mod l. This is sometimes referred to as “the fundamental character of

niveau r.” (Thus ωl,1 = ωl.)

We will let recK be the local Langlands correspondence of [HT01], so that if

π is an irreducible complex admissible representation of GLn(K), then recK(π)

is a Frobenius semi-simple Weil–Deligne representation of the Weil group WK .

We will write rec for recK when the choice of K is clear. We write recTK for

the arithmetic normalization of the local Langlands correspondence, as defined

in, e.g., [CT14, §2.1]; it is defined on irreducible admissible representations of

GLn(K) defined over any field that is abstractly isomorphic to C (e.g., Ql).

If (r,N) is a Weil–Deligne representation ofWK , we will write (r,N)F -ss for

its Frobenius semisimplification. If ρ is a continuous representation of GK over
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Ql with l 6= p, then we will write WD(ρ) for the corresponding Weil–Deligne

representation of WK . (See, for instance, Section 1 of [TY07].) By a Steinberg

representation of GLn(K) we will mean a representation Sp n(ψ) (in the notation

of Section 1.3 of [HT01]), where ψ is an unramified character of K×. If πi is an

irreducible smooth representation of GLni(K) for i = 1, 2, we will write π1 � π2
for the irreducible smooth representation of GLn1+n2(K) with rec(π1 � π2) =

rec(π1)⊕ rec(π2). If K
′/K is a finite extension and if π is an irreducible smooth

representation of GLn(K), we will write BCK′/K(π) for the base change of π

to K ′ that is characterized by recK′(BCK′/K(π)) = recK(π)|WK′ .

If ρ is a de Rham representation of GK over Qp, then we will write WD(ρ)

for the corresponding Weil–Deligne representation of WK , and if τ : K ↪→ Qp

is a continuous embedding of fields, then we will write HTτ (ρ) for the multiset

of Hodge–Tate numbers of ρ with respect to τ . Thus HTτ (ρ) is a multiset

of dim ρ integers. In fact if W is a de Rham representation of GK over Qp

and if τ : K ↪→ Qp, then the multiset HTτ (W ) contains i with multiplicity

dimQl
(W ⊗τ,K “K(i))GK . Thus, for example, HTτ (εp) = {−1}.

If G is a reductive group over K and P is a parabolic subgroup with

unipotent radical N and Levi component L, and if π is a smooth representation

of L(K), then we define Ind
G(K)
P (K) π to be the set of locally constant functions

f : G(K) → π such that f(hg) = π(hN(K))f(g) for all h ∈ P (K) and

g ∈ G(K). It is a smooth representation of G(K) where (g1f)(g2) = f(g2g1).

This is sometimes referred to as “natural” or “un-normalized” induction. We

let δP denote the determinant of the action of L on LieN . Then we define the

“normalized” or “unitary” induction n-Ind
G(K)
P (K) π to be Ind

G(K)
P (K)(π ⊗ |δP |

1/2
K ). If

P is any parabolic in GLn1+n2 with Levi component GLn1×GLn2 , then π1�π2

is a sub-quotient of n-Ind
GLn1+n2 (K)

P (K) π1 ⊗ π2.
We will let c denote complex conjugation on C. We will write ArtR (resp.

ArtC) for the unique continuous surjection

R× � Gal(C/R)

(resp. C× � Gal(C/C)). We will write recC (resp. recR), or simply rec, for the

local Langlands correspondence from irreducible admissible (LieGLn(R)⊗R C,

O(n))-modules (resp. (LieGLn(C)⊗R C, U(n))-modules) to continuous, semi-

simple n-dimensional representations of the Weil group WR (resp. WC) (see

[Lan89]). If πi is an irreducible admissible (LieGLni(R)⊗R C, O(ni))-module

(resp. (LieGLni(C)⊗RC, U(ni))-module) for i = 1, . . . , r and if n = n1+· · ·+nr,
then we define an irreducible admissible (LieGLn(R)⊗RC, O(n))-module (resp.

(LieGLn(C)⊗R C, U(n))-module) π1 � · · ·� πr by

rec(π1 � · · ·� πr) = rec(π1)⊕ · · · ⊕ rec(πr).
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If π is an irreducible admissible (LieGLn(R) ⊗R C, O(n))-module, then we

define BCC/R(π) to be the irreducible admissible (LieGLn(C) ⊗R C, U(n))-

module defined by

recC(BCC/R(π)) = recR(π)|WC
.

If π is an irreducible admissible representation of GLn(AF ) and ξ ∈
(Zn+)

Hom(F,C), we say that π is regular algebraic of weight ξ if the infinitesimal

character of π∞ is the same as that of V ∨ξ , where Vξ is the algebraic represen-

tation of ResF/QGLn of highest weight ξ (see Section 2.2.1). We say that it is

regular algebraic if it is regular algebraic of some weight.

We will write || || for the continuous homomorphism

|| || =
∏

v

| |v : A×/Q× −→ R×>0,

where each | |v has its usual normalization, i.e., |p|p = 1/p.

Now suppose that K/Q is a finite extension. We will write || ||K (or simply

|| ||) for || || ◦NK/Q. We will also write

ArtK =
∏

v

ArtKv : A×K/K
×(K×∞)0

∼−→ Gab
K .

If v is a finite place of K, we will write k(v) for its residue field, qv for #k(v),

and Frobv for FrobKv . If v is a real place of K, then we will let [cv] denote the

conjugacy class in GK consisting of complex conjugations associated to v. If

K ′/K is a quadratic extension of number fields, we will denote by δK′/K the

nontrivial character of A×K/K
×NK′/KA×K′ . (We hope that this will cause no

confusion with the Galois character δK′/K . One equals the composition of the

other with the Artin map for K.) If K ′/K is a soluble, finite Galois extension

and if π is a cuspidal automorphic representation of GLn(AK), we will write

BCK′/K(π) for its base change to K ′, an (isobaric) automorphic representation

of GLn(AK′) satisfying

BCK′/K(π)v = BCK′
v/Kv|K

(πv|K )

for all places v of K ′. If πi is an automorphic representation of GLni(AK)

for i = 1, 2, we will write π1 � π2 for the automorphic representation of

GLn1+n2(AK) satisfying

(π1 � π2)v = π1,v � π2,v

for all places v of K.

We will call a number field K a CM field if it has an automorphism c such

that for all embeddings i : K ↪→ C, one has c ◦ i = i ◦ c. In this case, either K

is totally real or a totally imaginary quadratic extension of a totally real field.

In either case, we will let K+ denote the maximal totally real subfield of K.

Suppose that K is a number field and

χ : A×K/K
× −→ C×
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is a continuous character. If there exists a ∈ ZHom(K,C) such that

χ|(K×
∞)0 : x 7−→

∏

τ∈Hom(K,C)

(τx)aτ ,

we will call χ algebraic. In this case, we can attach to χ and a rational prime l

and an isomorphism ı : Ql
∼−→ C, a unique continuous character

rl,ı(χ) : GK −→ Q
×
l

such that for all v 6 |l, we have

ı ◦ rl,ı(χ)|WKv
◦ArtKv = χv.

There is also an integer wt(χ), the weight of χ, such that

|χ| = || ||−wt(χ)/2
K .

(See the discussion at the start of [BLGGT14, §A.2] for more details.)

If K is a totally real field, we call a continuous character

χ : A×K/K
× −→ C×

totally odd if χv(−1) = −1 for all v|∞. Similarly, we call a continuous character

µ : GK −→ Q
×
l

totally odd if µ(cv) = −1 for all v|∞.

2. Preliminaries on the cohomology of locally symmetric spaces

and Galois representations

Our main objects of study in this paper are n-dimensional Galois repre-

sentations and their relation to the cohomology of congruence subgroups of

GLn (equivalently, the cohomology of the locally symmetric spaces attached to

congruence subgroups of GLn). In this introductory section we establish some

basic notation and definitions concerning these objects, and we recall some of

their fundamental known properties. In particular, we will define cohomology

groups associated to an arbitrary weight and level and also define the Hecke

algebras that act on these cohomology groups.

2.1. Arithmetic locally symmetric spaces : generalities.

2.1.1. Symmetric spaces. Let F be a number field, and let G be a connected

linear algebraic group over F . We consider a space of type S −Q for G :=

ResF/QG, in the sense of [BS73, §2] (see also [NT16, §3.1]). This is a pair

consisting of a homogeneous space XG for G(R) and a family of Levi subgroups

of GR satisfying certain conditions. From [BS73, Lem. 2.1], the homogeneous

space XG is determined up to isomorphism. We will refer to XG as the
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symmetric space for G. For example, if G = GLn,F , we can take XG =

GLn(F∞)/K∞R× for K∞ ⊂ GLn(F∞) a maximal compact subgroup.

An open compact subgroup KG ⊂ G(A∞F ) is said to be neat if all of its

elements are neat. An element g = (gv)v ∈ G(A∞F ) is said to be neat if the

intersection ∩vΓv is trivial, where Γv ⊂ Q
×

is the torsion subgroup of the

subgroup of F
×
v generated by the eigenvalues of gv acting via some faithful

representation of G.

We will call a “good subgroup” any neat open compact subgroup KG ⊂
G(A∞F ) of the form KG =

∏
vKG,v, the product running over finite places v

of F . If KG is a good subgroup, then we define

XG
KG

:= G(F )\
Ä
XG ×G(A∞F )/KG

ä
and XG := G(F )\

Ä
XG ×G(A∞F )

ä
,

the latter with the discrete topology on G(A∞F ).

These topological spaces may be given the structure of smooth manifolds,

and G(A∞F ) acts on XG by right translation. We can identify XG
KG

= XG/KG.

Note that the space XG is diffeomorphic to Euclidean space. The neatness

condition on KG implies that XG
KG

can be identified with a finite disjoint union

of quotients of XG by the action of torsion-free arithmetic subgroups of G(F ).

We letX
G
denote the partial Borel–Serre compactification ofXG (see [BS73,

§7.1]). Define

X
G
KG

:= G(F )\
Ä
X

G ×G(A∞F )/KG

ä
and XG := G(F )\

Ä
X

G ×G(A∞F )
ä
.

For any good subgroup KG ⊂ G(A∞F ), the space X
G
KG

, which can be identified

with XG/KG, is compact (see [BS73, Th. 9.3]). More precisely, X
G
KG

is a

compact smooth manifold with corners with interior XG
KG

; the inclusion XG
KG

↪→
X

G
KG

is a homotopy equivalence. We also define ∂XG = X
G −XG and

∂XG
KG

:= G(F )\
Ä
∂XG ×G(A∞F )/KG

ä
and ∂XG := G(F )\

Ä
∂XG ×G(A∞F )

ä
.

2.1.2. Hecke operators and coefficient systems. If S is a finite set of finite

places of F , we set GS := G(A∞,SF ) and GS := G(AF,S), and similarly KS
G =∏

v 6∈SKG,v and KG,S =
∏
v∈SKG,v. We also sometimes write G∞ = G(A∞F ).

Let R be a ring, and let V be an R[G(F ) ×KG,S ]-module, finite free as

R-module. We now explain how to obtain a local system of finite free R-modules,

also denoted V, on XG
KG

, and how to equip the complex RΓ(XG
KG
,V) ∈ D(R)

with an action of the Hecke algebra H(GS ,KS
G), following the formalism of

[NT16] (in particular, viewing XG ×G(A∞F ) as a right G(F )×G(A∞F )-space).

The R[G(F ) × KG,S ]-module V determines (by pullback from a point)

a G(F ) × GS × KG,S-equivariant sheaf, also denoted V, of finite free R-

modules on XG ×G(A∞F ), hence (by descent under a free action, as in [NT16,

Lem. 2.17]) a GS × KG,S-equivariant sheaf V on XG. By taking derived
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global sections we obtain RΓ(XG,V), which is an object of the derived cat-

egory of R[GS ×KG,S ]-modules. By taking derived invariants under KG we

obtain RΓ(KG, RΓ(XG,VXG
)), which is an object of the derived category of

H(GS ,KS
G)⊗Z R-modules.

On the other hand, if we only think of V as a KG-equivariant sheaf on XG,

it is equivalent to a sheaf V on XG
KG

(applying once again [NT16, Lem. 2.17]).

The complex RΓ(XG
KG
,V) is naturally isomorphic in D(R) to the image of the

complex RΓ(KG, RΓ(XG,VXG
)) under the exact forgetful functor

D(H(GS ,KS
G)⊗Z R)→ D(R);

cf. [NT16, Prop. 2.18]. In this way, we obtain a canonical homomorphism

(2.1.3) H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(X

G
KG
,V)).

The same formalism applies equally well to the Borel–Serre compactification

(because G(F ) × KG acts freely on X
G × G(A∞F )). Even more generally, if

Y is any right GS × KG,S-space and C is any bounded-below complex of

GS ×KG,S-equivariant sheaves of R-modules on Y , there is a homomorphism

H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(KG, RΓ(Y,C))).

Taking j : XG ×G(A∞F )→ X
G ×G(A∞F ) to be the canonical open immersion

and V to be an R[G(F )×KG,S ]-module, finite free as R-module, this determines

an action of the Hecke algebra on the cohomology groups with compact support:

H(GS ,KS
G)⊗Z R→ EndD(R)(RΓ(G(F )×KG, RΓ(X

G ×G(A∞F ), j!V)))
= EndD(R)(RΓc(X

G
KG
,V)).

We have the following lemma, which is a consequence of the existence of the

Borel–Serre compactification (see [BS73, §11]):

Lemma 2.1.4. Let KG be a good subgroup, let R be a Noetherian ring, and

let V be an R[G(F )×KG]-module, finite free as R-module. Then H∗(XG
KG
,V)

is a finitely generated R-module.

A variant of this construction arises when we are given a normal good

subgroup K ′G ⊂ KG with the property that KS
G = (K ′G)

S . Then we write

RΓKG/K
′
G
(XG

K′
G
,V) ∈ D(R[KG/K

′
G]) for the complex in this category comput-

ing the cohomology of H∗(XG
K′

G
,V) with its natural KG/K

′
G = KG,S/K

′
G,S-

action. The image of this complex under the forgetful functor D(R[KG/K
′
G])→

D(R) is RΓ(XG
K′

G
,V), and there is a homomorphism

(2.1.5) H(GS ,KS
G)⊗Z R→ EndD(R[KG/K

′
G])(RΓKG/K

′
G
(XG

K′
G
,V))
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that recovers (2.1.3) after composition with the map

(2.1.6) EndD(R[KG/K
′
G])(RΓKG/K

′
G
(XG

K′
G
,V))→ EndD(R)(RΓ(X

G
KG
,V))

given by the functor RΓ(KG/K
′
G, ?).

The following lemma is a strengthening of Lemma 2.1.4:

Lemma 2.1.7. Let KG be a good subgroup, and let K ′G ⊂ KG be a normal

subgroup that is also good. Let R be a Noetherian ring, and let V be an

R[G(F )×KG]-module, finite free as R-module. Then RΓKG/K
′
G
(XG

K′
G
,V) is a

perfect object of D(R[KG/K
′
G]); in other words, it is isomorphic in this category

to a bounded complex of projective R[KG/K
′
G]-modules.

Proof. Pullback induces an isomorphism

RΓKG/K
′
G
(X

G
K′

G
,V)→ RΓKG/K

′
G
(XG

K′
G
,V),

so it suffices to show that RΓKG/K
′
G
(X

G
K′

G
,V) is a perfect complex. As in [BS73,

§11], we see that X
G
KG

admits a finite triangulation; this pulls back to a

G(F )×KG-invariant triangulation ofX
G×G(A∞F ). Let C• be the corresponding

complex of simplicial chains. It is a bounded complex of finite free Z[G(F )×KG]-

modules. The lemma now follows on observing that RΓKG/K
′
G
(X

G
K′

G
,V) is

isomorphic in D(R[KG/K
′
G]) to the complex HomZ[G(F )×K′

G](C•,V). �

Finally we introduce some notation relevant for relating the Hecke operators

of G and of its parabolic subgroups. Let us therefore now assume that G is

reductive, and let P = MN be a parabolic subgroup with Levi subgroup

M. Let KG ⊂ G(A∞F ) be a good subgroup. In this situation, we define

KP = KG ∩P(A∞F ), KN = KG ∩N(A∞F ), and we define KM to be the image of

KP in M(A∞F ). We say that KG is decomposed with respect to P = MN if we

have KP = KM nKN; equivalently, if KM = KG ∩M(A∞F ).

Assume now that KG is decomposed with respect to P = MN, and let

S be a finite set of finite places of F such that for all v 6∈ S, KG,v is a

hyperspecial maximal compact subgroup of G(Fv). In this case, we can define

homomorphisms

rP : H(GS ,KS
G)→ H(PS ,KS

P) and rM : H(PS ,KS
P)→ H(MS ,KS

M),

given respectively by “restriction to P” and “integration along N”; see [NT16,

§§2.2.3, 2.2.4] for the definitions of these maps, along with the proofs that they

are indeed algebra homomorphisms and that integration along N preserves

integrality. We write

(2.1.8) S = rM ◦ rP
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for the composite map, or S = SGM when we wish to emphasize the ambient

groups. By abuse of notation, we also denote by rP, rM and S = SGM the same

maps for the local Hecke algebras at v 6∈ S.
2.1.9. The Hecke algebra of a monoid. We in fact need a slight generaliza-

tion of the discussion in the previous section, which we outline now in a similar

way to [NT16, §2.2].

We first discuss the local situation. Let F be a non-archimedean local field,

and let G be a reductive group over F . Let q denote the cardinality of the

residue field of F . If U ⊂ G(F ) is an open compact subgroup and ∆ ⊂ G(F )
is an open submonoid that is invariant under left and right multiplication by

elements of U , then we can consider the subset H(∆, U) ⊂ H(G(F ), U) of

functions f : G(F )→ Z that are supported in ∆. It follows from the definition

of the convolution product that this subset is in fact a subalgebra. If R is a

ring and M is an R[∆]-module (or more generally, a complex of R[∆]-modules),

then there is a corresponding homomorphism H(∆, U)→ EndD(R)(RΓ(U,M)).

This extends the formalism for the full Hecke algebra described in [NT16, 2.2.5]

and recalled in the previous section.

Now let P ⊂ G be a parabolic subgroup with Levi decomposition P =MN ,

and let P = MN denote the opposite parabolic. Let U ⊂ G be an open

compact subgroup that admits an Iwahori decomposition with respect to P .

By definition, this means that if we define UN = U ∩N(F ), UM = U ∩M(F ),

and UN = U ∩N(F ), then the two product maps

UN × UM × UN → U and UN × UM × UN → U

are bijective. In this case, we write ∆M ⊂ M(F ) for the set of U -positive

elements, i.e., those t ∈ M(F ) that satisfy tUN t
−1 ⊂ UN and UN ⊂ tUN t

−1.

We define ∆ = UN∆MUN .

Lemma 2.1.10. Note that ∆M and ∆ are monoids. Moreover, ∆M is open

in M(F ), ∆ is open in G(F ), we have U∆U = ∆, and ∆ ∩M(F ) = ∆M .

Proof. It is clear from the definition that ∆M is closed under multiplication,

and also that ∆M , ∆ are open in M(F ) and G(F ), respectively. To show that

U∆U = ∆, we simply observe that if m ∈ ∆M , then the definition of positivity

gives

UmU = UmUNUMUN = UmUMUN = UNUMUNmUMUN

= UNUMmUMUN ⊂ UN∆MUN = ∆.

To show that ∆ is closed under multiplication, we must show that Um1Um2U ⊂
U∆MU . Using the definition of positivity, we see that

Um1Um2U = Um1UNUMUNm2U = Um1UMm2U,
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so it is equivalent to show m1UMm2 ⊂ ∆M ; and this is true, since UM ⊂ ∆M .

Finally, the identity ∆∩M(F ) = ∆M follows from the following observation: if

u1tū2 = m ∈M(F ) for u1 ∈ UN , t ∈ ∆M and ū2 ∈ UN , then ū2 = t−1u−11 m ∈
P (F ) ∩N(F ), so ū2 must be the identity. Similarly, u1 must be the identity,

so m = t ∈ ∆M . �

It follows that the Hecke algebras H(∆, U) and H(∆M , UM ) are defined.

Moreover, ∆P = ∆ ∩ P (F ) is a monoid, and we can consider also the Hecke

algebra H(∆P , UP ).

Lemma 2.1.11. Consider the two maps rP : H(∆, U)→ H(∆P , UP ) and

rM : H(∆P , UP )→ H(∆M , UM ) given by restriction to P (F ) and integration

along UN , respectively. Then both rP and rM are algebra homomorphisms.

Proof. It follows from [NT16, Lem. 2.7] that the map H(P (F ), UP ) →
H(M(F ), UM ) is an algebra homomorphism whenever the condition UP =

UN o UM is satisfied. It remains to show that rP is an algebra homomorphism.

The proof is the same as the proof of [NT16, Lem. 2.4(1)] once we take into

account the identity, valid for any function f : G(F )→ R with compact support

contained in UP (F ) (and a fortiori, any function f ∈ H(∆, U)):∫

g∈G(F )

f(g) dg =

∫

u∈U

∫

p∈P (F )

f(pu) dp du. �

It will be helpful later to note that the maps rP and rM ◦ rP are quite

simple, being given on basis elements by the formulae rP ([UmU ]) = [UPmUP ]

and rM ◦ rP ([UmU ]) = #(UN/mUNm
−1)[UMmUM ] = |δP (m)|−1F [UMmUM ],

respectively. As in the unramified case, we will write S or SGM for the composite

rM ◦ rP .
Lemma 2.1.12.Consider the map t : H(∆M , UM )→H(∆, U) of Z-modules

given on basis elements by t([UMmUM ]) = [UmU ]. Then t is an algebra

homomorphism.

Proof. This is [BK98, Cor. 6.12]. �

Thus we have constructed injective algebra homomorphisms

t : H(∆M , UM )→ H(∆, U),

S : H(∆, U)→ H(∆M , UM )

with the property that for any m ∈ ∆M , t ◦ S([UmU ]) = |δP (m)|−1F [UmU ]

and S ◦ t([UMmUM ] = |δP (m)|−1F [UMmUM ]. In certain circumstances, we can

extend the domain of definition of these homomorphisms. Following [BK98],

we say that an element z ∈ ∆M that lies in the center of M is strongly positive

if for any open compact subgroups H1, H2 of UN (resp. H1, H2 of UN ), there

exists n ≥ 0 such that znH1z
−n ⊂ H2 (resp. z−nH1z

n ⊂ H2).
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Lemma 2.1.13. Let z ∈ ∆M be strongly positive. Then

(1) [UMzUM ] lies in the center of H(∆M , UM ), is invertible in H(M(F ), UM ),

and H(∆M , UM )[[UMzUM ]−1] = H(M(F ), UM ).

(2) Let R be a ring in which q is a unit, and suppose that [UzU ] is invertible

in H(G(F ), U)⊗Z R. Then t⊗Z R and S ⊗Z R extend uniquely to algebra

isomorphisms

t : H(M(F ), UM )⊗Z R→ (H(∆, U)⊗Z R)[[UzU ]−1]

and

S : (H(∆, U)⊗Z R)[[UzU ]−1]→ H(M(F ), UM )⊗Z R.

Proof. The element [UMzUM ] lies in the center of H(∆M , UM ) because

z lies in the center of M(F ), by assumption. Its inverse is [UMz
−1UM ]. The

equality H(∆M , UM )[[UMzUM ]−1] = H(M(F ), UM ) holds because for any

m ∈ M(F ), there exists n ≥ 0 such that znm ∈ ∆M , hence [UMmUM ] =

[UMzUM ]−n[UMz
nmUM ] ∈ H(∆M , UM )[[UMzUM ]−1]. This shows the first

part. The second part is elementary. �

Lemma 2.1.14. Let R be a ring, let W be an R[P (F )]-module, and let V =

Ind
G(F )
P (F )W . Then there is a natural morphism φ : V U → r∗PW

UP of H(∆, U)⊗Z

R-modules. Moreover, writing (?)∼ for the forgetful functor from H(∆, U)⊗ZR-

modules to R-modules, the induced morphism (V U )∼ → (r∗PW
UP )∼ has a

functorial splitting.

Proof. Let g1, . . . , gn ∈ G(F ) be representatives for the double quotient

P (F )\G(F )/U ; we assume that g1 = 1. Then there is an isomorphism of

R-modules V U ∼= ⊕ni=1W
giUg

−1
i ∩P (F ), which sends a function f ∈ V U to the

tuple (f(g1), . . . , f(gn)). This is the desired functorial splitting. We claim that

the map V U →WUP given by the projection to the first component is in fact

Hecke equivariant (with respect to rP ). To see this, choose f ∈ V U , and let

v = f(1), m ∈ ∆M . We calculate

([UmU ] · f)(1) =
∫

g∈UmU

f(g) dg =

∫

p∈P (F )

∫

u∈U

1pu∈UmUf(pu) dp du

=

∫

p∈P (F )∩UmU

f(p) dp = [UPmUP ] · f(1),

as required. �

We now describe how we will apply the above discussion in the global

situation. Let F now denote a number field, let G be a reductive group over F ,

and let P ⊂ G be a parabolic subgroup with Levi decomposition P = MN. Let

KG ⊂ G(A∞F ) be a good subgroup of the form K = KG,SKG,TK
T∪S
G , notation

and assumptions being as follows:
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(1) T, S are finite disjoint sets of finite places of F .

(2) For each place v 6∈ S ∪ T of F , GFv is unramified and Kv is a hyperspecial

maximal subgroup of G(Fv).

(3) For each place v ∈ T , KG,v admits an Iwahori decomposition with respect

to P. We write ∆G,v ⊂ G(Fv) for the corresponding open submonoid and

∆G,T =
∏
v∈T ∆G,v. We define ∆P,T and ∆M,T similarly.

We thus have a map

S : H(GS∪T ×∆G,T ,K
S
G)→ H(MS∪T ×∆M,T ,K

S
M).

Let R be a ring. Applying Lemma 2.1.14 (cf. [NT16, Cor. 2.6]), we see that

there is a split morphism in D(R),

RΓ([IndG
∞

P∞ XP]/KG, R)→ RΓ(XP
KP
, R),

which is equivariant for the action of H(GS∪T ×∆G,T ,K
S
G)⊗Z R by endomor-

phisms on the source and target (the latter action being via the map rP, and

induction being in the same sense as in [NT16, §3.1]). The splitting need not

be equivariant, but we see that in any case there is a surjective morphism

H∗([IndG
∞

P∞ XP]/KG, R)→ r∗PH
∗(XP

KP
, R)

of H(GS∪T ×∆G,T ,K
S
G)⊗ZR-modules. Similarly [NT16, Prop. 3.4] shows that

there is a split morphism in D(R)

RΓ(XM
KM

, R)→ RΓ(XP
KP
, R),

which is equivariant for the action of H(PS∪T × ∆P,T ,K
S
P) ⊗Z R by endo-

morphisms on the source and target (the action on the source being via the

map rM). Altogether there is no S-equivariant map between the complexes

RΓ([IndG
∞

P∞ XP]/KG, R) and RΓ(X
M
KM

, R), these morphisms considered above

will together allow us, in the course of proving Theorem 2.4.8 below, to show

that S descends to a map between the Hecke algebras that act faithfully on

these complexes. Moreover, in the presence of invertible strongly positive

elements as in the statement of Lemma 2.1.13, we will be able to show that

this induced map on Hecke algebras is compatible with localization.

2.2. Arithmetic locally symmetric spaces : the quasi-split unitary group.

2.2.1. The quasi-split unitary group, the Siegel parabolic, and its Levi

subgroup. We now specialize the above discussion to our case of interest. We

fix an integer n ≥ 1. Let F be an (imaginary) CM number field with maximal

totally real subfield F+. Let Ψn be the matrix with 1’s on the anti-diagonal

and 0’s elsewhere, and set

Jn =

Ç
0 Ψn

−Ψn 0

å
.
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We write ‹Gn = ‹G for the group scheme over OF+ with functor of points

‹G(R) = {g ∈ GL2n(R⊗OF+ OF ) | tgJngc = Jn}.

Then ‹GF+ is a quasi-split reductive group over F+; it is a form of GL2n that

becomes split after the quadratic base change F/F+. If v is a place of F+ that

splits in F , then a choice of place v|v of F determines a canonical isomorphism

ιv : ‹G(F+
v ) ∼= GL2n(Fv). Indeed, there is an isomorphism F+

v ⊗F+ F ∼= Fv×Fvc
and ιv is given by the natural inclusion ‹G(F+

v ) ⊂ GL2n(Fv)×GL2n(Fvc) followed

by projection to the first factor.

We write T ⊂ B ⊂ ‹G for the subgroups consisting, respectively, of the

diagonal and upper-triangular matrices in ‹G. Similarly we write G ⊂ P ⊂ ‹G
for the subgroups consisting, respectively, of the block upper diagonal and block

upper-triangular matrices with blocks of size n× n. Then P = U oG, where

U is the unipotent radical of P , and we can identify G with ResOF /OF+
GLn

via the map

g =

Ç
A 0

0 D

å
7→ D ∈ GLn(R⊗OF+ OF ).

We observe that after extending scalars to F+, T and B form a maximal torus

and a Borel subgroup, respectively, of ‹G, and G is the unique Levi subgroup of

the parabolic subgroup P of ‹G containing T .

In order to simplify notation, we now write ‹X = X
‹G and X = XG.

Similarly, we will use the symbols ‹K and K to denote good subgroups of
‹G(A∞F+) and G(A

∞
F+) = GLn(A

∞
F ), respectively.

We note that the dimensions of these symmetric spaces are

dimR
‹X = 2n2[F+ : Q], dimRX = n2[F+ : Q]− 1.

We now want to describe some explicit (rational and integral) coefficient

systems for these symmetric spaces. The integral coefficient systems we define

will depend on a choice of a prime p and a dominant weight for either G or ‹G.

We therefore fix a prime p and a finite extension E/Qp in Qp that contains the

images of all embeddings F ↪→ Qp. We write O for the ring of integers of E,

and $ ∈ O for a choice of uniformizer.

We first treat the case of G. Let Ω be a field of characteristic 0 and large

enough such that Hom(F,Ω) has [F : Q] elements. We identify the character

group X∗((ResF+/Q T )Ω) with (Zn)Hom(F,Ω) in the usual way, by identifying

(ResF/QGLn)Ω =
∏

τ∈Hom(F,Ω)

GLn

and by identifying (λ1, . . . , λn) ∈ Zn with the character

diag(t1, . . . , tn) 7→ tλ11 . . . tλnn
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of the diagonal maximal torus in GLn. The ResF+/Q(B ∩ G)Ω-dominant

weights are exactly those in the subset (Zn+)
Hom(F,Ω) given by those tuples (λτ,i)

satisfying the condition

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n

for each τ ∈ Hom(F,Ω).

Associated to λ we have the algebraic representation Vλ of (ResF/QGLn)Ω
of highest weight λ. We may identify Vλ = ⊗τ∈Hom(F,Ω)Vλτ , where Vλτ is the

irreducible representation of GLn,Ω of highest weight λτ . If λ ∈ (Zn+)
Hom(F,Ω),

we define λ∨ ∈ (Zn+)
Hom(F,Ω) by the formula λ∨τ,i = −λτ,n+1−i. Then there is

an isomorphism V ∨λ
∼= Vλ∨ , although this is not true for the integral lattices

defined below without further hypotheses on λ.

Now take Ω = E. For each τ ∈ Hom(F,E), we let Vλτ ⊂ Vλτ be the

GLn(O)-invariant O-lattice defined in [Ger19, §2.2] (and called Mλτ there). We

note that this is the integral dual Weyl module of highest weight λτ , obtained by

evaluating an algebraic induction on O. (Geometrically, the dual Weyl module

of highest weight λτ is obtained as in the Borel–Weil theorem, by taking global

sections of a line bundle determined by λτ over the full flag variety associated

to GLn.) We write Vλ = ⊗τ∈Hom(F,E)Vλτ for the corresponding O-lattice in Vλ.

Thus Vλ is an O[∏v|pGLn(OFv)]-module, finite free as O-module.

We next treat the case of ‹G. Let Ĩ ⊂ Hom(F,Ω) be a subset such that

Hom(F,Ω) = Ĩ t Ĩc. Given τ ∈ Hom(F+, E), we will sometimes write τ̃ for the

unique element of Ĩ extending τ . The choice of Ĩ determines an isomorphism

(ResF+/Q
‹G)Ω ∼=

∏

τ∈Hom(F+,Ω)

GL2n,Ω

taking (ResF+/Q T )Ω to the product of the diagonal maximal tori in the GL2n’s,

and hence an identification of the character group X∗((ResF+/Q T )Ω) with

(Z2n)Hom(F+,Ω). The (ResF+/QB)Ω-dominant weights are exactly those in

the subset (Z2n
+ )Hom(F+,Ω). The isomorphism (Zn)Hom(F,Ω) ∼= (Z2n)Hom(F+,Ω)

identifies a weight λ with the weight λ̃ = (λ̃τ,i) given by the formula

(2.2.2) λ̃τ = (−λτ̃ c,n, . . . ,−λτ̃ c,1, λτ̃ ,1, λτ,2, . . . , λτ̃ ,n).

Now let Ω = E. We define integral structures under the assumption that each

place v of F+ above p splits in F . Let Sp denote the set of p-adic places of F ,

and let Sp denote the set of p-adic places of F+. Let S̃p ⊂ Sp be a subset

such that Sp = S̃p t S̃cp. Let Ĩ = Ĩp denote the set of embeddings τ : F ↪→ E

inducing an element of S̃p. Given v ∈ Sp, we will sometimes write ṽ for the

unique element of S̃p lying above v.
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The choice of S̃p determines isomorphisms

‹G⊗OF+ OF+,p
∼=
∏

v∈Sp

GL2n,O
F+
v

.

The lattice V
λ̃
⊂ V

λ̃
corresponding to a dominant weight λ̃ ∈ X∗((ResF+/Q

‹G)E)

is defined as in the previous paragraph. Thus V
λ̃
is an O[∏v|p

‹G(OF+
v
)]-module,

finite free as O-module.

We can now define Hecke algebras. Again, we do this first for G. Let

S be a finite set of finite places of F containing the p-adic ones, and let

K be a good subgroup of GLn(A
∞
F ) such that Kv = GLn(OFv) if v 6∈ S

and Kv ⊂ GLn(OFv) if v|p. Then for any λ ∈ (Zn+)
Hom(F,E), the complex

RΓ(XK ,Vλ) is defined (as an object of D(O), up to unique isomorphism) and

comes equipped with an action of Hecke algebras by endomorphisms; see (2.1.3).

We define Tv = H(GLn(Fv),GLn(OFv)) ⊗Z O and TS = H(GLSn ,K
S) ⊗Z O

and, if V is an O[KS ]-module, finite free as O-module, then we write TS(K,V)
for the image of the O-algebra homomorphism

TS → EndD(O)(RΓ(XK ,V))
constructed in Section 2.1.2. If V = Vλ, then we even write TS(K,λ) =

TS(K,Vλ).
We now treat the case of ‹G. Let S be a finite set of finite places of F

containing the p-adic ones and such that S = Sc, and let S denote the set of

places of F+ below a place of S. Let ‹K be a good subgroup of ‹G(A∞F+) such

that ‹Kv = ‹G(OF+
v
) for each place v 6∈ S, and such that ‹Kv ⊂ ‹G(OF+

v
) for

each place v|p. In order to simplify notation, we set ‹GS = ‹GS , ‹GS = ‹GS , and
similarly ‹KS = ‹KS and ‹KS = ‹KS .

For any λ̃ ∈ (Z2n
+ )Hom(F+,E), the complex RΓ(X‹K ,Vλ̃) is defined, and it

comes equipped with an action as in (2.1.3). We define ‹TS = H(‹GS , ‹KS)⊗ZO,
and if Ṽ is an O[‹KS ]-module, finite free as O-module, then we write ‹TS(‹K, Ṽ)
for the image of the O-algebra homomorphism

‹TS → EndD(O)(RΓ(X‹K , Ṽ))

constructed in Section 2.1.2. If Ṽ = V
λ̃
, then we even write ‹TS(‹K, λ̃) =

‹TS(‹K,V
λ̃
). We also denote by

(2.2.3) S : ‹TS → TS

the map induced by (2.1.8).

Note that Lemma 2.1.7 shows that both TS(K,λ) and ‹TS(‹K, λ̃) are finite

O-algebras. We emphasize that the Hecke algebra TS(K,λ) is defined only

under the assumptions that S contains the p-adic places of F , that K is a
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good subgroup such that Kv = GLn(OFv) for all v 6∈ S, and that λ is a

dominant weight for G. The use of this notation therefore implies that these

assumptions are in effect. Similar remarks apply to the Hecke algebra ‹TS(‹K, λ̃).
(In particular, the use of this notation implies that S is stable under complex

conjugation, a condition we do not impose for GLn.)

If K ′ ⊂ K is a normal good subgroup with (K ′)S = KS , R is an O-
algebra, and V is an R[KS ]-module, finite free as R-module, then we write

TS(K/K ′,V) = TS(RΓK/K′(XK′ ,V)) for the image of the homomorphism

(cf. 2.1.5):

TS → EndD(R[K/K′])(RΓK/K′(XK′ ,V)).
There are canonical surjective homomorphisms

TS(RΓK/K′(XK′ ,V))→ TS(K ′,V), TS(RΓK/K′(XK′ ,V))→ TS(K,V)
induced respectively by the forgetful functor D(R[K/K ′]) → D(R) and the

functor RΓ(K/K ′, ?) : D(R[K/K ′])→ D(R). If further K/K ′ is abelian, then

we define K/K′TS = TS ⊗O O[K/K ′] and write K/K′TS(RΓK/K′(XK′ ,V)) for
the image of the homomorphism

K/K′TS → EndD(R[K/K′])(RΓK/K′(XK′ ,V)).

The analogous construction is valid as well for ‹G but since we will not use it,

we do not write down the definition.

We will also occasionally encounter other complexes endowed with actions

of the rings TS and ‹TS . (For example, the cohomology RΓ(∂‹X‹K ,Vλ̃) of the
boundary ∂‹X‹K of the Borel–Serre compactification of ‹X‹K .) If C• ∈ D(R) and

we are given an O-algebra homomorphism TS → EndD(R)(C
•), then we will

write TS(C•) for the image of this homomorphism. More generally, if K ′ ⊂ K is

a normal good subgroup with (K ′)S = KS and C• ∈ D(R[K/K ′]) is a complex

endowed with an O-algebra homomorphism TS → EndD(R[K/K′])(C
•), then

we will write TS(C•) for the image of TS in EndD(R[K/K′])(C
•). If further

K/K ′ is abelian, then we will write K/K′TS(C•) for the image of K/K′TS in

EndD(R[K/K′])(C
•).

If the complex C• has bounded cohomology, then the map TS(C•) →
TS(H∗(C•)) has nilpotent kernel; this is a consequence of the following lemma:

Lemma 2.2.4. Let R be a (possibly non-commutative) Z-algebra, let C• ∈
D(R) be a complex, and let T ⊂ EndD(R)(C

•) be a commutative subring. Let

I = ker(T → EndR(H
∗(C•))), and suppose that there exists an integer d ≥ 0

such that H i(C•) = 0 if i 6∈ [0, d]. Then Id+1 = 0.

Proof. We show by induction on d ≥ 0 that if φ0, . . . , φd ∈ EndD(R)(C
•)

satisfy H∗(φi) = 0 for i = 0, . . . , d, then φ0 ◦ φ1 ◦ · · · ◦ φd = 0 in EndD(R)(C
•).

The case d = 0 follows because in this case, C• is isomorphic to H0(C•) in D(R).
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In general, we can assume that τ≤d−1(φ0 ◦ · · · ◦ φd−1) = 0. There is an

exact triangle

τ≤d−1C
• f

//C•
g

//Hd(C•) // .

We obtain exact sequences

HomD(R)(H
d(C•), C•) //HomD(R)(C

•, C•) //HomD(R)(τ≤d−1C
•, C•)

and

HomD(R)(C
•, τ≤d−1C

•) //HomD(R)(C
•, C•) //HomD(R)(C

•, Hd(C•)).

We deduce the existence of elements α ∈ HomD(R)(H
d(C•), C•) and β ∈

HomD(R)(C
•, τ≤d−1C

•) such that α ◦ g = φ0 ◦ · · · ◦ φd−1 and f ◦ β = φd. We

thus conclude that φ0 ◦ · · · ◦ φd = α ◦ g ◦ f ◦ β = 0. �

As an illustration of the use of this result, suppose that K ′ ⊂ K is a normal

good subgroup with (K ′)S = KS , so that the Hecke algebra TS(K/K ′,Vλ) is
defined. We then have a diagram of Hecke algebras

TS(K ′,Vλ)← TS(K/K ′,Vλ)→ TS(K,Vλ),

where the kernel I of the left arrow satisfies IdimRX = 0 (by Lemma 2.2.4

applied with R = O[K/K ′]). In particular, if J ⊂ TS(K,Vλ) denotes the

image of I, then there exists a canonical map TS(K ′,Vλ)→ TS(K,Vλ)/J of

TS-algebras. Similar statements for the Hecke algebras which act faithfully on

cohomology could be proved using the Hochschild–Serre spectral sequence (for

the covering XK′ → XK).

Nilpotent ideals of Hecke algebras will occur frequently throughout this

paper, and they often have their origins in applications of the above Lemma 2.2.4.

(Compare, for example, the statement and proof of Proposition 2.3.9 below.)

We note that the integer dimRX depends only on n, and the degree [F : Q];

the exponents of the nilpotent ideals we consider will also usually have this

property.

2.2.5. Some useful Hecke operators. In this section we define most of the

Hecke operators that we will need at various points later in the paper. We fix

once and for all a choice $v of uniformizer at each finite place v of F .

We first define notation for unramified Hecke operators. If v is a finite place

of F and 1 ≤ i ≤ n is an integer, then we write Tv,i ∈ H(GLn(Fv),GLn(OFv))

for the double coset operator

Tv,i = [GLn(OFv) diag($v, . . . , $v, 1, . . . , 1)GLn(OFv)],
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where $v appears i times on the diagonal. This is the same as the operator

denoted by TM,v,i in [NT16, Prop.-Def. 5.3]. We define a polynomial

Pv(X) = Xn − Tv,1Xn−1 + · · ·+ (−1)iqi(i−1)/2v Tv,iX
n−i + · · ·

· · ·+ qn(n−1)/2v Tv,n ∈ H(GLn(Fv),GLn(OFv))[X].
(2.2.6)

It corresponds to the characteristic polynomial of a Frobenius element on

recTFv
(πv), where πv is an unramified representation of GLn(Fv). We also find

it helpful to introduce, for any σ ∈ WFv , the polynomial Pv,σ(X) ∈ Tv[X] =

(H(GLn(Fv),GLn(OFv))⊗Z O)[X], which equals the characteristic polynomial

of σ on recTFv
(πv). We write Pv,σ(X) =

∑n
i=0(−1)iev,i(σ)Xn−i.

If v is a place of F+ unramified in F , and v is a place of F above v, and

1 ≤ i ≤ 2n is an integer, then we write T̃v,i ∈ H(‹G(F+
v ), ‹G(OF+

v
))⊗ZZ[q−1v ] for

the operator denoted TG,v,i in [NT16, Prop.-Def. 5.2]. We define a polynomial

‹Pv(X) = X2n − T̃v,1X2n−1 + · · ·+ (−1)jqj(j−1)/2v T̃v,j + · · ·
· · ·+ qn(2n−1)v T̃v,2n ∈ H(‹G(F+

v ), ‹G(OF+
v
))⊗Z Z[q−1v ][X].

(2.2.7)

It corresponds to the characteristic polynomial of a Frobenius element on

recTFv
(πv), where πv is the base change of an unramified representation σv of

the group ‹G(F+
v ). Again, if σ ∈WFv , then we write

‹Pv,σ(X) =
2n∑

i=0

(−1)iẽv,i(σ)Xn−i ∈ ‹Tv[X] = (H(‹G(F+
v ), ‹G(OF+

v
))⊗Z O)[X]

for the polynomial corresponding to the characteristic polynomial of σ on

recTFv
(πv).

We next define notation for some ramified Hecke operators. If v is a finite

place of F , and c ≥ b ≥ 0 are integers, then we write Iwv(b, c) for the subgroup

of GLn(OFv) consisting of those matrices that reduce to an upper-triangular

matrix modulo $c
v and to a unipotent upper-triangular matrix modulo $b

v. We

define Iwv = Iw(0, 1) and Iwv,1 = Iwv(1, 1); thus Iwv is the standard Iwahori

subgroup of GLn(OFv). If 1 ≤ i ≤ n is an integer and c ≥ 1, then we will write

Uv,i ∈ H(GLn(Fv), Iwv(b, c)) for the double coset operator

Uv,i = [Iwv(b, c) diag($v, . . . , $v, 1, . . . , 1)Iwv(b, c)],

where $v appears i times on the diagonal. Note that this depends both on the

uniformizer $v and on the chosen level. We hope that this abuse of notation

will not cause confusion. We also define

Uv = [Iwv(b, c) diag($
n−1
v , $n−2

v , . . . , $v, 1)Iwv(b, c)].

If u ∈ Tn(OFv), then we define

〈u〉 = [Iwv(b, c)uIwv(b, c)].
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Note that the subgroups Iwv(b, c) all admit Iwahori decompositions with respect

to the standard upper-triangular Borel subgroup of GLn. We write ∆v ⊂
GLn(Fv) for the submonoid defined by

∆v = tµ∈Zn
+
Iwv diag($

µ1
v , . . . , $

µn
v )Iwv.

We now assume that each p-adic place of F+ splits in F . In this case we set

∆p =
∏
v∈Sp

∆v. If λ ∈ (Zn)Hom(F,E), then we define a homomorphism (of

monoids) αλ : ∆p → E× by the formula

αλ((kv,1 diag($
av,1
v , . . . , $

av,n
v )kv,2)v∈Sp)

=
∏

v∈Sp

∏

τ∈HomQp (Fv ,E)

n∏

i=1

τ($v)
av,i(w

G
0 λ)τ,i ,

where wG0 is the longest element in the Weyl group

W ((ResF+/QG)E , (ResF+/Q T )E).

If λ ∈ (Zn+)
Hom(F,E) is dominant, then GLn(Fp) acts on Vλ⊗OE = Vλ; we write

(g, x) 7→ g · x for this action. We endow Vλ with the structure of O[∆p]-module

via the formula

g ·p x = αλ(g)
−1g · x.

This is well defined: the fact that the lattice Vλ is preserved under this twisted

action follows as in [Ger19, Def. 2.8] from Lemma 2.2 of loc. cit.; the point is

that wG0 λ is the lowest weight vector in Vλ, so g · x is divisible by αλ(g) when

g ∈ ∆p. Using the construction in Section 2.1.2, we see that if K ⊂ GLn(A
∞
F )

is a good subgroup, and for each place v|p of F we have Kv = Iwv(b, c), then

there is a canonical homomorphism

H(GS ,KS)⊗Z H(∆p,Kp)→ EndD(O)(RΓ(XK ,Vλ))
and, in particular, all the Hecke operators Uv,i and Uv act as endomorphisms

of RΓ(XK ,Vλ). Note that the action of these operators depends on the choice

of uniformizer $v, because the twisted action ·p does.

Now suppose that v is a finite place of F+ that splits in F , and let v

be a place of F above it. Then ι−1v (Iwv(b, c)) = ι−1vc (Iwvc(b, c)) (where here

the subgroup Iwv(b, c) is inside GL2n(Fv)), and we write Ĩwv(b, c) for this

subgroup of ‹G(F+
v ). We define a Hecke operator in H(‹G(F+

v ), Ĩwv(b, c)) for

each i = 1, . . . , 2n by the formula

‹Uv,i = ι−1v [Iwv(b, c) diag($v, . . . , $v, 1, . . . , 1)Iwv(b, c)],

where $v appears i times on the diagonal. We also define

‹Uv = ι−1v [Iwv(b, c) diag($
2n−1
v , $2n−2

v , . . . , $v, 1)Iwv(b, c)].
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If u ∈ T (OF+,v), then we define

〈u〉 = [Ĩwv(b, c)uĨwv(b, c)].

If $vc = $c
v, then

‹Uvc,i = ‹Uv,2n−i‹U−1v,2n and ‹Uvc = ‹Uv‹U1−2n
v,2n .

We write ‹∆v ⊂ ‹G(F+
v ) for the submonoid defined by

‹∆v = ι−1v
Ä
tµ∈Z2n

+
Iwv diag($

µ1
v , . . . , $

µ2n
v )Iwv

ä

(which is independent of the choice of v). Now suppose that each p-adic place

of F+ splits in F . In this case we set ‹∆p =
∏
v∈Sp

‹∆v. If λ̃ ∈ (Z2n)Hom(F+,E),

then we define a homomorphism α̃
λ̃
: ‹∆p → E× by the formula

α̃
λ̃
((kv,1ι

−1
ṽ (diag($

av,1
ṽ , . . . , $

av,2n
ṽ ))kv,2)v∈Sp

)

=
∏

v∈Sp

∏

τ∈HomQp (Fṽ ,E)

2n∏

i=1

τ($ṽ)
av,i(w

‹G
0 λ̃)τ,i ,

where w
‹G
0 is the longest element in the Weyl group

W ((ResF+/Q
‹G)E , (ResF+/Q T )E).

Here we recall that ṽ ∈ S̃p is a fixed choice of place of F lying above v, and

that it appears also in the definition of V
λ̃
. If λ̃ ∈ (Z2n

+ )Hom(F+,E) is dominant,

then ‹Gp acts on V
λ̃
⊗O E = V

λ̃
; we write (g, x) 7→ g · x for this action. We

endow V
λ̃
with the structure of O[‹∆p]-module via the formula

g ·p x = α̃
λ̃
(g)−1g · x.

Using the construction in Section 2.1.2, we see that if ‹K ⊂ ‹G(A∞F+) is a good

subgroup, and for each place v|p of F+ we have ‹Kv = Ĩwv(b, c), then there is a

canonical homomorphism

H(‹GS , ‹KS)⊗Z H(‹∆p, ‹Kp)→ EndD(O)(RΓ(‹X‹K ,Vλ̃))
and, in particular, all the Hecke operators ‹Uv,i and ‹Uv act as endomorphisms

of RΓ(‹X‹K ,Vλ̃).
If v is a finite place of F , prime to p, and Iv is an open compact subgroup

of GLn(Fv) satisfying Iwv(1, 1) ⊂ Iv ⊂ Iwv(0, 1), then Iwv(0, 1)/Iv can be

identified with a quotient of (k(v)×)n, and we define

Ξv = (F×v )n/(ker(O×Fv
)n → (k(v)×)n → Iwv(0, 1)/Iv).

The group Iv admits an Iwahori decomposition with respect to the parabolic

subgroup Bn = TnNn of GLn, so we may apply the theory of Section 2.1.9.

Moreover, [Fli11, Cor. 3.4] shows that for any g ∈ Ξv, the element [IvgIv] ∈
H(GLn(Fv), Iv) ⊗Z O is invertible. (This uses our assumption that qv is a
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unit in O.) Lemma 2.1.13 thus implies that there is an injective O-algebra
homomorphism

t : Ξv → H(GLn(Fv), Iv)⊗Z O,
which sends any positive g ∈ Ξv to the double coset [IvgIv]. Given any α ∈ F×v ,

we write tv,i(α) ∈ H(GLn(Fv), Iv)⊗Z O for the image under t of the element

q
−〈λ,ρ+(1−n)/2 det〉
v (1, . . . , 1, α, 1, . . . , 1) of O[Ξv], where λ ∈ X∗(Tn) denotes the
image of α under the natural projection Ξv → (F×v /O×Fv

)n = X∗(Tn) and

ρ ∈ X∗(Tn) is the usual half-sum of positive roots, and where α sits in the

ith position. We write ev,i(α) ∈ H(GLn(Fv), Iv) ⊗Z O for the coefficient of

(−1)iXn−i in the polynomial
∏n
i=1(X − tv,i(α)). If σ ∈ WFv , then we set

tv,i(σ) = tv,i(α) and ev,i(σ) = ev,i(α), where α ∈ F×v is such that the restriction

of σ to the maximal abelian extension of Fv equals ArtFv(α). We define the

polynomial

(2.2.8)

Pv,σ(X) =
n∏

i=1

(X − tv,i(σ)) =
n∑

i=0

(−1)iev,i(σ)Xn−i ∈ H(GLn(Fv), Iv)⊗ZO[X].

Proposition 2.2.9. Let πv be an irreducible admissible Qp[GLn(Fv)]-

module.

(1) We have πIvv 6= 0 if and only if πv is isomorphic to an irreducible subquotient

of a representation Ind
GLn(Fv)
Bn(Fv)

χ, where χ = χ1 ⊗ · · · ⊗ χn : (F×v )n → Q
×
p

is a smooth character that factors through the quotient (F×v )n → Ξv .

(2) Suppose that πIvv 6= 0. Then for any α ∈ F×v , ev,i(α) acts on π
Iv
v as a scalar

ev,i(α, πv) ∈ Q
×
p .

(3) Suppose that πIvv 6= 0, and let (rv, Nv) = recTFv
(πv). Then for any σ ∈WFv ,

the characteristic polynomial of rv(σ) is equal to
∑n

i=0(−1)iev,i(α, πv)Xn−i,

where α = Art−1Fv
(σ|F ab

v
).

Proof. The first part follows from [Fli11, Th. 2.1]. The second part

is a consequence of the fact that the elements ev,i(α) lie in the center of

H(GLn(Fv), Iv) ⊗Z O, which in turn follows from the explicit description of

the center in [Fli11, Prop. 4.11]. The final part follows from the description

in [Fli11, §4] of the action of this center on the Iv-invariants in the induced

representation n-Ind
GLn(Fv)
Bn(Fv)

χ. �

Now suppose that v is a finite place of F , prime to p and split over F+, and

write pv ⊂ GL2n(OFv) for the parahoric subgroup consisting of matrices whose

reduction modulo $v is block upper-triangular, with blocks of sizes n, 1, 1, . . . , 1.

Projection to the lower right-hand block determines a homomorphism pv →
Bn(k(v)). We write pv,1 ⊂ pv for the kernel of the composite homomorphism

pv → Bn(k(v))→ Tn(k(v)).
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Let qv ⊂ GL2n(Fv) be an open compact subgroup such that pv,1 ⊂ qv ⊂ pv,

and set p̃v = ι−1v (pv), p̃v,1 = ι−1v (pv,1), and q̃v = ι−1v (qv). These are open

compact subgroups of ‹G(F+
v ) and we can identify p̃v∩G(F+

v ) = GLn(OFvc
)×Iwv

and p̃v,1 ∩ G(F+
v ) = GLn(OFvc

) × Iwv,1. In particular, we may identify the

quotient p̃v/p̃v,1 with (k(v)×)n. The group q̃v admits an Iwahori decomposition

with respect to the parabolic subgroup P = GU , so we may use the theory

developed in Section 2.1.9.

Lemma 2.2.10. The element g = ($−cv · 1n, 1n) ∈ GLn(Fvc)×GLn(Fv) =

G(F+
v ) is strongly positive, and the element [q̃vgq̃v] ∈ H(‹G(F+

v ), q̃v) ⊗Z O is

invertible.

Proof. After applying ιv, we see that to prove the lemma it is enough

to explain why [qv diag($v, . . . , $v, 1, . . . , 1)qv] is an invertible element of

H(GL2n(Fv), qv) ⊗Z O (where $v, 1 each occur n times). It follows from

[Fli11, Cor. 3.4] that [Iwv(1) diag($v, . . . , $v, 1, . . . , 1)Iwv(1)] is invertible in

H(GL2n(Fv), Iwv(1)) ⊗Z O, while it follows from [Fli11, Th. 4.5] that

[Iwv(1) diag($v, . . . , $v, 1, . . . , 1)Iwv(1)] and [qv] commute. We deduce that

[qv diag($v, . . . , $v, 1, . . . , 1)qv] = [qv]·[Iwv(1) diag($v, . . . , $v, 1, . . . , 1)Iwv(1)]

is invertible, as required. �

Lemma 2.1.13 implies that there is an injective O-algebra homomorphism

t : H(GLn(Fvc)×GLn(Fv),GLn(OFvc
)× Iv)⊗Z O → H(‹G(F+

v ), q̃v)⊗Z O.
We write Ξv for the quotient of (F×v )n associated to the group Iv. If σ∈WFv ,

we write, with apologies for the abuse of notation, tv,i(σ) ∈ H(‹G(F+
v ), q̃v)⊗ZO

for the image under t of the element ‖σ‖−nv tv,i(σ) ∈ H(GLn(Fv), Iv) ⊗Z O
defined previously. We write ev,i(σ) ∈ H(‹G(F+

v ), q̃v)⊗Z O for the coefficient

of (−1)iXn−i in the polynomial

(2.2.11) Pv,σ(X) =
n∏

i=1

(X − tv,i(σ)) ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X].

If σ ∈ WFvc
, then we define evc,i(σ) ∈ H(‹G(F+

v ), q̃v) ⊗Z O to be the image

under t of the element ‖σ‖i(n−1)v evc,i(σ) ∈ H(GLn(Fvc),GLn(OFvc
))⊗Z O. We

define the polynomial

(2.2.12) Pvc,σ(X) =
n∑

i=0

(−1)iev,i(σ)Xn−i ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X].

We finally define for any σ ∈WFv the polynomial

‹Pv,σ(X) = Pvc,σ−c(X)Pv,σ(X) ∈ (H(‹G(F+
v ), q̃v)⊗Z O)[X],

and we define elements ẽv,i(σ) ∈ H(‹G(F+
v ), q̃v)⊗ZO by the formula ‹Pv,σ(X) =∑2n

i=0(−1)iẽv,i(σ)Xn−i.
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Lemma 2.2.13. Suppose there is an irreducible admissible Qp[‹G(F+
v )]-

module π̃v such that π̃q̃vv 6= 0, and let σ ∈WFv . Then

(1) Each operator ẽv,i(σ) acts by a scalar ẽv,i(σ, π̃v) ∈ Qp on π̃q̃vv .

(2) Let (rv, Nv) = recTFv
(π̃v ◦ ι−1v ). Then the characteristic polynomial of rv(σ)

is equals
∑2n

i=0(−1)iẽv,i(σ, π̃v)Xn−i.

Proof. We fix a choice of isomorphism ι : Qp → C, so that normalized

induction and normalized restriction (i.e., Jacquet module) may be defined

over Qp. The proof uses well-known principles (cf. [Ber84, Lem. 1.17]). First,

there exists a tamely ramified character χ : T (F+
v ) → Q

×
p such that π̃v is

a subquotient of an induced representation Π̃ = n-Ind
‹G(F+

v )

B(F+
v )
χ. Identifying

T (F+
v ) = T2n(Fv), we may identify χ with a tuple of tamely ramified characters

ψ1, . . . , ψ2n : F×v → Qp. To prove the lemma, it suffices to show that ẽv,i(σ)

acts as a scalar on the subspace of q̃v-invariants of Π̃, this scalar being equal to

the degree i symmetric polynomial in ψ1(Art
−1
Fv

(σ)), . . . , ψ2n(Art
−1
Fv

(σ)).

Let R = Qp[T (F
+
v )/T (OF+

v
)], and let χu : T (F+

v ) → R× be the uni-

versal unramified character. We consider the induced representation Π̃u =

n-Ind
‹G(F+

v )

B(F+
v )
(χ ⊗ χu), a smooth R[‹G(F+

v )]-module. Then Π̃q̃v
u is a finite free

R-module, and for any homomorphism x : R → Qp, corresponding to an

unramified character χx : T (F+
v ) → Q

×
p with induced representation Π̃x =

n-Ind
‹G(F+

v )

B(F
+
v )
(χ⊗ χx), the induced map

(Π̃q̃v
u )⊗R,x Qp → Π̃q̃v

x

is an isomorphism. We may identify χ⊗χx with a tuple ψx,1, . . . , ψx,2n : F×v →Qp

of tamely ramified characters. To prove the lemma, it in fact suffices to show

for a Zariski dense set of points x ∈ SpecR(Qp) that the Hecke operator ẽv,i(σ)

acts by a scalar on Π̃q̃v
x that is equal to the degree i symmetric polynomial in

ψx,1(Art
−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)).

Consider the Jacquet module rP (Π̃x) = (Π̃x)U(F+
v ) ⊗ δ

−1/2
P , an admissible

Qp[G(F
+
v )]-module. Then [BK98, Th. 7.9] asserts that the natural map

q : (Π̃x)
q̃v → rP (Π̃x)

GLn(OFvc
)×Iv

is an isomorphism that satisfies the formula

hq(x) = δ
1/2
P (g)q(t(h)x)

for any x∈(Π̃x)q̃v and Hecke operator h=[(GLn(OFvc
)× Iv)g(GLn(OFvc

)× Iv)]
∈ H(GLn(Fvc) × GLn(Fv),GLn(OFvc

) × Iv) ⊗Z O. The geometrical lemma

([Zel80, 1.2, Theorem]) asserts that rP (Π̃x) admits a filtration by induced
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representations σx,Yvc ,Yv , indexed by partitions {1, . . . , 2n} = Yvc t Yv, which
may be described as follows:

σx,Yvc ,Yv =
Ä
n-Ind

GLn(Fvc )
Bn(Fvc )

⊗i∈Yvcψ−cx,i
ä
⊗
Ä
n-Ind

GLn(Fv)
Bn(Fv)

⊗i∈Yvψx,i
ä
.

For a Zariski dense set of points x (including those for which the central element

($vc · 1n, 1n) ∈ GLn(Fvc)×GLn(Fv) acts by a distinct scalar on each induced

representation σx,Yvc ,Yv), this filtration splits and rP (Π̃x) is isomorphic to a

sum of induced representations. The Hecke operators ev,i(σ) and evc,i(σ
−c) act

as a scalar in the subspace of GLn(OFvc
) × Iv-invariants in each summand,

and a calculation shows that the scalar by which
∑

i+j=k ev,i(σ)evc,j(σ
−c)

acts in each summand is the degree k elementary symmetric polynomial in

ψx,1(Art
−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)) — in particular, independent of the choice

of summand.

Transferring this information back along the map q shows that at such

points x, the element ẽv,k(σ) =
∑

i+j=k ev,i(σ)evc,j(σ
−c) acts by a scalar

on (Π̃x)
q̃v , which equals the degree k elementary symmetric polynomial in

ψx,1(Art
−1
Fv

(σ)), . . . , ψx,2n(Art
−1
Fv

(σ)). This completes the proof. �

Fix a choice of Frobenius lift φv∈WFv . We define Resv∈(H(‹G(F+
v ), q̃v)⊗ZO)

to be the resultant of the polynomials Pvc,φ−c
v
(X) and Pv,φv(X).

Proposition 2.2.14. Let π̃v be an irreducible admissible Qp[‹G(F+
v )]-

module, suppose that π̃q̃vv 6= 0, and let (rv, Nv) = recTFv
(π̃v ◦ ι−1v ). Let Tv

denote the Qp-subalgebra of EndQp
(π̃q̃vv ) generated by the images of the elements

evc,i(φ
−c
v ) and ev,i(φv). Then for each maximal ideal m ⊂ Tv , either Resv ∈ m

or Resv 6∈ m, Tv,m = Tv/m = Qp, and for all τv ∈ IFv , NvPv,φv(rv(φv)) = 0

and (rv(τv)− 1)Pv,φv(rv(φv)) = 0 in M2n(Tv/m) =M2n(Qp).

Proof. We again use some of the ideas in the proof of Lemma 2.2.13. Choose

an isomorphism ι : Qp → C. For m ≥ 1, let Stm denote the Steinberg represen-

tation of GLm(Fv) (i.e., the square-integrable quotient of Ind
GLm(Fv)
Bm(Fv)

Qp). Then

there is an isomorphism recTFv
(Stm) = Spm, where Spm is the Weil–Deligne

representation on Q
m
p = ⊕mi=1Qp · ei, where WFv acts on ei by the character

| · |1−i ◦Art−1Fv
and Nv acts by Nve1 = 0, Nvei = ei−1 (i = 2, . . . ,m).

Since π̃q̃vv 6= 0, we can find an isomorphism

(rv, Nv) ∼= ⊕si=1 Spαi
(ψi| · |(1−2n)/2)

for some tamely ramified characters ψi : F
×
v → Q

×
p ; then π̃ ◦ ι−1v is isomorphic

to a subquotient of the induced representation

Π = n-Ind
GL2n(Fv)
Pα(Fv)

⊗si=1 Stαi(ψi ◦ArtFv),
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where Pα is the standard parabolic subgroup of GL2n corresponding to the

partition 2n = α1 + · · ·+ αs. Let Π̃ = Π ◦ ιv. Let T ′v denote the Qp-subalgebra

of EndQp
(Π̃q̃v) generated by the images of the elements evc,i(φ

−c
v ) and ev,i(φv).

Then Tv is a quotient of T ′v, and it suffices to show that the conclusion of the

lemma holds with Tv replaced by T ′v.

By the geometrical lemma, we can find a filtration of rP (Π̃) with graded

pieces indexed by tuples µ = (µij)i=1,2,j=1,...,s, where the µij are non-negative

integers such that for each j = 1, . . . , s, µ1j + µ2j = αj and for each i = 1, 2,

µi1 + · · · + µis = n. The representation of G(F+
v ) = GLn(Fvc) × GLn(Fv)

indexed by the tuple µ is

σµ =
Ä
n-Ind

GLn(Fvc )
P1(Fvc )

Stµ1s(θ
−c
1s )⊗ · · · ⊗ Stµ11(θ

−c
11 )
ä

⊗
Ä
n-Ind

GLn(Fv)
P2(Fv)

Stµ21(θ21)⊗ · · · ⊗ Stµ2s(θ2s)
ä
,

where θij : F
×
v → Q

×
p is the character given by the formulae

θ1j = ψj | · |µ2j/2, θ2j = ψj | · |−µ1j/2

for j = 1, . . . , s.

We recall that the natural projection Π̃q̃v → rP (Π̃)
GLn(OFvc

)×Iv is an

isomorphism. The maximal ideals m ⊂ T ′v correspond to the different factor-

izations ‹Pv,φv(X) = Pvc,φ−c
v
(X)Pv,φv(X) that occur in Π̃q̃v . Each factorization

arises from (at least one) µ such that (σµ)
GLn(OFvc

)×Iv 6= 0; the corresponding

factorization is given by

Pvc,φ−c
v
(X) =

s∏

j=1

µ1j∏

k=1

(X − (θ−c1j | · |(1−2n−αj+2k−1)/2)(φ−cv ))

=
s∏

j=1

µ1j∏

k=1

(X − (θ1j | · |(1−2n+αj+1−2k)/2)(φv)),

Pv,φv(X) =
s∏

j=1

µ2j∏

k=1

(X − θ2j | · |(1−2n+µ2j−µ1j+1−2k)/2)(φv)).

If (σµ)
GLn(OFvc

)×Iv 6= 0, then we must have µ1j ∈ {0, 1} for all j = 1, . . . , s.

Let us choose therefore a maximal ideal m such that Resv 6∈ m and a tuple µ

giving rise to m. Combining [Tho21, Prop. 2.2] and Lemma 2.2.13, we find

that T ′v,m = T ′v/m = Qp. Let Q(X) denote the image of Pv,φv(X) modulo m.

Examining the action of Q(rv(φv)) in the summand Spαj
(ψj | · |(1−2n)/2) of

(rv, Nv), we see that Q(rv(φv)) either annihilates this summand (if µ1j = 0) or

at least has image contained in the span of the vector e1. In either case we find

that IFv acts trivially on the image of Q(rv(φv)) and Nv annihilates this image.

This is what we needed to show. �
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Corollary 2.2.15. Let π̃v be an irreducible admissible Qp[‹G(F+
v )]-module,

and suppose that π̃q̃vv 6= 0. Let ρ : GFv → GL2n(Qp) be a continuous repre-

sentation such that WD(ρ)F−ss ∼= recTFv
(π̃v ◦ ι−1v ). Let Tv be defined as in the

proposition. Then for all τv ∈ IFv , we have the equality

Res(2n)!v (ρ(τv)− 1)Pv,φv(ρ(φv)) = 0

in M2n(Qp)⊗Qp
Tv =M2n(Tv).

Proof. We can again take this statement “one maximal ideal of Tv at a

time.” The number (2n)! is a crude upper bound for the Qp-dimension of Tv.

In particular, if Resv ∈ m, then Res
(2n)!
v Tv,m = 0. We therefore need only show

that for each maximal ideal m such that Resv 6∈ m, we have the equality

(ρ(τv)− 1)Q(ρ(φv)) = 0

in M2n(Qp) for every τv ∈ IFv , where Q(X) denotes the image of Pv,φv(X)

modulo m. Let ρ(φv) = su be the multiplicative Jordan decomposition (so that s

is semisimple, u is unipotent, and s, u commute). Then rv(φv) = s, by definition

of Frobenius semi-simplification. Since Resv mod m is non-zero, Q(ρ(φv)) and

Q(rv(φv)) have the same image, which is the span of the eigenspaces of rv(φv)

corresponding to eigenvalues that are not roots ofQ(X). SinceNvQ(rv(φv)) = 0,

we find that for each τv ∈ IFv , ρ(τv) and r(τv) agree on the image of Q(rv(φv)).

We finally conclude that

(ρ(τv)− 1)Q(ρ(φv)) = (rv(τv)− 1)Q(rv(φv)) = 0,

as required. �

We now describe the behavior of some of the above Hecke operators un-

der parabolic restriction, with respect to the Siegel parabolic. We first give

the statements in the unramified case. In order to ease notation, we use the

following convention: if f(X) is a polynomial of degree d, with unit constant

term a0, then f
∨(X) = a−10 Xdf(X−1).

Proposition 2.2.16. Let v be a place of F , unramified over the place v

of F+. Let

S : H(‹G(F+
v ), ‹G(OF+

v
))→ H(G(F+

v ), G(OF+
v
))

denote the homomorphism defined by (2.1.8). Then we have

S(‹Pv(X)) = Pv(X)qn(2n−1)v P∨vc(q
1−2n
v X).

Proof. See [NT16, Prop.-Def. 5.3]. �

We now discuss the ramified split case. Suppose first that v is a place of F

that is split over the place v of F+. Let Ĩv be a subgroup of ‹G(F+
v ) satisfying

Ĩwv(1, 1) ⊂ Ĩv ⊂ Ĩwv(0, 1). Then Ĩv ∩G(F+
v ) may be identified with a product
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Ivc × Iv of open compact subgroups of GLn(Fvc) and GLn(Fv), respectively. If

σ ∈WFv , then we define

‹Pv,σ(X) =
2n∏

i=1

(X − ι−1v (tv,i(σ)))

=
2n∑

i=0

(−1)iι−1v (ev,i(σ))X
2n−i ∈ H(‹G(F+

v ), Ĩv)⊗Z O[X].

(2.2.17)

The group Ĩv admits an Iwahori decomposition with respect to the parabolic

subgroup P , and the element ($−1vc · 1n, 1n) ∈ G(F+
v ) = GLn(Fvc)×GLn(Fv)

is strongly positive and defines a Hecke operator [Ĩv($
−1
vc · 1n, 1n)Ĩv] that is in-

vertible in H(‹G(F+
v ), Ĩv)⊗ZO. We can therefore apply Lemma 2.1.13, allowing

us to state the following result:

Proposition 2.2.18. For any σ ∈WFv , we have

S(‹Pv,σ(X)) = Pv,σ(X)‖σ‖n(1−2n)v Pvc,σ−c(‖σ‖2n−1v X).

Proof. This results from a calculation using the definition of ‹Pv,σ(X) and

the formula for the composite S ◦ t given in Section 2.1.9. (Let α ∈ F×vc be

such that ArtFvc
(α) agrees with the restriction of σc to the maximal abelian

extension of Fvc . For the element ((1, . . . α−1, . . . 1), 1n) of GLn(Fvc)×GLn(Fv),

the action of S ◦ t on the corresponding Hecke operator is by multiplication by

‖σ‖−nv .) �

Suppose next that v is a place of F that is split over the place v of F+ and

that q̃v ⊂ ‹G(F+
v ) is an open compact subgroup such that p̃v,1⊂ q̃v⊂ p̃v. Write

q̃v∩G(F+
v ) = GLn(OFvc

)×Iv. We have already observed that Lemma 2.1.13 ap-

plies in this situation, and we have the following analogue of Proposition 2.2.18,

which is proved in the same way:

Proposition 2.2.19. For any σ ∈WFv , we have S(Pv,σ(X)) = Pv,σ(X)

and S(Pvc,σ−c(X)) = ‖σ‖n(1−2n)v Pvc,σ−c(‖σ‖2n−1v X).

2.2.20. Duality and twisting. In this section we record some operations

that relate different cohomology groups and the actions of the corresponding

Hecke operators. We deal with duality first. Let S be a finite set of finite places

of F such that S = Sc. There are anti-involutions

ι : H(GS ,KS)→ H(GS ,KS)

and (if S = Sc)

ι̃ : H(‹GS , ‹KS)→ H(‹GS , ‹KS)

given on double cosets by ι̃([‹KSg‹KS ]) = [‹KSg−1‹KS ] (resp. ι([KSgKS ]) =

[KSg−1KS ]). In particular, we have anti-involutions ι̃ : ‹TS→‹TS , ι : TS→TS
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(which are actually involutions, since these Hecke algebras are commutative).

If v 6∈ S, then we have the formulae

ι̃(‹Pv(X)) = q2n(2n−1)v
‹P∨v (q1−2nv X) = ‹Pvc(X),

ι(Pv(X)) = qn(n−1)v P∨v (q
1−n
v X).

If m̃ ⊂ ‹TS (resp. m ⊂ TS) is a maximal ideal with residue field a finite extension

of k, then we define m̃∨ = ι̃(m) (resp. m∨ = ι(m)). The interaction between

these involutions and Poincaré duality is described by the following proposition.

We write ‹D = dimR
‹X (resp. D = dimRX).

Proposition 2.2.21. Let R = O or O/$m for some m ≥ 1. Let ‹K ⊂
‹G(A∞F+) (resp. K ⊂ GLn(A

∞
F )) be a good subgroup, and let V be an R[‹KS ]-

module (resp. R[KS ]-module), which is finite free as an R-module. Let V∨ =

Hom(V, R). Then there is an isomorphism

RHomR(RΓc(‹X‹K ,V), R) ∼= RΓ(‹X‹K ,V∨)[‹D]

(resp.

RHomR(RΓc(XK ,V), R) ∼= RΓ(XK ,V∨)[D])

in D(R) that is equivariant for the action of H(‹GS , ‹KS) (resp. H(GS ,KS))

when this Hecke algebra acts by ι̃t (resp. ιt) on the left-hand side and in the

usual way on the right-hand side.

Proof. See [NT16, Prop. 3.7]. �

Corollary 2.2.22. Let R = O or O/$m for some m ≥ 1. Let ‹K ⊂
‹G(A∞F+) (resp. K ⊂ GLn(A

∞
F )) be a good subgroup, and let V be an R[‹KS ]-

module (resp. R[KS ]-module), which is finite free as an R-module. Let V∨ =

Hom(V, R). Then ι̃ (resp. ι) descends to an isomorphism

‹TS(RΓc(‹X‹K ,V)) ∼= ‹TS(RΓ(‹X‹K ,V∨))

(resp. an isomorphism

TS(RΓc(XK ,V)) ∼= TS(RΓ(XK ,V∨))

of R-algebras. In particular, if m̃ (resp. m) is a maximal ideal of ‹TS (resp. TS)

in the support of H∗c (‹X‹K ,V) (resp. H∗c (XK ,V)), then m̃∨ (resp. m∨) is in the

support of H∗(‹X‹K ,V∨) (resp. H∗(XK ,V∨)).
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Proof. We justify the statements for GLn. The proposition implies that

there is a commutative diagram

TS //

ι

��

EndD(R)(RΓc(XK ,V))

��

TS // EndD(R)(RΓ(XK ,V∨)),

where the horizontal arrows are the canonical ones and the right vertical arrow

is the one induced by the Poincaré duality isomorphism. The statement of the

corollary is equivalent to the assertion that image under ι of the kernel of the

top horizontal arrow is equal to the kernel of the lower horizontal arrow. This

follows from the commutativity of the diagram. �

We next deal with twisting for the group G. Let K ⊂ GLn(A
∞
F ) be a

good subgroup, and let ψ : GF → O× be a continuous character such that

ψ ◦ ArtFv is trivial on det(Kv) for each place v 6∈ S of F . We define an

isomorphism of O-algebras fψ : H(GS ,KS)⊗Z O → H(GS ,KS)⊗Z O by the

formula fψ(f)(g) = ψ(ArtF (det(g)))
−1f(g). (It is an isomorphism because it

has an inverse, given by the formula f−1ψ = fψ−1 .) If Kv = GLn(OFv) for each

v 6∈ S (so that ψ is unramified outside S and H(GS ,KS)⊗ZO = TS), then we

have the formula fψ(Tv,i) = ψ(Frobv)
−iTv,i for each finite place v 6∈ S of F . If

m ⊂ TS is a maximal ideal with residue field a finite extension of k, then we

define m(ψ) = fψ(m).

Proposition 2.2.23. Let K ⊂ GLn(A
∞
F ) be a good subgroup, and suppose

that S contains the p-adic places of F . Let ψ : GF → O× be a continuous

character satisfying the following conditions :

(1) For each finite place v - p of F , ψ ◦ArtFv is trivial on det(Kv).

(2) There is m = (mτ )τ ∈ ZHom(F,E) such that for each place v|p of F , and for

each k ∈ det(Kv), we have

ψ(ArtFv(k)) =
∏

τ∈HomQp (Fv ,E)

τ(k)−mτ .

Let µ ∈ (Zn+)
Hom(F,E) be the dominant weight defined by the formula µτ =

(mτ , . . . ,mτ ) for each τ ∈ Hom(F,E). Then for any λ ∈ (Zn+)
Hom(F,E), there

is an isomorphism

RΓ(XK ,Vλ) ∼= RΓ(XK ,Vλ+µ)
in D(O), which is equivariant for the action of H(GS ,KS)⊗ZO when H(GS ,KS)

⊗Z O acts in the usual way on the left-hand side and by fψ on the right-hand

side.
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Proof. The character ψ defines a class inH0(XK ,Vµ) = HomSh(XK)(O,Vµ).
By tensor product this determines a morphism Vλ → Vλ ⊗O Vµ ∼= Vλ+µ of

sheaves on XK , hence a morphism RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ) in D(O). In
order to determine how this morphism behaves with respect to the action of

Hecke operators, we will repeat this calculation in D(H(GS ,KS)⊗Z O).
Let A = Ind

GLn(A∞
F )

GLn(F ) O = H0(XG,O). There is an isomorphism

H0(XG,Vλ) ∼= A⊗O Vλ

of O[GLn(A
∞,S
F ) × KS)]-modules, and hence a canonical isomorphism in

D(H(GS ,KS)⊗Z O):

RΓ(XK ,Vλ) ∼= RΓ(K,A⊗O Vλ).

The same applies when λ is replaced by any dominant weight in (Zn+)
Hom(F,E).

The class ψ in H0(XK ,Vµ) corresponds to the K-equivariant map gψ : A →
A ⊗O Vµ that sends a function f : GLn(F )\GLn(A

∞
F ) → O to gψ(f)(g) =

ψ(det(g))f(g). The map gψ becomes GS ×KS-equivariant when we twist the

action on the source, giving

gψ : A → A⊗O Vµ(ψ−1,S).

By definition, the twist (ψ−1,S) means that the action of an element g ∈ GS
is twisted by ψ(det(g))−1. Taking the tensor product by Vλ and then taking

derived K-invariants gives a morphism

RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ(ψ−1,S))

in D(H(GS ,KS)⊗Z O), hence a H(GS ,KS)⊗Z O-equivariant isomorphism

RΓ(XK ,Vλ)→ RΓ(XK ,Vλ+µ(ψ−1,S))

in D(O). The proof of the proposition is complete on noting that there is a

canonical isomorphism

RΓ(XK ,Vλ+µ(ψ−1,S)) ∼= RΓ(XK ,Vλ+µ)

inD(O), which is equivariant for the action ofH(GS ,KS)⊗ZO whenH(GS ,KS)

⊗Z O acts in the natural way on the source and by fψ on the target. �

Corollary 2.2.24. Suppose that S contains the p-adic places of F , and

let K ⊂ GLn(A
∞
F ) be a good subgroup such that Kv = GLn(OFv) for each

place v 6∈ S of F . Let ψ : GF → O× be a continuous character satisfying the

following conditions :

(1) For each finite place v - p of F , ψ ◦ArtFv is trivial on det(Kv).
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(2) There is m = (mτ )τ ∈ ZHom(F,E) such that for each place v|p of F , and for

each k ∈ det(Kv), we have

ψ(ArtFv(k)) =
∏

τ∈HomQp (Fv ,E)

τ(k)−mτ .

Let µ ∈ (Zn+)
Hom(F,E) be the dominant weight defined for each τ ∈ Hom(F,E) by

the formula µτ = (mτ , . . . ,mτ ). Then for any λ ∈ (Zn+)
Hom(F,E), fψ descends

to an isomorphism

TS(K,λ) ∼= TS(K,λ+ µ).

In particular, if m is a maximal ideal of TS that is in the support of H∗(XK ,Vλ),
then m(ψ) is in the support of H∗(XK ,Vλ+µ).

Proof. This is an immediate consequence of Proposition 2.2.23. �

2.3. Some automorphic Galois representations. In the next two sections

of this chapter, we state some results asserting the existence of Galois rep-

resentations associated to automorphic forms. Although the main results of

this paper concern the relation between classical automorphic representations

and Galois representations, we must also consider the Galois representations

associated to torsion classes, and therefore valued in (possibly p-torsion) Hecke

algebras. This goes some way towards explaining the need to state so many

closely related results here. A large part of this paper will be taken up with the

problem of studying the local properties of the Hecke–algebra valued Galois

representations whose existence is asserted in the statement of Theorem 2.3.7.

2.3.1. Existence of Galois representations attached to automorphic forms.

If π is an irreducible admissible representation of GLn(AF ) and λ∈(Zn+)Hom(F,C),

we say that π is of weight λ if the infinitesimal character of π∞ is the same as

that of V ∨λ .

Theorem 2.3.2. Let λ ∈ (Zn+)
Hom(F,C), and let π be a cuspidal au-

tomorphic representation of GLn(AF ) of weight λ. Then for any isomor-

phism ι : Qp → C, there exists a continuous semisimple representation

rι(π) : GF → GLn(Qp) satisfying the following condition : for each prime

l 6= p above that both F and π are unramified, and for each place v|l of F ,
rι(π)|GFv

is unramified and the characteristic polynomial of rι(π)(Frobv) is

equal to the image of Pv(X) in Qp[X] under the homomorphism Tv → Qp

associated to ι−1πv .

Proof. This is the main theorem of [HLTT16]. �

Theorem 2.3.3. Suppose that F contains an imaginary quadratic field.

Let π be a cuspidal automorphic representation of ‹G(AF+), and let ξ be an

irreducible algebraic representation of ‹GC such that π is ξ-cohomological. Then
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there exist a partition 2n = n1 + · · ·+ nr and discrete, conjugate self-dual au-

tomorphic representations Π1, . . . ,Πr of GLn1(AF ), . . . ,GLnr(AF ), satisfying

the following conditions :

(1) Let Π = Π1 � · · ·�Πr . If l is a prime unramified in F and above that π is

unramified, then Π is unramified above l and for each place v|l of F lying

above a place v of F+, Πv and πv are related by unramified base change.

(2) If F0 ⊂ F is an imaginary quadratic field and l′ is a prime that splits in F0,

then for each place v|l′ of F lying above a place v of F+, Πv and πv are

identified under the induced isomorphism ιv : ‹G(F+
v ) ∼= GL2n(Fv).

(3) The infinitesimal character of Π is the same as that of the representation

(ξ ⊗ ξ)∨ of GL2n(F ⊗Q C).

Consequently,1 there exists for any isomorphism ι : Qp → C a continuous

semisimple representation rι(π) : GF → GL2n(Qp) satisfying the following

conditions :

(a) For each prime l 6= p which is unramified in F and above which π is

unramified, and for each place v|l of F , rι(π)|GFv
is unramified and the

characteristic polynomial of rι(π)(Frobv) is equal to the image of ‹Pv(X) in

Qp[X].

(b) For each place v|p of F , rι(π) is de Rham, and for each embedding τ : F ↪→
Qp, we have

HTτ (rι(π)) = {λ̃τ,1 + 2n− 1, λ̃τ,2 + 2n− 2, . . . , λ̃τ,2n},
where λ̃ ∈ (Z2n

+ )Hom(F,Qp) is the highest weight of the representation given

by ι−1(ξ ⊗ ξ)∨ of GL2n over Qp.

(c) If F0 ⊂ F is an imaginary quadratic field and l is a prime which splits

in F0, then for each place v|l of F lying above a place v of F+, there is an

isomorphism WD(rι(π)|GFv
)F-ss ∼= recTFv

(πv ◦ ιv).
Proof. We will deduce this from [Shi14]. The main wrinkle is that this

reference gives a case of base change for unitary similitude groups (while our

group ‹G is a unitary group, with trivial similitude factor). Let laux be an

auxiliary prime at which both F and π are unramified. In order to prove the

proposition, it suffices to prove the existence of an automorphic representation

Π of GL2n(AF ) satisfying the second and third requirements, and satisfying

the first requirement at almost all rational primes, including laux. We can

then use strong multiplicity 1 and our freedom to vary laux in order to recover

the proposition as stated. The existence and local properties of the Galois

1The fact that the Πi are not mentioned in these consequences is not an oversight. We use

the Galois representations associated to the Πi in order to construct rι(π) and verify that it

has the expected properties.
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representation are then a consequence of the existence of Π (a result due to

many people, but see, e.g., [Car14]).

Let ‹G′ denote the similitude group associated to ‹G; thus there is a short

exact sequence

1 //ResF+/Q
‹G //‹G′ //Gm

//1

of reductive groups over Q. By the main result of [Shi14], it suffices to find

an irreducible algebraic representation ξ′ of ‹G′C and a cuspidal automorphic

representation π′ of ‹G′(AQ) satisfying the following conditions:

• The restriction π′|‹G(AF+ )
contains π.

• π′ is ξ′-cohomological.

• π′ is unramified at laux.

Arguing as in the proof of [HT01, Th. VI.2.9], we see that it is enough to

show the existence of a continuous character ψ : A×F0
/F0

× → C× satisfying the

following conditions:

• The restriction ψ|(A×
F0

)c=1 is equal to the restriction of the central character

ωπ : (A×F )
c=1 → C× of π to (A×F0

)c=1.

• ψ is of type A0; i.e., its restriction to F×0,∞ arises from a character of the

torus (ResF0/QGm)C.

• ψ|O×
F0,l

aux
is trivial.

The existence of such a character follows from the algebraicity of ωπ|(A×
F0

)c=1 ,

itself a consequence of the fact that π is ξ-cohomological. �

2.3.4. Existence of Hecke algebra-valued Galois representations. Let S be

a finite set of finite places of F , containing the p-adic places.

Theorem 2.3.5. Let m ⊂ TS(K,λ) be a maximal ideal. Suppose that S

satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue char-

acteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

Then there exists a continuous, semi-simple representation

ρm : GF,S → GLn(T
S(K,λ)/m)

satisfying the following condition : for each finite place v 6∈ S of F , the character-

istic polynomial of ρm(Frobv) is equal to the image of Pv(X) in (T(K,λ)/m)[X].

We note that our condition on S can always be achieved after possibly

enlarging S.
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Proof. Fix an embedding TS(K,λ)/m ↪→ Fp. From [Sch15, Cor. 5.4.3],

we deduce there is an n-dimensional continuous semisimple Galois represen-

tation ρm : GF,S → GLn(Fp) such that for each finite place v 6∈ S of F , the

characteristic polynomial of ρm(Frobv) is equal to the image of

Xn − Tv,1Xn−1 + · · ·+ (−1)iqi(i−1)/2v Tv,iX
n−i + · · ·+ (−1)nqn(n−1)/2v Tv,n

in Fp[X]. (Our condition on S ensures that we can appeal to the results

of [Sch15] in a case where they are unconditional; cf. Theorem 2.3.3 and

the discussion in [Sch15, Rem. 5.4.6].) Combining the Chebotarev density

theorem, the Brauer–Nesbitt Theorem and the vanishing of the Brauer group

of a finite field [DS74, Lem. 6.13], we see that ρm can in fact be realized over

TS(K,λ)/m. �

Definition 2.3.6. We say that a maximal ideal m ⊂ TS is of Galois type

if its residue field is a finite extension of k, and there exists a continuous,

semi-simple representation ρm : GF,S → GLn(T
S/m) such that for each finite

place v 6∈ S of F , the characteristic polynomial of ρm(Frobv) is equal to the

image of Pv(X) in (TS/m)[X].

We say that a maximal ideal m ⊂ TS is non-Eisenstein if it is of Galois

type and ρm is absolutely irreducible.

Note that Theorem 2.3.5 can be viewed as asserting that, under a suitable

condition on S, any maximal ideal of TS in the support of H∗(XK ,Vλ) is of
Galois type. We observe that if m ⊂ TS is of Galois type, then so is m∨, and

in fact ρm∨
∼= ρ∨m ⊗ ε1−n. In particular, if m is non-Eisenstein, then so is m∨.

Similarly, if ψ : GF,S → O× is a continuous character, and m ⊂ TS is a maximal

ideal of Galois type, then so is m(ψ), and in fact ρm(ψ)
∼= ρm ⊗ ψ. In particular,

if m is non-Eisenstein, then so is m(ψ).

Theorem 2.3.7. Let m ⊂ TS(K,λ) be a maximal ideal. Suppose that S

satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue char-

acteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

Suppose, moreover, that ρm is absolutely irreducible. Then there exist an integer

N ≥ 1, which depends only on n and [F : Q], an ideal I ⊂ TS(K,λ) satisfying

IN = 0, and a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/I)

satisfying the following condition : for each finite place v 6∈ S of F , the character-

istic polynomial of ρm(Frobv) is equal to the image of Pv(X) in (T(K,λ)m/I)[X].
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Proof. This follows from [Sch15, Cor. 5.4.4]. �

Theorem 2.3.8. Let m̃ ⊂ ‹TS(‹K, λ̃) be a maximal ideal. Suppose that S

satisfies the following condition :

• Let v be a finite place of F not contained in S, and let l be its residue char-

acteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

(Note that the condition S = Sc is implicit in the use of the notation ‹TS here.)

Then there is a continuous, semi-simple representation

ρm̃ : GF,S → GL2n(‹TS(‹K, λ̃)/m̃)

satisfying the following condition : for each finite place v 6∈ S of F , the

characteristic polynomial of ρm̃(Frobv) is equal to the image of ‹Pv(X) in

(‹TS(‹K, λ̃)/m̃)[X].

Proof. The existence of a 2n-dimensional group determinant ‹Dm̃ valued

in ‹TS(‹K, λ̃)/m̃ and with the given characteristic polynomials on Frobenius

elements at places v 6∈ S is implicit in [Sch15] and also follows from [NT16,

Th. 5.7], as we now explain. The result [NT16, Th. 5.7] shows that if the

group ‹K is small, in the sense that there is a rational prime q 6= p such

that ‹Kq is contained in the principal congruence subgroup at level q (if q is

odd) or 2q (if q = 2), then there is even a 2n-dimensional group determinant

valued in ‹TS(RΓ(‹X‹K ,Vλ̃/($))) such that for each finite place v 6∈ S of F ,

the characteristic polynomial of Frobv is equal to the image of ‹Pv(X). The

surjection
‹TS(‹K, λ̃)→ ‹TS(RΓ(‹X‹K ,Vλ̃/($)))

is bijective at the level of maximal ideals, so this implies the existence of the

desired group determinant when ‹K is small. When ‹K is not small, we choose an

odd rational prime q1 which is prime to S, and we let ‹K1 denote the intersection

of ‹K with the principal congruence subgroup of ‹G(“OF+) of level q1. Let S1
denote the union of S with the set of q1-adic places of F . Then there is a

diagram of Hecke algebras

‹TS1(‹K1, λ̃)← ‹TS1(‹K/‹K1, λ̃) � ‹TS1(‹K, λ̃) ↪→ ‹TS(‹K, λ̃),
where the left-facing arrow has nilpotent kernel and so induces a bijection at

the level of maximal ideals. Let m̃1 ⊂ ‹TS1(‹K, λ̃) denote the pullback of m̃ along

the right-hand inclusion. Since ‹K1 is small, there exists a group determinant
‹Dm̃1

valued in ‹TS1(‹K, λ̃)/m̃1 and with the correct characteristic polynomials

at places outside S1. Let ‹Dm̃,1 denote the pushforward of ‹Dm̃1
to ‹TS(‹K, λ̃)/m̃.

Thus ‹Dm̃,1 is a 2n-dimensional group determinant of GF,S1 with the property

that for any finite place v 6∈ S1 of F , ‹Dm̃,1(X−Frobv) equals the image of ‹Pv(X).
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Choose another odd rational prime q2 6= q1 which is prime to S, and

repeat this construction to obtain a group determinant ‹Dm̃,2 of GF,S2 val-

ued in ‹TS(‹K, λ̃)/m̃ with the property that for any finite place v 6∈ S2 of F ,
‹Dm̃,2(X − Frobv) equals the image of ‹Pv(X). Since the Frobenius elements at

places v 6∈ S1 ∪ S2 are dense in GF,S1∪S2 , the group determinants ‹Dm̃,1 and
‹Dm̃,2 have the same characteristic polynomials on all elements of GF,S1∪S2 .

By [Che14, Lem. 1.12], these group determinants are equal and we can take
‹Dm̃ = ‹Dm̃,1 = ‹Dm̃,2.

To obtain a true representation from this group determinant, we first

fix an embedding ‹TS(‹K, λ̃)/m̃ ↪→ Fp. The group determinant determines a

representation over Fp, by [Che14, Th. A]. It follows by the same argument as

in the proof of Theorem 2.3.5 that this representation can in fact be realized

over ‹TS(‹K, λ̃)/m̃. �

A similar argument shows that [NT16, Th. 5.7] implies the following result:

Proposition 2.3.9. Suppose that S satisfies the following conditions :

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue char-

acteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

Then there exists an ideal I ⊂ ‹TS(‹K, λ̃) satisfying I2 dimR
‹X = 0 and a 2n-

dimensional group determinant ‹D of GF,S valued in ‹TS(‹K, λ̃)/I such that for

each finite place v 6∈ S of F , the characteristic polynomial ‹D(X − Frobv) is

equal to the image of ‹Pv(X) in (‹TS(‹K, λ̃)/I)[X].

Proof. When ‹K is small, this is an immediate consequence of [NT16,

Th. 5.7], together with the observation that the natural map

‹TS(‹K, λ̃)→ lim←−
m≥1

‹TS(RΓ(‹X‹K ,Vλ̃/($m)))

is an isomorphism. Moreover, in this case we can take I = 0. In general,

we introduce an odd rational prime q1 as in the proof of Theorem 2.3.8 and

consider again the diagram

‹TS1(‹K1, λ̃)← ‹TS1(‹K/‹K1, λ̃) � ‹TS1(‹K, λ̃) ↪→ ‹TS(‹K, λ̃).
The map ‹TS1(‹K/‹K1, λ̃)→‹TS1(‹K1, λ̃) has kernel J1 satisfying J

dimR
‹X

1 =0 (since

the cohomology of RΓ(‹X‹K1
,V

λ̃
) is 0 for degrees not lying in [0, dimR

‹X − 1]).

Taking I1 to be the ideal of ‹TS1(‹K, λ̃) generated by the image of J1, we obtain

a 2n-dimensional group determinant ‹D1 of GF,S1 valued in ‹TS(‹K, λ̃)/I1 such

that for each finite place v 6∈ S1 of F , ‹D1(X − Frobv) equals the image of

‹Pv(X), and moreover IdimR
‹X

1 = 0.
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Introducing an odd rational prime q2 6= q1 which is prime to S, we obtain

similarly an ideal I2 ⊂ ‹TS(‹K, λ̃) satisfying IdimR
‹X

2 = 0 and a group determinant
‹D2 valued in ‹TS(‹K, λ̃)/I2 and having properties analogous to ‹D1. We take

I = (I1, I2) and ‹D to be the projection of ‹D1 to ‹TS(‹K, λ̃)/I. Consideration of

characteristic polynomials at places v 6∈ S1∪S2, as in the proof of Theorem 2.3.8,

shows that ‹D equals the projection of ‹D2 to ‹TS(‹K, λ̃)/I. It follows that ‹D has

the property required by the proposition. �

2.4. Boundary cohomology. In the remaining section of this chapter we

prove some results about the boundary cohomology of the arithmetic locally

symmetric spaces of G and ‹G. This is made possible by the existence of Galois

representations attached to Hecke eigenclasses in the cohomology of these

groups and of their Levi subgroups. The important observation is usually that

the cohomology of a certain stratum in the boundary can be observed to vanish

after localization at a sufficiently nice (e.g., non-Eisenstein) maximal ideal of a

suitable Hecke algebra.

2.4.1. The Siegel parabolic. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is

decomposed with respect to the Levi decomposition P = GU (cf. Section 2.1.2).

We set K = ‹K ∩G(A∞F+) and KU = ‹K ∩ U(A∞F+).

Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal, and suppose that

S = Sc. Let m̃ ⊂ ‹TS denote the pullback of m under the homomorphism

S : ‹TS → TS defined in (2.2.3). In order to state the first main result of this

subsection, we recall that the boundary ∂‹X‹K = ‹X ‹K − ‹X‹K of the Borel–Serre

compactification of ‹X‹K has a ‹G(A∞F+)-equivariant stratification indexed by

the parabolic subgroups of ‹G which contain B. See [NT16, §3.1.2], especially

[NT16, Lem. 3.10] for more details. For such a standard parabolic subgroup Q,

we denote by ‹XQ
‹K the stratum labelled by Q. The stratum ‹XQ

‹K can be written as

‹XQ
‹K = Q(F+)\

Ä
XQ × ‹G(A∞F+)/‹K

ä
.

As discussed in Section 2.1.2, there is, for any λ̃ ∈ (Z2n
+ )Hom(F+,E), a homomor-

phism

‹TS → EndD(O)(RΓ(‹XQ
‹K ,Vλ̃)).

Therefore, we can define the localization RΓ(‹XQ
‹K ,Vλ̃)m̃. (This complex will

be non-zero in D(O) if and only if the maximal ideal m̃ of ‹TS occurs in the

support of the cohomology groups H∗(‹XQ
‹K ,Vλ̃).)

Theorem 2.4.2. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal,

and let m̃ = S∗(m) ⊂ ‹TS . Let λ̃ ∈ (Z2n
+ )Hom(F+,E). Then there is a natural
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‹TS-equivariant isomorphism

RΓ(‹XP
‹K ,Vλ̃)m̃

∼→ RΓ(∂‹X‹K ,Vλ̃)m̃
in D(O).

Proof. There is no harm in enlarging S, so we first add finitely many places

to S, ensuring that it satisfies the condition of Theorem 2.3.5. The proof is

similar to the proof of [NT16, Th. 4.2], which applies to the case of ResF/QGLn
and which shows that the cohomology of the stratum labelled by any proper

parabolic subgroup of ResF/QGLn is Eisenstein. Since P is a maximal parabolic

of ‹G, the inclusion ‹XP
‹K ⊂ ∂

‹X‹K is an open embedding, which induces a natural,

‹TS-equivariant map

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K ,Vλ̃)m̃,

and which fits into an excision distinguished triangle

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K ,Vλ̃)m̃ → RΓ(∂‹X‹K \ ‹XP

‹K ,Vλ̃)m̃
[1]→ .

We will show that RΓ(∂‹X‹K \ ‹XP
‹K ,Vλ̃)m̃ = 0 in D(O), by showing that for

each standard proper parabolic subgroup Q ⊂ ‹G with Q 6= P , we have

RΓc(‹XQ
‹K ,Vλ̃)m̃ = 0 in D(O). Applying the same argument to the excision

triangle for the inclusion from ‹XP
‹K to its closure, this will also show that the

natural map

RΓc(‹XP
‹K ,Vλ̃)m̃ → RΓ(‹XP

‹K ,Vλ̃)m̃
is an isomorphism.

In order to show this vanishing, it suffices (after possibly shrinking ‹K at

the p-adic places of F+) to show that if Q 6= P is a standard proper parabolic

subgroup of ‹G, then RΓ(‹XQ
‹K , k)m̃ = 0. (We are using here that if C• is a perfect

complex in D(O), then C• = 0 in D(O) if and only if C•⊗L
O k = 0 in D(k). We

are also using Poincaré duality to exchange cohomology with compact support

for usual cohomology, as in [NT16, Prop. 3.7].)

We will, in fact, show that for any maximal ideal m̃′ ⊂ ‹TS in the support

of RΓ(‹XQ
‹K , k), there exists a semisimple residual Galois representation

ρ̄m̃′ : GF,S → GL2n(‹TS/m̃′)

such that for each place v 6∈ S of F , the characteristic polynomial of ρm̃′ equals

the image of ‹Pv(X) in (‹TS/m̃′)[X]. Moreover, assume that the Levi component

M of Q is of the form

ResF/F+GLn1 × · · · × ResF/F+GLnr × ‹Gn−s
for integers r ≥ 1, ni ≥ 1, s ∈ {1, . . . , n} satisfying∑r

i=1 ni = s. (More precisely,

assume that it is the block diagonal subgroup of ‹G associated to the partition
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2n = n1 + · · ·+ nr + 2(n− s) + nr + · · ·+ n1. These describe all the standard

F+-rational Levi subgroups of ‹G.) Then we have

(2.4.3) ρ̄m̃′ = ⊕ri=1ρ̄
′
i ⊕ ρ̄′(n− s)⊕ri=1 (ρ̄

′
i)
c,∨,

where ρ̄′i is ni-dimensional and ρ̄′(n − s) is (2n − 2s)-dimensional. The non-

Eisenstein condition on m implies that

ρ̄m̃ = ρ̄1 ⊕ ρ̄2,

where both ρ̄1, ρ̄2 are (absolutely) irreducible n-dimensional representations.

This shows that, unless r = 1 and s = n, RΓ(‹XQ
‹K , k)m̃ = 0. The case r = 1, s = n

corresponds precisely to the Siegel parabolic P .

Let us define TS
Q = H(QS , ‹KS

Q)⊗Z O and TS
M = H(MS , ‹KS

M )⊗Z O. We

recall (cf. Section 2.1.2) that there are homomorphisms rQ : ‹TS → TS
Q and

rM : TS
Q → TS

M , and that we set S‹GM = rM ◦ rQ. We first claim that for

any maximal ideal m̃′ of ‹TS in the support of H∗(‹XQ
‹K , k), there exist a good

subgroup ‹K ′M ⊂ ‹KM with (‹K ′M )S = ‹KS
M and a maximal ideal m′ of TS

M in the

support of H∗(XM
‹K′
M

, k) such that m̃′ = S‹G,∗M (m′). This follows the same steps

as the proof of [NT16, Th. 4.2], which we outline here.

Firstly, one can describe the cohomology RΓ(‹XQ
‹K , k) together with its

‹TS-action in terms of the pullback under rQ : ‹TS → TS
Q of the cohomology of

finitely many locally symmetric spaces for Q. More precisely, using the Iwasawa

decomposition away from S, we can write ‹G(A∞F+) =
⊔r
i=1Q(A

∞
F+)gi‹K and

obtain r locally symmetric spaces XQ
KQ,i

, with KQ,i := Q(A∞F+) ∩ gi‹K(gi)
−1,

together with an isomorphism

RΓ(‹XQ
‹K , k) '

r⊕

i=1

r∗Q
Ä
RΓ(XQ

KQ,i
, k)
ä

in D(‹TS). The proof in [NT16], which identifies equations (4.2) and (4.3) of

loc. cit., applies verbatim to our situation, so we do not repeat it here.

Secondly, fix a neat compact open subgroup KQ ⊂ Q(A∞F+), which can be

any of the KQ,i considered above. Let Q = M nN be a Levi decomposition

of Q. Let KM be the image of KQ in M(A∞F+) and KN := KQ ∩N(A∞F+). Let

W be the object in the derived category of sheaves on XM
KM

corresponding to

the object RΓ(KN,S , k) in D(k[KM,S ]) under the formalism in Section 2.1.2.

Then, using an argument that is formally identical to that on pages 56–58

of [NT16], we obtain an isomorphism

RΓ(XQ
KQ
, k) ' r∗M

Ä
RΓ(XM

KM
,W)
ä
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in D(TS
Q). The corresponding statement in loc. cit. is obtained by combining

the second and fourth displayed equations on page 58.

Finally, we consider the spectral sequence that computes the total cohomol-

ogy of RΓ(XM
KM

,W). Let W i be the local systems on XM
KM

corresponding to

the cohomology groups H i(KN,S , k). The first two steps above show that there

exists a maximal ideal m′ of TS
M in the support of some H∗(XM

‹K′
M

,W i) such

that m̃′ = S‹G,∗M (m′). It remains to shrink the level KM,S in order to trivialize all

the W i. This could, a priori, cause a problem because the map on cohomology

groups need not be injective. However, we are only interested in keeping track

of a maximal ideal m′ of TS
M . The Hochschild–Serre spectral sequence shows

that shrinking the level does not cause problems, as in the proof of [NT16,

Lem. 4.3]. (See also the example below Lemma 2.2.4 for an illustration of the

same phenomenon in the derived category.)

In order to complete the proof of the theorem, it therefore suffices to

show that for any good subgroup KM ⊂ M(A∞F ) with KS
M = ‹KS

M and for

any maximal ideal m′ of TS
M in the support of H∗(XM

KM
, k), there exists a

semisimple residual Galois representation

ρ̄S∗(m′) : GF,S → GL2n(‹TS/S∗(m′))

such that for each place v 6∈ S of F , the characteristic polynomial of ρS∗(m′)

equals the image of ‹Pv(X) in (‹TS/m̃′)[X] and, moreover, that this Galois

representation admits a decomposition of the form (2.4.3).

After possibly shrinking KM once more, we can assume that it admits

a decomposition KM = K1 × · · · × Kr × ‹Ks, where Ki ⊂ GLni(A
∞
F ) and

‹Ks ⊂ ‹Gn−s(A∞F+). After possibly enlarging k we can, moreover, assume, in the

obvious notation, (by the Künneth formula) that there exist maximal ideals

m1, . . . ,mr, m̃s of the Hecke algebras TS
GLn1

, . . . ,TS
GLnr

,TS
‹Gn−s

, respectively,

which are in the supports of the groups

H∗(X
GLn1
K1

, k), . . . , H∗(X
GLnr
Kr

, k), H∗(X
‹Gn−s

‹Ks
, k),

respectively, and such that m′ is identified with (m1, . . . ,mr, m̃s) under the

isomorphism

TS
M → TS

GLn1
⊗O ⊗ · · · ⊗O TS

GLnr
⊗O TS

‹Gn−s
.

We can, moreover, assume that all of the maximal ideals m1, . . . ,mr, m̃s and m′

have residue field k.

Let us write P iv(X) ∈ TS
GLni

[X] and ‹P sv (X) ∈ TS
‹Gn−s

[X] for the analogues

for the groups GLni and
‹Gn−s of the Hecke polynomials defined in Section 2.2.5.
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By Theorems 2.3.5 and 2.3.8, there exist continuous, semi-simple representations

ρmi
: GF,S → GLni(k) (i = 1, . . . , r)

and

ρm̃s
: GF,S → GL2(n−s)(k)

such that for each finite place v 6∈ S of F and for each i = 1, . . . , r, the

characteristic polynomial of ρmi
(Frobv) is equal to P iv(X) mod mi, and the

characteristic polynomial of ρm̃s
(Frobv) is equal to ‹P sv (X) mod m̃s.

The proof of the theorem is complete on noting that we can take

ρS∗(m′) =
r⊕

i=1

Ä
ρmi
⊗ εn1+···+ni−2n ⊕ ρc,∨mi

⊗ ε1−(n1+···+ni)
ä
⊕ ρm̃s

⊗ ε−s.

That this choice is valid rests on the computation of the image of ‹Pv(X) under

the map S‹GM . The details are very similar to the proof of [NT16, Prop.-Def. 5.3],

and they are omitted. �

We can now state the second main result of this subsection, which takes

Theorem 2.4.2 as its starting point.

Theorem 2.4.4. Let ‹K ⊂ ‹G(A∞F+) be as at the start of Section 2.4.1, and

let λ ∈ (Zn+)
Hom(F,E) be a dominant weight whose image in (Z2n)Hom(F+,E) is

‹G-dominant. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal, and let

m̃ ⊂ ‹TS denote its pullback under the homomorphism S : ‹TS → TS . Then the

homomorphism S : ‹TS → TS descends to a homomorphism

‹TS(RΓ(∂‹X‹K ,Vλ̃)m̃)→ TS(RΓ(XK ,Vλ)m).
Proof. The first step in the proof is to note that it suffices to show that S

descends to a homomorphism

‹TS(RΓ(∂‹XP
‹K ,Vλ̃))→ TS(RΓ(XK ,Vλ)),

by Theorem 2.4.2. On the other hand, the discussion at the end of Section 2.1.9

shows that S descends to a homomorphism

(2.4.5) ‹TS(RΓ(∂‹XP
‹K ,Vλ̃))→ ‹TS(RΓ(XP

‹KP
,V

λ̃
)),

where ‹TS acts on the latter complex via rP . It therefore suffices to show that

S descends to a homomorphism

(2.4.6) ‹TS(RΓ(XP
‹KP
,V

λ̃
))→ ‹TS(RΓ(XK ,Vλ)),

where ‹TS acts on the latter cohomology groups via S = rG ◦ rP . In fact, it

even suffices to show that for each m ≥ 1, S descends to a homomorphism

(2.4.7) ‹TS(RΓ(XP
‹KP
,V

λ̃
/$m))→ ‹TS(RΓ(XK ,Vλ/$m));

cf. [NT16, Lem. 3.12].
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However, arguing in the same way as on [NT16, p. 58], we see that there

is an isomorphism

RΓ(XP
‹KP
,V

λ̃
/$m) ∼= RΓ(‹KS

P ×KS , RΓ(Inf
PS×KS

GS×KS
XG, R1

‹KU,S
∗ V

λ̃
/$m)),

where the derived pushforward sends (complexes of) PS × ‹KP,S-equivariant

sheaves on XG to PS ×KS-equivariant sheaves on XG. Suppose we knew that

Vλ/$m was a direct summand of R1
‹KU,S
∗ V

λ̃
/$m; then we could conclude, by

arguing in the same way as at the top of [NT16, p. 59], that r∗GRΓ(XK ,Vλ/$m)

is isomorphic to a direct summand of RΓ(XP
‹KP
,V

λ̃
/$m) in the category

D(H(PS × ‹KP,S , ‹KP )⊗Z O/$m),

implying the existence of the homomorphism (2.4.7).

It remains to construct the desired splitting of Vλ/$m as a direct summand

of R1
‹KU,S
∗ V

λ̃
/$m. To do this, we recall the following two facts:

• ‹KP is a semidirect product ‹KP = ‹KUoK. (By assumption, ‹K is decomposed

with respect to the Levi decomposition P = GU .)

• There is a ‹KP -equivariant embedding Vλ → Vλ̃, which splits after restriction

to K. (This follows from [NT16, Cor. 2.11].)

The morphism Vλ/$m → R1
‹KU,S
∗ V

λ̃
/$m is the composite of the reduction

modulo $m of the given map Vλ → V ‹KU,S

λ̃
, together with the morphism

(V
λ̃
/$m)

‹KU,S → R1
‹KU,S
∗ V

λ̃
/$m whose existence is assured by the universal

property of the derived functor.

The morphism R1
‹KU,S
∗ V

λ̃
/$m → Vλ/$m is the composite of the morphism

R1
‹KU,S
∗ V

λ̃
/$m → V

λ̃
/$m (given by restriction to the trivial subgroup) and the

reduction modulo $m of the K-equivariant splitting V
λ̃
→ Vλ. This completes

the proof. �

Here is a variant of Theorem 2.4.4 where we now take trivial coefficients

but consider additional Hecke operators at some ramified places.

Theorem 2.4.8. Let ‹K ⊂ ‹G(A∞F+) be as at the start of Section 2.4.1,

let m ⊂ TS(K, 0) be a non-Eisenstein maximal ideal, and let m̃ ⊂ ‹TS denote

its pullback under the homomorphism S : ‹TS → TS . Suppose, moreover, that

there is a subset R ⊂ S satisfying the following conditions :

• Each place v ∈ R is prime to p and is split over F+.

• For each place v ∈ R − Rc lying over a place v of F+, ‹Kv = q̃v , where q̃v
contains p̃v,1 and is contained in p̃v . For each place v ∈ R ∩Rc lying over a

place v of F+, ‹Kv = Ĩv , where Ĩv contains Ĩwv,1 and is contained in Ĩwv .
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Let T = S−(Rc−R). Let ‹TT
R ⊂ H(‹G(A∞F+), ‹K)⊗ZO denote the (commutative)

O-subalgebra generated by ‹TS and all the elements tv,i(σ) (v ∈ R, σ ∈ WFv )

and ev,i(σ) (v ∈ Rc − R, σ ∈ WFv ). Let TT
R ⊂ H(GLn(A

∞
F ),K) ⊗Z O denote

the (commutative) O-subalgebra generated by TT and all the elements tv,i(σ)

(v ∈ R, σ ∈ WFv ). Then there is a map S : ‹TT
R → TT

R, which descends to an

O-algebra homomorphism

‹TT
R(RΓ(∂

‹X‹K ,O)m̃)→ TT
R(RΓ(XK ,O)m).

Proof. Let R0 = R ∪ Rc, S0 = S − R0. The map S is the one described

in Section 2.1.2 (at unramified places) and Section 2.1.9. (See, in particular,

Lemma 2.1.13, which applies at the ramified places we consider here; cf. the

discussion at the end of Section 2.2.5.) Once again, by Theorem 2.4.2, it will

be enough for us to show that S descends to a homomorphism

‹TT
R(RΓ(‹XP

‹K ,O))→ TT
R(RΓ(XK ,O)).

In order to show the existence of this homomorphism we first recall, following

the discussion at the end of Section 2.1.9, that S arises by localization from

the composite of homomorphisms

rP : H(‹GS ×∆‹G,R0
, ‹KS0)→ H(PS ×∆P,R0 ,

‹KS0
P )

and

rG : H(PS ×∆P,R0 ,
‹KS0
P )→ H(GS ×∆G,R0 ,K

S0).

Moreover, there are morphisms of complexes

RΓ(XP
‹KP
,O) α→ RΓ(‹XP

‹K ,O)
β→ RΓ(XP

‹KP
,O)

and

RΓ(XK ,O)
γ→ RΓ(XP

‹KP
,O) δ→ RΓ(XK ,O)

satisfying the following conditions:

• β respects the action of H(‹GS ×∆‹G,R0
, ‹KS0) (when this algebra acts by rP

on the target of β).

• γ respects the action of H(PS ×∆P,R0 ,
‹KS0
P ) (when this algebra acts by rG

on the source of γ).

• βα and δγ both equal the identity.

Let ‹TT
R,+ denote the intersection of ‹TT

R with H(‹GS ×∆‹G,R0
, ‹KS0) ⊗Z O (in-

tersection taken inside H(‹GS0 , ‹KS0) ⊗Z O). Define TT
R,+ similarly. Then

S(‹TT
R,+) ⊂ TT

R,+, and the above listed properties immediately imply that

S+ = S|‹TT
R,+

descends to a morphism as in the top horizontal arrow of the
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following diagram:

‹TT
R,+(RΓ(

‹XP
‹K ,O))

//

⊂

��

TT
R,+(RΓ(XK ,O))

⊂

��‹TT
R(RΓ(

‹XP
‹K ,O)) TT

R(RΓ(XK ,O)).

By construction, we can find an element z ∈ ‹TT
R,+(RΓ(

‹XP
‹K ,O)) with the

following properties:

• z is a unit in ‹TT
R(RΓ(

‹XP
‹K ,O)) and

‹TT
R(RΓ(‹XP

‹K ,O)) = ‹TT
R,+(RΓ(‹XP

‹K ,O))[z
−1].

• S+(z) is a unit in TT
R(RΓ(XK ,O)) and

TT
R(RΓ(XK ,O)) = TT

R,+(RΓ(XK ,O))[S+(z)−1].

Indeed, we can take z to be a product (over places of R0) of strongly positive

Hecke operators, as in the statement of Lemma 2.1.13. We deduce that in fact

S descends to a homomorphism

‹TT
R(RΓ(‹XP

‹K ,O))→ TT
R(RΓ(XK ,O)),

as required. �

2.4.9. Some results on rational cohomology.

Theorem 2.4.10. Fix a choice of isomorphism ι : Qp → C.

(1) Let π be a cuspidal, regular algebraic automorphic representation of GLn(AF )

of weight ιλ. Suppose that there exists a good subgroup K ⊂ GLn(AF ) such

that (π∞)K 6= 0. Then the map TS → Qp associated to the Hecke eigen-

values of (ι−1π∞)K factors through the quotient TS → TS(K,λ).

(2) Let q0 = [F+ : Q]n(n− 1)/2, l0 = [F+ : Q]n− 1. Let K ⊂ GLn(AF ) be a

good subgroup, and let m ⊂ TS(K,Vλ) be a maximal ideal such that ρm is

absolutely irreducible. Then for each j ∈ Z, the group

Hj(XK ,Vλ)m[1/p]

is non-zero only if j ∈ [q0, q0 + l0]; moreover if one of the groups in this

range is non-zero, then they all are.

If f : TS(K,Vλ)m → Qp is a homomorphism, then there exists a cuspi-

dal, regular algebraic automorphic representation π of GLn(AF ) of weight

ιλ such that f is associated to the Hecke eigenvalues of (ι−1π∞)K . In

particular, there is an isomorphism rι(π) ∼= ρm.
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Proof. For the first part, it suffices to show that there is a non-zero

eigenvector for H(GLn(A
∞,S
F ),KS) in H∗(XK , Vιλ) with the eigenvalue of Tv,i

equal to its eigenvalue of Tv,i on π
Kv
v .

Likewise, for the second part it suffices to show that the groupHj(XK , Vιλ)m
:= Hj(XK ,Vλ)m ⊗O,ι C is non-zero only if j ∈ [q0, q0 + l0], that if one of the

groups in this range is non-zero they all are, and that if f : H(GLn(A
∞,S
F ),KS)

→ C is a system of Hecke eigenvalues appearing in H∗(XK , Vιλ)m, then there is

a cuspidal, regular algebraic automorphic representation of GLn(AF ) of weight

ιλ giving rise to this system of Hecke eigenvalues.

As a consequence of Franke’s theorem [Fra98, Th. 18], as in [FS98, §2.2],

we have a canonical decomposition

H∗(XK , Vιλ) =

Ñ
⊕

{Q}∈C

H∗(mG,K∞;AVιλ,{Q} ⊗C Vιλ)(χλ)

éK

.

In this formula, C is the set of associate classes of parabolic Q-subgroups

of ResF/QGLn. The cohomology on the right-hand side is relative Lie algebra

cohomology, mG is the Lie algebra of the real points of the algebraic group given

by the kernel of the map NF/Q ◦ det : ResF/QGLn → GL1, and AVιλ,{Q} is a

certain space of automorphic forms (in particular, it is a GLn(A
∞
F )-module).

Finally, the (χλ) denotes a twist of the GLn(A
∞
F )-module structure, determined

by the central character of Vιλ, which appears because the automorphic forms

considered in loc. cit. are by definition invariant under translation by R>0 ⊂
(ResF/QGLn)(R). We set E{Q} = H∗(mG,K∞;AVιλ,{Q} ⊗C Vιλ)(χλ). The

summand EK{G} is the cuspidal cohomology group

H∗cusp(XK , Vιλ) =
⊕

π

(π∞)K ⊗C H∗(mG,K∞;π∞ ⊗C Vιλ),

where the sum is over cuspidal automorphic representations π of GLn(AF )

with central character ξ satisfying ξ|R>0 = ξ−1ιλ |R>0 , where ξιλ is the central

character of Vιλ.

Let M be a maximal ideal of H(GLn(A
∞,S
F ),KS) ⊗Z C in the support

of EK{Q}. Suppose Q ⊂ ResF/QGLn is the standard (block upper triangular)

parabolic subgroup corresponding to the partition n = n1+ · · ·+nr. We denote

its standard (block diagonal) Levi factor by LQ. In order to simplify notation,

we set

W =W ((ResF/QGLn)C, (ResF/Q Tn)C),

WQ =WQ((ResF/QGLn)C, (ResF/Q Tn)C),

and

WQ =WQ((ResF/QGLn)C, (ResF/Q Tn)C)
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for the respective Weyl groups (notation as in Section 1.2). It follows from

[FS98, Prop. 3.3] (see also the proof of [Fra98, Th. 20]) that M corresponds

to the system of Hecke eigenvalues for the (unnormalized) parabolic induction

Ind
GLn(A∞

F )

Q(A∞) σ∞, where σ =
⊗r

i=1 πi is a cuspidal automorphic representation of

LQ(AQ) =
∏r
i=1GLni(AF ) whose infinitesimal character matches that of the

dual of the (LQ)C-representation with highest weight w(ιλ+ ρ)− ρ, for some

w in the set WQ. Here ρ denotes half the sum of the (ResF/QBn)C-positive

roots, and we note that each w(ιλ+ ρ)− ρ is a dominant weight for (LQ)C. In

particular, the πi are regular algebraic cuspidal automorphic representations of

GLni(AF ) (whose weight depends on w).

We sketch how this statement can be deduced from the proof of [FS98,

Prop. 3.3]. The space AVιλ,{Q} decomposes, as a GLn(A
∞
F )-module, into a

direct sum ⊕ϕAVιλ,{Q},ϕ. Each space of automorphic forms AVιλ,{Q},ϕ is the

quotient of a space denoted WQ,π̃ ⊗ S(ǎGQ) in loc. cit. It is also observed in

the proof of [FS98, Prop. 3.3] that this space, as a GLn(A
∞
F )-module, has a

filtration whose quotients are isomorphic as GLn(A
∞
F )-modules to a normalized

parabolic induction Ind
GLn(A∞

F )

Q(AQ) (δQ ⊗ π∞). Our notation differs from [FS98],

as we are writing Ind for unnormalized parabolic induction. Here π is a

cuspidal automorphic representation of LQ(AQ) whose infinitesimal character

corresponds under the normalized Harish-Chandra isomorphism to a weight

in the W -orbit of the infinitesimal character of V ∨ιλ (by [FS98, 1.2(c)]). The

normalization is given by the character δQ of LQ(AQ) defined by δQ(l) =

e〈HQ(l),ρQ〉, where HQ is the standard height function defined in [FS98, p. 769]

and ρQ is half the sum of the roots in the unipotent radical of Q. Although

π will not always be regular algebraic, the twist σ := δQ ⊗ π will be. More

precisely, we show that the infinitesimal character of σ equals that of the

dual of the (LQ)C-representation with highest weight λw := w(ιλ+ ρ)− ρ for

some w ∈WQ. Indeed, we have v ∈WQ such that the infinitesimal character

χσ = χπ + ρQ is equal to v(ιλ∨ + ρ) + ρQ, where ιλ
∨ is the highest weight of

V ∨ιλ (which has infinitesimal character ιλ∨ + ρ). A short calculation shows that

χσ = λ∨w0,Qvw0
+ρLQ

, where ρLQ
is half the sum of the positive roots for LQ, w0

is the longest element of W and w0,Q is the longest element of WQ. Note that

since WQ is characterized by taking dominant weights for GLn to dominant

weights for LQ (equivalently, taking anti-dominant weights to anti-dominant

weights), w0,Qvw0 is an element of WQ, so this gives the desired statement.

Returning to the proof of the theorem, it now follows from Theorem 2.3.2

that there is a Galois representation

rι(M) : GF → GLn(Qp)

such that for all but finitely many v /∈ S, the characteristic polynomial of

rι(M)(Frobv) equals Pv(X) mod M. Indeed, (cf. the proof of [NT16, Th. 4.2])
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we have

rι(M) =
r⊕

i=1

rι(πi)⊗ ε−(ni+1+···+nr).

We can now deduce that if Q is a proper parabolic, then (EK{Q})m =

EK{Q} ⊗TS(K,Vλ)
TS(K,Vλ)m vanishes. Suppose M is a maximal ideal of

H(GLn(A
∞,S
F ),KS)⊗Z C

in the support of (EK{Q})m. On the one hand, the representation rι(M) is

reducible in this case, but we have an isomorphism rι(π) ∼= ρm. This contradicts

the assumption that ρm is absolutely irreducible, so we deduce that (EK{Q})m = 0.

Finally, we show both parts of the theorem. It suffices to show that if π

is a cuspidal automorphic representation of GLn(AF ) with central character

matching ξ−1ιλ on R>0, then

(1) H∗(mG,K∞;π∞ ⊗ Vιλ) is zero unless π is regular algebraic of weight ιλ.

(2) If π is regular algebraic of weight ιλ, then Hj(mG,K∞;π∞ ⊗ Vιλ) vanishes
for j /∈ [q0, q0 + l0] and is non-zero for j ∈ [q0, q0 + l0].

The first claim follows from [BW00, Ch. II, Prop. 3.1]. The second claim

follows from [Clo90, Lem. 3.14] and the Künneth formula for relative Lie

algebra cohomology. (In the notation of loc. cit., our Lie algebra mG is a

direct sum of g̃v for each infinite place v of F and an abelian Lie algebra of

dimension [F+ : Q]− 1; the range of non-zero cohomological degrees is n− 1

for (g̃v,Kv)-cohomology, so we get range (n− 1)[F+ : Q] + [F+ : Q]− 1 = l0
in total.) �

Theorem 2.4.11. Let ρ ∈ X∗(ResF+/Q Tn) denote half the sum of the

positive roots of ResF+/Q
‹G. Fix an isomorphism ι : Qp → C. Let λ̃ ∈

(Z2n
+ )Hom(F+,E)) be a highest weight with the following property : for any w ∈

WP ((ResF+/Q
‹G)C, (ResF+/Q T )C), there are no (characteristic 0) cuspidal

automorphic representations for G of weight ιλw, where λw = w(λ̃+ ρ)− ρ.
Let m̃ ⊂ ‹TS be a maximal ideal that is in the support of H∗(‹X‹K ,Vλ̃) with

the property that ρ̄m̃ is a direct sum of n-dimensional absolutely irreducible

representations of GF . Let d = 1
2 dimRX

‹G = n2[F+ : Q].

Then Hd(‹X‹K ,Vλ̃)m̃[1/p] is a semisimple ‹TS [1/p]-module, and for every

homomorphism f : ‹TS(Hd(‹X‹K ,Vλ̃)m̃) → Qp, there exists a cuspidal, regular

algebraic automorphic representation π̃ of ‹G(AF+) of weight ιλ̃ such that f is

associated to the Hecke eigenvalues of (ι−1π̃∞)
‹K .
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Proof. The proof uses similar ingredients to the proof of Theorem 2.4.10

above. We must understand the systems of ‹TS-eigenvalues occurring in

Hd(‹X‹K , Vιλ̃)m̃ := Hd
Ä‹X‹K ,Vλ̃

ä
m̃
[1/p]⊗E,ι C.

As a consequence of [Fra98, Th. 18], as in [FS98, §2.2], applied to the group

ResF+/Q
‹G, we have a canonical decomposition

Hd(‹X‹K , Vιλ̃) =
Ñ
⊕

{‹P}∈C
Hd
(
g̃, ‹K∞;A

V
ιλ̃
,{‹P} ⊗C V

ιλ̃

)
é‹K

.

Here, C is the set of associate classes of parabolic Q-subgroups of ResF+/Q
‹G.

The cohomology on the right-hand side is relative Lie algebra cohomology,

g̃ is the Lie algebra of (ResF+/Q
‹G)(R), and A

V
ιλ̃
,{‹P} is a certain space of

automorphic forms for ResF+/Q
‹G. (We note that in this case there is no

additional character twist of the ‹G(A∞F )-module structure, because the maximal

split torus in the center of ResF+/Q
‹G is trivial; equivalently, the m‹G of [FS98]

is equal to g̃ because ResF+/Q
‹G has no rational characters.) Set E

{‹P} :=

Hd
(
m‹G, ‹K∞;A

V
ιλ̃
,{‹P}⊗C Vιλ̃

)
. The summand E

‹K
{‹G} is the cuspidal cohomology

group

Hd
cusp

Ä‹X‹K , Vιλ̃
ä
=
⊕

π̃

(π̃∞)
‹K ⊗C Hd

Ä
g̃, ‹K∞; π̃∞ ⊗C V

ιλ̃

ä
,

where the sum runs over cuspidal automorphic representations of ‹G(AF+). We

see that the theorem will be proved if we can establish the following two claims:

(1) If ‹P is a proper standard parabolic subgroup of ResF+/Q
‹G different from

the Siegel parabolic, then
(
ι−1E

‹K
{‹P}
)
m̃
:= ι−1E

‹K
{‹P} ⊗‹TS(‹K,λ̃) ‹TS(‹K, λ̃)m̃ = 0.

(2) If ‹P = P is the Siegel parabolic subgroup of ResF+/Q
‹G, then we also have(

ι−1E
‹K
{‹P}
)

m̃
= 0.

The same argument as in the proof of Theorem 2.4.10 shows that if M̃ is

a maximal ideal of ‹TS [1/p] that occurs in the support of ι−1E
‹K
{‹P}, then M̃

corresponds to the system of Hecke eigenvalues appearing in

Å
Ind

‹G(A∞
F+ )

‹P (A∞
F+ )

ι−1σ∞
ã‹K

,

where σ is a cuspidal automorphic representation of L‹P (AF+) whose infin-

itesimal character equals the dual of the infinitesimal character of the irre-

ducible algebraic representation of L‹P of highest weight w(ιλ̃+ ρ)− ρ for some
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w ∈W ‹P ((ResF+/Q
‹G)C, (ResF+/Q T )C). The second claim now follows imme-

diately from our hypothesis that there are no such automorphic representations

in the case ‹P = P .

As in the proof of Theorem 2.4.2, we note that the Levi subgroup L‹P is

isomorphic to a product ResF/F+ GLn1×· · ·×ResF/F+ GLnr×U(n−s, n−s) for
some decomposition 2n = n1+ · · ·+nr+2(n−s). We can now establish the first

claim: using the existence of Galois representations attached to regular algebraic

cuspidal automorphic representations of GLm and U(m,m) for m ≤ n (i.e.,

using Theorems 2.3.2 and 2.3.3), we see that there exists a Galois representation

r(M̃) : GF → GL2n(Qp) such that for all but finitely many places v of F , r(M̃) is

unramified at v and r(M̃) has characteristic polynomial equal to ‹Pv(X) mod M̃.

Moreover, this representation has at least three Jordan–Hölder factors as soon

as (r, s) 6∈ {(1, n), (0, 0)} (by an argument identical to the one appearing at the

end of the proof of Theorem 2.4.2). Since we are assuming that ρm̃ has two

irreducible constituents, each of dimension n, this would lead to a contradiction,

showing that we must in fact have
(
ι−1E

‹K
{‹P}
)

m̃
= 0. This completes the

proof. �

3. Local-global compatibility, l 6= p

3.1. Statements. Let F be a CM field containing an imaginary quadratic

field, and fix an integer n ≥ 1. Let p be a prime, and let E be a finite extension

of Qp inside Qp large enough to contain the images of all embeddings of F

in Qp. We assume that each p-adic place v of F+ splits in F .

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, and satisfying

the following conditions:

• S = Sc.

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

We recall (Theorem 2.3.7) that under these hypotheses, if m ⊂ TS(K,λ) is a

non-Eisenstein maximal ideal, then there is a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/I)

characterized, up to conjugation, by the characteristic polynomials of Frobenius

elements at places v 6∈ S; here I is a nilpotent ideal whose exponent depends

only on n and [F : Q]. Our goal in this chapter is to describe the restriction of

ρm to decomposition groups at some prime-to-p places where ramification is

allowed.
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To this end, we suppose given as well a subset R ⊂ S satisfying the

following conditions:

• Each place v ∈ R is prime to p.

• For each place v ∈ R, there exists an imaginary quadratic field F0 ⊂ F in

which the residue characteristic of v splits. In particular, v is split over F+.

• For each place v ∈ R, Kv contains Iwv,1 and is contained in Iwv. For each

place v ∈ Rc −R, Kv = GLn(OFv). (Note that Rc ⊂ S since S is assumed

stable under complex conjugation.)

Let T = S − (Rc − R). We define TT
R ⊂ H(GLn(A

∞
F ),K) ⊗Z O to be the

(commutative) O-subalgebra generated by TT and all the elements tv,i(σ)

(v ∈ R, σ ∈WFv), as in the statement of Theorem 2.4.8. We define

TT
R(K,λ) ⊂ EndD(O)(RΓ(XK ,Vλ))

to be the image of TT
R. Thus there are inclusions

TS(K,λ) ⊂ TT (K,λ) ⊂ TT
R(K,λ).

Theorem 3.1.1. Let notation and assumptions be as above. Then we

can find an integer N ≥ 1 (depending only on n and [F : Q]), an ideal

IR ⊂ TT
R(K,λ)m satisfying INR = 0, and a continuous homomorphism

ρm,R : GF,T → GLn(T
T
R(K,λ)m/IR)

satisfying the following conditions :

(1) For each place v 6∈ T of F , the characteristic polynomial of ρm,R(Frobv) is

equal to the image of Pv(X) in (TT
R(K,λ)m/IR)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic poly-

nomial of ρm,R(σ) is equal to the image of Pv,σ(X) in (TT
R(K,λ)m/IR)[X].

In the statement of this theorem, TT
R(K,λ)m is the localization of TT

R(K,λ)

as a TS(K,λ)-algebra; it is an O-subalgebra of EndD(O)(RΓ(XK ,Vλ)m) that
contains TS(K,λ)m. Instead of proving this theorem directly, we will in fact

prove the following statement:

Proposition 3.1.2. Let notation and assumptions be as above. Then

there exist an integer N ≥ 1 (depending only on n and [F : Q]), an ideal

IR ⊂ TT
R(K,λ)m satisfying INR = 0, and a TT

R(K,λ)m/IR-valued determinant

Dm,R on GF,T of dimension n satisfying the following conditions :

(1) For each place v 6∈ T , the characteristic polynomial of Frobv in Dm,R is

equal to the image of Pv(X) in (TT
R(K,λ)m/IR)[X].

(2) For each place v ∈ R, and for each element σ ∈ WFv , the characteristic

polynomial of σ is equal to the image of Pv,σ(X) in (TT
R(K,λ)m/IR)[X].
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Proposition 3.1.2 implies Theorem 3.1.1 by [Che14, Th. 2.22]. The re-

mainder of Section 3 is devoted to the proof of Proposition 3.1.2. Although

Proposition 3.1.2 is an assertion about determinants, not true representations,

we will still use the assumption that m is non-Eisenstein in the proof — in

particular, as it simplifies our analysis of the boundary cohomology (using the

results proved in Section 2.4.1).

3.2. The proof of Proposition 3.1.2. Let R1 = R ∩ Rc. Let R (resp. R1)

denote the set of places of F+ lying below a place of R (resp. R1). We begin

with a preliminary reduction.

Lemma 3.2.1. Fix for each v ∈ R a choice of Frobenius lift φv ∈WFv . In

order to prove Proposition 3.1.2, it is enough to prove it under the following

additional assumptions :

(1) Kv = Iwv,1 for each place v ∈ R. There exists an odd prime q, prime to R

and p, such that Kq = ker(GLn(OF,q)→ GLn(OF /(q))).
(2) For each place v ∈ R, the characteristic polynomials of ρm(φv) and (ρc,∨m ⊗

ε1−2n)(φv) are coprime.

(3) There exists a character ψ : GF → O× of finite prime-to-p order, unramified

above R ∪ Rc ∪ Sp, such that the composite ψ ◦ ArtF ◦ det : K → O× is

trivial and for each v ∈ R, the characteristic polynomials of ψ(Frobv)ρm(φv)

and ψ(Frobvc)
−1(ρm ⊕ ρc,∨m ⊗ ε1−2n)(φv) are coprime.

(4) λ = 0.

(5) There exists a good subgroup ‹K ⊂ ‹G(A∞F+) satisfying the following condi-

tions :

(a) ‹K is decomposed with respect to P , and K = ‹K ∩G(A∞F+).

(a) ‹Kq = ker(‹G(OF+,q)→ ‹G(OF+/(q))).

(a) If v is a finite place of F+ that is prime to S, then ‹Kv = ‹G(OF+,v). If

v ∈ R1, then ‹Kv = Ĩwv(1, 1). If v ∈ R−R1 and v is the unique place

of R lying above v, then ‹Kv = p̃v,1.

Proof. We first show that if Proposition 3.1.2 holds under assumption (1),

then it holds without this assumption. Let assumptions be as in Proposi-

tion 3.1.2, and let q1, q2 6= p be distinct odd primes not dividing any element

of S. Let Ki ⊂ K be the normal subgroup with Ki,v = Iwv(1, 1) if v ∈ R,

Ki,qi = ker(GLn(OF,qi) → GLn(OF /(qi))), and KR,qi
i = K. Let Si (resp. Ti)

denote the union of S (resp. T ) with the set of qi-adic places of F . Let mi ⊂ TTi

denote the pullback of m under the inclusion TTi → TT . For each i = 1, 2,

there is a diagram of TTi
R -algebras

TTi
R (Ki, λ)mi ← TTi

R (K/Ki, λ)mi � TTi
R (K,λ)mi → TT

R(K,λ)m.
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The left-hand arrow has nilpotent kernel of exponent d depending only on

n and [F : Q], by Lemma 2.2.4. By hypothesis, there exists an integer

N ≥ 1, depending only on n and [F : Q], ideals Ji ⊂ TTi
R (Ki, λ)mi satisfying

JNi = 0, and n-dimensional group determinants Di of GF,Ti with coefficients in

TTi
R (Ki, λ)mi/Ji satisfying conditions (1) and (2) of Proposition 3.1.2.

Let Ii denote the image in TTi
R (K,λ)mi of the pre-image of Ji in the

ring TTi
R (K/Ki, λ)mi , and let I ⊂ TT

R(K,λ)m denote the ideal generated by

the images of I1 and I2. Then I2Nd = 0. Let Dm denote the pushforward

of the determinant D1 to TT
R(K,λ)m/I. Then by construction, Dm is an n-

dimensional determinant of GF,T1 satisfying condition (1) of Proposition 3.1.2

at prime-to-T1 places and condition (2) at each place of R. However, the

Chebotarev density theorem and [Che14, Lem. 1.12] imply that Dm is also

equal to the pushforward of D2 to TT
R(K,λ)m/I. We therefore obtain the

required local-global compatibility also at the q1-adic places of F . The proof of

this step is complete on noting that the exponent 2Nd of I indeed still depends

only on n and the degree [F : Q].

We next show that if Proposition 3.1.2 holds under assumptions (1) and

(2) in the statement of the lemma, then it holds under assumption (1). After

possibly enlarging O, we can find characters ψ1, ψ2 : GF → O× of finite,

prime-to-p order satisfying the following conditions:

• Both ψ1, ψ2 are unramified at each place of S.

• There is no rational prime r such that ψ1, ψ2 are both ramified at r.

• For each i = 1, 2 and for each place v ∈ R, the characteristic polynomials of

(ρm ⊗ ψi)(φv) and ((ρm ⊗ ψi))c,∨ ⊗ ε1−2n)(φv) are coprime.

Let Ki =
∏
v ker(ψi ◦ArtFv ◦ det : Kv → O×), and let Ti denote the union of T

with the set of places dividing a rational prime above which ψi is ramified. Let

mi denote the pullback of m to TTi . Proposition 2.2.23 shows that the truth of

Proposition 3.1.2 for TTi
R (Ki, λ)mi is equivalent to the truth of Proposition 3.1.2

for TTi
R (Ki, λ)mi(ψi), which we are assuming. On the other hand, an argument

very similar to the one given in the first part of the proof shows that the truth of

Proposition 3.1.2 for TTi
R (Ki, λ)m (i = 1, 2) implies the truth of this proposition

for TTi
R (K,λ)mi (i = 1, 2) and then for TT

R(K,λ)m. A very similar argument

shows that if the proposition holds under assumptions (1)–(3) in the statement

of the lemma, then it holds under (1) and (2).

We next show that if Proposition 3.1.2 holds under assumptions (1)–(4) in

the statement of the lemma, then it holds under assumptions (1)–(3). Let K

be a good subgroup satisfying assumptions (1)–(3). The natural map

TT
R(K,λ)→ lim←−

m≥1

TT
R(RΓ(XK ,Vλ/($m)))

is an isomorphism. For each m ≥ 1, let K(pm) = ker(K → GLn(OF,p/(pm))).
Then K(pm) also satisfies assumption (1). The local system Vλ/($m) on
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XK(pm) is constant, so there is a canonical isomorphism of Hecke algebras

TT
R(K(pm),Vλ/($m)) ∼= TT

R(K(pm),O/($m)).

There is also a canonical surjection

TT
R(K(pm),O)→ TT

R(K(pm),O/($m)).

We consider the diagram of Hecke algebras

TT
R(K(pm),O/($m))← TT

R(K/K(pm),Vλ/($m))→ TT
R(K,Vλ/($m)),

where by Lemma 2.2.4, there is an integer d ≥ 1 depending only on n and

[F : Q] such that the kernel of the left-hand arrow is nilpotent of exponent d.

By assumption, therefore, we can find ideals Im ⊂ TT
R(K,Vλ/($m))m satis-

fying INdm = 0 and n-dimensional group determinants Dm of GF,T valued in

TT
R(K,Vλ/($m))m/Im and satisfying the conditions (1) and (2) in the statement

of Proposition 3.1.2. Let

I = ker

Ñ
TT
R(K,λ)m →

∏

m≥1

TT
R(K,Vλ/($m))m/Im

é
.

Then INd = 0 and, by [Che14, Ex. 2.32], there is a unique n-dimensional

group determinant Dm valued in TT
R(K,λ)m/I whose pushforward to each ring

TT
R(K,Vλ/($m))m/Im equals Dm. This determinant Dm necessarily has the

required properties.

We finally show that if Proposition 3.1.2 holds under assumptions (1)–(5)

in the statement of the lemma, then it holds under assumptions (1)–(4). Assume

(1)–(4). We define ‹K =
∏
v
‹Kv as follows:

• If v 6∈ S, then ‹Kv = ‹G(OF+
v
).

• If v ∈ R1, then ‹Kv = Ĩwv(1, 1). If v ∈ R−R1 and v is the unique place of

R lying above v, then ‹Kv = p̃v,1.

• ‹Kq = ker(‹G(OF+,q)→ ‹G(OF+/(q))).

• If v is any other finite place of F+, then fix m ≥ 1 such that ker(‹G(OF+
v
)→

‹G(OF+/($m
v ))) ∩ G(OF+

v
) ⊂ K ∩ G(OF+

v
), and set ‹Kv = ker(‹G(OF+

v
) →

‹G(OF+/($m
v ))) · (K ∩G(OF+

v
)).

It is easy to check that ‹K is a good open subgroup of ‹G(A∞F+) that is decomposed

with respect to P and that satisfies ‹K ∩G(A∞F+) = K. The group K therefore

satisfies condition (5) of the lemma, and the proof of the lemma is complete. �

We henceforth fix a choice of Frobenius lift φv ∈WFv for each place v ∈ R
and assume that K and m satisfy assumptions (1)–(5) of Lemma 3.2.1, and

we prove Proposition 3.1.2 for the Hecke algebra TT
R(K, 0). Let ‹K be the

good subgroup of ‹G(A∞F+) as in the statement of the lemma, and let ‹TT
R ⊂
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H(‹G(A∞F+), ‹K)⊗ZO denote the (commutative) O-subalgebra generated by ‹TS

and all the elements tv,i(σ) (v ∈ R, σ ∈WFv) and ev,i(σ) (v ∈ Rc−R, σ ∈WFv),

as in the statement of Theorem 2.4.8. Thus we have constructed an extension

of the homomorphism S : ‹TS → TS to a homomorphism S : ‹TT
R → TT

R.

These homomorphisms, together with the analogue of Proposition 3.1.2 for

the group ‹G, will be the key to the proof. This analogue is as follows; it

makes use of the resultant Resv ∈ H(‹G(F+
v ), ‹Kv) ⊗Z O of the polynomials

Pvc,φ−c
v
(X) and Pv,φv(X) for a place v ∈ R−Rc, which was introduced before

Proposition 2.2.14.

Proposition 3.2.2. There exist an integer N ≥ 1, depending only on

[F : Q] and n, an ideal Ĩc,R ⊂ ‹TT
R(RΓc(

‹X‹K ,O)) satisfying ĨNc,R = 0, and

a ‹TT
R(RΓc(

‹X‹K ,O))/Ĩc,R-valued determinant ‹Dc,R on GF,S of dimension 2n

satisfying the following conditions :

(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv is equal

to the image of ‹Pv(X) in (‹TT
R(RΓc(

‹X‹K ,O))/ĨR)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic poly-

nomial of σ is equal to the image of ‹Pv,σ(X) in (‹TT
R(RΓc(

‹X‹K ,O))/ĨR)[X].

(3) Let ‹trc,R : ‹TT
R(RΓc(

‹X‹K ,O))[GF,S ] → ‹TT
R(RΓc(

‹X‹K ,O))/Ĩc,R be the trace

associated to ‹Dc,R (cf. [Che14, §1.10]). Then for each place v∈R−Rc, each
σ∈GF,S , and each τv∈IFv , we have Res

(2n)!
v ‹trc,R(σ(τv − 1)Pv,φv(φv))=0.

We note that this result, in the case where R is empty, is Proposition 2.3.9.

The result in this case is also contained implicitly in the proof of [Sch15,

Cor. 5.2.6].

Proof. The proposition can be proved by re-doing the proof of [Sch15,

Cor. 5.2.6] to keep track of the action of the additional Hecke operators at R. For

the reader’s benefit, we single out the following essential statement (cf. [Sch15,

Th. 4.3.1, Cor. 5.1.11]): let C = “Qp, let m ≥ 1 be an integer, and let Tcl

denote ‹TT
R, endowed with the weakest topology for which all of the maps

‹TT
R → EndC(H

0(X‹Kp‹Kp
, ωmk‹Kp‹Kp

⊗ I))

are continuous. (Here the right-hand side, defined as in the statement of

[Sch15, Th. 4.3.1], is endowed with its natural (finite-dimensional C-vector

space) topology, and we are varying over all k ≥ 1 and open compact subgroups
‹Kp ⊂ ‹G(F+

p ) such that ‹Kp‹Kp is a good subgroup.) Then for any continuous

quotient Tcl → A, where A is a ring with the discrete topology, there is

a unique A-valued determinant DA of GF,S of dimension 2n satisfying the

following conditions:
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• For each place v 6∈ S of F , the characteristic polynomial of Frobv equals the

image of ‹Pv(X) in A[X].

• For each place v ∈ R, and for each element σ ∈ WFv , the characteristic

polynomial of σ equals the image of ‹Pv,σ(X) in A[X].

• Let trA : A[GF,S ] → A denote the trace associated to DA. Then for each

place v ∈ R − Rc, for each σ ∈ GF,S , and for each τv ∈ IFv , we have

Res
(2n)!
v trA(σ(τv − 1)Pv,φv(φv)) = 0.

This statement can be proved in exactly the same way as [Sch15, Cor. 5.1.11], by

combining [Che14, Ex. 2.32] with the following observation: take a cuspidal, co-

homological automorphic representation π̃ of ‹G(AF+) such that π̃∞,
‹K 6=0 and an

isomorphism ι : Qp → C, and let ‹TT
R(π̃) = im(‹TT

R⊗OQp → EndQp
(ι−1π̃∞,

‹K)).

Consider the associated Galois representation (whose existence and local prop-

erties are described by Theorem 2.3.3):

rι(π̃) : GF,S → GL2n(Qp).

Let ρ : GF,S → GL2n(‹TT
R(π̃)) denote the composite of rι(π̃) with the inclusion

GL2n(Qp) ⊂ GL2n(‹TT
R(π̃)). Then we have the following properties:

• For each place v 6∈ S of F , the characteristic polynomial of ρ(Frobv) equals

the image of ‹Pv(X) in ‹TT
R(π̃)[X].

• For each place v ∈ R, and for each element σ ∈ WFv , the characteristic

polynomial of ρ(σ) equals the image of ‹Pv,σ(X) in ‹TT
R(π̃)[X].

• For each place v ∈ Rc − R and for each τv ∈ IFv , we have the equality

Res
(2n)!
v ρ((τv − 1)Pv,φv(φv))=0 in M2n(‹TT

R(π̃)).

The first two points follow from Theorem 2.3.3 and Proposition 2.2.9. (Note

that the images of ‹Pv(X) and ‹Pv,σ(X) in ‹TT
R(π̃)[X] in fact lie in Qp[X].) The

third point follows from the same theorem and Corollary 2.2.15. (Our appeals

to Theorem 2.3.3 here are the source of our assumption, at the beginning of

this section, that each place of R has residue characteristic that splits in an

imaginary quadratic subfield of F .) �

Corollary 3.2.3. There exist an integer N ≥ 1, depending only on

[F : Q] and n, an ideal Ĩ∂,R ⊂ ‹TT
R(RΓ(∂

‹X‹K ,O)) satisfying ĨN∂,R = 0, and

a ‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R-valued determinant ‹D∂,R on GF,S of dimension 2n

satisfying the following conditions :

(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv is equal

to the image of ‹Pv(X) in (‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R)[X].

(2) For each place v ∈ R, and for each element σ ∈WFv , the characteristic poly-

nomial of σ is equal to the image of ‹Pv,σ(X) in (‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R)[X].
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(3) Let ‹tr∂,R : ‹TT
R(RΓ(∂

‹X‹K ,O))[GF,S ]→ ‹TT
R(RΓ(∂

‹X‹K ,O))/Ĩ∂,R be the trace

associated to ‹D∂,R. Then for each place v ∈ R − Rc, for each σ ∈ GF,S ,
and for each τv ∈ IFv , we have Res

(2n)!
v tr∂,R(σ(τv − 1)Pv,φv(φv)) = 0.

Proof. There is a ‹TT
R-equivariant exact triangle in D(O),

RΓc(‹X‹K ,O) //RΓ(‹X‹K ,O) //RΓ(∂‹X‹K ,O) // ,

and consequently a natural homomorphism

‹TT
R(RΓc(‹X‹K ,O)⊕RΓ(‹X‹K ,O))→ ‹TT

R(RΓ(∂‹X‹K ,O))/J̃,
where J̃ is an ideal of square 0. To prove the corollary, it is therefore enough

to show that there are an integer N ≥ 1, depending only on [F : Q] and n, an

ideal Ĩ ⊂ ‹TT
R(RΓ(

‹X‹K ,O)) satisfying ĨN = 0, and a ‹TT
R(RΓ(

‹X‹K ,O))-valued
determinant ‹D on GF,S of dimension 2n satisfying the following conditions:

(1) For each place v 6∈ S of F , the characteristic polynomial ‹D(X − Frobv) is

equal to the image of ‹Pv(X) in ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ[X].

(2) For each place v ∈ R, and for each element σ ∈ WFv , the characteristic

polynomial of σ is equal to the image of ‹Pv,σ(X) in ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ[X].

(3) Let ‹tr : ‹TT
R(RΓ(

‹X‹K ,O))[GF,S ] → ‹TT
R(RΓ(

‹X‹K ,O))/Ĩ be the trace associ-

ated to ‹D. Then for each place v ∈ R − Rc, for each σ ∈ GF,S , and for

each τv ∈ IFv , we have Res
(2n)!
v ‹tr(σ(τv − 1)Pv,φv(φv)) = 0.

By Proposition 2.2.21, there is a commutative diagram (determined by Verdier

duality)

H(‹G∞, ‹K) //

ι̃
��

EndD(O)(RΓc(‹X‹K ,O))

��

H(‹G∞, ‹K) // EndD(O)(RΓ(‹X‹K ,O)).
Let ι̃(‹TT

R)(RΓc(
‹X‹K ,O)) denote the image of the composite map

‹TT
R → H(‹G∞, ‹K)⊗Z O ι̃→ H(‹G∞, ‹K)⊗Z O → EndD(O)(RΓc(‹X‹K ,O)),

where the first and last maps are the canonical ones. The existence of the above

commutative diagram shows that ι̃ descends to an isomorphism

ι̃(‹TT
R)(RΓc(‹X‹K ,O))→ ‹TT

R(RΓ(‹X‹K ,O)).
To complete the proof of the corollary, it is therefore enough to show that

there is a determinant ‹Dc,R,∨ of GF,S of dimension 2n with coefficients in a

quotient ι̃(‹TT
R)(RΓc(

‹X‹K ,O))/Ĩc,R,∨ by some nilpotent ideal Ĩc,R,∨ of exponent

bounded solely in terms of [F : Q] and n, and satisfying conditions analogous

to those required of ‹D. Using the same argument as in the statement of
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Proposition 3.2.2, it is enough to show the following: Let π̃ be a cuspidal,

cohomological automorphic representation of ‹G(AF+) such that π̃∞,
‹K 6= 0, and

let ι̃(‹TT
R)(π̃) denote the image of the composite

‹TT
R ⊗O Qp → H(‹G∞, ‹K∞)⊗Z Qp

ι̃→ H(‹G∞, ‹K∞)⊗Z Qp → EndQp
(ι−1π̃∞,

‹K).

Consider the associated Galois representation rι(π̃) : GF,S → GL2n(Qp), and

let ρ : GF,S → GL2n(ι̃(‹TT
R)(π̃)) denote the composite of rι(π̃)

∨⊗ ε1−2n with the

inclusion GL2n(Qp) ⊂ GL2n(ι̃(‹TT
R)(π̃)). Then we have the following properties:

• For each place v 6∈ S of F , the characteristic polynomial of ρ(Frobv) equals

the image of ‹Pv(X) in ι̃(‹TT
R)(π̃)[X].

• For each place v ∈ R, and for each element σ ∈ WFv , the characteristic

polynomial of ρ(σ) equals the image of ‹Pv,σ(X) in ι̃(‹TT
R)(π̃)[X].

• For each place v ∈ R − Rc and for each τv ∈ IFv , we have the equality

Res
(2n)!
v ρ(σ(τv − 1)Pv,φv(φv)) = 0 in M2n(ι̃(‹TT

R)(π̃)).

To see why these properties hold, we note that there is a commutative diagram

H(‹G∞, ‹K)

ι̃

��

// EndQp
(ι−1π̃∨,∞,

‹K)

��

H(‹G∞, ‹K) // EndQp
(ι−1π̃∞,

‹K),

where the horizontal arrows are the canonical ones and the right vertical arrow is

transpose with respect to the natural duality between ι−1π̃∞,
‹K and ι−1π̃∨,∞,

‹K .

In particular, ι̃ determines an isomorphism ‹TT
R(π̃

∨) → ι̃(‹TT
R)(π̃). The above

points therefore follow from the analogous points for the cuspidal, cohomological

automorphic representation π̃∨ of ‹G(AF+), already established in the proof of

Proposition 3.2.2, together with the observation that there is an isomorphism

rι(π̃
∨) ∼= rι(π̃)

∨ ⊗ ε1−2n. �

We need one more lemma, which is an analogue of Hensel’s lemma for

group determinants.

Lemma 3.2.4. Let A be a complete Noetherian local O-algebra with residue

field k, and let Γ be a group. Fix natural numbers n1, n2, and set n = n1 + n2.

Suppose given group determinants D1, D2 of Γ of dimensions n1, n2 with coeffi-

cients in A, and let D = D1D2. Suppose moreover that, if Di = Di mod mA,

then the semisimple representations ρi : Γ → GLni(k) with det ρi = Di for

i = 1, 2 have no common Jordan–Hölder factors.

Then

(1) For any other group determinants E1, E2 of Γ of dimensions n1, n2 with

Ei mod mA=Di for i=1, 2 and E1E2=D, we have E1=D1 and E2=D2.

(2) We have kerD = ker(D1) ∩ ker(D2).
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Proof. We will give an expression for D1 that depends only on D, D1,

and D2. This will establish the first part of the lemma. Let R = A[Γ], and let

S = R/CH(D), where the Cayley–Hamilton ideal CH(D) is defined in [Che14,

§1.17]. By [Che14, Lem. 1.21], the homomorphism R → Mn1(k) ×Mn2(k)

determined by D1, D2 factors through S. Let e1, e2 ∈Mn1(k)×Mn2(k) be the

central idempotents that are the identity in one factor and zero in the other.

Following [BC09, p. 32, footnote], we may lift e1, e2 to idempotents e1, e2 ∈ S
such that e1 + e2 = 1 and e1e2 = 0.

We now consider the polynomial law D1,e1 on e1Se1 given by the formula

D1,e1(x) = D1(x+ e2). According to [Che14, Lem. 2.4], D1,e1 is a determinant

e1Se1 → A of some dimension d1 ≤ n1. Reducing modulo mA, we see that

d1 = n1. It follows that the polynomial law D1,e2 on e2Se2 given by the formula

D1,e2(x) = D1(x + e1) is of dimension 0, therefore constant and equal to 1.

Working over A[X], and invoking [Che14, Lem. 2.4(2)], we have

D1(X − e2) = D1,e1(X) = Xn1 ,

hence en1
2 = e2 ∈ CH(D1) ⊂ ker(D1). Similarly we deduce that e1 ∈ ker(D2).

We find that for any A-algebra B and any x ∈ S ⊗A B, we have

D1(x) = D1(e1x+ e2x) = D1(e1x),

and so

D(e1x+ e2) = D1(xe1) = D1(x).

Since the expression D1(x) = D(e1x + e2) only depends on D, D1, and D2,

this proves the first part of the lemma. For the second, we note that the

inclusion ker(D1) ∩ ker(D2) ⊂ ker(D) follows immediately from the definition.

For the other inclusion, take x ∈ ker(D), an A-algebra B, and y ∈ R⊗A B. By

symmetry, it is enough to show that D1(1 + xy) = 1. We have

D1(1 + xy) = D1(e1(1 + xy)) = D(1 + e1xy) = 1,

since e1x ∈ ker(D). This concludes the proof. �

We can now complete the proof of Proposition 3.1.2.

Proof of Proposition 3.1.2. Let m̃ = S∗(m) ⊂ ‹TS . By Theorem 2.4.8, the

map S descends to a homomorphism

‹TT
R(RΓ(∂‹X‹K ,O)m̃)→ TT

R(RΓ(XK ,O)m).
By Propositions 2.2.16, 2.2.18 and 2.2.19 and Corollary 3.2.3, we see that we

can find an integer N ≥ 1, depending only on [F : Q] and n, an ideal IR ⊂
TT
R(RΓ(XK ,O)m) satisfying INR = 0, and a TT

R(K, 0)m/IR-valued determinant

D′ on GF,S of dimension 2n satisfying the following conditions:

(1) For each place v 6∈ S of F , the characteristic polynomial of Frobv under D′

is equal to the image of Pv(X)q
n(2n−1)
v P∨vc(q

1−2n
v X) in (TT

R(K, 0)m/IR)[X].
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(2) For each v ∈ R, and for each σ ∈WFv , the characteristic polynomial of σ

under D′ is equal to the image of Pv,σ(X)‖σ‖n(1−2n)v P∨vc,σc(‖σ‖2n−1v X) in

(TT
R(K, 0)m/IR)[X].

(3) Let tr′ : TT
R(RΓ(XK ,O)m)[GF,S ] → TT

R(RΓ(XK ,O)m)/IR be the trace

associated to D′. Then for each place v ∈ R−Rc, for each σ ∈ GF,S , and
for each τv ∈ IFv , we have Res

(2n)!
v tr′(σ(τv − 1)Pv,φv(φv)) = 0.

By Theorem 2.3.7, we can assume (after possibly enlarging IR and increasing N

in a way still depending only on [F : Q] and n) that there exists a continuous

representation ρm : GF,S → GLn(T
T
R(K, 0)m/IR) such that for each finite place

v 6∈ S of F , det(X − ρm(Frobv)) equals the image of Pv(X) in TT
R(K, 0)m/IR.

Let D = det ρm. Looking at characteristic polynomials of Frobenius elements for

places v 6∈ S, we conclude that D′ = det(ρm ⊕ ρc,∨m ⊗ ε1−2n) = D(Dc,∨ ⊗ ε1−2n).
(Note that our notation for twisted determinants is chosen so that it matches the

twisted representation; the polynomial law underlying Dc,∨ ⊗ ε1−2n is given by

twisting with det(ε1−2n) = εn(1−2n).) To complete the proof of Proposition 3.1.2,

we need to show that D satisfies the following conditions:

• For each place v ∈ R and for each σ ∈WFv , the characteristic polynomial of

σ under D is the image of Pv,σ(X) in TT
R(K, 0)m/IR.

• D factors through GF,T and for each v ∈ S−T , the characteristic polynomial

of Frobv under D is the image of Pv(X) in TT
R(K, 0)m/IR.

We will then (in the notation of Proposition 3.1.2) be able to take Dm,R = D.

We take points these in turn. If v ∈ R, then there is a unique n-dimensional

group determinant Ev of WFv with coefficients in TT
R(K, 0)m such that for

each σ ∈ WFv , the characteristic polynomial of σ under Ev equals the image

of Pv,σ(X). Similarly, if v ∈ Rc − R, there is a unique n-dimensional group

determinant Ev of WFv with coefficients in TT
R(K, 0)m that is unramified and

such that the characteristic polynomial of Frobv equals Pv(X). Our assumptions

imply that for each v ∈ R, we have D|WFv
(Dc,∨⊗ε1−2n)|WFv

= Ev(E
c,∨
vc ⊗ε1−2n).

We would like to deduce that D|WFv
= Ev.

We first show that this holds in any quotient of TT
R(K, 0)m by a maximal

ideal. (Recall that m is, by assumption, a maximal ideal of TS(K, 0), so

that the ring TT
R(K, 0)m is not necessarily local.) By assumption (i.e., by

Lemma 3.2.1(3)), there is a character ψ : GF,S → O×, unramified above

R ∪Rc ∪ Sp, such that for each place v ∈ R, the characteristic polynomials of

ψ(Frobv)ρm(φv) and ψ(Frobvc)
−1(ρm ⊕ ρc,∨m ⊗ ε1−2n)(φv) are coprime. On the

other hand, Proposition 2.2.23 implies that for any v ∈ R equalities, we have

det(ρm⊗ψ⊕(ρm⊗ψ)c,∨⊗ε1−2n)|WFv
= (Ev⊗ψ|WFv

)((Evc⊗ψ|WFvc
)c,∨⊗ε1−2n).

Looking at the roots of the characteristic polynomial of φv in each determinant

and using the bijection between group determinants over a finite field and isomor-

phism classes of semisimple representations [Che14, Th. 2.12], we conclude that
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we must have det ρm|WFv
= Ev mod n for every maximal ideal n ⊂ TT

R(K, 0)m.

Lemma 3.2.4 then immediately implies that we have D|WFv
= det ρm|WFv

= Ev.

It remains to check that for each place v ∈ R − Rc (hence vc ∈ S − T ),
ρm|WFvc

is unramified and det(X − ρm(Frobvc)) equals the image of Pvc(X)

in TT
R(K, 0)m/IR[X]. Equivalently, we must check that for each place v ∈

R−Rc, ρc,∨m ⊗ε1−2n|WFv
is unramified and det(X−(ρc,∨m ⊗ε1−2n)(Frobv)) equals

the image of q
n(2n−1)
v P∨vc(q

1−2n
v X) in TT

R(K, 0)m/IR[X]. The computation of

det(X − (ρc,∨m ⊗ ε1−2n)(Frobv)) follows from what we have done already, so

we just need to show that ρc,∨m ⊗ ε1−2n|WFv
is unramified. (Note that this is

stronger, in general, than the assertion that the associated group determinant

of ρc,∨m ⊗ ε1−2n|WFv
is unramified.) To show this, we use the following set of

relations, which follow on applying S to the corresponding set of relations for

the determinant D′:

• For each place v ∈ R−Rc, for each σ ∈ GF,S , and for each τv ∈ IFv , we have

S(Resv)(2n)! tr(ρm(σ(τv − 1)Pv,φv(φv)))

+ S(Resv)(2n)! tr((ρc,∨m ⊗ ε1−2n)(σ(τv − 1)Pv,φv(φv))) = 0.

We have already seen that if v ∈ R−Rc, then Pv,φv(ρm(φv)) = 0, so we deduce

that for each v ∈ R−Rc, each σ ∈ GF,S , and each τv ∈ IFv , we have

S(Resv)(2n)! tr((ρc,∨m ⊗ ε1−2n)(σ(τv − 1)Pv,φv(φv))) = 0.

By definition, Resv ∈ ‹TT
R is the resultant of the polynomials Pv,φv(X) and

Pvc,φ−1
vc
(X) in ‹TT

R[X]. The images of these polynomials in TT
R[X] under the

map S are computed by Proposition 2.2.19; they are (respectively) Pv,φv(X)

and q
n(2n−1)
v Pvc,φ−1

vc
(q1−2nv X) = q

n(2n−1)
v P∨vc(q

1−2n
v X). Thus S(Resv) ∈ TT

R is

the resultant of these two polynomials, and the image of S(Resv) modulo any

maximal ideal of TT
R(K, 0)m coincides with the resultant of det(X − ρm(φv))

and det(X − ρc,∨m ⊗ ε1−2n(φv)). These polynomials in k[X] are coprime by

assumption (cf. Lemma 3.2.1), so we find that S(Resv) is a unit in TT
R(K, 0)m

and therefore that we have the stronger identity

tr((ρc,∨m ⊗ ε1−2n)(σ(τv − 1)Pv,φv(φv))) = 0.

The matrix (ρc,∨m ⊗ ε1−2n)(Pv,φv(φv)) = Pv,φv((ρ
c,∨
m ⊗ ε1−2n)(φv)) has unit de-

terminant. Since ρm is absolutely irreducible and σ ∈ GF,S is arbitrary, we

conclude that we must have (ρc,∨m ⊗ ε1−2n)(τv − 1) = 0 for all τv ∈ IFv or,

equivalently, that ρm|WFvc
is unramified. This is what we needed to show. �

4. Local-global compatibility, l = p (Fontaine–Laffaille case)

4.1. Statements. Let F be a CM field containing an imaginary quadratic

field, and fix an integer n ≥ 1. Let p be a prime, and let E be a finite extension
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of Qp inside Qp large enough to contain the images of all embeddings of F in

Qp. We assume throughout this chapter that F satisfies the following standing

hypothesis:

• The prime p is unramified in F . Moreover, F contains an imaginary quadratic

field in which p splits.

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, stable under

complex conjugation, and satisfying the following condition:

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic subfield of F in which l splits.

We recall (Theorem 2.3.7) that under these hypotheses, if m ⊂ TS(K,λ) is a

non-Eisenstein maximal ideal, then there is a continuous homomorphism

ρm : GF,S → GLn(T
S(K,λ)m/J)

characterized, up to conjugation, by the characteristic polynomials of Frobenius

elements at places v 6∈ S; here J is a nilpotent ideal whose exponent depends

only on n and [F : Q]. Our goal in this chapter is to show that under certain

conditions, we can show that the restrictions of ρm to decomposition groups

at the p-adic places of F satisfy conditions coming from p-adic Hodge theory.

More precisely, we can show, after perhaps enlarging the nilpotent ideal J , that

they are Fontaine–Laffaille with the expected Hodge–Tate weights.

Before stating the main theorem of this chapter we first briefly recall some

of the properties of the Fontaine–Laffaille functor [FL82], with normalizations

as in [CHT08, §2.4.1].

Let v be a p-adic place of F . We are assuming that Fv/Qp is unramified.

LetMFO be the category of finite OFv ⊗Zp O-modules M equipped with the

following data:

• A decreasing filtration FiliM of OFv ⊗Zp O-submodules that are direct

summands as OFv -modules. For an embedding τ : Fv ↪→ E, define the filtered

O-moduleMτ =M⊗OFv⊗ZpO
O, where we view O as an OFv ⊗Zp O-algebra

via τ ⊗ 1. We assume that for each τ , there is an integer aτ such that

Filaτ Mτ =Mτ and Filaτ+p−1Mτ = 0.

• Frob−1p ⊗ 1-linear maps Φi : FiliM →M such that Φi|Fili+1M = pΦi+1 and

M =
∑

iΦ
i FiliM .

Note that for M ∈MFO,
FiliM =

∏

τ

FiliMτ and Φi =
∏

τ

Φiτ with Φiτ : FiliMτ →Mτ◦Frob−1
p
.

Given a tuple of integers a = (aτ ) ∈ ZHom(Fv ,E), we letMFaO be the full sub-

category ofMFO consisting of objects M such that for each τ , Filaτ Mτ =Mτ
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and Filaτ+p−1Mτ = 0. We write MF0
O for MF (0,...,0)

O . We let MFk and

MFak be the full subcategories of MFO and MFaO, respectively, of objects
annihilated by $.

When p > 2, there is an exact, fully faithful, covariant functor G0 from

MF0
O to the category of finite O-modules with continuous O-linear GFv -action

(see [CHT08, §2.4.1], where G0 is denoted G). The essential image of G0 is

closed under subquotients, and the restriction of G0 toMF0
k takes values in

the category of continuous GFv -representations on finite-dimensional k-vector

spaces. Moreover, ifM1 andM2 are objects ofMF0
O such thatM1⊗OFv⊗ZpO

M2

also lies inMF0
O, then

(4.1.1) G0(M1 ⊗OFv⊗ZpO
M2) = G0(M1)⊗O G0(M2).

We extend G0 to a functor G onMFO by twisting as follows. Fix M ∈MFO
and a = (aτ ) ∈ ZHom(Fv ,E) such that M ∈ MFaO. Define the crystalline

character ψa : GFv → O× by

ψa ◦ArtFv(x) =
∏

τ

τ(x)−aτ for x ∈ O×Fv
and ψa ◦ArtFv(p) = 1,

and the objectM(a) ∈MF0
O by FiliM(a)τ = Fili+aτ Mτ and ΦiM(a),τ = Φi+aτM,τ .

We then set

G(M) = G0(M(a))⊗O ψa.
Using (4.1.1), one checks that this is independent of a such that M ∈ MFaO.
We will denote by Ga the restriction of G toMFaO. Any Ga is fully faithful

and its essential image is stable under subquotients, but G is not full on all of

MFO. We note also that the essential image of G is stable under twists by

crystalline characters.

Let M be an object of MFk. For each embedding τ : Fv ↪→ E, we let

FLτ (M) be the multiset of integers i such that

griM ⊗OFv⊗Zpk
k 6= 0,

counted with multiplicity equal to the k-dimension of this space, where we view

k as a OFv ⊗Zp k algebra via τ ⊗ 1. If p > 2 and M is a p-torsion free object of

MFO, the representation G(M)⊗O E is crystalline and for every embedding

τ : Fv ↪→ E, we have

HTτ (G(M)⊗O E) = FLτ (M ⊗O k).
Moreover, if W is an O-lattice in a crystalline representation of GFv such that

every τ -Hodge–Tate weight lies in [aτ , aτ + p− 2] for some integer aτ , then W

is in the essential image of Ga.

We can now state the main theorem of this chapter (with the same num-

bering as it occurs again immediately before the proof).
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Theorem 4.5.1. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that TS(K,λ)/m = k has residue characteristic p. Let v be a p-adic

place of F+, and suppose that the following additional conditions are satisfied :

(1) The prime p is unramified in F , and F contains an imaginary quadratic

field in which p splits.

(2) Let w be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(3) For each place v|v of F , Kv = GLn(OFv).

(4) For every embedding τ : F ↪→ E inducing the place v of F+,

λτ,1 + λτc,1 − λτ,n − λτc,n ≤ p− 2n− 1.

(5) p > n2.

(6) There exists a p-adic place v′ 6= v of F+ such that

∑

v′′ 6=v,v′

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

(7) ρm is decomposed generic (Definition 4.3.1).

(8) Assume that one of the following holds :

(a) H∗(XK ,Vλ)m[1/p] 6= 0, or

(b) for every embedding τ : F ↪→ E inducing the place v of F+,

−λτc,n − λτ,n ≤ p− 2n− 2 and − λτc,1 − λτ,1 ≥ 0.

Then there exist an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ⊂ TS(K,λ) satisfying JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K,λ)m/J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

equals the image of Pv(X) in (TS(K,λ)m/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of Ga (with

a = (λτ,n) ∈ ZHom(Fv ,E)).

(c) There is M ∈ MFk such that ρm|GFv
∼= G(M) and for any embedding

τ : Fv ↪→ E,

FLτ (M) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}.
The rest of this chapter is devoted to the proof of Theorem 4.5.1. The

proof will be by reduction to known results for automorphic forms on ‹G (in

particular, Theorem 2.3.3).
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4.2. A direct summand of the boundary cohomology. In this section, we

show how to realize the cohomology of XK as a direct summand of the co-

homology of the boundary ∂‹X‹K of the Borel–Serre compactification of ‹X‹K .
This is the first step in relating the cohomology of XK to automorphic forms

on ‹G. We must first introduce some new notation, in addition to the notation

introduced in Section 2.4.

We recall (cf. Section 2.2.1) that we write Sp for the set of p-adic places

of F+, Sp for the set of p-adic places of F , and that we have fixed a subset

S̃p = {ṽ | v ∈ Sp} with the property that Sp = S̃p t S̃cp. Moreover, we write Ĩp

for the set of embeddings τ : F ↪→ E inducing a place of S̃p. For any v ∈ Sp,
we write Ĩv for the set of embeddings τ : F ↪→ E inducing ṽ. Similarly, we

write Iv for the set of embeddings τ : F+ ↪→ E inducing v.

These choices determine an isomorphism (ResF+/Q
‹G)E ∼= ∏

τ∈Ĩp
GL2n.

For any embedding τ : F+ ↪→ E, we set

Wτ =W (‹G⊗F+,τ E, T ⊗F+,τ E)

and
WP,τ =W (G⊗F+,τ E, T ⊗F+,τ E);

these may be identified with the Weyl groups of GL2n and GLn ×GLn, respec-

tively. Since ‹G is equipped with the Borel subgroup B, we may also define the

subset WP
τ ⊂Wτ of representatives for the quotient WP,τ\Wτ (cf. Section 1.2).

We write ρτ ∈ X∗(T ⊗F+,τ E) for the half-sum of the B ⊗F+,τ E-positive roots.

If v ∈ Sp, then we set Wv =
∏
τ∈Iv Wτ , WP,v =

∏
τ∈Iv WP,τ , and W

P
v =∏

τ∈Iv W
P
τ . We define ρv ∈ X∗((ResF+

v /Qp
T )E) to be the half-sum of the

(ResF+
v /Qp

B)E-positive roots; thus we can identify ρv =
∑

τ∈Hom(F+
v ,E) ρτ .

Given a subset T ⊂ Sp, we set WT =
∏
v∈T Wv, and we define WP,T and WP

T

similarly. If T = Sp, then we drop T from the notation; thusW may be identified

with the Weyl group W ((ResF+/Q
‹G)E , (ResF+/Q T )E) of (ResF+/Q

‹G)E . We

write l :W → Z≥0 for the length function with respect to the Borel subgroup B,

and ρ ∈ X∗((ResF+/Q T )E) for the half-sum of the (ResF+/QB)E-positive roots;

thus we can identify ρ =
∑

v∈Sp
ρv.

If λ̃ ∈ (Z2n
+ )Hom(F+,E), and v ∈ Sp, then we set

λ̃v = (λ̃τ )τ∈HomQp (F
+
v ,E) ∈ (Z2n

+ )Hom(F+
v ,E).

If λ ∈ (Zn+)
Hom(F,E), and v ∈ Sp, then we set

λv = (λτ )τ∈HomQp (Fṽ ,E)tHomQp (Fṽc ,E) ∈ (Zn+)
HomQp (F⊗F+F

+
v ,E).

Theorem 4.2.1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup that is decomposed

with respect to P , and with the property that for each v ∈ Sp, ‹KU,v = U(OF+
v
).

Let m ⊂ TS be a non-Eisenstein maximal ideal, and let m̃ = S∗(m) ⊂ ‹TS .
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Choose a partition Sp = S1 t S2. Let λ̃ ∈ (Z2n
+ )Hom(F+,E) and λ ∈

(Zn+)
Hom(F,E) be dominant weights for ‹G and G, respectively. We assume that

the following conditions are satisfied :

(1) For each v ∈ S1, λ̃v = λv (identification as in (2.2.2)).

(2) For each v ∈ S2, λ̃v = 0.

(3) For each v ∈ S2, there exists wv ∈WP
v such that λv = wv(ρv)− ρv .

(4) p > n2. (We recall our blanket assumption throughout Section 4 that p is

unramified in F .)

If v ∈ S1, we let wv denote the identity element of Wv . We let w = (wv)v∈Sp
.

Then for any m ≥ 1, RΓ(XK ,Vλ/$m)m[−l(w)] is a ‹TS-equivariant direct

summand of RΓ(∂‹X‹K ,Vλ̃/$m)m̃.

(If S is a ring and A,B ∈ D(S) are complexes equipped with homomor-

phisms of S-algebras

fA : R→ EndD(S)(A), fB : R→ EndD(S)(B),

then we say that A is an R-equivariant direct summand of B if there are a

complex C ∈ D(S) equipped with a homomorphism of S-algebras

fC : R→ EndD(S)(C)

and an isomorphism φ : B ∼= A⊕ C in D(S) such that for each r ∈ R, we have

fB(r) = φ−1 ◦ (fA(r)⊕ fC(r)) ◦ φ.)

Proof. By Theorem 2.4.2, it is enough to show that RΓ(XK ,Vλ/$m)[−l(w)]
is a ‹TS-equivariant direct summand of RΓ(‹XP

‹K ,Vλ̃/$
m). We will argue in a

similar way to the proof of Theorem 2.4.4.

Looking at the proof of Theorem 2.4.4, we see that there is a ‹TS-equivariant

isomorphism

RΓ(‹XP
‹KP
,V

λ̃
/$m) ∼= RΓ(‹KS

P ×KS , RΓ(Inf
PS×KS

GS×KS
XG, R1

‹KU,S
∗ V

λ̃
/$m))

in D(O/$m), where ‹TS acts on both sides via the map rP , and that the current

theorem will be proved if we can establish the following claim:

• R1‹KU,S
∗ V

λ̃
/$m admits Vλ/$m[−l(w)] as a direct summand in

D(ShPS×KS
(XG)),

the derived category of PS×KS-equivariant sheaves of O/$m-modules on XG.

In fact, R1
‹KU,S
∗ V

λ̃
/$m is pulled back from RΓ(‹KU,S ,Vλ̃/$m) ∈ D(ShKS

(pt)),

so it suffices to show that Vλ/$m[−l(w)] is a direct summand of the complex

RΓ(‹KU,S ,Vλ̃/$m) in this category.
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We observe that ‹KU,S =
∏
v∈S
‹KU,v, and that V

λ̃
admits a corresponding

decomposition V
λ̃
= ⊗v∈Sp

V
λ̃v
. By the Künneth formula, it is therefore enough

to show the following two claims:

(1) If v ∈ S1, then Vλv/$m is a direct summand of RΓ(‹KU,v,Vλ̃v/$
m) in

D(O/$m[Kṽ ×Kṽc ]).

(2) If v ∈ S2, then Vλv/$m[−l(wv)] is a direct summand of RΓ(‹KU,v,O/$m)

in D(O/$m[Kṽ ×Kṽc ]).

The first claim can be proved using the same argument as in the end of the

proof of Theorem 2.4.4. The second claim follows from Lemmas 4.2.2 and 4.2.3

below. (This is where we use our hypothesis p > n2.) This completes the proof

of the theorem. �

Lemma 4.2.2. Let v ∈ Sp, let K = F+
v , and fix an integer m ≥ 1.

(1) For each i ∈ Z≥0 there is a G(OK)-equivariant isomorphism

H i(U(OK),O/$m) ∼= HomZp(∧iZp
U(OK),O/$m)

= HomO(∧iO(U(OK)⊗Zp O),O/$m)

with G(OK)-action on the right-hand side induced by its conjugation action

on U(OK).

(2) Suppose p ≥ 2n− 1. Given w ∈WP
v , let

λw = w(ρv)− ρv ∈ (Zn+)
HomQp (F⊗F+F

+
v ,E)

(using the identification (2.2.2)). For each i ∈ Z≥0, there is a G(OK)-
equivariant isomorphism

HomO(∧iO(U(OK)⊗Zp O),O) ∼=
⊕

w∈WP
v̄

l(w)=i

Vλw .

Proof. Note that U(OK) is isomorphic (as an abstract group) to Z
n2[K:Qp]
p .

The usual isomorphism H1(U(OK),O/$m) ∼= HomZp(U(OK),O/$m) extends,

by cup product, to a morphism

∧∗HomZp(U(OK),O/$m)→ H∗(U(OK),O/$m).

This can be seen to be an isomorphism using the Künneth formula. This proves

the first part of the lemma.

For the second part, given τ ∈ HomQp(K,E) and w ∈ WP
τ , let λw =

w(ρτ )− ρτ ∈ (Zn+)
2. It is enough for us to show that for each i ∈ Z≥0, there is

a G(OK)-equivariant isomorphism

HomO(∧iO(U(OK)⊗OK ,τ O),O) ∼=
⊕

w∈WP
τ

l(w)=i

Vλw .



POTENTIAL AUTOMORPHY OVER CM FIELDS 971

After tensoring up to E we do have such an isomorphism, by [Kos61]:

HomO(∧iO(U(OK)⊗OK ,τ O), E) ∼=
⊕

w∈WP
τ

l(w)=i

Vλw .

Since p ≥ 2n− 1, it follows from [Jan03, Cor. II.5.6] that Vλw ⊗O k is a simple

G ⊗OK ,τ k-module for all w ∈ WP
τ . It follows that intersecting the lattice

HomO(∧iO(U(OK) ⊗OK ,τ O),O) with a copy of Vλw arising from the above

decomposition gives a sublattice isomorphic to Vλw . By the remark following

[Jan03, Cor. II.5.6], we know that there are no non-trivial extensions between

the simple modules Vλw⊗O k with varying w. Combining this with the universal

coefficient theorem [Jan03, Prop. I.4.18a] we deduce that there are also no

non-trivial extensions between the G⊗OK ,τ O-modules Vλw . This implies the

existence of the desired isomorphism. �

Lemma 4.2.3. Let v ∈ Sp, let K = F+
v , and fix an integer m ≥ 1. Suppose

that p > n2. Then we have a natural isomorphism (inducing the identity on

cohomology)

RΓ(U(OK),O/$m)
∼→

n2[K:Qp]⊕

i=0

H i(U(OK),O/$m)[−i]

in D(O/$m[G(OK)]).

Proof. We have already observed that there is an isomorphism

RΓ(U(OK),O/$m)
∼→ H0(U(OK),O/$m)⊕ τ≥1RΓ(U(OK),O/$m);

see claim (1) in the proof of Theorem 4.2.1. Under the assumption that p > n2,

we can distinguish the remaining degrees of cohomology appearing in the above

direct sum using the action of central elements of G(OK). Let f = [K : Qp].

The center of G(OK) is (OF ⊗OF+ OK)×, and an element z ∈ (OF ⊗OF+ OK)×

acts on U(OK) as multiplication by (NF/F+ ⊗ id)(z) ∈ O×K . We denote by ζ a

primitive pf − 1 root of unity in O×K . We can choose an element z of the center

of G(OK) of order pf − 1 that acts as multiplication by ζ on U(OK). It follows

from Lemma 4.2.2 and the decomposition

U(OK)⊗Zp O =
⊕

σ:OK ↪→O

U(OK)⊗OK ,σ O

that for each degree i, we have a decomposition of H i(U(OK),O/$m) into a

direct sum of G(OK)-modules

M(iσ) = HomO

Ç⊗
σ

∧iσO (U(OK)⊗OK ,σ O),O/$m

å

indexed by f -tuples of integers

{(iσ)σ:OK ↪→O : 0 ≤ iσ ≤ n2,
∑

σ

iσ = i}.
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The action of z on M(iσ) is multiplication by
∏
σ σ(ζ)

−iσ , so if we fix an

embedding σ0 and write ij for the jth Frobenius twist of σ0, then z acts

as multiplication by σ0(ζ)
−
∑f−1

j=0 ijp
j

. Since we are assuming p > n2, the

value of
∑f−1

j=0 ijp
j mod pf − 1 determines the integers ij uniquely, with the

exception (only occurring if p = n2 + 1) of when this value is 0 mod pf − 1,

in which case there are two possibilities: iσ = 0 for all σ and iσ = p − 1 for

all σ. As a consequence, for each degree 1 ≤ i ≤ n2f , we can write down

an idempotent ei ∈ O[z] that induces the identity on H i(U(OK),O/$m) and

the zero map on other degrees i′ 6= i. There is a homomorphism O[z] →
EndD(O/$m[G(OK)])(τ≥1RΓ(U(OK),O/$m)), so the idempotent-completeness

of the derived category implies the existence of a natural decomposition

τ≥1RΓ(U(OK),O/$m) =

n2f⊕

i=1

eiRΓ(U(OK),O/$m).

This completes the proof. �

4.3. Cohomology in the middle degree. In this section we state the funda-

mental result that we need to study cohomology in the middle degree using

automorphic representations of ‹G. We first need to recall a definition; see [CS17,

Def. 1.9] — although note that since our representations are in characteristic p,

the roles of p and l are reversed.

Definition 4.3.1. Let k be a finite field of characteristic p.

(1) Let l 6= p be a prime, and let L/Ql be a finite extension. We say that a

continuous representation r : GL → GLn(k) is generic if it is unramified

and the eigenvalues (with multiplicity) α1, . . . , αn ∈ k of r(FrobL) satisfy

αi/αj 6= |OL/mL| for all i 6= j.

(2) Let L be a number field, and let r : GL → GLn(k) be a continuous

representation. We say that a prime l 6= p is decomposed generic for r if l

splits completely in L and for all places v|l of L, r|GLv
is generic.

(3) Let L be a number field, and let r : GL → GLn(k) be a continuous

representation. We say that r is decomposed generic if there exists a

prime l 6= p that is decomposed generic for r.

Note that if r and r′ give rise to the same projective representation, then

one is (decomposed) generic if and only if the other is.

Lemma 4.3.2. Let L be a number field, and let r : GL → GLn(k) be a

continuous representation. Suppose that r is decomposed generic. Then there

exist infinitely many primes l 6= p that are decomposed generic for r.

Proof. Let K ′/Q denote the Galois closure of the extension of L(ζp) cut

out by r. Let l0 be a prime that is decomposed generic for r; then any other



POTENTIAL AUTOMORPHY OVER CM FIELDS 973

prime l that is unramified in K ′ and such that Frobl, Frobl0 lie in the same

conjugacy class of Gal(K ′/Q) is also decomposed generic for r. There are

infinitely many such primes, by the Chebotarev density theorem. �

Let d = n2[F+ : Q] = 1
2 dimR

‹X = dimRX + 1.

Theorem 4.3.3. Suppose that [F+ : Q] > 1. Let m̃ ⊂ ‹TS(‹K, λ̃) be a

maximal ideal, and suppose that ρm̃ has length at most 2. Suppose that S

satisfies the following condition :

• Let v be a finite place of F not contained in S, and let l be its residue char-

acteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic field F0 ⊂ F in which l splits.

Suppose that ρm̃ is decomposed generic, in the sense of Definition 4.3.1. Then

we have

Hd(‹X‹K ,Vλ̃[1/p])m̃ ←↩ Hd(‹X‹K ,Vλ̃)m̃ � Hd(∂‹X‹K ,Vλ̃)m̃.
Proof. This is an immediate consequence of the main result in [CS19]. This

states that

H i(‹X‹K ,Vλ̃/$)m̃ = 0 if i < d, and H i
c(
‹X‹K ,Vλ̃/$)m̃ = 0 if i > d,

under the assumptions on m̃ in the statement of the theorem. By considering

the short exact sequence of sheaves of O-modules on ‹X‹K
0→ V

λ̃
→ V

λ̃
→ V

λ̃
/$ → 0

and taking cohomology, we see thatHd(‹X‹K ,Vλ̃)m̃[$]=0, sinceHd−1(‹X‹K ,Vλ̃/$)

= 0. By considering the excision sequence for

‹X‹K ↪→ ‹X ‹K ,
we see that the cokernel of the map Hd(‹X‹K ,Vλ̃)m̃ → Hd(∂‹X‹K ,Vλ̃)m̃ injects

into Hd+1
c (‹X‹K ,Vλ̃) = 0. �

Proposition 4.3.4. Suppose that [F+ : Q] > 1. Let ‹K ⊂ ‹G(A∞F+) be a

good subgroup that is decomposed with respect to P . Let λ̃ ∈ (Z2n
+ )Hom(F+,E).

Fix a decomposition Sp = S1 t S2. Suppose that the following conditions are

satisfied :

(1) For each v ∈ S2, λ̃v = 0.

(2) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(3) p > n2. (We remind the reader of our blanket assumption in Section 4 that

p is unramified in F .)
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Let w ∈WP
S2
, and let λw = w(λ̃+ρ)−ρ ∈ (Zn+)

Hom(F,E). Let m ⊂ TS be a non-

Eisenstein maximal ideal in the support of H∗(XK ,Vλw), let m̃ = S∗(m) ⊂ ‹TS ,

and suppose that ρm̃ is decomposed generic. Then the map S : ‹TS → TS

descends to a homomorphism

‹TS(Hd(‹X‹K ,Vλ̃))m̃ → TS(Hd−l(w)(XK ,Vλw))m.
Moreover, the map

‹TS(Hd(‹X‹K ,Vλ̃))m̃ → ‹TS(Hd(‹X‹K ,Vλ̃))m̃[1/p]
is injective.

Proof. This results on combining Theorems 4.3.3 and 4.2.1. �

We introduce some useful language.

Definition 4.3.5. A weight λ̃ ∈ (Z2n
+ )Hom(F,E) will be said to be CTG

(“cohomologically trivial for G”) if it satisfies the following condition:

• Given w ∈ WP , define λw = w(λ̃ + ρ) − ρ ∈ (Zn+)
Hom(F,E). Then for

all w ∈ WP and for all i0 ∈ Z, there exists τ ∈ Hom(F,E) such that

λw,τ − λ∨w,τc 6= (i0, i0, . . . , i0).

This definition will be useful to us because Proposition 4.3.4 shows how to

relate a Hecke algebra for G acting on cohomology with integral coefficients to

a Hecke algebra for ‹G acting on cohomology with rational coefficients of weight

λ̃ (say). If the weight λ̃ is moreover CTG, then Theorem 2.4.11 (together with

the purity lemma [Clo90, Lem. 4.9]) shows that this rational cohomology can

moreover be computed in terms of cuspidal automorphic forms for ‹G, which
have associated Galois representations with well-understood local properties.

Exploiting this is not straightforward since the weight for G depends both

on the chosen weight λ̃ and the chosen Weyl group element w (which must be

of a suitable length l(w) in order to target a particular cohomological degree

for XK). This problem will be dealt with in the next section with a “degree

shifting” argument.

We first state a lemma that shows that there are “many” dominant weights

for ‹G that are CTG:

Lemma 4.3.6. Suppose that [F+ : Q] > 1. Let λ̃ ∈ (Z2n
+ )Hom(F+,E), and

fix a choice of embedding τ0 : F
+ ↪→ E. Then there exists λ̃′ ∈ (Z2n

+ )Hom(F+,E)

satisfying the following conditions :

(1) λ̃τ = λ̃′τ for all τ 6= τ0.

(2) λ̃′ is CTG.

Proof. Let τ 6= τ0 be another embedding τ : F+ ↪→ E. Note that a domi-

nant weight µ̃ ∈ (Z2n
+ )Hom(F+,E) is CTG if it satisfies the following condition:



POTENTIAL AUTOMORPHY OVER CM FIELDS 975

for all w ∈WP , we have

(4.3.7)
n∑

i=1

(µw,τ̃ ,i − µw,τ̃c,i) 6=
n∑

i=1

(µw,τ̃0,i − µw,τ̃0c,i).

Let a ∈ Z≥0, and define λ̃′ ∈ (Z2n
+ )Hom(F+,E) by the formula λ̃′τ = λ̃τ if τ 6= τ0,

λ̃′τ0,1 = λ̃τ0,1 + a, λ̃′τ,i = λ̃τ0,i if i > 1. Then λ̃′ will satisfy condition (4.3.7) as

soon as a is sufficiently large (in a way depending on λ̃). �

4.4. The degree shifting argument. We are now going to show how to use

Proposition 4.3.4 to control the Hecke algebra of G acting on the cohomology

groups Hq(XK ,Vλ). We will do this “one place of F+ above p at a time.”

The argument will involve induction on the cohomological degree q. Since

the cohomology groups of locally symmetric spaces for G may contain torsion,

one needs an inductive argument to pass from the cohomology groups with

O-coefficients (which appear in Proposition 4.3.4) to cohomology groups with

O/$m-coefficients (where one can use congruences to modify the weight).

The first step is the following proposition. Given a non-Eisenstein maximal

ideal m ⊂ TS , we will set m̃ = S∗(m) ⊂ ‹TS . We will use the notation

A(K,λ, q) = TS(Hq(XK ,Vλ)m),

A(K,λ, q,m) = TS(Hq(XK ,Vλ/$m)m),

and

Ã(‹K, λ̃) = ‹TS(Hd(‹X‹K ,Vλ̃)m̃).
Note that there is no natural morphism A(K,λ, q)→ A(K,λ, q,m).

Proposition 4.4.1. Let λ ∈ (Zn+)
Hom(F,E), and let v, v′ be distinct places

of Sp. (The condition that Sp has at least two distinct places implies, in

particular, that F+ 6= Q.) Fix an integer m ≥ 1. Let ‹K ⊂ ‹G(A∞F+) be a good

subgroup. Suppose that the following conditions are satisfied :

(1) For each embedding τ : F ↪→ E inducing the place v of F+, we have

−λτc,1 − λτ,1 ≥ 0.

(2) We have
∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Q].

(3) For each p-adic place v′′ of F+ not equal to v, we have

U(OF+
v′′
) ⊂ ‹Kv′′ ⊂

®Ç
1n ∗
0 1n

å
mod $m

v′′

´
.

We have ‹Kv = ‹G(OF+
v
).
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(4) p > n2. (We recall our blanket assumption in Section 4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(6) m ⊂ TS is a non-Eisenstein maximal ideal such that ρm̃ is decomposed

generic.

Define a weight λ̃ ∈ (Z2n
+ )Hom(F+,E) as follows : if τ ∈ Hom(F+, E) does not

induce either v or v′, then λ̃τ = 0. If τ induces v, then we set

λ̃τ = (−λτ̃ c,n, . . . ,−λτ̃ c,1, λτ̃ ,1, . . . , λτ̃ ,n).

(Note that this is dominant because of our assumption on λ.) If τ induces v′,

then we choose λ̃τ to be an arbitrary element of Z2n
+ .

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exist an integer m′≥m, an integer N≥1,

a nilpotent ideal J ⊂ A(K,λ, q,m) satisfying JN = 0, and a commutative

diagram

‹TS //

S

��

Ã(‹K(m′), λ̃)

��

TS // A(K,λ, q,m)/J,

where ‹K(m′) ⊂ ‹K is the good subgroup defined by setting

‹K(m′)v′′ = ‹Kv′′ ∩
®Ç

1n ∗
0 1n

å
mod $m′

v′′

´
⊂ ‹G(OF+

v′′
)

if v′′ is a p-adic place of F+ not equal to v, and ‹K(m′)v′′ = ‹Kv′′ otherwise.

(Thus ‹K = ‹K(m), by hypothesis.) Moreover, the integer N can be chosen to

depend only on n and [F+ : Q].

Proof. The idea of the proof is to choose a Weyl group element w = w(q)

∈WP such that l(w) = d−q and a weight λ̃ such that λ = w(λ̃+ρ)−ρ, and then

apply Proposition 4.3.4. The actual argument is more subtle, because we need

to work with O-coefficients in order to access the Hecke algebras Ã(‹K, λ̃), whilst
the Hecke algebras A(K,λ, q,m) act on cohomology with torsion coefficients.

We argue by descending induction on q, the induction hypothesis being as

follows:

Hypothesis 4.4.2. Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then the proposition holds for

every cohomological degree i ∈ [q+1, d− 1] and every m ∈ Z≥1. Moreover, the

integer N can be chosen to depend only on n, [F+ : Q], and q.
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The induction hypothesis is always satisfied when q = d − 1. Assume

the induction hypothesis holds for some q ∈
[⌊
d
2

⌋
+ 1, d− 1

]
. We will prove

that the induction hypothesis holds for q − 1. Let us fix m, ‹K, and λ as in

the statement of the proposition. Note that the TS-algebra A(K,λ, q,m) is

independent of λv′′ for v
′′ ∈ Sp, v′′ 6= v, because KS acts on Vλ/$m via the

projection to Kv. Modifying λ, we can therefore assume that in fact λv′ = λ̃v′ .

Let S1 = {v, v′} and S2 = Sp−S1. Let w = w(q) ∈WP
S2

be any element of

length l(w) = d− q. Such an element exists because for any τ ∈ Hom(F+, E),

l(wτ ) takes all integer values in [0, n2] as wτ ranges over elements of WP
τ . We

have chosen our totally real field F+ to satisfy
∑

v̄′′∈S2

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

This means that the desired sum can take any value in [0, d2 +
n2

2 ]. On the other

hand, q ∈
[⌊
d
2

⌋
, d
]
, so d − q ≤ d −

⌊
d
2

⌋
. Since n ≥ 1, we can indeed make an

appropriate choice of w.

Now we let λ′(q) = w(q)(λ̃+ ρ)− ρ. This can be different from λ precisely

at those embeddings inducing a place of S2. In particular, the Hecke algebras

A(K,λ′(q), q,m) and A(K,λ, q,m) are canonically isomorphic as TS-algebras,

once again because KS acts on both Vλ′(q)/$m and Vλ/$m via projection

to Kv.

There is a short exact sequence of TS-modules

0→ Hq(XK ,Vλ′(q))m/$m → Hq(XK ,Vλ′(q)/$m)m

→ Hq+1(XK ,Vλ′(q))m[$m]→ 0.
(4.4.3)

Note that the $m-torsion Hq+1(XK ,Vλ′(q))m[$m] does not, in general, inject

intoHq+1(XK ,Vλ′(q)/$m)m, so we cannot reduce to understanding the Hecke al-

gebra A(q+1,K, λ′(q),m). However, the cohomology group Hq+1(XK ,Vλ′(q))m
is a finitely generated O-module, so Hq+1(XK ,Vλ′(q))m[$m] does inject into

Hq+1(XK ,Vλ′(q))m/$m′
provided that m′ ≥ m is chosen large enough for $m′

to annihilate the torsion submodule of Hq+1(XK ,Vλ′(q))m. This, in turn, injects

into Hq+1(XK ,Vλ′(q)/$m′
)m. It follows that we have an inclusion

AnnTS Hq(XK ,Vλ′(q))m·AnnTS Hq+1(XK ,Vλ′(q)/$m′
)m

⊂ AnnTS Hq(XK ,Vλ/$m)m.
(4.4.4)

Let K(m′) = ‹K(m′) ∩ G(A∞F+). Let m∨ = ι(m) ⊂ TS (notation as in Sec-

tion 2.2.20). Then m∨ is a non-Eisenstein maximal ideal. Poincaré duality

implies that (cf. Corollary 2.2.22 and [NT16, Th. 4.2], noting that O/$m is an

injective O/$m-module) there is an equality

AnnTS H i(XK ,Vλ′(q)/$m)m = ι(AnnTS Hd−1−i(XK ,V∨λ′(q)/$m)m∨)
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of ideals of TS . The existence of the Hochschild–Serre spectral sequence

H i
Ä
K/K(m′), Hj(XK(m′),V∨λ′(q)/$m′

)m∨

ä
⇒ H i+j(XK ,V∨λ′(q)/$m′

)m∨

implies that there is an inclusion

d−q−2∏

i=0

AnnTS H i(XK(m′),V∨λ′(q)/$m′
)m∨ ⊂ AnnTS Hd−2−q(XK ,V∨λ′(q)/$m′

)m∨ .

Applying Corollary 2.2.22 once more, we see that there is an inclusion

d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ′(q)/$m′
)m ⊂ AnnTS Hq+1(XK ,Vλ′(q)/$m′

)m,

or equivalently

d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ/$m′
)m ⊂ AnnTS Hq+1(XK ,Vλ′(q)/$m′

)m.

Combining this with (4.4.4), we deduce that there is an inclusion

AnnTS Hq(XK ,Vλ′(q))m ·
d−1∏

i=q+1

AnnTS H i(XK(m′),Vλ/$m′
)m

⊂ AnnTS Hq(XK ,Vλ/$m)m.

(4.4.5)

By induction, we can find an integer N ≥ 1 and for each i = q + 1, . . . , d− 1,

an integer m′i ≥ m′ such that

S
(
Ann‹TS H

d(‹X‹K(m′
i)
,V

λ̃
)m̃

)N
⊂ AnnTS H i(XK(m′),Vλ/$m′

)m.

Moreover, Proposition 4.3.4 implies that there is an inclusion

S
Ä
Ann‹TS H

d(‹X‹K ,Vλ̃)m̃
ä
⊂ AnnTS Hq(XK ,Vλ′(q))m.

Let m′′ = supim
′
i, and note that for each i, we have

Ann‹TS H
d(‹X‹K(m′′)

,V
λ̃
)m̃ ⊂ Ann‹TS H

d(‹X‹K(m′
i)
,V

λ̃
)m̃

(because this is true rationally, and the cohomology groups are torsion-free, by

Theorem 4.3.3). Finally, let N ′ = 1+ (d− q− 1)N , and let J denote the image

of the ideal

S
Ä
Ann‹TS H

d(‹X‹K(m′′)
,V

λ̃
)m̃
ä

in A(K, q, λ,m). The existence of the inclusion (4.4.5) implies that S descends

to a morphism

Ã(‹K(m′′), λ̃)→ A(K,λ, q,m)/J,

and that the ideal J satisfies JN
′
= 0. This completes the proof. �

This proposition has the following consequence for Galois representations.
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Proposition 4.4.6. Let λ ∈ (Zn+)
Hom(F,E), and let v, v′ be distinct places

of Sp. Fix an integer m ≥ 1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup. Suppose

that the following conditions are satisfied :

(1) For each embedding τ : F ↪→E inducing the place v, we have −λτc,1−λτ,1≥0

and −λτc,n − λτ,n ≤ p− 2n− 1.

(2) We have
∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Q].

(3) For each p-adic place v′′ of F+ not equal to v, we have

U(OF+
v′′
) ⊂ ‹Kv′′ ⊂

®Ç
1n ∗
0 1n

å
mod $m

v′′

´
.

We have ‹Kv = ‹G(OF+
v
).

(4) p > n2. (We recall our blanket assumption in Section 4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(6) m ⊂ TS is a non-Eisenstein maximal ideal such that ρm̃ is decomposed

generic.

Let q ∈
[⌊
d
2

⌋
, d− 1

]
. Then there exist an integer N ≥ 1 depending only on

[F : Q] and n, an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0, and a continuous

representation

ρm : GF,S → GLn(A(K,λ, q,m)/J)

satisfying the following conditions :

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv) is

equal to the image of Pv(X) in (A(K,λ, q,m)/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of the functor Ga

for a = (λτ,n) ∈ ZHomQp (Fv ,E).

(c) For each place v|v of F , there exists N ∈MFk with ρm̃|GFv
∼= G(N) and

FLτ (N) = {−λτc,n + 2n− 1, . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}

for each embedding τ ∈ HomQp(Fv, E).

Proof. Our hypotheses include those of Proposition 4.4.1. We choose the

weight λ̃ of Proposition 4.4.1 to be CTG (as we may, using Lemma 4.3.6 and our

freedom to specify λ̃v′). Let N0 be the integer denoted by N in the statement
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of that proposition. Thus we can find an integer m′ ≥ m, a nilpotent ideal

J0 ⊂ A(q,K, λ,m) satisfying JN0
0 = 0, and a commutative diagram

‹TS //

S

��

Ã(‹K(m′), λ̃)

��

TS // A(K,λ, q,m)/J0.

Let us abbreviate Ã = Ã(‹K(m′), λ̃) and A = A(K,λ, q,m). By Theorem 4.3.3,

Ã is O-flat, and by Theorem 2.4.11, Ã⊗OQp is semisimple and can be computed

in terms of cuspidal automorphic representations of ‹G. By Theorem 2.3.3, there

exists a continuous homomorphism

ρ̃ : GF,S → GL2n(Ã⊗O Qp)

such that for any homomorphism f : Ã⊗O Qp → Qp, and for any finite place

v 6∈ S of F , f ◦ ρ̃(Frobv) has characteristic polynomial equal to the image

of ‹Pv(X) in Qp[X]; and for any place v|v of F , (f ◦ ρ̃)|GFv
is crystalline of

Hodge–Tate weights

HTτ (f ◦ ρ̃|GFv
) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}.

In particular, any GFv -invariant O-lattice in Ã2n is crystalline with all τ -Hodge–

Tate weights in the interval [λτ,n, (2n− 1)− λτc,n]. Using our hypothesis that

−λτc,n + (2n − 1) − λτ,n ≤ p − 2, we see that any GFv -invariant O-lattice in

Ã2n is in the image of the functor Ga with a = (λτ,n) ∈ ZHomQp (Fv ,E) (cf. the

discussion of the functor Ga at the beginning of Section 4).

This establishes part (c) of the proposition. Since for each τ ∈HomQp(Fv, E)

the integers

−λτc,n + (2n− 1), . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n

are all distinct, and ρm̃
∼= ρm ⊕ (ρc,∨m ⊗ ε1−2n), it follows as well that ρm|GFv

6∼=
(ρc,∨m ⊗ ε1−2n)|GFv

.

Let ‹D = det ρ̃, a continuous determinant of GF,S of dimension 2n valued in

Ã (by [Che14, Ex. 2.32]). Its kernel is a two-sided ideal of Ã[GF,S ]. (See [Che14,

§1.17] for the definition of the kernel of a determinant.) The formation of kernels

commutes with flat base change over Ã, so there is an algebra embedding

(Ã[GF,S ]/ ker(‹D))⊗OQp = (Ã⊗OQp)[GF,S ]/ ker(‹D⊗OQp) ⊂M2n(Ã⊗OQp),

by [Che14, Th. 2.12]. This is, in particular, an embedding of left Ã[GF,S ]-

modules. It follows that (Ã[GF,S ]/ ker(‹D)) ⊗O Qp is a subrepresentation of

ρ̃2n, hence that for each v|v, the GFv -representation Ã[GF,S ]/ ker(‹D) is in the

essential image of Ga.
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Theorem 2.3.7 implies that there there are an integer N1 depending only

on [F : Q] and n, a nilpotent ideal J1 ⊂ A(K,λ, q,m) satisfying JN1
1 = 0, and

a continuous representation

ρm : GF,S → GLn(A(K,λ, q,m)/J1)

such that for each finite place v 6∈ S of F , ρm(Frobv) has characteristic polyno-

mial equal to the image of Pv(X) in (A(K,λ, q,m)/J1)[X]. Let J = (J0, J1) ⊂
A(K,λ, q,m); then JN = 0, where N = N0+N1. We will show that the proposi-

tion holds with this choice of J and this value of N . Let us now write ρm for the

projection of ρm to a representation with coefficients in A(K,λ, q,m)/J = A/J .

Set ‹DA/J = ‹D ⊗‹A A/J . Then ‹DA/J = det(ρm ⊕ ρc,∨m ⊗ ε1−2n), hence

(ker det ρm) ∩ (ker det ρc,∨m ⊗ ε1−2n) ⊂ ker ‹DA/J .

The representation ρm ⊕ (ρc,∨m ⊗ ε1−2n) induces an A-algebra homomorphism

(A/J)[GF,S ]→Mn(A/J)⊕Mn(A/J)

which, by [Che14, Th. 2.22(i)], is surjective with kernel equal to (ker det ρm) ∩
(ker det ρc,∨m ⊗ ε1−2n). We deduce that (A/J)[GF,S ]/ ker(‹DA/J) is a quotient

A/J-algebra of Mn(A/J) ×Mn(A/J). By [Che14, Th. 2.22(ii)], this forces

(A/J)[GF,S ]/ ker(‹DA/J) =Mn(A/J)×Mn(A/J).

The surjection Ã[GF,S ] → (A/J)[GF,S ]/ ker(‹DA/J) factors through the

quotient Ã[GF,S ]/ ker(‹D); see [Che14, Lem. 1.18]. For each place v|v of F , it

follows thatMn(A/J)×Mn(A/J), viewed as a left (A/J)[GFv ]-module, is in the

essential image of the functor Ga. (The essential image is stable under passage

to subquotients.) Since Mn(A/J) ×Mn(A/J) contains ρm as a subobject, it

follows that ρm|GFv
is in the essential image of Ga, as desired. �

Remark 4.4.7. Ideas similar to, and more general than, those used in the

proof above were developed by Wake–Wang-Erickson [WWE19].

We now extend the range of cohomological degrees and allowable level

subgroups to which Proposition 4.4.6 applies.

Corollary 4.4.8. Let v ∈ Sp, and let K ⊂ GLn(A
∞
F ) be a good subgroup.

Let λ ∈ (Zn+)
Hom(F,E), and let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that the following conditions are satisfied :

(1) For each place v|v of F , we have Kv = GLn(OFv).

(2) There exists a place v′ ∈ Sp such that v′ 6= v and

∑

v′′∈Sp

v′′ 6=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Q].
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(3) For each embedding τ : F ↪→ E inducing the place v of F+, we have

−λτc,1 − λτ,1 ≥ 0 and −λτc,n − λτ,n ≤ p− 1− 2n.

(4) p > n2. (We recall our blanket assumption in Section 4 that p is unramified

in F .)

(5) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(6) ρm is decomposed generic.

Let q ∈ [0, d − 1] and m ≥ 1 be integers. Then there exist an integer N ≥ 1

depending only on [F : Q] and n, an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0,

and a continuous representation

ρm : GF,S → GLn(A(K,λ, q,m)/J)

satisfying the following conditions :

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv) is

equal to the image of Pv(X) in (A(K,λ, q,m)/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of the functor Ga

for a = (λτ,n) ∈ ZHomQp (Fv ,E).

(c) For each place v|v of F , there exists N ∈MFk with ρm̃|GFv
∼= G(N) and

FLτ (N) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n, λτ,1 + (n− 1), . . . , λτ,n}
for each embedding τ ∈ HomQp(Fv, E).

Proof. Note that the existence of a ρm satisfying only condition (a) (local-

global compatibility at unramified places) is already known (Theorem 2.3.5).

We are therefore free to enlarge S if necessary. We first prove the corollary

with hypothesis (6) replaced by the stronger assumption that ρm̃ is decomposed

generic. Let K ′ ⊂ K be the good normal subgroup defined by the formula

K ′v = Kv if v - p or v|v, and K ′v = Kv ∩ ker(GLn(OFv) → GLn(OFv/$
m
v ))

otherwise. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup satisfying the following

conditions:

• ‹K ∩G(A∞F+) = K.

• ‹KS = ‹G(“OSF+).

• For each place v′′|p of F+, U(OK) ⊂ ‹Kv′′ .

• ‹Kv = G(OF+
v
).

Let ‹K ′ = ‹K(m) be the good subgroup defined as follows: if v′′ is a finite place

of F+ that is prime to p or equal to v, then ‹K ′v′′ = ‹Kv′′ . Otherwise, we set

‹K ′v′′ = ‹Kv′′ ∩
®Ç

1n ∗
0 1n

å
mod $m

v′′

´
.
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Note that the triple (‹K ′, λ,m) satisfies the hypotheses of Proposition 4.4.6. We

let K ′ = ‹K ′ ∩G(A∞F+). There is a Hochschild–Serre spectral sequence

H i(K/K ′, Hj(XK′ ,Vλ/$m)m)⇒ H i+j(XK ,Vλ/$m)m.

It follows that we have an inclusion
q∏

i=0

AnnTS Hq−i(XK′ ,Vλ/$m)m ⊂ AnnTS Hq(XK ,Vλ/$m)m.

Suppose we could show that there is an integer N0 depending only on [F+ : Q]

and n and for each i = 0, . . . , q an ideal Ji ⊂ A(K ′, λ, q−i,m) satisfying JN0
i = 0

and a continuous representation ρm,i : GF,S → GLn(A(K
′, λ, q − i,m)/Ji)

satisfying the conditions the same conditions as ρm. Then the corollary would

follow, with J equal to the image in A(K,λ, q,m) of the intersection of the

pre-images of J0, . . . , Jq in TS , and N = qN0. A theorem of Carayol, [Car94,

Th. 2], implies that the product representation

q∏

i=0

ρm,i : GF,S → GLn

(
q∏

i=0

A(K ′, λ, q − i,m)/Ji

)

can be conjugated to take values in GLn(im(TS →∏q
i=0A(K

′, λ, q− i,m)/Ji)),

and the ring im(TS → ∏q
i=0A(K

′, λ, q − i,m)/Ji) has A(K,λ, q,m)/J as a

quotient.

We are therefore free to assume thatK = K ′ and ‹K = ‹K ′, which we now do.

In this case, we can moreover assume that λv′′ = 0 if v′′ ∈ Sp and v′′ 6= v. Note

that ‹K satisfies the conditions of Proposition 4.4.6, so if q − i ≥ bd/2c, there is

nothing to do. Suppose instead that q− i < bd/2c. Then d− 1− q + i ≥ bd/2c.
Our condition on λv then implies, together with [Jan03, Cor. II.5.6],

that there is an isomorphism Vλ∨ ∼= V∨λ . Let n0 = (2n + 1 − p)/2, and

let µ0 ∈ (Zn+)
Hom(F,E) be defined by µ0,τ = (n0, . . . , n0) for each τ . Then

the maximal ideal m∨(ε−n0) of TS (cf. Section 2.2.20) is in the support of

H∗(XK ,Vλ∨+µ0), and the weight λ∨ + µ0 also satisfies the hypothesis (3) of

the corollary.

Proposition 4.4.6 implies the existence of an ideal

J ′i ⊂ TS(Hd−1−q+i(XK ,Vλ∨+µ0/$m))m∨(ε−n0 )

and a continuous representation

ρ′m,i : GF,S → GLn(T
S(Hd−1−q+i(XK ,Vλ∨+µ0/$m))m∨(ε−n0 )/J

′
i)

satisfying the same conditions as ρm. Propositions 2.2.21 and 2.2.23 together

imply that the isomorphism

TS → TS , [KSgKS ] 7→ ε(ArtK(det(g)))−n0 [KSg−1KS ]
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descends to an isomorphism

f : TS(Hd−1−q+i(XK ,Vλ∨+µ0/$m))m∨(ε−n0 ) → A(K,λ, q − i,m).

The proof in this case is completed by taking Ji = f(J ′i) and ρm,i = (f ◦ρ′m,i)∨⊗
ε1−2n+(p−1)/2.

We now remove the assumption that ρm̃ is decomposed generic, assuming

instead only that ρm is decomposed generic. After possibly enlarging k, we can

find a character ψ : GF → k× such that

(ρm ⊗ ψ)⊕ ((ρm ⊗ ψ)c,∨ ⊗ ε1−2n)

is decomposed generic, and ψ|GFv
is trivial for each place v ∈ S of F . Let

ψ : GF → O× denote the Teichmüller lift of ψ.

Choose a finite set S′ containing S and the set of places where ψ is ramified

and a good normal subgroup K ′ ⊂ K, all satisfying the following conditions:

• (K ′)S
′−S = KS′−S .

• The quotient K ′/K is abelian of order prime to p.

• For each place v of F , the restriction of ψ|GFv
◦ArtFv to det(K ′v) is trivial.

• S′ satisfies the analogue of hypothesis (5) of the corollary.

Then there is a surjection A(K ′, λ, q,m)→ A(K,λ, q,m) of TS′
-algebras, so it

suffices to establish the corollary for A(K ′, λ, q,m). We write m(ψ) ⊂ TS′
for

the non-Eisenstein maximal ideal with ρm(ψ)
∼= ρm ⊗ ψ.

Let m̃(ψ) = S∗(m(ψ)). Then ρm̃(ψ) is decomposed generic, so the already

established case of the corollary implies that we can find an integer N ≥ 1

depending only on [F+ : Q] and n, an ideal J ′ ⊂ TS′
(Hq(XK′ ,Vλ/$m)m(ψ))

satisfying J ′n = 0, and a continuous representation

ρm(ψ) : GF,S′ → GLn(T
S′
(Hq(XK′ ,Vλ/$m)m(ψ))/J

′)

satisfying the conditions (a)–(c) of the corollary. Proposition 2.2.23 implies

that the isomorphism

TS′ → TS′
, [K ′

S
gK ′

S
] 7→ ψ(ArtF (det(g)))[K

′SgK ′
S
]

descends to an isomorphism

f : TS′
(Hq(XK′ ,Vλ/$m))m(ψ) → A(K ′, λ, q,m).

The proof is completed on taking J = f(J ′) and ρm = (f ◦ ρm(ψ))⊗ ψ−1. �

4.5. The end of the proof. We can now prove the main theorem of this

chapter. (For the reader’s convenience, we repeat the statement here.) To

avoid confusion, we also restate the standing hypotheses for this chapter in the

statement of the theorem.
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Theorem 4.5.1. Let m ⊂ TS(K,λ) be a non-Eisenstein maximal ideal.

Suppose that TS(K,λ)/m = k has residue characteristic p. Let v be a p-adic

place of F+, and suppose that the following additional conditions are satisfied :

(1) The prime p is unramified in F , and F contains an imaginary quadratic

field in which p splits.

(2) Let w be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(3) For each place v|v of F , Kv = GLn(OFv).

(4) For every embedding τ : F ↪→ E inducing the place v of F+,

λτ,1 + λτc,1 − λτ,n − λτc,n ≤ p− 2n− 1.

(5) p > n2.

(6) There exists a p-adic place v′ 6= v of F+ such that

∑

v′′∈Sp

v′′ 6=v,v′

[F+
v̄′′ : Qp] >

1

2
[F+ : Q].

(7) ρm is decomposed generic (Definition 4.3.1).

(8) Assume that one of the following holds :

(a) H∗(XK ,Vλ)m[1/p] 6= 0, or

(b) for every embedding τ : F ↪→ E inducing the place v of F+,

−λτc,n − λτ,n ≤ p− 2n− 2 and − λτc,1 − λτ,1 ≥ 0.

Then there exist an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ⊂ TS(K,λ) satisfying JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K,λ)m/J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

equals the image of Pv(X) in (TS(K,λ)m/J)[X].

(b) For each place v|v of F , ρm|GFv
is in the essential image of Ga (with

a = (λτ,n) ∈ ZHom(Fv ,E)).

(c) There is M ∈ MFk such that ρm|GFv
∼= G(M) and for any embedding

τ : Fv ↪→ E,

FLτ (M) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}.
Proof. Note that the existence of a ρm satisfying only condition (a) is

already known (Theorem 2.3.5). We are therefore free to enlarge S if necessary.

We first prove the theorem under the assumption that H∗(XK ,Vλ)m[1/p] 6=0.

By Theorem 2.4.10, there exist an isomorphism ι : Qp → C and a cuspidal
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automorphic representation π of GLn(AF ) of weight ιλ such that (π∞)K 6=0

and such that rι(π)∼=ρm. By [Clo90, Lem. 4.9], there is an integer w ∈ Z such

that for each embedding τ : F ↪→ E and for each i = 1, . . . , n, we have λτ,i +

λτc,n+1−i = w. Fix an embedding τ0 ∈ HomQp(Fṽ, E) such that λτ0,1 + λτ0c,1
is maximal. (Recall that ṽ is a fixed choice of place of F lying above v.)

After possibly enlarging E, we can (cf. [HSBT10, Lem. 2.2]) find a contin-

uous character ψ : GF → O× satisfying

• ψ is crystalline at each v | p,
• ψ is unramified at ṽ and at each v ∈ S − Sp,
• ψ ◦ArtFṽc

|O×
Fṽc

=
∏
τ : Fṽ ↪→E

(τc)λτ0,1+λτ0c,1 .

Define a weight µ = (µτ,1, . . . , µτ,n) ∈ (Zn+)
Hom(F,E) by letting µτ,i be the

unique τ -Hodge–Tate weight for ψ for each 1 ≤ i ≤ n. Note that for τ inducing

ṽ, µτ,i = 0 and µτc,i = −λτ0,1 − λτ0c,1 for all 1 ≤ i ≤ n.
Choose a finite set S′ containing S and the set of places where ψ is ramified

and a good normal subgroup K ′ ⊂ K, all satisfying the following conditions:

• (K ′)S
′−S = KS′−S .

• The quotient K ′/K is abelian.

• For each finite place v - p of F , the restriction of ψ|GFv
◦ArtFv to det(K ′v)

is trivial.

• S′ satisfies the analogue of hypothesis (2) of the theorem.

By an argument with the Hochschild–Serre spectral sequence, just as in the

proof of Corollary 4.4.8, we are free to assume that K = K ′ and S = S′, and

we now do this. Let λ′ = λ+ µ. By Proposition 2.2.23, the map

TS → TS , [KSgKS ] 7→ ψ(ArtF (det(g)))[K
SgKS ]

descends to an isomorphism f : TS(K,λ′)m(ψ) → TS(K,λ)m. We observe that

for any τ ∈ HomQp(Fṽ, E), we have

−λ′τc,1 − λ′τ,1 = −λτc,1 − λτ,1 + λτ0c,1 + λτ0,1 ≥ 0

and (using that λτ,i + λτc,n+1−i = w is independent of τ and i)

−λ′τc,n − λ′τ,n = −λτc,n − λτ,n + λτ0c,1 + λτ0,1 = λτ,1 + λτc,1 − λτ0,n − λτ0c,n
≤ λτ0,1 + λτ0c,1 − λτ0c,n − λτ0,n ≤ p− 1− 2n.

In particular, λ′ satisfies the assumptions of Corollary 4.4.8.

We recall (Lemma 2.1.7) that RΓ(XK ,Vλ′) is a perfect complex, with

cohomology concentrated in the range [0, d−1]. It follows (cf. [NT16, Lem. 3.11])

that the map

TS(K,λ′)→ lim←−
m≥1

TS(RΓ(XK ,Vλ′/$m))
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is an isomorphism. On the other hand, [KT17, Lem. 2.5] shows that for any

m ≥ 1, the kernel of the map

TS(RΓ(XK ,Vλ′/$m))→
∏

q

TS(Hq(XK ,Vλ′/$m))

is a nilpotent ideal I satisfying Id = 0. Applying Corollary 4.4.8, we see that

we can find an integer N ≥ 1 depending only on [F+ : Q] and n, an ideal

J ′ ⊂ TS(K,λ′)m(ψ) satisfying (J ′)N = 0, and a continuous representation

ρm(ψ) : GF,S → GLn(T
S(K,λ′)m(ψ)/J

′)

satisfying the following conditions:

(a′) For each place v 6∈ S of F , the characteristic polynomial of ρm(ψ)(Frobv) is

equal to the image of Pv(X) in (TS(K,λ′)m(ψ)/J
′)[X].

(b′) For each place v|v of F , ρm(ψ)|GFv
is in the essential image of the functor

Ga′ for a′ = (λ′τ,n) ∈ HomQp(Fv, E).

(c′) For each place v|v of F , there exists N ∈MFk with
Ä
ρm(ψ) ⊕ (ρc,∨

m(ψ) ⊗ ε
1−2n)

ä
|GFv

∼= G(N)

and

FLτ (N) = {−λ′τc,n + (2n− 1), . . . ,−λ′τc,1 + n, λ′τ,1 + (n− 1), . . . , λ′τ,n}
for each embedding τ ∈ HomQp(Fv, E).

Let us define J = f(J ′) and ρm = (f ◦ ρm(ψ))⊗ ψ−1. We see immediately that

ρm satisfies the requirements (a) and (b) of the theorem; it remains to establish

requirement (c), in other words to recover the Fontaine–Laffaille weights of ρm.

By the above, there isM ∈MFak such that ρm
∼= Ga(M). Let x : T(K,λ)m

→ Qp denote the homomorphism that gives the action of Hecke operators on

ι−1(π∞)K . The pushforward ρx = x ◦ ρm via x is a continuous representation

of GF,S that is crystalline at ṽ and ṽc, satisfying HTτ (ρx) = FLτ (M) for each

τ ∈ Hom(F,E) inducing the place v of F+. It therefore suffices to show that

HTτ (ρx) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}
for each τ ∈ Hom(F,E) inducing the place v of F+, or equivalently that

HTτ (ρx ⊗ ψ) = {λ′τ,1 + n− 1, λ′τ,2 + n− 2, . . . , λ′τ,n}.

Let ωπ : A×F → C× denote the central character of π. Then ωπ is a

character of type A0 and for each embedding τ : F ↪→ E inducing the place v

of F+, we have

HTτ (rι(ωπ)) =

{
n∑

i=1

λτ,i

}
.
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Moreover, det ρx = rι(ωπ)ε
n(1−n)/2, hence det(ρx ⊗ ψ) = rι(ωπ)ε

n(1−n)/2ψn, as

this can be checked on Frobenius elements at unramified places. We are now

done: HTτ (ρx ⊗ ψ) is an n-element subset of

FLτ (N) = {−λ′τc,n + (2n− 1), . . . ,−λ′τc,1 + n, λ′τ,1 + (n− 1), . . . , λ′τ,n}
with sum equal to

∑n
i=1(λ

′
τ,i + n− i). By construction, we have

−λ′τc,n + (2n− 1) > · · · > −λ′τc,1 + n > λ′τ,1 + (n− 1) > · · · > λ′τ,n.

The only possibility is that HTτ (ρx⊗ψ) has the required form. This completes

the proof of the theorem in the case H∗(XK ,Vλ)m[1/p] 6= 0.

We now treat the second case, assuming that for every embedding τ ∈
Hom(F,E) inducing the place v of F+, we have

−λτc,n − λτ,n ≤ p− 2n− 2 and − λτc,1 − λτ,1 ≥ 0.

In this case Corollary 4.4.8 applies directly, and it only remains to identify the

Fontaine–Laffaille weights of ρm for each place v|v of F . There are M,M
′ ∈

MFak such that ρm|GFv
∼= G(M) and (ρc,∨m ⊗ ε1−2n)|GFv

∼= G(M
′
). We choose

a continuous character ψ : GF → O× satisfying

• ψ is crystalline at each v′ | p,
• ψ is unramified at ṽ,

• ψ ◦ArtFṽc
=
∏
τ : Fṽ ↪→E

(τc) on O×Fṽc
.

After enlarging S, as in the first part of the proof, we can assume that ψ is

unramified outside S, in which case the maximal ideal m(ψ) of TS is defined

and occurs in the support of H∗(XK ,Vλ′), where the weight λ′ ∈ (Zn+)
Hom(F,E)

is defined by the formula λ′τ = λτ if τ does not induce the place ṽc of F , and

λ′τ = λτ − (1, . . . , 1) if τ does induce the place ṽc of F . We observe that the

weight λ′ also satisfies the assumptions of Corollary 4.4.8.

We can now conclude. Let τ ∈ Hom(F,E) be an embedding inducing the

place ṽ of F . The sets FLτ (M) and FLτ (M
′
) partition the 2n distinct integers

−λτc,n + (2n− 1) > · · · > −λτc,1 + n > λτ,1 + (n− 1) > · · · > λτ,n

and FLτ (M) and FLτ (M
′
) + 1 partition the 2n distinct integers

−λτc,n + 2n > · · · > −λτc,1 + (n+ 1) > λτ,1 + (n− 1) > · · · > λτ,n.

Using Lemma 4.5.2, this forces

FLτ (M) = {λτ,1 + (n− 1), λτ,2 + (n− 2), . . . , λτ,n}
and

FLτ (M
′
) = {−λτc,n + (2n− 1), . . . ,−λτc,1 + n}.

Since G(M
′
) = (ρc,∨m ⊗ ε1−2n)|GFv

, this implies that for each place v|v of F ,

ρm|GFv
has the correct Fontaine–Laffaille weights. �
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Lemma 4.5.2. Let m ≥ 1 be an integer, and let A,B,C,D be sets of

integers each of size m. Assume that for any c ∈ C and d ∈ D, we have c > d.

If A ∪B = C ∪D and (A+ 1) ∪B = (C + 1) ∪D and both of these sets have

2m elements, then A = C and B = D.

Proof. We induct on m. Let c be the largest element of C, and let d be

the smallest element of D. Since A∪B = C ∪D and (A+1)∪B = (C+1)∪D,

we must have c ∈ A and d ∈ B. We can then apply the inductive hypothesis to

A′ = A \ {c}, B′ = B \ {d}, C ′ = C \ {c}, and D′ = D \ {d}. �

5. Local-global compatibility, l = p (ordinary case)

5.1. Statements. Let F be a CM field, and fix an integer n ≥ 1. Let p be a

prime, and let E be a finite extension of Qp inside Qp large enough to contain

the images of all embeddings of F in Qp. We assume throughout this chapter

that F satisfies the following standing hypothesis:

• F contains an imaginary quadratic field in which p splits.

In contrast to Section 4, we do not assume that p is unramified in F . As in

Section 4, our goal in this chapter is to establish local-global compatibility

for some Hecke algebra-valued Galois representations at the p-adic places of

F . More precisely, we will show that after projection to the ordinary Hecke

algebra, these Galois representations satisfy an ordinariness condition. (See

(b) and (c) in the statement of Theorem 5.5.1 below — the consequences of

this condition will be explored in Section 6.2.6.) Before formulating the main

theorem of this chapter, we must define these ordinary Hecke algebras.

Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈ (Zn+)

Hom(F,E). Let S

be a finite set of finite places of F , containing the p-adic places, stable under

complex conjugation. We assume that the following conditions are satisfied:

• Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is unramified

in F , or there exists an imaginary quadratic subfield of F in which l splits.

• For each place v|p of F , Kv = Iwv. For each finite place v 6∈ S of F ,

Kv = GLn(OFv).

If c≥b≥0 are integers with c≥1, then we define a good subgroup K(b, c)⊂K by

the formula K(b, c)v=Kv if v - p and Kv = Iwv(b, c) if v|p. Thus K(0, 1) = K.

Then there is an isomorphism K(0, c)/K(b, c) ∼= ∏v|p Tn(OFv/$
b
v). (Here we

are using notation for open compact subgroups and Hecke operators that has

been defined in Section 2.2.5.)

We define a Hecke algebra

TS,ord = TS ⊗O OJTn(OF,p)K[{Uv,1, . . . , Uv,n, U−1v,n}v|p]



990 ALLEN ET AL.

(where the Uv,i are viewed as formal variables). We write Uv = Uv,1Uv,2 · · ·Uv,n−1
∈ TS,ord and Up =

∏
v|p Uv. We observe that there is a canonical surjective

O-algebra homomorphism OJTn(OF,p)K→ O[K(0, c)/K(b, c)]. This extends to

a homomorphism

TS,ord → EndD(O[K(0,c)/K(b,c)])(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)),
where each element Uv,i ofT

S,ord acts on the complexRΓK(0,c)/K(b,c)(XK(b,c),Vλ)
by the Hecke operator of the same name. By the theory of ordinary parts (cf.

[KT17, §2.4]), there is a well-defined direct summand

RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord

of RΓK(0,c)/K(b,c)(XK(b,c),Vλ) in D(O[K(0, c)/K(b, c)]) on which Up acts in-

vertibly, and we define TS(K(b, c), λ)ord to be the image of the associated

homomorphism

TS,ord → EndD(O[K(0,c)/K(b,c)])(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord)
or equivalently, extending our usage for the Hecke algebra TS ,

TS(K(b, c), λ)ord = TS,ord(RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord).
We observe that there is a canonical homomorphism TS(K(0, c)/K(b, c),Vλ)→
TS(K(b, c), λ)ord. The Hecke algebra in the source is defined in Section 2.2.1.

In general this homomorphism is neither injective nor surjective. However,

we do see from the existence of this homomorphism that for any maximal

ideal m of TS(K(b, c), λ)ord, there exists an associated Galois representation

ρm : GF,S → GLn(T
S(K(b, c), λ)ord/m). We call a maximal ideal m of TS,ord

with residue field a finite extension of k of Galois type (resp. non-Eisenstein)

if its pullback to TS is of Galois type (resp. non-Eisenstein) in the sense of

Definition 2.3.6.

The Hecke operators Uv,i ∈ TS(K(b, c), λ)ord are invertible (because Up is).

For each place v|p and for each i = 1, . . . , n, we define a character χλ,v,i : GFv →
TS(K(b, c), λ)ord,× as the unique continuous character satisfying the identities

χλ,v,i ◦ArtFv(u)

= ε1−i(ArtFv(u))

Ç∏
τ

τ(u)−(w
G
0 λ)τ,i

å
〈diag(1, . . . , u, . . . , 1)〉 (u ∈ O×Fv

)

(the product being over τ ∈ HomQp(Fv, E)) and

χλ,v,i ◦ArtFv($v) = ε1−i(ArtFv($v))
Uv,i
Uv,i−1

.

We can now state the main theorem of this chapter. (As with Theorem 4.5.1 in

Section 4.1, we will repeat the statement immediately before its proof with the

same numbering.)
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Theorem 5.5.1. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A
∞
F ) be a

good subgroup such that for each place v ∈ Sp of F , Kv = Iwv . Let c ≥ b ≥ 0

be integers with c ≥ 1, let λ ∈ (Zn)Hom(F,E), and let m ⊂ TS(K(b, c), λ)ord

be a non-Eisenstein maximal ideal. Suppose that the following conditions are

satisfied :

(1) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(2) ρm is decomposed generic.

Then we can find an integer N ≥ 1, which depends only on [F+ : Q] and n, an

ideal J ⊂ TS(K(b, c), λ)ordm such that JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K(b, c), λ)ordm /J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

equals the image of Pv(X) in (TS(K(b, c), λ)ordm /J)[X].

(b) For each v ∈ Sp, and for each g ∈ GFv , the characteristic polynomial of

ρm(g) equals
∏n
i=1(X − χλ,v,i(g)).

(c) For each v ∈ Sp, and for each g1, . . . , gn ∈ GFv , we have

(ρm(g1)− χλ,v,1(g1))(ρm(g2)− χλ,v,2(g2)) . . . (ρm(gn)− χλ,v,n(gn)) = 0.

We refer the reader to Lemma 6.2.11 for the comparison between the

condition (c) and the usual notion of an ordinary Galois representation. In

short, they coincide for representations with coefficients in a field and distinct

diagonal characters.

The rest of Section 5 is devoted to the proof of Theorem 5.5.1. (After

proving the theorem, we record a local-global compatibility result for a single

ordinary automorphic representation as a corollary.) In the rest of the chapter,

we make the following additional standing hypothesis:

• For each place v|p of F , our fixed choices of uniformizer satisfy $vc = $c
v.

This simplifies notation once we introduce the group ‹G. It is important to note

that while the definition of the operators Uv,i above depends on the choice of uni-

formizer $v, neither the complex RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord, nor the Hecke

algebra TS(K(b, c), λ)ord, nor the truth of Theorem 5.5.1 depend on this choice.

5.2. Hida theory. In the previous section we introduced the ordinary Hecke

algebras TS(K(b, c), λ)ord. In Section 5.2, we recall the basic results about

these Hecke algebras and the complexes on which they act; this material goes

under the name “Hida theory.” We also describe how this theory is related to

the corresponding theory for the group ‹G.
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5.2.1. The ordinary part of a smooth representation. Our first goal is to

show, following Emerton [Eme10a], [Eme10b], how to define ordinary parts in

a more representation-theoretic way. We will work throughout with O/$m

coefficients (for some fixed m ≥ 1) in order to avoid topological issues. We first

need to introduce some more notation. If G is a locally profinite group, then

we write Mod(O/$m[G]) for the category of O/$m[G]-modules, and

(5.2.2) Modsm(O/$m[G]) ⊂ Mod(O/$m[G])

for the full subcategory of smooth modules. More generally, if ∆ ⊂ G is an

open submonoid that contains an open compact subgroup of G, then we write

(5.2.3) Modsm(O/$m[∆]) ⊂ Mod(O/$m[∆])

for the full subcategory of smooth modules (by definition, those for which every

vector is fixed by an open subgroup of ∆). We write

M 7→M sm : Mod(O/$m[∆])→ Modsm(O/$m[∆])

for the functor of smooth vectors; it is right adjoint to the inclusion (5.2.3).

Lemma 5.2.4.

(1) The category Modsm(O/$m[∆]) is abelian and has enough injectives.

(2) Let ∆′ ⊂ ∆ be a subgroup that is either compact or open (∆′ is therefore a

locally profinite group). Then the forgetful functor

Modsm(O/$m[∆])→ Modsm(O/$m[∆′])

preserves injectives.

Proof. The functor M 7→M sm has an exact left adjoint, and so preserves

injectives. Since the category Mod(O/$m[∆]) has enough injectives, so does

Modsm(O/$m[∆]).

For the second part of the lemma, we split into cases. Suppose first that

∆′ ⊂ ∆ is an open subgroup. Then compact induction c-Ind∆∆′ is an exact left

adjoint to the forgetful functor. Suppose instead that ∆′ ⊂ ∆ is a compact

subgroup. In this case, we can find a compact open subgroup of ∆ that contains

∆′. Using what we have already proved, we can assume that ∆ = G, in which

case the result follows from [Eme10b, Prop. 2.1.11]. �

We write Dsm(O/$m[∆]) for the derived category of Modsm(O/$m[∆]).

We introduce some monoids, with the aim of studying the theory for

G = GLn(Fp). We write Tn(Fp)
+ ⊂ Tn(Fp) for the open submonoid consisting

of those elements t ∈ Tn(Fp) with tNn(OF,p)t−1 ⊂ Nn(OF,p), and Tn(Fv)+ =

Tn(Fv) ∩ Tn(Fp)+. We recall (Section 2.2.5) that ∆p ⊂ GLn(Fp) denotes the
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monoid
∏
v|p IwvTn(Fv)

+Iwv. If b ≥ 0 is an integer, we define

Tn(OF,p)(b) =
∏

v∈Sp

ker(Tn(OF,v)→ Tn(OF,v/$b
v)),

Tn(OF,p)b = Tn(OF,p)/Tn(OF,p)(b),
Tn(Fp)

+
b = Tn(Fp)

+/Tn(OF,p)(b),
and

Tn(Fp)b = Tn(Fp)/Tn(OF,p)(b).

We write up ∈ Tn(Qp) ⊂ Tn(Fp) for the element (pn−1, pn−2, . . . , 1). It lies

in Tn(Fp)
+. We define Bn(Fp)

+ = Nn(OF,p) · Tn(Fp)+ ⊂ Bn(Fp). Note

that Bn(Fp)
+ ⊂ ∆p. We write Bn(OF,p)(b) for the pre-image in Bn(OF,p)

of Tn(OF,p)(b). It will be important for us to note that a complex C ∈
Dsm(O/$m[Tn(Fp)

+
b ]) comes equipped with a functorial homomorphism

OJTn(OF,p)K[{Uv,1, . . . , Uv,n, U−1v,n}v∈Sp ]→ End
Dsm(O/$m[Tn(Fp)

+
b ])(C)

via the map that is the canonical homomorphism

OJTn(OF,p)K→ O/$m[Tn(OF,p)/Tn(OF,p)(b)]

on this subalgebra and that sends Uv,i to the matrix

diag($v, . . . , $v, 1, . . . , 1) ∈ Tn(Fv) ⊂ Tn(Fp)

(with i occurrences of $v). Consequently, if T
S acts on a complex C, then we

can extend this to an action of the algebra TS,ord.

If λ ∈ X∗((ResF/Q Tn)E) = (Zn)Hom(F,E), we write O(λ) for the O[Tn(Fp)]-
module defined as follows: it is a free rank 1 O-module on which an element

u ∈ Tn(OF,p) acts as multiplication by the scalar
∏
τ∈Hom(F,E)

∏n
i=1 τ(ui)

λτ,i

and on which any element diag($a1
v , . . . , $

an
v ) (ai ∈ Z) acts trivially.

We recall that in Section 2.2.5 we have defined, for any λ ∈ (Zn+)
Hom(F,E), a

twisted action (δ, v) 7→ δ ·p v of ∆p on Vλ. Projection to the lowest weight space

determines an O-module homomorphism Vλ → O(wG0 λ) that is equivariant for
the action of Bn(Fp)

+ (where Bn(Fp)
+ acts through the ·p-action on the source

and through its projection to Tn(Fp) on the target). We write Kλ for the kernel

of the projection Vλ → O(wG0 λ); it is again an O[Bn(Fp)+]-module, finite free

as O-module.

We now define various functors that together will allow us to study ordinary

parts using completed cohomology. We write

Γ(Nn(OF,p),−) : Modsm(O/$m[∆p])→ Modsm(O/$m[Tn(Fp)
+])
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for the functor of Nn(OF,p)-invariants. If V ∈ Modsm(O/$m[∆p]), then the

action of an element t ∈ Tn(Fp)+ on v ∈ Γ(Nn(OF,p), V ) is given by the formula

(5.2.5) t · v =
∑

n∈Nn(OF,p)/tNn(OF,p)t−1

ntv;

cf. [Eme10a, §3], and note that the action of t is by the “double coset operator”

[Nn(OF,p)tNn(OF,p)]. We write

Γ(Bn(OF,p)(b),−) : Modsm(O/$m[∆p])→ Mod(O/$m[Tn(Fp)
+
b ])

for the functor of Bn(OF,p)(b)-invariants. The action of an element t ∈ Tn(Fp)+b
is given by the same formula (5.2.5).

If c ≥ b ≥ 0 are integers with c ≥ 1, we define Iwp(b, c) =
∏
v∈Sp

Iwv(b, c) ⊂
GLn(Fp). We write

Γ(Iwp(b, c),−) : Modsm(O/$m[∆p])→ Mod(O/$m[Tn(Fp)
+
b ])

for the functor of Iwp(b, c)-invariants. If V ∈ Modsm(O/$m[∆p]), then the

action of an element t ∈ Tn(Fp)+ on v ∈ Γ(Iwp(b, c), V ) is given by the action

of the Hecke operator [Iwp(b, c)tIwp(b, c)] (cf. Section 2.1.9).

For any b ≥ 0, we consider the functors

Γ(Tn(OF,p)(b),−) : Modsm(O/$m[Tn(Fp)
+])→ Mod(O/$m[Tn(Fp)

+
b ])

and

Γ(Tn(OF,p)(b),−) : Modsm(O/$m[Tn(Fp)])→ Mod(O/$m[Tn(Fp)b])

of Tn(OF,p)(b)-invariants. Finally, we write

ord : Modsm(O/$m[Tn(Fp)
+])→ Modsm(O/$m[Tn(Fp)])

and

ordb : Mod(O/$m[Tn(Fp)
+
b ])→ Mod(O/$m[Tn(Fp)b])

respectively for the localization functors −⊗O/$m[Tn(Fp)+] O/$m[Tn(Fp)] and

−⊗O/$m[Tn(Fp)
+
b ] O/$m[Tn(Fp)b]. (As the notation suggests, we will use local-

ization to define “ordinary parts.” The reader may object that the ordinary part

usually denotes a direct summand, rather than a localization. At least in the con-

text of O/$m[Tn(Fp)
+
b ]-modules that are finitely generated as O/$m-modules,

the two notions agree; cf. [Eme10b, Lem. 3.2.1] and also Proposition 5.2.15

below. We use localization here since it is easier to define without finiteness

conditions.)
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Lemma 5.2.6. The following diagram is commutative up to natural iso-

morphism :

Modsm(O/$m[Tn(Fp)
+])

Γ(Tn(OF,p)(b),−)
//

ord
��

Mod(O/$m[Tn(Fp)
+
b ])

ordb
��

Modsm(O/$m[Tn(Fp)])

Γ(Tn(OF,p)(b),−)
// Mod(O/$m[Tn(Fp)b]).

Proof. Let M ∈ Modsm(O/$m[Tn(Fp)
+]). There is a natural morphism

ordb Γ(Tn(OF,p)(b),M)→ Γ(Tn(OF,p)(b), ordM),

or equivalently

MTn(OF,p)(b) ⊗O/$m[Tn(Fp)
+
b ] O/$m[Tn(Fp)b]

→ (M ⊗O/$m[Tn(Fp)+] O/$m[Tn(Fp)])
Tn(OF,p)(b).

We must show that it is an isomorphism. It is injective since MTn(OF,p)(b) →M

is injective and localization is exact. To show it is surjective, let x ∈ M ,

and suppose that x ⊗ 1 ∈ (M ⊗O/$m[Tn(Fp)+] O/$m[Tn(Fp)])
Tn(OF,p)(b). We

must show that there exists n ≥ 0 such that unpx ∈ MTn(OF,p)(b). Since M is

smooth, there exists c ≥ b such that x ∈ MTn(OF,p)(c). On the other hand,

our assumption on x ⊗ 1 means that for any t ∈ Tn(OF,p)(b), there exists

n(t) such that u
n(t)
p (t − 1)x = 0 in M . Choosing n(t) to be as small as

possible, we see that n(t) depends only on the image of t in the (finite) quotient

Tn(OF,p)(b)/Tn(OF,p)(c). We can therefore take n = supt n(t). �

Lemma 5.2.7.

(1) Each functor Γ(Nn(OF,p),−), Γ(Bn(OF,p)(b),−), and Γ(Iwp(b, c),−) is

left exact. For any b ≥ 0, the functor Γ(Nn(OF,p),−) sends injectives to

Γ(Tn(OF,p)(b),−)-acyclics.
(2) The functors ord and ordb are exact and preserve injectives.

Proof. It is immediate from the definitions that the three functors in the

first part are left exact. We now show that the functor Γ(Nn(OF,p),−) sends
injectives to Γ(Tn(OF,p)(b),−)-acyclics.

We have a commutative diagram

Modsm(O/$m[∆p])

α

��

// Modsm(O/$m[Tn(Fp)
+])

β

��

// Mod(O/$m[Tn(Fp)
+
b ])

γ

��

Modsm(O/$m[Bn(OF,p)(b)]) // Modsm(O/$m[Tn(OF,p)(b)]) // Mod(O/$m)
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where the horizontal arrows are taking invariants and the vertical arrows are

restriction to compact or open subgroups. By Lemma 5.2.4, the vertical arrows

are exact and preserve injectives. We must show that if I ∈ Modsm(O/$m[∆p])

is injective, then for each i > 0, RiΓ(Tn(OF,p)(b),Γ(Nn(OF,p), I)) = 0. Equiv-

alently (using the formula for a composition of derived functors, [Wei94,

Cor. 10.8.3]), we must show that

γRiΓ(Tn(OF,p)(b),Γ(Nn(OF,p), I)) = RiΓ(Tn(OF,p)(b),Γ(Nn(OF,p), αI)) = 0.

However, αI is injective, so this follows from the fact that the functor

Γ(Nn(OF,p),−) : Modsm(O/$m[Bn(OF,p)(b)])→ Modsm(O/$m[Tn(OF,p)(b)])

preserves injectives (because it has an exact left adjoint, given by inflation).

This proves the first part of the lemma.

We now prove the second part of the lemma. Both ord and ordb are

exact because localization is an exact functor. Since localization preserves

injectives in the case of a Noetherian base ring, ordb preserves injectives. To

show that ord preserves injectives, we go back to the definitions. Let I be

an injective object of Modsm(O/$m[Tn(Fp)
+]), let M ↪→ N be an inclusion

in Modsm(O/$m[Tn(Fp)]), and let α :M → ord(I) be a morphism. We must

show that α extends to N .

For any b ≥ 0, passing to Tn(OF,p)(b)-fixed vectors gives a morphism (cf.

Lemma 5.2.6)

α(b) :MTn(OF,p)(b) → ord(I)Tn(OF,p)(b) ∼= ordb(ITn(OF,p)(b)).

The object ITn(OF,p)(b) ∈ Mod(O/$m[Tn(Fp)
+
b ]) is injective, showing that we

can extend α(b) to a morphism α(b)′ : NTn(OF,p)(b) → ord(I)Tn(OF,p)(b). Zorn’s

lemma implies that there exists a maximal extension α′ : Lmax → ord(I)
of α. The preceding argument shows that we can extend the map induced

by α′ on Tn(OF,p)(b)-invariants from L
Tn(OF,p)(b)
max to NTn(OF,p)(b). It follows

that we can extend α′ to Lmax + NTn(OF,p)(b). By maximality, and since

N = ∪b≥0NTn(OF,p)(b), we have Lmax = N , as desired. �

Lemma 5.2.8. For any c ≥ b ≥ 0 with c ≥ 1, there is a natural isomor-

phism

ordb ◦Γ(Iwp(b, c),−) ∼= ordb ◦Γ(Bn(OF,p)(b),−)
of functors

Modsm(O/$m[∆p])→ Mod(O/$m[Tn(Fp)b]).

Proof. We first show that for any V ∈ Modsm(O/$m[∆p]), the natural

inclusion Γ(Iwp(b, c), V ) ⊂ Γ(Bn(OF,p)(b), V ) is a morphism of O/$m[Tn(Fp)
+
b ]-

modules. A given element t ∈ Tn(Fp)+b acts on the source via the Hecke operator
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[Iwp(b, c)tIwp(b, c)] and on the target by the formula (5.2.5). We see that we

must show that the map

N(OF,p)/tN(OF,p)t−1 → Iwp(b, c)/(Iwp(b, c) ∩ tIwp(b, c)t−1)

is bijective. This is true, because Iwp(b, c) admits an Iwahori decomposition

with respect to Bn (cf. Section 2.1.9).

The exactness of ordb implies that for any V ∈ Modsm(O/$m[∆p]), there

is an inclusion ordb Γ(Iwp(b, c), V ) ⊂ ordb Γ(Bn(OF,p)(b), V ). We must show

that this is an equality.

We have O/$m[Tn(Fp)
+
b ][up]

−1 = O/$m[Tn(Fp)b]. Consequently, the

lemma will follow if we can show that for any v ∈ Γ(Bn(OF,p)(b), V ), there

exists n ≥ 0 such that unp · v ∈ Γ(Iwp(b, c), V ) = V Iwp(b,c).

Since V is smooth, there exists c′ > c such that v ∈ V Iwp(b,c′). By induction,

it is enough to show that Up · v ∈ V Iwp(b,c′−1). The definition of the Hecke

operator Up shows that this will follow if the double coset Iwp(b, c
′)upIwp(b, c

′)

is invariant under left multiplication by the group Iwp(b, c
′ − 1). This is true,

as proved in, e.g., [Ger19, Lem. 2.19]. �

Lemma 5.2.9. Let π ∈ Dsm(O/$m[∆p]) be a bounded below complex.

Then for any c ≥ b ≥ 0, c ≥ 1, there is a natural isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π)) ∼= ordbRΓ(Iwp(b, c), π)

in D(O/$m[Tn(Fp)b]).

Proof. We will use [Wei94, Cor. 10.8.3] (composition formula for derived

functors) repeatedly. Since ord preserves injectives, this implies the existence

of a natural isomorphism

RΓ(Tn(OF,p)(b),−) ◦ ord ∼= R(Γ(Tn(OF,p)(b), ord(−))
∼= R(ordb ◦Γ(Tn(OF,p)(b),−))
∼= ordbRΓ(Tn(OF,p)(b),−).

It follows that for π as in the statement of the lemma, there is a natural

isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π))
∼= ordbRΓ(Tn(OF,p)(b), RΓ(Nn(OF,p), π)).

Using the first part of Lemma 5.2.7, we see that there is a natural isomorphism

RΓ(Tn(OF,p)(b), RΓ(Nn(OF,p), π)) ∼= RΓ(Bn(OF,p(b), π)).
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Lemma 5.2.8 implies the existence of a natural isomorphism

ordbRΓ(Bn(OF,p)(b), π)) ∼= R(ordb Γ(Bn(OF,p)(b),−))(π)
∼= R(ordb Γ(Iwp(b, c),−))(π)
∼= ordbRΓ(Iwp(b, c), π).

This concludes the proof. �

5.2.10. The ordinary part of completed cohomology. We now apply the

formalism developed in the previous section to the cohomology groups of the

spaces XK . If K ⊂ GLn(A
∞
F ) is a good subgroup, then there are functors

ΓKp,sm : Mod(O/$m[G∞])→ Modsm(O/$m[G(F+
p )])

and

ΓKp,sm : Mod(O/$m[Gp,∞ ×∆p])→ Modsm(O/$m[∆p])

that send a module M to Γ(Kp,M)sm. If λ ∈ (Zn+)
Hom(F,E), then we define the

weight λ completed cohomology

π(Kp, λ,m) = RΓKp,smRΓ(XG,Vλ/$m) ∈ Dsm(O/$m[∆p]).

If KS =
∏
v 6∈S GLn(OF,v), then π(Kp, λ,m) comes equipped with a homomor-

phism

(5.2.11) TS → EndDsm(O/$m[∆p])(π(K
p, λ,m))

and, if Kp ⊂ ∆p, a canonical TS-equivariant isomorphism

(5.2.12) RΓ(Kp, π(K
p, λ,m)) ∼= RΓ(XK ,Vλ/$m)

in D(O/$m). We define

π(Kp,m) = RΓKp,smRΓ(XG,O/$m) ∈ Dsm(O/$m[G(F+
p )]);

this complex comes equipped with a homomorphism

(5.2.13) TS → End
Dsm(O/$m[G(F+

p )])(π(K
p,m)),

which recovers (5.2.11) in the case λ = 0 after applying the forgetful functor to

Dsm(O/$m[∆p]). We write TS(Kp,m) for the image of (5.2.13).

Lemma 5.2.14. Let K ⊂ GLn(A
∞
F ) be a good subgroup. Then TS(Kp,m)

is a semi-local ring, complete with respect to the J-adic topology defined by

its Jacobson radical J . For each maximal ideal m ⊂ TS(Kp,m), there is

a unique idempotent em ∈ TS(Kp,m) with the property emH
∗(π(Kp,m)) =

H∗(π(Kp,m))m.

Proof. See [GN22, Lem. 2.1.14]. �
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One important consequence of Lemma 5.2.14 is that the localization

π(Kp,m)m ∈ Dsm(O/$m[G(F+
p )])

is defined.

We define the ordinary part of completed cohomology

πord(Kp, λ,m) = ordRΓ(Nn(OF,p), π(Kp, λ,m)) ∈ Dsm(O/$m[Tn(Fp)]).

(If λ = 0, then we write simply πord(Kp,m).) Its relation to the complex

RΓK(0,c)/K(b,c)(XK(b,c),Vλ)ord defined in Section 5.1 is the expected one:

Proposition 5.2.15. Let K ⊂ G∞ be a good subgroup with Kv = Iwv
for each v|p and KS =

∏
v 6∈S GLn(OFv). Let c ≥ b ≥ 0 be integers with c ≥ 1.

Then for any λ ∈ (Zn+)
Hom(F,E), there is a TS,ord-equivariant isomorphism

RΓ(Tn(OF,p)(b), πord(Kp, λ,m)) ∼= RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)ord

in D(O/$m[K(0, c)/K(b, c)]). (Recall that we may identify K(0, c)/K(b, c)

with Tn(OF,p)b.)
Proof. We compute. We have a TS-equivariant isomorphism

RΓ(Tn(OF,p)(b), ordRΓ(Nn(OF,p), π(Kp, λ,m)))

∼= ordbRΓ(Iwp(b, c), π(K
p, λ,m))

in D(O/$m[Tn(Fp)b]). We have a morphism

RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)ord →RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)

→ ordbRΓ(Iwp(b, c), π(K
p, λ,m))

in D(O/$m[Tn(OF,p)b]). Note that we identify RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)

and RΓ(Iwp(b, c), π(K
p, λ,m)) in D(O/$m[Tn(OF,p)b]). To complete the proof,

we must show that our morphism induces an isomorphism on cohomology

groups. This, in turn, reduces us to the problem of showing that if M is an

O/$m[U ]-module, finite as O/$m-module, and Mord is the maximal direct

summand of M on which U acts invertibly, then the natural map Mord →
M →M ⊗O/$m[U ] O/$m[U,U−1] is an isomorphism of O/$m-modules. This

is true (cf. [Eme10b, Lem. 3.2.1]). �

Corollary 5.2.16 (Independence of level). Let K ⊂ GLn(A
∞
F ) be a good

subgroup with Kv = Iwv for each v|p and KS =
∏
v 6∈S GLn(OFv). Let c ≥ b ≥ 0

be integers with c ≥ 1. Then for any λ ∈ (Zn+)
Hom(F,E), the natural morphism

RΓK(0,max(1,b))/K(b,max(1,b))(XK(b,max(1,b)),Vλ/$m)ord

→ RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)ord

in D(O/$m[Tn(OF,p)b]) is an isomorphism.
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Proposition 5.2.17. Let K ⊂ GLn(A
∞
F ) be a good subgroup with KS =∏

v 6∈S GLn(OF,v). Then there are the following TS-equivariant isomorphisms

in D(O/$m[Tn(Fp)]):

πord(Kp, λ,m) ∼= ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,O(wG0 λ)/$m))

∼= πord(Kp,m)⊗O O(wG0 λ).
Proof. By definition, we have

πord(Kp, λ,m) = ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,Vλ/$m)).

This depends only on the image of RΓKp,smRΓ(XG,Vλ/$m) in the category

D(O/$m[Bn(Fp)
+]. In this category, the Bn(Fp)

+-equivariant morphism Vλ →
O(wG0 λ) induces a morphism

πord(Kp, λ,m)→ ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,O(wG0 λ)/$m)).

To show that this is an isomorphism, we just need to check that

ordRΓ(Nn(OF,p), RΓKp,smRΓ(XG,Kλ/$m)) = 0,

where we recall that Kλ = ker(Vλ → O(wG0 λ)). This follows from the observa-

tion that for sufficiently large N ≥ 1, we have uNp Kλ/$m = 0 (cf. the proof of

[Ger19, Prop. 2.22]). The existence of the second isomorphism follows from the

fact that Nn(OF,p) acts trivially on O(wG0 λ). �

Corollary 5.2.18 (Independence of weight). Let K ⊂ GLn(A
∞
F ) be a

good subgroup with Kv = Iwv for each v|p and KS =
∏
v 6∈S GLn(OFv). Let

c ≥ b ≥ 0 be integers with c ≥ 1. Then for any λ, λ′ ∈ (Zn+)
Hom(F,E) such

that O(wG0 λ)/$m ∼= O(wG0 λ′)/$m as O/$m[Tn(OFp)(b)]-modules, there is an

TS,ord-equivariant isomorphism

RΓK(0,c)/K(b,c)(XK(b,c),Vλ/$m)ord

∼= RΓK(0,c)/K(b,c)(XK(b,c),Vλ′/$m)ord ⊗O O(wG0 λ)⊗O O((wG0 λ′)−1)
in D(O/$m[Tn(Fp)b]).

Proof. Combine Propositions 5.2.15 and 5.2.17. �

5.2.19. Results for the group ‹G. We recall that by assumption each p-adic

place of F+ splits in F , and that we have fixed for each place v ∈ Sp of F+ a

lift ṽ ∈ S̃p to a place of F . These choices determine an isomorphism
∏

v∈Sp

ιṽ : ‹G(F+
p ) ∼=

∏

v∈Sp

GL2n(Fṽ).

We have also fixed a maximal torus and Borel subgroup T ⊂ B ⊂ ‹G that

correspond under this isomorphism to T2n ⊂ B2n ⊂ GL2n. The theory of

Section 5.2.1 can thus be easily generalized to study the completed cohomology
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of ‹G. Since we will need to do this only in passing on our way to analyzing the

complexes πord(Kp, λ,m), we just give some brief indications. We will use some

of the Hecke operators and open compact subgroups defined in Section 2.2.5.

We define

‹TS,ord =
‹TS ⊗O OJT (OF+,p)K[{‹Uv,1, . . . ,‹Uv,2n,‹U−1v,2n}v∈Sp ]

({‹Uvc,i − ‹Uv,2n−i‹U−1v,2n} v∈Sp
i=1,...,2n

)
.

We define ‹Uv=‹Uv,1‹Uv,2 · · ·‹Uv,n−1 and ‹Up=∏v∈Sp
‹Uv∈‹TS,ord. If ‹K⊂‹G(A∞F+)

is a good subgroup with ‹Kv=Ĩwv for each v ∈ Sp, and c ≥ b≥0 are integers with

c≥1, then we define ‹K(b, c) to be the good subgroup with ‹K(b, c)v= ‹Kv if v 6∈Sp
and ‹K(b, c)v=Ĩwv(b, c) otherwise. If λ̃∈(Z2n

+ )Hom(F+,E), there is a well-defined

direct summand RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
)ord of RΓ‹K(0,c)/‹K(b,c)

(‹X‹K(b,c)
,V

λ̃
)

on which ‹Up acts invertibly, and we define

‹T(‹K(b, c), λ̃)ord = ‹TS,ord(RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
)ord)

(i.e., the image of the ‹TS,ord in the endomorphism algebra in

D(O[‹K(0, c)/‹K(b, c)])

of this direct summand).

To compare Hida theory for ‹G and for GLn, we recall that the Levi subgroup

G of ‹G is identified with ResOF /OF+
GLn which, in particular, identifies T with

ResOF /OF+
Tn. We extend the homomorphism S : ‹TS → TS (defined by

equation (2.1.8)) to a homomorphism ‹TS,ord → TS,ord, also denoted S, using
the identification

OJT (OF+,p)K ∼= OJTn(OF,p)K,
and by sending each operator ‹Uv,i to the operator Uvc,n−iU

−1
vc,n (if 1 ≤ i ≤ n)

and U−1vc,nUv,i−n (if n+1 ≤ i ≤ 2n). Note that these respective Hecke operators

are double coset operators for elements of T (F+
p ) and Tn(Fp) that match under

our identification T (F+
p ) = Tn(Fp).

We write T (F+
p )+ ⊂ T (F+

p ) for the submonoid of elements that are

contracting on N(OF+,p). Under our identification T (F+
p ) = Tn(Fp), we

have T (F+
p )+ ⊂ Tn(Fp)

+ (and the inclusion is strict provided n ≥ 2). Let

Ĩwp(b, c) =
∏
v∈Sp

Ĩwv(b, c). We recall (Section 2.2.5) that we have defined

‹∆p = Ĩwp(b, c)T (F
+
p )+Ĩwp(b, c), an open submonoid of ‹G(F+

p ), and that we

have defined an action ·p of this monoid on V
λ̃
. If b ≥ 0 is an integer, then

we define T (OF+,p)(b) = Tn(OF,p)(b) and write B(OF+,p)(b) for the pre-image

in B(OF+,p) of T (OF+,p)(b) under the natural projection to T . We define

B(F+
p )+ = N(OF+,p) · T (F+

p )+.
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Fix m ≥ 1. If ‹K ⊂ ‹G(A∞F+) is a good subgroup with ‹Kv = Ĩwv for each

v ∈ Sp and λ̃ ∈ (Z2n
+ )Hom(F+,E), then we define

(5.2.20) π̃(‹Kp, λ̃,m) = RΓ‹Kp,sm
RΓ(X‹G,Vλ̃/$

m) ∈ Dsm(O/$m[‹∆p]).

If ‹KS = ‹G(“OSF+), then this complex comes equipped with a homomorphism

(5.2.21) ‹TS → End
Dsm(O/$m[‹∆p])

(π̃(‹Kp, λ,m)).

We define π̃(‹Kp,m) = RΓ‹Kp,sm
RΓ(X‹G,O/$m) ∈ Dsm(O/$m[‹G(F+

p )]); this

complex comes equipped with a homomorphism

(5.2.22) ‹TS → End
Dsm(O/$m[‹G(F+

p )])
(π̃(‹Kp,m))

that recovers (5.2.21) after applying the forgetful functor induced by the

inclusion ‹∆p ⊂ ‹G(F+
p ). We also need the completed boundary cohomology. We

thus define

(5.2.23) π̃∂(‹Kp, λ̃,m) = RΓ‹Kp,sm
RΓ(∂X‹G,Vλ̃/$

m) ∈ Dsm(O/$m[‹∆p]).

This complex comes equipped with a homomorphism

(5.2.24) ‹TS → End
Dsm(O/$m[‹∆p])

(π̃∂(‹Kp, λ̃,m)).

We define π̃∂(‹Kp,m) = RΓ‹Kp,sm
RΓ(∂X‹G,O/$m) ∈ Dsm(O/$m[‹G(F+

p )]); this

complex comes equipped with a homomorphism

(5.2.25) ‹TS → End
Dsm(O/$m[‹G(F+

p )])
(π̃∂(‹Kp,m)).

If c ≥ b ≥ 0 are integers with c ≥ 1, then there are canonical ‹TS,ord-equivariant

isomorphisms

(5.2.26) RΓ(Ĩwp(b, c), π̃(‹Kp, λ̃,m)) ∼= RΓ(‹X‹K(b,c)
,V

λ̃
/$m)

and

(5.2.27) RΓ(Ĩwp(b, c), π̃∂(‹Kp, λ̃,m)) ∼= RΓ(∂‹X‹K(b,c)
,V

λ̃
/$m)

in D(O/$m). We define the ordinary part of completed and completed bound-

ary cohomology:

π̃ord(‹Kp, λ̃,m) = ordRΓ(N(OF+,p), π̃(‹Kp, λ̃,m)) ∈ Dsm(O/$m[T (F+
p )])

and

π̃ord∂ (‹Kp, λ̃,m) = ordRΓ(N(OF+,p), π̃∂(‹Kp, λ̃,m)) ∈ Dsm(O/$m[T (F+
p )]).

If λ̃ = 0, then we omit it from the notation. We have the following result, which

contains the analogues of some of the results in Section 5.2.10 for the group ‹G.

The proofs are entirely similar, and so are omitted.
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Proposition 5.2.28. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup with ‹Kv = Ĩwv

for each Sp and ‹KS = ‹G(“OSF+). Let c ≥ b ≥ 0 be integers with c ≥ 1. Then for

any λ̃ ∈ (Z2n
+ )Hom(F+,E), there are ‹TS,ord-equivariant isomorphisms

RΓ(T (OF+,p)(b), π̃
ord(‹Kp, λ̃,m)) ∼=RΓ(T (OF+,p)(b),O(w

‹G
0 λ̃)⊗O π̃ord(‹Kp,m))

∼=RΓ‹K(0,c)/‹K(b,c)
(‹X‹K(b,c)

,V
λ̃
/$m)ord

and

RΓ(T (OF+,p)(b), π̃
ord
∂ (‹Kp, λ̃,m)) ∼=RΓ(T (OF+,p)(b),O(w

‹G
0 λ̃)⊗O π̃ord∂ (‹Kp,m))

∼=RΓ‹K(0,c)/‹K(b,c)
(∂‹X‹K(b,c)

,V
λ̃
/$m)ord

in Dsm(O/$m[‹K(0, c)/‹K(b, c)]).

5.3. The ordinary part of a parabolic induction. In this subsection, we

compute the ordinary part (in the sense defined above) of a parabolic induction

from G to ‹G, with the aim of understanding the ordinary part of the cohomology

of the boundary of the Borel–Serre compactification of ‹X‹K in terms of the

ordinary part of the cohomology of XK . Our calculations here are purely local;

the global application will be carried out in Section 5.4 below.

Let v be a p-adic place of F+. In this section, we write rWv=W (‹GF+
v
, TF+

v
),

rWP,v =W (GF+
v
, TF+

v
), and rWP

v ⊂ rWv for the set of representatives for the

quotient rWP,v\rWv that is associated to the choice of Borel subgroup BF+
v
.

We define rW =
∏
v∈Sp

rWv,
rWP =

∏
v∈Sp

rWP,v, and
rWP =

∏
v∈Sp

rWP
v .

Thus rW is the relative Weyl group of the group (ResF+/QG)Qp . Note that in

Section 4 we made use of the absolute Weyl groupW ; there is a natural inclusion
rW ⊂W , by which rW acts on, e.g., the group X∗((ResF+/Q T )E). We write

lr(w) for the length of an element w ∈ rW as an element of the relative Weyl

group, and l(w) for its length as an element of the absolute Weyl group. Thus

wP0 , the longest element of WP (equivalently, of rWP ), has lr(w
P
0 ) = |Sp|n2

and l(wP0 ) = [F+ : Q]n2. As in Section 4, we write ρ ∈ X∗((ResF+/Q T )E) for

the half-sum of the (ResF+/QB)E-positive roots.

We recall (cf. Section 2.2.1) that P denotes the Siegel parabolic of ‹G, which

has unipotent radical U , while the Borel subgroup B has unipotent radical N .

We identify G with ResF/F+ GLn; this group has standard Borel ResF/F+ Bn
with unipotent radical ResF/F+ Nn. The parabolic induction functor

Ind
‹G(F+

p )

P (F+
p )

: Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[‹G(F+

p )])

is exact and preserves injectives. (It is right adjoint to the exact restriction

functor Res
‹G(F+

p )

P (F+
p )
.) We now define several more functors that are related to

parabolic induction.
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We identify rW with the subgroup of permutation matrices of ‹G(F+
p ) =∏

ṽ∈S̃p
GL2n(Fṽ). We recall (cf. [BT65, Cor. 5.20]) that there is a (set-theoretic)

decomposition

‹G(F+
p ) =

⊔

w∈rWP

P (F+
p )wB(F+

p ).

If w∈ rWP , then we define Sw = P (F+
p )wN(F+

p ) and S◦w = P (F+
p )wN(OF+,p)

⊂ Sw. The closure Sw of Sw in ‹G(F+
p ) can be described in terms of the Bruhat

ordering of rWP :

Sw =
⊔

w′≤w

Sw′ .

Note that if w′ < w, then lr(w
′) < lr(w). For an integer i ≥ 0, we define

‹G≥i =
⊔

w∈rWP

lr(w)≥i

Sw.

It is an open subset of ‹G(F+
p ) that is invariant under left multiplication by

P (F+
p ) and right multiplication by B(F+

p ).

If i ≥ 0, then we define a functor

I≥i : Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[B(F+

p )])

by sending π to

I≥i(π) = {f : ‹G≥i → π | f locally constant, of compact support modulo

P (F+
p ), ∀p ∈ P (F+

p ), g ∈ ‹G≥i, f(pg) = pf(g)},

where B(F+
p ) acts by right translation. If w ∈ rWP , then we define a functor

Iw : Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[B(F+

p )])

by sending π to

Iw(π) = {f : Sw → π | f locally constant, of compact support modulo P (F+
p )

∀p ∈ P (F+
p ), g ∈ Sw, f(pg) = pf(g)},

where again B(F+
p ) acts by right translation. We define a functor

I◦w : Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[B(F+

p )+])

by defining I◦w(π) ⊂ Iw(π) to be the set of functions with support in S◦w.

Proposition 5.3.1.

(1) I≥0 = Res
‹G(F+

p )

B(F+
p )
◦ Ind

‹G(F+
p )

P (F+
p )

.

(2) Each functor I≥i, Iw and I◦w is exact.
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(3) For each integer i ≥ 0 and each π ∈ Modsm(O/$m[P (F+
p )]), there is a

functorial exact sequence

0→ I≥i+1(π)→ I≥i(π)→ ⊕w∈rWP

lr(w)=i

Iw(π)→ 0.

Proof. The first part is the definition of induction. For the second part,

denote by I any of the functors appearing in the statement. To see the exactness

of I, choose a continuous section to the map ‹G(F+
p )→ P (F+

p )\‹G(F+
p ). (The

existence of such a section is explained in [Hau16, §2.1].) This allows us to

functorially identify I(π) with the space of locally constant and compactly

supported functions from a subset C ⊂ P (F+
p )\‹G(F+

p ) to π. The formation of

locally constant and compactly supported functions is exact. The third part is

proved in the same way as [Hau16, Prop. 2.1.3]. �

It follows that for any π ∈ Dsm(O/$m[P (F+
p )]), there is a functorial

distinguished triangle

(5.3.2) I≥i+1(π)→ I≥i(π)→ ⊕w∈rWP

lr(w)=i

Iw(π)→ I≥i+1(π)[1]

in Dsm(O/$m[B(F+
p )]).

Lemma 5.3.3. Let π ∈ Dsm(O/$m[P (F+
p )]) be a bounded below complex,

and fix an integer b ≥ 0. Let λ̃ ∈ (Z2n
+ )Hom(F+,E). Then for any i ≥ 0 and any

j ∈ Z, the sequence

0→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i+1(π))

→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))

→ RjΓ(B(OF,p)(b),⊕w∈rWP

lr(w)=i

O(w‹G0 λ̃)⊗O Iw(π))→ 0

in Mod(O/$m[T (F+
p )+b ]) associated to (5.3.2) is exact.

Proof. It suffices to show exactness after applying the exact forgetful

functor to Mod(O/$m). We consider decompositions ‹G≥i = U1 t U2 where

U1, U2 are open sets that are invariant under left multiplication by P (F+
p )

and right multiplication by B(OF+,p), and such that U1 ⊂ ‹G≥i+1. Any such

decomposition determines a functorial decomposition I≥i(π) = IU1(π)⊕ IU2(π),

where IU1 denotes functions with support in U1, and similarly for U2. This

decomposition exists in the category Modsm(O/$m[B(OF+,p)]). We see, in

particular, that for any bounded below complex π ∈ Dsm(O/$m[P (F+
p )]), the

associated morphism

RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O IU1(π))→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))
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in Mod(O/$m) is injective. Since I≥i+1 is the filtered direct limit of the IU1

(which can be proven by following the same technique as in the proof of [Hau16,

Prop. 2.2.3]), it follows that the morphism

RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i+1(π))→ RjΓ(B(OF,p)(b),O(w‹G0 λ̃)⊗O I≥i(π))
is injective. Since this applies for any j ∈ Z, the exactness of the long exact

sequence in cohomology attached to the distinguished triangle (5.3.2) implies

that the sequence in the statement of the lemma is indeed a short exact

sequence. �

Lemma 5.3.4. Let w ∈ rWP . Then

(1) I◦w takes injectives to Γ(N(OF+,p),−)-acyclics.
(2) Let π ∈ Dsm(O/$m[P (F+

p )]) be a bounded below complex. Then there is a

natural isomorphism

ordRΓ(N(OF+,p), I
◦
w(π))

∼= ordRΓ(N(OF+,p), Iw(π)).

Proof. For the first part, let π ∈ Modsm(O/$m[P (F+
p )]), and fix an O/$m-

embedding π ↪→ I, where I is an injective O/$m-module. Then there is an

embedding π ↪→ Ind
P (F+

p )

1 I of O/$m[P (F+
p )]-modules. We will show that

I◦w(Ind
P (F+

p )

1 I) is an injective smooth O/$m[N(OF+,p)]-module. By [Eme10b,

Lem. 2.1.10], this will show the first part of the lemma.

Let C∞(P (F+
p )wN(OF+,p), I) denote the set of locally constant functions

F : P (F+
p )wN(OF+,p)→ I. It is an injective smooth O/$m[N(OF+,p)]-module

when N(OF+,p) acts by right translation. There is a natural isomorphism

I◦w(Ind
P (F+

p )

1 I) ∼= C∞(P (F+
p )wN(OF+,p), I),

which sends a function f : P (F+
p )wN(OF+

p
) → Ind

P (F+
p )

1 I to the function

F : P (F+
p )wN(OF+

p
) → I given by the formula F (x) = f(x)(1). This proves

the first part of the lemma.

For the second part, we note that we may define an exact functor

Jw : Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[B(F+

p )+])

by the formula Jw(π) = Iw(π)/I
◦
w(π). Then for a bounded below complex

π ∈ Dsm(O/$m[P (F+
p )]), there is a natural distinguished triangle

ordRΓ(N(OF+,p), I
◦
w(π))→ ordRΓ(N(OF+,p), Iw(π))

→ ordRΓ(N(OF+,p), Jw(π))

→ ordRΓ(N(OF+,p), I
◦
w(π))[1].

To prove the desired result, it is therefore enough to show that

ordRΓ(N(OF+,p), Jw(π)) = 0.
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It is even enough to show that for any π ∈ Modsm(O/$m[P (F+
p )]) and for

any j ∈ Z, we have ordHj(N(OF+,p), Jw(π)) = 0, and this can be proved in

the same way as [Hau16, Lem. 3.3.1]. Indeed, it suffices to choose an element

t ∈ T (F+
p )+, as in [Hau16, Lem. 3.1.3], such that Sw = ∪k≥0t−kS◦wtk. It follows

that t acts locally nilpotently on Jw(π), and consequently that each element of

H i(N(OF+,p), Jw(π)) is annihilated by the Hecke action of a sufficiently high

power of t. �

If w ∈ rWP , we define Nw = P (F+
p ) ∩ wN(OF+,p)w

−1. It is a compact

subgroup of P (F+
p ) that contains Nn(OF,p). We define a functor

Γ(Nw,−) : Modsm(O/$m[P (F+
p )])→ Modsm(O/$m[T (F+

p )+]),

where an element t ∈ T (F+
p )+ acts by the formula t · v = trtwNw(tw)−1/Nw

(twv)

(t ∈ T (F+
p )+). Note that this makes sense because twNw(t

w)−1 = P (F+
p ) ∩

wtN(OF+,p)t
−1w−1 ⊂ Nw. Note as well that wT (F+

p )+w−1 ⊂ Tn(Fp)
+ (by

definition of rWP ).

Lemma 5.3.5. Let w ∈ rWP , and let π ∈ Dsm(O/$m[P (F+
p )]) be a

bounded below complex. Then there is a natural isomorphism

RΓ(N(OF+,p), I
◦
w(π))

∼= RΓ(Nw, π).

Proof. By the first part of Lemma 5.3.4, it is enough to show that there is

a natural isomorphism of underived functors

Γ(N(OF+,p), I
◦
w(−)) ∼= Γ(Nw,−).

The map sends an N(OF+,p)-invariant function f : P (F+
p )wN(OF+,p) → π

to the value f(w) ∈ πNw . It is easy to see that this is an isomorphism of

O/$m-modules; what we need to check is that it is equivariant for the action of

T (F+
p )+. In other words, we need to check that for any f ∈ Γ(N(OF+,p), I

◦
w(π)),

we have

(5.3.6)
∑

n∈N(OF+,p)/tN(OF+,p)t
−1

f(wnt) =
∑

m∈Nw/twNw(tw)−1

mwtw−1f(w).

Conjugation by w−1 determines a map

Nw/t
wNw(t

w)−1 → N(OF+,p)/tN(OF+,p)t
−1,

which is easily seen to be injective. On the other hand, if n ∈ N(OF+,p) and

f(wnt) 6= 0, then the class of n is in the image of this map; indeed, f(wnt)

can be non-zero only if wnt ∈ P (F+
p )wN(OF+,p), in which case we write

wnt = qwm, with q ∈ P (F+
p ) and m ∈ N(OF+,p), hence n = w−1qwt−1tmt−1.

As w−1qwt−1 ∈ w−1P (F+
p )w ∩N(OF+,p), this shows that n is in the image of
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this map. It follows that we can rewrite the left-hand side of (5.3.6) as

∑

m∈Nw/twNw(tw)−1

f(mwt) =
∑

m∈Nw/twNw(tw)−1

mwtw−1f(w),

which equals the right-hand side of (5.3.6). �

For the statement of the next lemma, for any w ∈ rWP , we define a

character χw : T (F+
p )→ O× by the formula

χw(t) =
NF+

p /Qp
detF+

p
(Ad(tw)|LieU(F+

p )∩wN(F+
p )w−1)−1

|NF+
p /Qp

detF+
p
(Ad(tw)|LieU(F+

p )∩wN(F+
p )w−1)|p

.

Note that there is an isomorphism O(χw) ∼= O(−ρ + w−1wP0 (ρ)) ⊗O O(αw)
of O[T (F+

p )]-modules, where wP0 = wG0 w
‹G
0 is the longest element of rWP ,

and where αw : T (F+
p ) → O× is the character that is trivial on T (OF+,p)

and that satisfies the identity αw(t) = χw(t) for any element of the form

t = ι−1v (diag($a1
v , . . . , $

a2n
v )) (ai ∈ Z). We also write

τw : Modsm(O/$m[Tn(Fp)])→ Modsm(O/$m[Tn(Fp)])

for the functor that sends a module π to τw(π) = π, with action τw(π)(t)(v) =

π(tw
−1
)(v).

Lemma 5.3.7. Let w ∈ rWP , and let π ∈ Dsm(O/$m[G(F+
p )]) be a

bounded below complex. Then there is a natural isomorphism between the

following two complexes in Dsm(O/$m[Tn(Fp)]):

ordRΓ(Nw, Inf
P (F+

p )

G(F+
p )
π)

and

O/$m(χw)⊗O/$m τ−1w ordRΓ(Nn(OF,p), π)[−[F+ : Q]n2 + l(w)].

Proof. Let NwowT (F
+
p )+ denote the monoid Nw×T (F+

p )+, equipped with

multiplication (twn(tw)−1, 1)(1, t) = (1, t)(n, 1) (where the product twn(tw)−1

is formed using the usual multiplication of the group ‹G(F+
p )). Let Nw,U =

Nw ∩ U(F+
p ). Then there is a short exact sequence

0→ Nw,U → Nw → Nn(OF,p)→ 0

that is equivariant for the conjugation action of T (F+
p )+ via the map T (F+

p )+

→ Tn(Fp)
+, t 7→ tw. We consider the diagram, commutative up to natural
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isomorphism:

Modsm(O/$m[P (F+
p )])

Resw

��

Modsm(O/$m[Nw ow T (F
+
p )+])

ΓNw,U

��

Modsm(O/$m[Nn(OF,p)ow T (F
+
p )+])

α
//

ΓNn(OF,p)

��

Modsm(O/$m[Nn(OF,p)o Tn(Fp)
+])

ΓNn(OF,p)

��

Modsm(O/$m[T (F+
p )+])

β
//

τw◦ord

,,

Modsm(O/$m[Tn(Fp)
+])

ord

��

Modsm(O/$m[Tn(Fp)]).

In this diagram we have abbreviated, e.g., Γ(Nw,U ,−) = ΓNw,U
. We also

abbreviate InfPG = Inf
P (F+

p )

G(F+
p )
. The torus action on, e.g., ΓNw,U

is defined in

the usual way; cf. [Hau16, §3.2]. The exact functor Resw is defined by taking

Resw(π) = π as an O/$m-module, with Resw(π)(nt)(v) = π(ntw)(v). We also

use Resw to denote the functor Resw ◦ InfPG. The α is the composite of the

equivalence

Modsm(O/$m[Nn(OF,p)ow T (F
+
p )+])

→ Modsm(O/$m[Nn(OF,p)o wT (F+
p )+w−1])

induced by the map nt ∈ Nn(OF,p)owT (F+
p )+w−1 7→ (n, tw

−1
) ∈ Nn(OF,p)ow

T (F+
p )+ with the localization

Modsm(O/$m[Nn(OF,p)o wT (F+
p )+w−1])

→ Modsm(O/$m[Nn(OF,p)o Tn(Fp)
+])

induced by the inclusion wT (F+
p )+w−1 ⊂ Tn(Fp)+. Similarly, the functor β is

the composite of the equivalence

Modsm(O/$m[T (F+
p )+])→ Modsm(O/$m[wT (F+

p )+w−1])

with the localization

Modsm(O/$m[wT (F+
p )+w−1])→ Modsm(O/$m[Tn(Fp)

+]).

Note that α takes injectives to ΓNn(OF,p)-acyclics; this can be deduced from

[Eme10b, Prop. 2.1.3], using the compactness of Nn(OF,p) and the observation

that this localization can be thought of as a direct limit. Note that the composite

of all left vertical arrows is the functor ΓNw .



1010 ALLEN ET AL.

Let π now be as in the statement of the lemma. We compute

ordRΓ(Nw, Inf
P
G π) = ordβRΓNn(OF,p)RΓNw,U

Resw InfPG π

= ordRΓNn(OF,p)αRΓNw,U
Resw InfPG π.

Since U(F+
p ) acts trivially on π, there is an isomorphism

RΓNw,U
Resw InfPG π

∼= Resw(π)⊗O/$m RΓ(Nw,U ,O/$m)

in Dsm(O/$m[Nn(OF,p)ow T (F
+
p )+]). To go further, we need to compute the

complex αRΓ(Nw,U ,O/$m). To this end, we consider the action of the element

zp = diag(p, . . . , p, 1, . . . , 1) ∈ T (F+
p )+

(where there are n entries equal to p and n entries equal to 1; note that this

element depends on our choice of set S̃p, which determines the identification of
‹G(F+

p ) with
∏
v∈Sp

GL2n(F
+
v )). It is in the center of G(F+

p ), and is therefore

invertible in Tn(Fp)
+. Its action on the cohomology groups H i(Nw,U ,O/$m)

is the one induced by its natural conjugation action on Nw,U ; in other words,

multiplication by p on this abelian group. The group Nw,U has rank n2[F+ :

Q]− l(w) as Zp-module, from which it follows that the Hecke action of zp on

H i(Nw,U ,O/$m) factors through multiplication by pn
2[F+:Q]−l(w)−i (0 ≤ i ≤

n2[F+ : Q]− l(w)). The cohomology groups below the top degree i = n2[F+ :

Q] − l(w) therefore vanish after applying the functor α, and it follows from

[Hau16, Prop. 3.1.8] that

αRΓ(Nw,U ,O/$m) ∼= O/$m((χw)
w)[−[F+ : Q]n2 + l(w)]

∼= αO/$m(χw)[−[F+ : Q]n2 + l(w)],

hence that

βRΓNw Resw InfPG π

∼= βRΓNn(OF,p)Res
w π ⊗O/$m O/$m(χw)[−[F+ : Q]n2 + l(w)].

We finally see that ordRΓ(Nw, Inf
P
G π) is isomorphic to

τ−1w ordβRΓNn(OF,p)Res
w π ⊗O/$m O/$m(χw)[−[F+ : Q]n2 + l(w)]

∼= O/$m(χw)⊗O/$m τ−1w ordRΓNn(OF,p)π[−[F+ : Q]n2 + l(w)]. �

Proposition 5.3.8. Let w ∈ rWP , and let π ∈ Dsm(O/$m[G(F+
p )]) be

a bounded below complex. Then there is a natural isomorphism between the

following two complexes in Dsm(O/$m[Tn(Fp)]):

ordRΓ(N(OF+,p), Iw(Inf
P (F+

p )

G(F+
p )
π))

and

O/$m(χw)⊗O/$m τw−1 ordRΓ(Nn(OF,p), π)[−[F+ : Q]n2 + l(w)].



POTENTIAL AUTOMORPHY OVER CM FIELDS 1011

Proof. This follows on combining Lemmas 5.3.4, 5.3.5, and 5.3.7. �

5.4. The degree shifting argument. In this section, we give the analogue for

completed cohomology of the results of Section 4.2, by relating the completed

cohomology of X to the completed cohomology of the boundary ∂‹X. The

statement is simpler for completed cohomology than for cohomology at finite

level because the contribution of the unipotent radical of the Siegel parabolic

vanishes in the limit.

Theorem 5.4.1. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup that is decomposed

with respect to P . Let m ⊂ TS be a non-Eisenstein maximal ideal, and let

m̃ = S∗(m) ⊂ ‹TS . Then the complex Ind
‹G(F+

p )

P (F+
p )
π(Kp,m)m is a ‹TS-equivariant

direct summand of the complex π̃∂(‹Kp,m)m̃ in Dsm(O/$m[‹G(F+
p )]).

Here and below we have written π(Kp,m)m for the complex previously

denoted Inf
P (F+

p )

G(F+
p )
π(Kp,m)m in order to lighten the notation.

Proof. We first show that there is a ‹TS-equivariant isomorphism

(RΓ‹Kp,sm
RΓ(Ind

‹G∞

P∞ XP ,O/$m))m̃ ∼= (RΓ‹Kp,sm
RΓ(∂X‹G,O/$

m))m̃

= π̃∂(‹Kp,m)m̃.

As in the proof of Theorem 2.4.2, it suffices to show that for each standard

proper parabolic subgroup Q ⊂ ‹G with Q 6= P , we have

H∗(RΓ‹Kp,sm
RΓ(Ind

‹G∞

Q∞ XQ, k))m̃) = lim−→‹K′
p

H∗(‹XQ
‹Kp‹K′

p

, k)m̃ = 0.

This follows from the corresponding finite level statement, which has already

been proved in the course of the proof of Theorem 2.4.2.

We therefore need to compute RΓ‹Kp,sm
RΓ(Ind

‹G∞

P∞ XP ,O/$m). We will

in fact show that this complex admits Ind
‹G(F+

p )

P (F+
p )
RΓKp,smRΓ(XG,O/$m) as a

‹TS-equivariant direct summand in Dsm(O/$m[‹G(F+
p )]), where ‹TS acts on the

latter complex via the map S.
To see this, we compute

RΓ
K̃p,sm

RΓ(Ind
‹G∞

P∞ XP ,O/$m)) ∼= RΓ
K̃p,sm

Ind
‹G∞

P∞ RΓ(XP ,O/$m)

∼= ⊕g∈P (F+)\‹GS−Sp/K̃S−Sp
Ind

‹G(F+
p )

P (F+
p )
RΓ

K̃p
P ,sm

ResP
∞

PS−Sp×gK̃P,S−Spg
−1RΓ(XP ,O/$m).



1012 ALLEN ET AL.

Taking the summand corresponding to g = 1, we see that it will be enough to

exhibit an isomorphism

RΓ‹Kp
P ,sm

ResP
∞

PS−Sp×‹KP,S−Sp

RΓ(XP ,O/$m)

∼= Inf
P (F+

p )

G(F+
p )
RΓKp,smResG

∞

GS−Sp×KS−Sp
RΓ(XG,O/$m).

Let us write

ΓP -sm : Mod(O/$m[P (F+
p )])→ Modsm(O/$m[P (F+

p )]),

ΓU -sm : Mod(O/$m[P (F+
p )])→ ModU -sm(O/$m[P (F+

p )]),

and

ΓG-sm : Mod(O/$m[G(F+
p )])→ Modsm(O/$m[G(F+

p )])

for the functors of P , U and G-smooth vectors, respectively. The target category

for the second functor isO/$m[P (F+
p )]-modules with a smooth action of U(F+

p ).

These functors are all right adjoint to forgetful functors, and therefore preserve

injectives. The restriction of ΓP -sm to ModU -sm(O/$m[P (F+
p )]) is the same as

taking G-smooth vectors.

Unpacking the above, we see that it is enough to construct a Hecke-

equivariant isomorphism

Inf
P (F+

p )

G(F+
p )
RΓG-smH

0(G(F+)\G(A∞F+)/K
p,O/$m)

→ RΓP -smH
0(P (F+)\P (A∞F+)/‹Kp

P ,O/$m).

(5.4.2)

The morphism (5.4.2) is constructed using the canonical natural transformation

Inf
P (F+

p )

G(F+
p )
◦RΓG-sm → RΓP -sm ◦ Inf

P (F+
p )

G(F+
p )

([NT16, Lem. 2.1]), and the morphism

Inf
P (F+

p )

G(F+
p )
H0(G(F+)\G(A∞F+)/K

p,O/$m)→H0(P (F+)\P (A∞F+)/‹Kp
P ,O/$m)

given by inflation of functions. The Hecke-equivariance follows from [NT16,

Cor. 2.8].

To show that (5.4.2) is an isomorphism, it will be enough to show that

RΓU -smH
0(P (F+)\P (A∞F+)/‹Kp

P ,O/$m)

∼= Inf
P (F+

p )

G(F+
p )
H0(G(F+)\G(A∞F+)/K

p,O/$m).

Indeed, we can then take the derived functor of G-smooth vectors on both sides

to obtain (5.4.2) — this operation commutes with inflation from G to P , since

(the inflation of) a G-injective is acyclic for the functor of G-smooth vectors.
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However, the cohomology groups of the left-hand side here can be computed

as

lim−→
Vp⊂U(F+

p )

∏

g∈G(F+)\G(A∞
F+ )/Kp

H i(Vp, H
0(U(F+)\U(A∞F+)/‹Kp

U ,O/$m),

the limit running over all open compact subgroups Vp ⊂ U(F+
p ).

Using strong approximation, we compute

H i(Vp, H
0(U(F+)\U(A∞F+)/‹Kp

U ,O/$m)) = H i(U(F+) ∩ (‹Kp
UVp),O/$m).

Taking the limit, we get a product of copies of O/$m in degree 0, and 0 in all

higher degrees. This completes the proof. �

Combining this theorem with the results of the previous section, we obtain

the following.

Theorem 5.4.3. Let ‹K ⊂ ‹G(A∞F+) be a good subgroup that is decomposed

with respect to P , and such that ‹Kv = Iwv for each place v ∈ Sp. Let λ̃ ∈
(Z2n

+ )Hom(F+,E), let w ∈ rWP , and let λw = w(λ̃ + ρ) − ρ ∈ (Zn+)
Hom(F,E).

Let m ⊂ TS be a non-Eisenstein maximal ideal, and let m̃ = S∗(m). Fix

integers c ≥ b ≥ 0 with c ≥ 1. Then for any j ∈ Z, S descends to a surjective

homomorphism

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )

→ TS,ord(O(α
wG

0 ww
‹G
0
)⊗O τ−1

wG
0 ww

‹G
0

Hj−l(w)(XK(b,c),Vλw)ordm ).

Proof. Let m ≥ 1. To save space, we abbreviate functors Γ(H,−) of H-

invariants as ΓH . By Theorem 5.4.1, Lemma 5.2.6, and Proposition 5.2.28, the

complex

RΓ‹K(0,c)/‹K(b,c)
(∂‹X‹K(b,c)

,V
λ̃
/$m)ordm̃

admits the complex

ordbRΓT (OF+,p)(b)
O(w‹G0 λ̃)⊗O RΓN(OF+,p)

Ind
‹G(F+

p )

P (F+
p )
π(Kp,m)m̃

as a ‹TS,ord-equivariant direct summand. These direct sum decompositions are

compatible as m varies, so after passing to the inverse limit we get a surjection

of ‹TS,ord-algebras:

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )

→‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Ind

‹G(F+
p )

P (F+
p )
π(Kp,m)m̃).

(5.4.4)
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On the other hand, it follows from Lemma 5.3.3 that for any i ≥ 0, we have a

short exact sequence of ‹TS,ord-modules:

0→ ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥i+1π(K

p,m)m̃

→ ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃

→ ⊕w∈rWP

lr(w)=i

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃ → 0.

These are compatible as m varies, and the cohomology groups are finitely

generated O-modules, so we can pass to the limit to obtain short exact sequences

of O-modules. It follows that for any i ≥ 0 and any element w ∈ rWP of length

lr(w) = i, there are surjective homomorphisms of ‹TS,ord-algebras

‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃)

→ ‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥i+1π(K

p,m)m̃)

(5.4.5)

and

‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
I≥iπ(K

p,m)m̃)

→ ‹TS,ord(lim←−
m

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃).

(5.4.6)

By definition, I≥0π(K
p,m) is (the restriction to B(F+

p ) of) Ind
‹G(F+

p )

P (F+
p )
π(Kp,m).

On the other hand, Proposition 5.3.8 shows that there is a ‹TS,ord-equivariant

isomorphism

ordbR
jΓT (OF+,p)(b)

O(w‹G0 λ̃)⊗O RΓN(OF+,p)
Iwπ(K

p,m)m̃

∼= Rj−[F
+:Q]n2+l(w)ΓTn(OF,p)(b)O/$m(χw)⊗O O(w‹G0 λ̃)⊗O τ−1w πord(Kp,m).

(5.4.7)

We recall that there is an isomorphism O(χw) ∼= O(−ρ+ w−1wP0 ρ)⊗O O(αw).
We have (−ρ + w−1wP0 ρ + w

‹G
0 λ̃)

w = wG0 λx, where x = wG0 ww
‹G
0 . Here we

write wG0 for the longest element of WP , w
‹G
0 for the longest element of W ,

and note that the map w 7→ wG0 ww
‹G
0 is an involution of rWP that satisfies

l(wG0 ww
‹G
0 ) = [F+ : Q]n2 − l(w). Applying Propositions 5.2.15 and 5.2.17, it

follows that the cohomology group in (5.4.7) may be identified with

O(α
wG

0 xw
‹G
0
)⊗O τ−1

wG
0 xw

‹G
0

Hj−l(x)(XK(b,c),Vλx/$m)ordm̃ .
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Putting all of this together, we see that we can chain together the surjections

(5.4.4), (5.4.5) and (5.4.6) to obtain a surjection homomorphism of ‹TS,ord-

algebras

‹TS,ord(Hj(∂‹X‹K(b,c)
,V

λ̃
)ordm̃ )

→ TS,ord(O(α
wG

0 xw
‹G
0
)⊗O τ−1

wG
0 xw

‹G
0

Hj−l(x)(XK(b,c),Vλx)ordm̃ ).

The proof is complete on noting that H∗(XK(b,c),Vλx)ordm is a TS,ord-invariant

direct summand of H∗(XK(b,c),Vλx)ordm̃
. �

In order to apply Theorem 5.4.3, we will make use of the following com-

binatorial lemma. We use the following notation: if λ ∈ (Zn+)
Hom(F,E) and

a ∈ Z, then λ(a) ∈ (Zn+)
Hom(F,E) is the highest weight defined by the formula

λ(a)τ,i = λτ,i + a for all τ ∈ Hom(F,E), i = 1, . . . , n. We recall as well that

we have previously fixed the notation S̃p for a set of p-adic places of F lifting

Sp, and Ĩp for the set of embeddings τ : F ↪→ E inducing a place of S̃p; cf.

Section 2.2.1.

Lemma 5.4.8. Fix m ≥ 1. Then we can find λ ∈ (Zn+)
Hom(F,E) with the

following properties :

(1) There is an isomorphism O(λ)/$m ∼= O/$m of Tn(Fp)-modules.

(2) The sum
∑n

i=1(λτ,i + λτc,i) is independent of the choice of τ ∈ Hom(F,E).

(3) For each i = 0, . . . , n2, there exist an element wi = (wi,v)v∈Sp
∈ rWP , an

integer ai ∈ (p − 1)Z, and a dominant weight λ̃i ∈ (Z2n
+ )Hom(F+,E), all

satisfying the following conditions :

(a) λ̃i is CTG ; cf. Definition 4.3.5.

(b) For each v∈Sp, lr(wi,v)=n2−i. Consequently, l(wi)=[F+ : Q](n2−i).
(c) We have wi(λ̃i + ρ)− ρ = λ(ai).

Proof. Let M > 16n be a non-negative integer which is divisible by the

quantity 8(p − 1)#(O/$m)×. We will show that we can take λ to be the

dominant weight defined by the formulae

λτ =

{
(−nM,−2nM, . . . ,−n2M) if τ ∈ Ĩp,
(0,−M, . . . , (1− n)M) if τc ∈ Ĩp.

If λ̃(a) denotes the element of (Z2n)Hom(F+,E) that corresponds to λ(a) under

our identifications, then we have

λ̃(a) = ((n− 1)M − a, . . . ,−a,−nM + a, . . . ,−n2M + a).

In order to construct the elements wi and ai, we make everything explicit. Our

choice of the set S̃p determines an isomorphism of the group (ResF+/Q
‹G)Qp

with the group
∏
v∈Sp

ResFṽ/Qp
GL2n, hence an identification of rWv with S2n

and of rWP,v with the subgroup Sn × Sn. We can identify the set rWP
v of
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representatives for the quotient rWP,v\rWv with the set of n-element subsets

of {1, . . . , 2n}. Given such a subset X, there is a unique permutation τ of

{1, . . . , 2n} with τ({1, . . . , n}) = X and with the property that τ is increasing

on both {1, . . . , n} and {n + 1, . . . , 2n}. The corresponding element of rWP
v

is σX = τ−1. The length of a permutation w ∈ S2n is given by the formula

l(w) = #{1 ≤ i < j ≤ 2n | w(i) > w(j)}.
Given i, we choose integers r, x ≥ 0 with nx+n−r = n2− i and 1 ≤ r ≤ n

(the choice is unique). We define wi by setting wi,v = σXi for each v ∈ Sp,
where Xi = {x+1, x+2, . . . , x+ r, x+ r+2, x+ r+3, . . . , x+n+1}. We have

(wi,v(1), . . . , wi,v(2n)) = (n+ 1, n+ 2, . . . , n+ x, 1, 2, . . . , r, n+ x+ 1, r + 1,

r + 2, . . . , n, n+ x+ 2, n+ x+ 3, . . . , 2n).

We observe that indeed lr(wi,v) = n2 − i. We need to choose ai so that the

weight λ̃i = w−1i (λ̃(ai) + ρ) − ρ is dominant. We first calculate w−1i (λ̃(ai)).

For any τ ∈ Hom(F+, E), we have w−1i (λ̃(ai))τ,j = λ̃(ai)τ,wi(j), hence the τ

component of w−1i (λ̃(ai)) is equal to
(
λ̃(ai)τ,n+1, . . . , λ̃(ai)τ,n+x, λ̃(ai)τ,1, . . . , λ̃(ai)τ,r, λ̃(ai)τ,n+x+1,

λ̃τ,r+1(ai), . . . , λ̃τ,n(ai), λ̃τ,n+x+2(ai), . . . , λ̃τ,2n(ai)
)

=
(
−nM + ai, . . . ,−nxM + ai, (n− 1)M − ai, . . . , (n− r)M − ai,
− n(x+ 1)M + ai, (n− r − 1)M − ai, . . . ,−ai,
− n(x+ 2)M + ai, . . . ,−n2M + ai

)
.

We see that w−1i (λ̃(ai)) is dominant if and only if the following four inequalities

are satisfied:

(5.4.9) − nxM + ai ≥ (n− 1)M − ai,

(5.4.10) (n− r)M − ai ≥ −n(x+ 1)M + ai,

(5.4.11) − n(x+ 1)M + ai ≥ (n− r − 1)M − ai,

(5.4.12) − ai ≥ −n(x+ 2)M + ai.

These four inequalities are together equivalent to requiring that

ai ∈ [(nx+ 2n− r − 1)M/2, (nx+ 2n− r)M/2],

a closed interval of length M/2. Requiring instead that w−1i (λ̃(ai) + ρ)− ρ is

dominant leads to four similar inequalities, where the left-hand side and right-

hand side differ from those in (5.4.9)–(5.4.12) by an integer of absolute value at

most 2n− 1. If we choose ai to be the unique integer in [(nx+2n− r− 1)M/2,

(nx+2n− r)M/2] that is congruent to M/8 mod M/2, then w−1i (λ̃(ai)+ρ)−ρ
is dominant.
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To complete the proof of the lemma, we just need to explain why λ̃i =

w−1i (λ̃(ai) + ρ)− ρ is CTG. It suffices to show that for any τ ∈ Hom(F+, E),

and for any w ∈WP
v (where v is the place of F+ induced by τ), the number

[w(λ̃i + ρ)− ρ]τ,j + [w(λ̃i + ρ)− ρ]τ,2n+1−j = w(λ̃i + ρ)τ,j + w(λ̃i + ρ)τ,2n+1−j

is not independent of j as j varies over integers 1 ≤ j ≤ n. To show this, it

suffices to show that the multiset

I = {(λ̃i + ρ)τ,j + (λ̃i + ρ)τ,k | 1 ≤ j < k ≤ 2n}
does not contain any element with multiplicity at least n. We first consider the

multiset

I ′ = {λ̃i,τ,j + λ̃i,τ,k | 1 ≤ j < k ≤ 2n}.
It is a union of the three multisets

I ′1 = {(−nα+ β)M | 1 ≤ α ≤ n, 0 ≤ β ≤ n− 1},
I ′2 = {−n(α+ β)M + 2ai | 1 ≤ α < β ≤ n},

and

I ′3 = {(α+ β)M − 2ai | 0 ≤ α < β ≤ n− 1}.
Note that each element of I ′1 has multiplicity 1. Each element of I ′2 and I ′3 has

multiplicity at most n/2. Moreover, I ′1, I
′
2, and I

′
3 are mutually disjoint (look

modulo M). It follows that no element of I ′ has multiplicity at least n. To

show that I has no element of multiplicity at least n, we use the analogous

decomposition I = I1 ∪ I2 ∪ I3. The sets I1, I2 and I3 are disjoint (look

modulo M , and use the fact that each entry of ρ has absolute value at most

(2n− 1)/2). Each element of I1 appears with multiplicity 1, while each entry

of I2 and I3 has multiplicity at most n/2. This completes the proof. �

Lemma 5.4.8 allows us to express certain cohomology groups of the spaces

XK in degrees divisible by [F+ : Q] in terms of middle degree cohomology of

the spaces ∂‹X‹K (and hence, using Theorem 4.3.3, of the spaces ‹X‹K). Indeed,
combining the results so far of this section, we obtain the following result:

Proposition 5.4.13. Suppose that [F+ : Q] > 1. Let m ≥ 1 be an integer.

Then there exists a dominant weight λ ∈ (Zn+)
Hom(F,E) such that a finite index

subgroup of O×F acts trivially on Vλ and for each i = 0, . . . , n2 − 1, a dominant

weight λ̃i ∈ (Z2n
+ )Hom(F+,E) which is CTG, an integer ai divisible by (p − 1),

and a Weyl element wi ∈ rWP such that the following conditions are satisfied :

Let ‹K ⊂ ‹G(A∞F+) be a good subgroup which is decomposed with respect to P

and such that for each v ∈ Sp, ‹Kv = Ĩwv . Fix integers c ≥ b ≥ 0 with c ≥ 1,

and also an integer m ≥ 1. Let m ⊂ TS be a non-Eisenstein maximal ideal.

Let m̃ = S∗(m) ⊂ ‹TS , and suppose that ρm̃ is decomposed generic. Then
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(1) there is an isomorphism O(λ)/$m ∼= O/$m of O[T (F+
p )]-modules ;

(2) for each i = 0, . . . , n2−1, the map S descends to an algebra homomorphism

‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )

→ TS,ord(O(αwi)⊗O τ−1wi
H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

Proof. This follows on combining Theorems 4.3.3, 5.4.3 and Lemma 5.4.8.

�

In order to access all degrees of cohomology, we use a trick based on the

fact that the group G has a non-trivial center. This is the motivation behind

the next few results.

If K ⊂ GLn(A
∞
F ) is a good subgroup, then we define

AK := F×\A×F / det(K) det(K∞)R>0.

The quotient map

AK → F×\A×F / det(K)F×∞

identifies AK with an extension of a ray class group by a real torus of dimension

[F+ : Q]− 1 (with cocharacter lattice F× ∩ det(K), a torsion-free congruence

subgroup of O×F ). We denote the identity component of AK by A◦K . If g ∈
GLn(A

∞
F ), then we set Γg,K = GLn(F ) ∩ gKg−1, or Γg = Γg,K if the choice of

K is fixed.

Lemma 5.4.14.

(1) The maps x 7→ (x, g) induce a homeomorphism
∐

[g]∈GLn(F )\GLn(A∞
F )/K

Γg\X ∼= XK .

(2) The determinant gives a continuous map

XK
det→ AK

which induces a bijection on sets of connected components.

(3) Suppose g ∈ GLn(A
∞
F ) and the two subgroups det(Γg) and det(F× ∩K) of

F× are equal. Let Γ1
g = SLn(F ) ∩ Γg . Then the product map

Γ1
g × (F× ∩K)→ Γg

is a group isomorphism. Decomposing X similarly as

X1 ×
(∏

v|∞

R>0

)
/R>0 = X,

where X1 = SLn(F∞)/
∏
v|∞ SU(n), we obtain a decomposition

Γg\X =
(
Γ1
g\X1

)
× (F× ∩K)\

(∏

v|∞

R>0

)
/R>0.
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(4) Still assuming that det(Γg) = det(F× ∩ K), the map det : F× ∩ K →
F× ∩ det(K) is an isomorphism. The composition of maps

(
Γ1
g\X1

)
× (F× ∩K)\

(∏

v|∞

R>0

)
/R>0 = Γg\X ↪→ XK → AK

is given by (x, z) 7→ det(g)zn, and the map z 7→ det(g)zn is an isomorphism

from (F× ∩K)\(∏v|∞R>0)/R>0 to the connected component A
[det(g)]
K of

AK containing [det(g)].

Proof. The first part can be checked directly. The second part is equivalent

to the statement that det induces a bijection

G(F+)\G(A∞F+)/K → F×\(A∞F )×/ det(K).

This follows from strong approximation for the derived subgroup of G, which is

isomorphic to ResF/F+ SLn. For the third part, injectivity of the natural map

Γ1
g × (F× ∩K) → Γg follows from neatness of K (since F× ∩K contains no

roots of unity, and hence no non-trivial elements of determinant 1). Surjectivity

follows from the assumption that det(Γg) = det(F× ∩K). The remainder of

the third part (on the decomposition of Γg\X) is an immediate consequence.

Finally, for the fourth part, everything follows from the claim that det : F×∩K
→ F× ∩ det(K) is an isomorphism. Injectivity follows from neatness of K.

Surjectivity follows from strong approximation for SLn and the assumption that

det(F× ∩K) = det(Γg). Indeed, suppose we have k ∈ K with det(k) ∈ F×.
We can find γ ∈ GLn(F ) such that det(γ) = det(k), and strong approximation

implies that we can find γ′ ∈ SLn(F ) and k
′ ∈ gKg−1 ∩ SLn(A

∞
F ) such that

γ(gkg−1)−1 = γ′k′. We deduce that (γ′)−1γ = k′gkg−1 ∈ gKg−1 ∩GLn(F ) has

the same determinant as k, which shows surjectivity. �

The following lemma shows how to choose K so that the conditions of

Lemma 5.4.14 are satisfied.

Lemma 5.4.15. Let K be a good subgroup of G(A∞F+). Fix a finite set

T of finite places of F . There exists a good normal subgroup K ′ ⊂ K with

K ′T = KT such that det(Γg,K′) = det(F× ∩K ′) for all g ∈ GLn(A
∞
F ).

Proof. We begin by choosing an ideal a of OF , prime to T , such that

ker(O×F → (OF /a)×) is torsion-free and is contained in F× ∩ K. This is

possible by Chevalley’s theorem [Che51, Th. 1]. Similarly, we can choose

another ideal b of OF , prime to a and T , such that ker(O×F → (OF /ab)×) is
contained in (ker(O×F → (OF /a)×))n. We claim that

K ′ := ker(O×F → (OF /a)×) ·K(ab)

has the desired properties, where K(ab) is the intersection of K with the

principal congruence subgroup of level ab. Indeed, by construction we have
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det(GLn(F ) ∩ gK ′g−1) = (ker(O×F → (OF /a)×))n for all g ∈ GLn(A
∞
F ), whilst

F× ∩K ′ = ker(O×F → (OF /a)×). �

The next lemma shows how to use Lemma 5.4.14 to understand all cohomol-

ogy groups of a spaceXK solely in terms of those in degrees divisible by [F+ : Q].

Note that dim(XK) = d− 1 = [F+ : Q]n2 − 1 and dim(AK) = [F+ : Q]− 1.

Lemma 5.4.16. Let K ⊂ GLn(A
∞
F ) be a good subgroup, and let λ ∈

(Zn+)
Hom(F,E). Suppose that the following conditions are satisfied :

(1) det(Γg) = det(F× ∩K) for all g ∈ GLn(A
∞
F ).

(2) F× ∩K acts trivially on Vλ.
Recall that we have defined a map det : XK → AK . Then R det∗(Vλ) (a

complex of sheaves of O-modules) is constant on each connected component

of AK , and we have R det∗(Vλ) =
⊕dim(X1)

i=0 Ri det∗(Vλ)[−i]. We obtain a

TS,ord-equivariant isomorphism of graded O-modules

dim(XK)⊕

i=0

H i(XK ,Vλ)

∼=

Ñ
dim(A◦

K)⊕

j=0

Hj(A◦K ,O)

é
⊗O

Ñ
dim(X1)⊕

k=0

H0(AK , R
kdet∗(Vλ))

é
,

(5.4.17)

where the Hecke action on the first factor
⊕dim(A◦

K)
j=0 Hj(A◦K ,O) is trivial.

As a consequence, the image of TS,ord in EndO(
⊕dim(XK)

i=0 H i(XK ,Vλ)) is

equal to its image in EndO(
⊕n2−1

i=0 H i[F+:Q](XK ,Vλ)).
Proof. It follows from our first assumption and Lemma 5.4.14 that every

connected component of XK decomposes as a product (Γ1
g\X1) × A

[det(g)]
K ,

with the map det given by the projection to the second factor. Our second

assumption implies that the local system Vλ on this component is pulled back

from a local system on Γ1
g\X1. We deduce that R det∗(Vλ) is constant on

A
[det(g)]
K (corresponding to RΓ(Γ1

g\X1,Vλ)) and it decomposes as the direct

sum of its shifted cohomology sheaves (since the same is true for any object in

D(O), such as RΓ(Γ1
g\X1,Vλ)). To save space, we now write H∗(· · · ) for the

graded cohomology module
⊕

iH
i(· · · ).

Passing to global sections on AK we get an isomorphism

H∗(XK ,Vλ) ∼= ⊕dim(X1)
i=0 H∗(AK , R

idet∗(Vλ))
∼= ⊕dim(X1)

i=0 ⊕[g]∈GLn(F )\GLn(A∞
F )/K H∗(A

[det g]
K , Ridet∗(Vλ))

∼= ⊕dim(X1)
i=0 ⊕[g]∈GLn(F )\GLn(A∞

F )/K H∗(A
[det g]
K ,O)⊗O H0(A

[det g]
K , Ridet∗(Vλ)).
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Note that the cohomology groups H i(A
[det g]
K ,O) are torsion-free. We now use

that the groups H∗(A
[det g]
K ,O) are canonically independent of g, so they can

all be identified with H∗(A◦K ,O). We thus obtain an isomorphism of graded

O-modules

H∗(XK ,Vλ) ∼= H∗(A◦K ,O)⊗O ⊕
dim(X1)
i=0

⊕[g]∈GLn(F )\GLn(A∞
F )/K H0(A

[det g]
K , Ridet∗(Vλ))

∼= H∗(A◦K ,O)⊗O
dim(X1)⊕

i=0

H0(AK , R
idet∗(Vλ)).

We next need to understand the action of Hecke operators. If g ∈ GS , then the

action of the Hecke operator [KSgKS ] can be described with the aid of the

diagram

XK

det

��

XK∩gKg−1

p1
oo

p2
//

det

��

XK

det

��

AK AK∩gKg−1
q1

oo
q2

// AK .

Here p1 and q1 are induced by the action of g, while p2 and q2 are the natural pro-

jections; the action of [KSgKS ] on RΓ(XK ,Vλ) is given by the formula p2,∗ ◦p∗1.
Pushing forward by det, we have a morphism q∗1R det∗ Vλ → q∗2R det∗ Vλ,
and the induced endomorphism of the complex RΓ(AK , R det∗ Vλ) in D(O)
agrees with [KSgKS ] under the natural identification RΓ(AK , R det∗ Vλ) ∼=
RΓ(XK ,Vλ). We see that the isomorphism (5.4.17) respects the action of

[KSgKS ] if [KSgKS ] acts in the usual way on the left-hand side, as multipli-

cation by [F× ∩ det(K) : F× ∩ det(K ∩ gKg−1)]i on H i(A◦K ,O), and in the

natural way on H0(AK , R
i det∗ Vλ). Our assumption det(Γg) = det(F× ∩K)

implies that F× ∩ det(K) = F× ∩ det(K ∩ gKg−1), giving the statement in the

lemma.

It remains to check the final statement of the lemma. There is an isomor-

phism H∗(A◦K ,O) ∼= ∧∗O Hom(F×∩det(K),O) of graded O-modules. It follows

that each cohomology group H0(AK , R
idet∗(Vλ)) appears as a direct summand

of H∗(XK ,Vλ) in [F+ : Q] consecutive degrees. In particular, it appears as a

direct summand of a cohomology group in a degree divisible by [F+ : Q]. This

completes the proof. �

For the statement of the next proposition, we remind the reader that in

Section 5.1 we have defined for each λ ∈ (Zn+)
Hom(F,E), v ∈ Sp and i = 1, . . . , n,

a character

χλ,v,i : GFv → TS,ord(H∗(XK(b,c),Vλ)ord)×.
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Proposition 5.4.18. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A
∞
F ) be a

good subgroup such that for each v ∈ Sp, Kv = Iwv . Fix integers c ≥ b ≥ 0 with

c ≥ 1, and also an integer m ≥ 1. Let m ⊂ TS be a non-Eisenstein maximal

ideal, and let m̃ = S∗(m). Suppose that the following conditions are satisfied :

(1) ρm is decomposed generic.

(2) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

Then we can find λ ∈ (Zn+)
Hom(F,E) and an integer N ≥ 1 depending only on

[F+ : Q] and n such that the following conditions are satisfied :

(1) There is an isomorphism O(λ)/$m ∼= O/$m of O[T (F+
p )]-modules.

(2) There exists a nilpotent ideal Ji of TS,ord(H i(XK(b,c),Vλ)ordm ), for each

i = 0, . . . , d− 1, satisfying JNi = 0 and a continuous n-dimensional repre-

sentation

ρm : GF,S → GLn(T
S,ord(H i(XK(b,c),Vλ)ordm )/Ji)

such that the following conditions are satisfied :

(a) For each place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

is equal to the image of Pv(X) in (TS,ord(H i(XK(b,c),Vλ)ordm )/Ji)[X].

(b) For each place v|p of F and for each g ∈ GFv , the characteristic

polynomial of ρm(g) equals
∏n
j=1(X − χλ,v,j(g)).

(c) For each place v|p of F , and for each sequence g1, . . . , gn ∈ GFv , the

image of the element

(g1 − χλ,v,1(g1))(g2 − χλ,v,2(g2)) . . . (gn − χλ,v,n(gn))
of TS(H i(XK(b,c),Vλ)ordm )[GFv ] in Mn(T

S(H i(XK(b,c),Vλ)ordm )/Ji) un-

der ρm is zero.

Proof. We choose λ using Proposition 5.4.13. Note that for each cohomo-

logical degree i, by Theorem 2.3.7 we can find N , Ji and

ρm : GF,S → GLn(T
S,ord(H i(XK(b,c),Vλ)ordm )/Ji)

satisfying condition (a) of the proposition. Indeed, this theorem and the dis-

cussion after Lemma 2.2.4 gives a representation with values in a quotient of

TS(K(0, c)/K(b, c),Vλ)m by a nilpotent ideal, which we compose with the canon-

ical homomorphism to TS(K(b, c), λ)ordm . Arguing with the Hochschild–Serre

spectral sequence and twisting with characters as in the proof of Corollary 4.4.8,

we are free to enlarge S and to shrink K at the prime-to-p places of S. We can

therefore assume that the following conditions are satisfied:

(1) For each place v ∈ Sp, the two representations ρm|GFv
, (ρc,∨m ⊗ ε1−2n)|GFv

have no Jordan–Hölder factors in common.
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(2) ρm̃ is decomposed generic.

(3) K satisfies the conditions of Lemma 5.4.16.

After enlarging O, we can assume that there exists a character χ : GF,S → k×

satisfying the following conditions:

(1) For each place v ∈ Sp, χ|GFv
is unramified.

(2) For each place v ∈ Sp, the two representations (ρm ⊕ ρc,∨m ⊗ ε1−2n)⊗ χ|GFv

and (ρm⊕ρc,∨m ⊗ε1−2n)⊗χc,∨|GFv
have no Jordan–Hölder factors in common.

(3) The representation ρm ⊗ χ⊕ ρc,∨m ⊗ χc,∨ε1−2n is decomposed generic.

It follows from Lemma 5.4.16 and Carayol’s lemma (applied as in the proof of

Corollary 4.4.8) that it suffices to establish conditions (b) and (c) for cohomolog-

ical degrees 0, [F+ : Q], . . . , (n2− 1)[F+ : Q]. (Carayol’s lemma then gives us a

Galois representation with coefficients in TS,ord(⊕n2−1
i=0 H i[F+:Q](XK(b,c),Vλ)ordm )

= TS,ord(⊕d−1i=0H
i(XK(b,c),Vλ)ordm ) modulo a nilpotent ideal with the desired

properties.)

We choose a good subgroup ‹K ⊂ ‹G(A∞F+) which satisfies the conditions of

Proposition 5.4.13 and such that ‹K∩G(A∞F+) = K. For each i = 0, 1, . . . , n2−1,
we let λ̃i, ai and wi be as in the statement of Proposition 5.4.13. Generalizing

Proposition 2.2.23 slightly, we note that there is an isomorphism (cf. the proof

of Theorem 4.5.1)

f : TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ) ∼= TS,ord(H i[F+:Q](XK(b,c),Vλ)ordm ),

which carries [KSgKS ] to ε−ai(ArtF (det(g)))[K
SgKS ] and satisfies the identity

f ◦ χλ(ai),v,j = χλ,v,j ⊗ ε−ai (v ∈ Sp). (Note that ai is divisible by p − 1, by

construction, so we have m(ε−ai) = m in the notation of Section 2.2.20.) To

prove the proposition, it will therefore suffice to prove the analogue of prop-

erties (b) and (c) for the representation (f−1 ◦ ρm)⊗ ε−ai with coefficients in

TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm )/f−1Ji[F+:Q], which we already know satis-

fies the analogue of property (a). In order to simplify notation, we now write ρm
for this representation, Ji for the ideal f−1Ji[F+:Q], and χv,j for the character

χλ(ai),v,j valued in TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

We obtain from Proposition 5.4.13 a surjective algebra homomorphism

‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )

→ TS,ord(O(αwi)⊗O τ−1wi
H i[F+:Q](XK(b,c),Vλ(ai))ordm ).

Theorem 4.3.3 says that Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

is a torsion-free O-module, and

Theorem 2.4.11 (or rather its proof) shows how to compute Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

⊗O Qp in terms of cuspidal automorphic representations of ‹G(A∞F+). Then

[Ger19, Lem. 5.4] (which is stated for automorphic representations of GLn,

but which applies here, since ‹G is split at the p-adic places of F+) shows that
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‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

)[1/p] is a semisimple E-algebra. By Theorem 2.3.3

and [Tho15, Th. 2.4], we can find a continuous representation

ρ̃ : GF,S → GL2n(‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ )⊗O Qp)

satisfying the following conditions:

(1) For each finite place v 6∈ S of F , the characteristic polynomial of ρ̃(Frobv)

is equal to the image of ‹Pv(X).

(2) For each place v|p of F , there is an isomorphism

(5.4.19) ρ̃|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,2n

ë

,

where for each i = 1, . . . , 2n, ψv,i : GF,v → Q
×
p is the continuous character

defined as follows. First, if v ∈ S̃p, then ψv,j is the unique continuous

character satisfying the following identities:

ψv,j ◦ArtFv(u)

= ε1−j(ArtFv(u))

Ç∏
τ

τ(u)
−(w

‹G
0 λ̃i)τ |F+ ,j

å
〈diag(1, . . . , 1, u, 1, . . . , 1)〉 (u∈O×Fv

)

(the product being over τ ∈ HomQp(Fv, E)) and

ψv,j ◦ArtFv($v) = ε1−j(ArtFv($v))‹Uv,j/‹Uv,j−1.
Second, if vc ∈ S̃p, then ψv,j = ψc,∨vc,2n+1−jε

1−2n.

We write ‹D for the 2n-dimensional determinant of GF,S associated to ρ̃. By

[Che14, Ex. 2.32], ‹D is valued in ‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ord
m̃

). To conserve

notation, we now write

Ã0 = ‹TS,ord(Hd(‹X‹K(b,c)
,V

λ̃i
)ordm̃ ).

A0 = TS,ord(H i[F+:Q](XK(b,c),Vλ(ai))ordm ),

and J = Ji. By construction, we are given a homomorphism Ã0 → A0 which

agrees with S on Hecke operators away from p, and such that for each v ∈ Sp,
the image of the sequence

(ψv,1, . . . , ψv,2n)

of characters is the image of the sequence

(χc,∨vc,nε
1−2n, . . . , χc,∨vc,1ε

1−2n, χv,1, . . . , χv,n)

under the permutation w−1i .
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The rings Ã0 and A0 are semi-local finite O-algebras. Let A be a local

direct factor of A0, and let Ã be the corresponding local direct factor of Ã0.

Thus there is a map Ã → A such that Ã → A/J is surjective. We will show

that the properties (b) and (c) in the statement of the proposition hold in the

ring A/J ; since A0/J is a direct product, this will give the desired result.

We first verify that for each place v ∈ Sp, we have (ρm|GFv
)ss ∼= ⊕nj=1χv,j ,

where the overline denotes reduction modulo the maximal ideal of A. By

construction, we have

((ρm ⊕ ρc,∨m ⊗ ε1−2n)|GFv
)ss ∼= (ρm̃|GFv

)ss ∼= ⊕nj=1(χv,j ⊕ χc,∨vc,jε1−2n).
Using the existence of the character χ and a character twisting argument as in

the proof of Corollary 4.4.8, we see that we also have an isomorphism (over the

residue field of A)

((ρm ⊗ χ⊕ ρc,∨m ⊗ χc,∨ε1−2n)|GFv
)ss ∼= ⊕nj=1(χv,jχ⊕ χc,∨vc,jχc,∨ε1−2n).

Our conditions on the character χ now force (ρm|GFv
)ss ∼= ⊕nj=1χv,j .

We can now argue in a similar way to the proof of Proposition 4.4.6.

Let ‹DA/J = ‹D ⊗A A/J . Then ‹DA/J = det(ρm ⊕ ρc,∨m ⊗ ε1−2n). Just as in

the proof of Proposition 4.4.6, we can identify (A/J)[GF,S ]/ ker(‹DA/J) with

Mn(A/J) ×Mn(A/J) (where the first projection gives ρc,∨m ⊗ ε1−2n, and the

second projection gives ρm).

On the other hand, the map Ã[GF,S ] → (A/J)[GF,S ]/(ker ‹DA/J) factors

through the quotient Ã[GF,S ]/(ker ‹D). There is an algebra embedding

Ã[GF,S ]/(ker ‹D) ⊂ Ã[GF,S ]/(ker ‹D)⊗O Qp ⊂M2n(Ã⊗O Qp).

The explicit form of ρ̃|GFv
shows that for each v ∈ Sp and for each sequence of

elements Y, Y1, . . . , Y2n of elements of Ã[GFv ], we have

(5.4.20) det(X − ρ̃(Y )) =
2n∏

j=1

(X − ψv,j(Y ))

in Ã[X] and

(5.4.21) (ρ̃(Y1)− ψv,1(Y1))(ρ̃(Y2)− ψv,2(Y2)) . . . (ρ̃(Y2n)− ψv,2n(Y2n)) = 0

in M2n(Ã⊗O Qp). It follows that the same identities hold in Ã[GF,S ]/(ker ‹D),

hence in

(A/J)[GF,S ]/(ker ‹DA/J) =Mn(A/J)×Mn(A/J).

More precisely, for any sequence of elements Y, Y1, . . . , Y2n of elements of

(A/J)[GFv ], we have

(5.4.22) det(X − ρm(Y )) det(X − ρc,∨m ε1−2n(Y )) =
2n∏

j=1

(X − ψv,j(Y ))
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in (A/J)[X] and

(5.4.23)

Ñ
2n∏

j=1

(ρc,∨m ⊗ ε1−2n(Yj)− ψv,j(Yj)),
2n∏

j=1

(ρm(Yj)− ψv,j(Yj))

é
= (0, 0)

in Mn(A/J) ×Mn(A/J). (Note that order matters in these products.) We

need to show how to deduce our desired identities (b) and (c) from these ones.

We now fix a choice of place v ∈ Sp for the rest of the proof.

We can find an element e ∈ (A/J)[GFv ] which acts as 0 on ρc,∨m ⊗ ε1−2n|GFv

and as the identity in ρm|GFv
(because these two representations have no

Jordan–Hölder factors in common). By [Bou61, Ch. III, §4, Exercise 5(b)]

(lifting idempotents), we can assume that ρm(e) = 1 and ρc,∨m ⊗ ε1−2n(e) = 0,

and moreover that ψv,j(e) = 1 if ψv,j appears in ρm|GFv
(in other words, if

ψv,j = χv,j′ for some 1 ≤ j′ ≤ n, or equivalently if j = w−1i (n + k) for some

1 ≤ k ≤ n), and ψv,j(e) = 0 otherwise. Then applying the identity (5.4.22) to

ge ∈ (A/J)[GFv ] gives

Xn det(X − ρm(g)) =
2n∏

j=1

(X − ψv,j(ge)) = Xn
n∏

j=1

(X − χv,j(g)),

which is the sought-after property (b) of the proposition. To get property (c),

let g1, . . . , gn ∈ GFv , and let Y1, . . . , Y2n ∈ (A/J)[GFv ] be defined by Yj = e

if j ∈ w−1i ({1, . . . , n}), and Yj = gke if j = w−1i (n + k), k ∈ {1, . . . , n}. The

identity (5.4.23) then becomes

(0, (ρm(g1) − χv,1(g1))(ρm(g2) − χv,2(g2)) . . . (ρm(gn) − χv,n(gn))) = (0, 0)

in Mn(A/J)×Mn(A/J). This completes the proof. �

5.5. The end of the proof. We can now complete the proof of the main

result of this chapter (Theorem 5.5.1). For the convenience of the reader, we

repeat the statement here. We recall our standing hypothesis in this chapter

that F contains an imaginary quadratic field in which p splits.

Theorem 5.5.1. Suppose that [F+ : Q] > 1. Let K ⊂ GLn(A
∞
F ) be a

good subgroup such that for each place v ∈ Sp of F , Kv = Iwv . Let c ≥ b ≥ 0

be integers with c ≥ 1, let λ ∈ (Zn)Hom(F,E), and let m ⊂ TS(K(b, c), λ)ord

be a non-Eisenstein maximal ideal. Suppose that the following conditions are

satisfied :

(1) Let v be a finite place of F not contained in S, and let l be its residue

characteristic. Then either S contains no l-adic places of F and l is

unramified in F , or there exists an imaginary quadratic field F0 ⊂ F in

which l splits.

(2) ρm is decomposed generic.



POTENTIAL AUTOMORPHY OVER CM FIELDS 1027

Then we can find an integer N ≥ 1, which depends only on [F+ : Q] and n, an

ideal J ⊂ TS(K(b, c), λ)ordm such that JN = 0, and a continuous representation

ρm : GF,S → GLn(T
S(K(b, c), λ)ordm /J)

satisfying the following conditions :

(a) For each finite place v 6∈ S of F , the characteristic polynomial of ρm(Frobv)

equals the image of Pv(X) in (TS(K(b, c), λ)ordm /J)[X].

(b) For each v ∈ Sp, and for each g ∈ GFv , the characteristic polynomial of

ρm(g) equals
∏n
i=1(X − χλ,v,i(g)).

(c) For each v ∈ Sp, and for each g1, . . . , gn ∈ GFv , we have

(ρm(g1)− χλ,v,1(g1))(ρm(g2)− χλ,v,2(g2)) . . . (ρm(gn)− χλ,v,n(gn)) = 0.

Proof. Let 0 ≤ q ≤ d− 1, m ≥ 1 be integers, and define

A(K,λ, q) = TS,ord(Hq(XK(b,c),Vλ)ordm )

and

A(K,λ, q,m) = TS,ord(Hq(XK(b,c),Vλ/$m)ordm ).

By the same sequence of reductions as in the proof of Theorem 4.5.1, it is enough

to show the existence of an ideal J ⊂ A(K,λ, q,m) satisfying JN = 0 and a

continuous representation ρm : GF,S → GLn(A(K,λ, q,m)/J) satisfying condi-

tions (a), (b) and (c) of the theorem. After an application of the Hochschild–

Serre spectral sequence and Corollary 5.2.16, we can assume that c = b ≥ m.

Corollary 5.2.18 allows us to assume that λ is the weight whose existence

is asserted by Proposition 5.4.18. The existence of a Galois representation

valued in (quotients by nilpotent ideals of) the Hecke algebras A(K,λ, q) and

A(K,λ, q + 1) is then a consequence of Proposition 5.4.18. The existence of

the short exact sequence of TS,ord-modules

0→ Hq(XK(b,c),Vλ)ordm /$m → Hq(XK(b,c),Vλ/$m)ordm

→ Hq+1(XK(b,c),Vλ)ordm [$m]→ 0

then implies the existence of a Galois representation ρm over a quotient of

A(K,λ, q,m) by a nilpotent ideal with the required properties. �

As suggested by a referee, we finish this section by recording a local-global

compatibility result for a single automorphic representation. This is a partial

generalization of [Ger19, Prop. 5.10] and [Tho15, Th. 2.4], although we must

impose an assumption on the residual Galois representation. In this result, we

drop the standing hypothesis that F contains an imaginary quadratic field in

which p splits.



1028 ALLEN ET AL.

Corollary 5.5.2. Let F be an imaginary CM field, let ι : Qp → C be an

isomorphism, and let π be a cuspidal automorphic representation of GLn(AF ),

regular algebraic of weight ιλ for λ ∈ (Zn+)
Hom(F,Qp). Suppose that

(1) For every v ∈ Sp, π is ι-ordinary at v (in the sense of [Ger19, Def. 5.3]).

(2) The residual representation rι(π) is decomposed generic and irreducible.

Then rι(π)|GFv
is ordinary of weight λ, in the sense of [Ger19, §5.2], for

every v ∈ Sp. More precisely, for each place v ∈ Sp, there is an isomorphism

rι(π)|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,

where for each i = 1, . . . , n, ψv,i : GF,v → Q
×
p is the unique continuous character

satisfying the identities (cf. the definition of χλ,v,i in Section 5.1):

ψλ,v,i ◦ArtFv(u) = ε1−i(ArtFv(u))

Ç∏
τ

τ(u)−(w
G
0 λ)τ,i

å
〈u〉ι,i (u ∈ O×Fv

)

(the product being over τ ∈ HomQp(Fv,Qp)) and, with fixed choices of uni-

formizers $v for v ∈ Sp,

ψv,i ◦ArtFv($v) = ε1−i(ArtFv($v))
u
(i)
λ,$v

u
(i−1)
λ,$v

,

with 〈u〉ι,i and u(i)λ,$v
denoting Hecke eigenvalues on (ι−1πv)

ord defined in [Ger19,

Def. 5.5].

Proof. We make a solvable Galois base change to a CM field extension F ′/F

which is disjoint over F from the fixed field F
ker rι(π)

, contains an imaginary

quadratic field in which p splits, and in which all the places in Sp split completely.

We will also assume that [F ′ : Q] > 2. Using [Ger19, Lem. 5.7], we see that

πF ′ is ι-ordinary at w for every place w|p of F ′ and it suffices to prove the

corollary under the additional assumptions that [F+ : Q] > 1 and F contains

an imaginary quadratic field in which p splits. Now the result follows from

Theorem 5.5.1 and Lemma 6.2.11. �

6. Automorphy lifting theorems

6.1. Statements. In this chapter, we will prove two automorphy lifting

theorems (Theorems 6.1.1 and 6.1.2) for n-dimensional Galois representations

of CM fields without imposing a self-duality condition. The first is for Galois

representations which satisfy a Fontaine–Laffaille condition.
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Theorem 6.1.1. Let F be an imaginary CM or totally real field, let

c ∈ Aut(F ) be complex conjugation, and let p be a prime. Suppose given a con-

tinuous representation ρ : GF → GLn(Qp) satisfying the following conditions :

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is crystalline. The prime

p is unramified in F .

(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1). The

image of ρ|GF (ζp)
is enormous (Definition 6.2.29).

(4) There exists σ ∈ GF −GF (ζp) such that ρ(σ) is a scalar. We have p > n2.

(5) There exists a cuspidal automorphic representation π of GLn(AF ) satisfying

the following conditions :

(a) π is regular algebraic of weight λ, this weight satisfying

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n

for all τ .

(b) There exists an isomorphism ι : Qp → C such that ρ ∼= rι(π) and the

Hodge–Tate weights of ρ satisfy the formula for each τ : F ↪→ Qp:

HTτ (ρ) = {λιτ,1 + n− 1, λιτ,2 + n− 2, . . . , λιτ,n}.

(c) If v|p is a place of F , then πv is unramified.

Then ρ is automorphic: there exists a cuspidal automorphic representation Π

of GLn(AF ) of weight λ such that ρ ∼= rι(Π). Moreover, if v is a finite place of

F and either v|p or both ρ and π are unramified at v, then Πv is unramified.

The second main theorem is for Galois representations which satisfy an

ordinariness condition.

Theorem 6.1.2. Let F be an imaginary CM or totally real field, let

c ∈ Aut(F ) be complex conjugation, and let p be a prime. Suppose given a con-

tinuous representation ρ : GF → GLn(Qp) satisfying the following conditions :

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is potentially semi-stable,

ordinary with regular Hodge–Tate weights. In other words, there exists a

weight λ ∈ (Zn+)
Hom(F,Qp) such that for each place v|p, there is an isomor-

phism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,
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where for each i = 1, . . . , n, the character ψv,i : GFv → Q
×
p agrees with the

character

σ ∈ IFv 7→
∏

τ∈Hom(Fv ,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on an open subgroup of the inertia group IFv .

(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1). The

image of ρ|GF (ζp)
is enormous (Definition 6.2.29).

(4) There exists σ ∈ GF −GF (ζp) such that ρ(σ) is a scalar. We have p > n.

(5) There exist a regular algebraic cuspidal automorphic representation π of

GLn(AF ) and an isomorphism ι : Qp → C such that π is ι-ordinary and

rι(π) ∼= ρ.

Then ρ is ordinarily automorphic of weight ιλ: there exists an ι-ordinary

cuspidal automorphic representation Π of GLn(AF ) of weight ιλ such that

ρ ∼= rι(Π). Moreover, if v - p is a finite place of F and both ρ and π are

unramified at v, then Πv is unramified.

Remark 6.1.3. It follows from the existence of Π that the weight λ is

conjugate self-dual up to twist: there is an integer w ∈ Z such that for all

τ : F ↪→ C and for each i = 1, . . . , n, we have λτ,i + λτc,n+1−i = w. (This in

turn is a consequence of the purity lemma of [Clo90, Lem. 4.9].) However, we

do not need to assume this at the outset. What we in fact prove is that ρ

contributes to the ordinary part of the completed cohomology; we then deduce

the existence of Π by an argument of “independence of weight.”

Remark 6.1.4. The image of the projective representation Pρ coincides

with the image of the adjoint representation ad ρ. Hence the first part of

conditions Theorems 6.1.1(4) and 6.1.2(4) are equivalent to ζp 6∈ F ker ad ρ
. If p

is unramified in F (as in condition (2) of Theorem 6.1.1), it is implied by

the non-existence of a surjection (ad ρ)(GF ) � (Z/pZ)×. It may be possible

to remove the requirement of such a σ by using arguments similar to those

of [Tho12], in particular, by adding Iwahori level structure at a prime which is

not 1 mod p and then using [Tho12, Prop. 3.17]. However, this would (at least)

necessitate some modifications to the Ihara avoidance arguments of Section 6.3,

and so we have not attempted to do this, especially because condition (4) is

usually easy to verify in practice.

The proof of these two theorems will occupy the rest of this chapter. Since

this chapter is quite long, we now discuss the structure of the proof. We recall

that the authors of [CG18] implemented a generalization of the Taylor–Wiles

method in situations where the “numerical coincidence” fails to hold, assuming

the existence of Galois representations associated to torsion classes in the
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cohomology of arithmetic locally symmetric spaces, and an appropriate form of

local-global compatibility for these Galois representations. They also had to

assume that the cohomology groups vanish in degrees outside a given range,

after localization at a non-Eisenstein maximal ideal. (This range is the same

range in which cohomological cuspidal automorphic representations of GLn
contribute non-trivially.) Under these assumptions, they proved rather general

automorphy lifting theorems; in particular, they were able to implement the

“Ihara avoidance” trick of [Tay08] to obtain lifting results at non-minimal level.

There are a few innovations that allow us to obtain unconditional results

here, building on the techniques of [CG18]. The first is the proof (in the

preceding sections) of a sufficiently strong version of local-global compatibility

for the torsion Galois representations constructed in [Sch15]. The second is

the observation that one can carry out a version of the “Ihara avoidance” trick

under somewhat weaker assumptions than those used in [CG18]. Indeed, in

[KT17], it was shown that one can prove some kind of automorphy lifting

results using only that the rational cohomology is concentrated in the expected

range — and this is known unconditionally, by Matsushima’s formula and its

generalizations (in particular, Theorem 2.4.10). Here we show that the “Ihara

avoidance” technique is robust enough to give a general automorphy lifting

result using only the assumption that the rational cohomology is concentrated

in the expected range.

We now describe the organization of this chapter. As the above discussion

may suggest, our arguments are rather intricate, and we have broken them

into several parts in the hope that this will make the individual steps easier to

digest. We begin in Section 6.2 by giving a set-up for Galois deformation theory.

This is mostly standard, although there are some differences to other works:

we do not fix the determinant of our n-dimensional Galois representations, and

we must prove slightly stronger versions of our auxiliary results (e.g., existence

of Taylor–Wiles primes) because of the hypotheses required elsewhere to be

able to prove local-global compatibility.

In Sections 6.3 and 6.4, we carry out the main technical steps. First, in

Section 6.3, we give an axiomatic approach to the “Ihara avoidance” technique

that applies in our particular set-up. Second, in Section 6.4, we describe an

abstract patching argument that gives as output the objects required in Sec-

tion 6.3. We find it convenient to use the language of ultrafilters here, following

[Sch18] and [GN22]. Finally, in Section 6.5, we combine these arguments to

prove Theorems 6.1.1 and 6.1.2

6.2. Galois deformation theory. Let E ⊂ Qp be a finite extension of Qp,

with valuation ring O, uniformizer $, and residue field k. Given a complete

Noetherian local O-algebra Λ with residue field k, we let CNLΛ denote the



1032 ALLEN ET AL.

category of complete Noetherian local Λ-algebras with residue field k. We refer

to an object in CNLΛ as a CNLΛ-algebra.

We fix a number field F and let Sp be the set of places of F above p. We

assume that E contains the images of all embeddings of F in Qp. We also

fix a continuous absolutely irreducible homomorphism ρ : GF → GLn(k). We

assume throughout that p - 2n.

6.2.1. Deformation problems. Let S be a finite set of finite places of F

containing Sp and all places at which ρ is ramified. We write FS for the

maximal subextension of F/F which is unramified outside S. For each v ∈ S,
we fix Λv ∈ CNLO and set Λ = “⊗v∈SΛv, where the completed tensor product

is taken over O. There is a forgetful functor CNLΛ → CNLΛv for each v ∈ S
via the canonical map Λv → Λ. A lift (also called a lifting) of ρ|GFv

is a

continuous homomorphism ρ : GFv → GLn(A) to a CNLΛv -algebra A such that

ρ mod mA = ρ|GFv
.

We let D�
v denote the set valued functor on CNLΛv that sends A to the

set of all lifts of ρ|GFv
to A. This functor is representable, and we denote the

representing object by R�
v .

A local deformation problem for ρ|GFv
is a subfunctor Dv of D�

v satisfying

the following:

• Dv is represented by a quotient Rv of R�
v .

• For all A ∈ CNLΛv , ρ ∈ Dv(A), and a ∈ ker(GLn(A) → GLn(k)), we have

aρa−1 ∈ Dv(A).
The notion of global deformation problem that we use in this paper is the

following:

Definition 6.2.2. A global deformation problem is a tuple

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),
where

• ρ, S, and {Λv}v∈S are as above;

• for each v ∈ S, Dv is a local deformation problem for ρ|GFv
.

This differs from that of [CG18, §8.5.2] and [KT17, Def. 4.2] in that we do

not fix the determinant.

As in the local case, a lift (or lifting) of ρ is a continuous homomorphism

ρ : GF → GLn(A) to a CNLΛ-algebra A, such that ρ mod mA = ρ. We say

that two lifts ρ1, ρ2 : GF → GLn(A) are strictly equivalent if there is a ∈
ker(GLn(A)→ GLn(k)) such that ρ2 = aρ1a

−1. A deformation of ρ is a strict

equivalence class of lifts of ρ.

For a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),
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we say that a lift ρ : GF → GLn(A) is of type S if ρ|GFv
∈ Dv(A) for each v ∈ S.

Note that if ρ1 and ρ2 are strictly equivalent lifts of ρ, and ρ1 is of type S, then
so is ρ2. A deformation of type S is then a strict equivalence class of lifts of

type S, and we denote by DS the set-valued functor that takes a CNLΛ-algebra

A to the set of deformations ρ : GF → GLn(A) of type S.
Given a subset T ⊆ S, a T -framed lift of type S is a tuple (ρ, {αv}v∈T ),

where ρ : GF → GLn(A) is a lift of ρ of type S and αv ∈ ker(GLn(A)→ GLn(k))

for each v ∈ T . We say that two T -framed lifts (ρ1, {αv}v∈T ) and (ρ2, {βv}v∈T )
to a CNLΛ-algebra A are strictly equivalent if there is a ∈ ker(GLn(A) →
GLn(k)) such that ρ2 = aρ1a

−1, and βv = aαv for each v ∈ T . A strict

equivalence class of T -framed lifts of type S is called a T -framed deformation

of type S. We denote by DTS the set valued functor that sends a CNLΛ-algebra

A to the set of T -framed deformations to A of type S.
Theorem 6.2.3. Let S = (ρ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation

problem, and let T be a subset of S. The functors DS and DTS are representable;

we denote their representing objects by RS and RTS , respectively.

Proof. This is well known. See [Gou01, App. 1] for a proof of the rep-

resentability of DS . The representability of DTS can be deduced from this.

�

If T = ∅, then tautologically RS = RTS . Otherwise, the relation between

these two deformation rings is given by the following lemma.

Lemma 6.2.4. Let S = (ρ, S, {Λv}v∈S , {Dv}v∈S) be a global deforma-

tion problem, and let T be a nonempty subset of S. Fix some v0 ∈ T , and
define T = OJ{Xv,i,j}v∈T,1≤i,j≤nK/(Xv0,1,1). The choice of a representative

ρS : GF → GLn(RS) for the universal type S deformation determines a canoni-

cal isomorphism RTS
∼= RS“⊗OT .

Proof. This can be proved in the same way as the second part of [CHT08],

using Schur’s lemma. A representative for the universal T -framed deformation

over RS“⊗OT is (ρS , {1 + (Xv,i,j)}v∈T ). �

6.2.5. Some local deformation problems. We now fix some finite place v of

F and introduce the local deformation rings that we will use in the proofs of

our automorphy lifting theorems.

6.2.6. Ordinary deformations. Assume that v|p, and that there is an

increasing filtration

0 = Fil
0
v ⊂ Fil

1
v ⊂ · · · ⊂ Fil

n
v = kn

that is GFv -stable under ρ|GFv
with one-dimensional graded pieces. We will

construct and study a local deformation ring Rdet,ord
v whose corresponding
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local deformation problem Ddet,ord
v will be used in the proof of our ordinary

automorphy lifting theorem.

Consider the completed group algebra OJO×Fv
(p)nK, where O×Fv

(p) denotes

the pro-p completion of O×Fv
. There is an isomorphism ArtFv : O×Fv

(p) →
IFab

v /Fv
(p). Fix a non-empty set of minimal prime ideals of OJO×Fv

(p)nK, and

let a be their intersection. We then set Λv = OJO×Fv
(p)nK/a.

For each 1 ≤ i ≤ n, let χ̃i : GFv → k× denote the character given by ρ|GFv

on Fil
i
v/Fil

i−1
v , and let χi = χ̃i|IFv

. For each 1 ≤ i ≤ n, we have a canonical

character χuniv
i : IFv → Λ×v that is the product of the Teichmüller lift of χi with

the map that sends IFv to the ith copy of O×Fv
(p) in O×Fv

(p)n via Art−1Fv
. The

ideal a corresponds to a fixed collection of ordered tuples of characters of the

torsion subgroup of IFab
v /Fv

(p).

We recall some constructions from [Ger19, §3.1]. We recall that R�
v ∈

CNLΛv denotes the universal lifting ring of ρ|GFv
. Let F denote the flag

variety over O classifying complete flags 0 = Fil0 ⊂ · · · ⊂ Filn = On, and
let Gv ⊂ F ×SpecO SpecR�

v denote the closed subscheme whose A-points for

an R�
v -algebra A consist of those filtrations Fil ∈ F(A) such that for each

i = 1, . . . , n, Fili is preserved by the specialization of the universal lifting to

A and such that the induced action of IFv ⊂ GFv on Fili /Fili−1 is by the

pushforward of the character χuniv
i .

We now define two ordinary deformation rings:

• We define R4v to be the image of the homomorphism

R�

v → H0(Gv,OGv).

• Let Λ̃v = OJF×v (p)nK⊗OJO×
Fv

(p)nKΛv, and let R̃�
v = R�

v ⊗Λv Λ̃v. The characters

χuniv
i naturally extend to characters χ̃univ

i : GFv → Λ̃×v lifting χ̃i. Let R̃
det,ord
v

denote the maximal quotient of R̃�
v over which the relations

(6.2.7) det(X − ρ�(g)) =
n∏

i=1

(X − χ̃univ
i (g))

and

(6.2.8) (ρ�(g1)− χ̃univ
1 (g1))(ρ

�(g2)− χ̃univ
2 (g2)) . . . (ρ

�(gn)− χ̃univ
n (gn)) = 0

hold for all g, g1, . . . , gn ∈ GFv . We define Rdet,ord
v to be the image of the

homomorphism

R�

v → R̃det,ord
v .

(A ring similar to Rdet,ord
v was also defined in [CS19].)

Lemma 6.2.9. Let R̃det,ord
v be a finite Rdet,ord

v -algebra.
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Proof. It is enough to show that R̃det,ord
v is a finite R�

v -algebra or, by the

completed version of Nakayama’s lemma, that R̃det,ord
v /mR�

v
is an Artinian

k-algebra. This follows from the relation (6.2.7) applied with g = ArtFv($v).

�

For a domain R ∈ CNLΛv and K an algebraic closure of the fraction field

of R, an R-point of SpecR�
v factors through SpecR4v if and only if the following

condition is satisfied:

• Let ρ : GFv → GLn(R) be the pushforward of the universal lifting to R. Then

there is a filtration 0 = Fil0 ⊂ · · · ⊂ Filn = Kn on ρ⊗RK which is preserved

by GFv , and such that the action of IFv on Fili /Fili−1 (i = 1, . . . , n) is given

by the push-forward of the universal character χuniv
j to R.

On the other hand, suppose that R → S is an injective morphism of R�
v -

algebras, and suppose that there exist characters ψ1, . . . , ψn : GFv → S× such

that for each i = 1, . . . , n, ψi|IFv
equals the pushforward of χuniv

i to S, and that

for each g, g1, . . . , gn ∈ GFv , the analogues of the relations (6.2.7) and (6.2.8)

for the characters ψi and the pushforward of the universal lifting hold in S.

Then R�
v → R factors through Rdet,ord

v . We see, in particular, that there is an

inclusion of topological spaces SpecR4v ⊂ SpecRdet,ord
v . Indeed, applying the

above for R = R4v /p, where p is a minimal prime of R4v , and S its integral

closure in a sufficiently large finite extension of its fraction field, we see that

R�
v → R4v /p factors through Rdet,ord

v . Since the maximal reduced quotient

(R4v )red of R4v is the image of the map R�
v →

∏
pR
4
v /p, we deduce that there

is a surjection of R�
v -algebras R

det,ord
v � (R4v )red.

The ring R4v was introduced in [Ger19]. Its properties in an important

special case are summarized in the following proposition.

Proposition 6.2.10. If [Fv : Qp] >
n(n−1)

2 + 1 and ρ|GFv
is trivial, then

R4v is O-flat, reduced and equidimensional of dimension 1+n2+ n(n+1)
2 [Fv : Qp].

Moreover, the map SpecR4v → SpecΛv is bijective on the level of generic points,

hence on the level of irreducible components.

Proof. This is essentially contained in [Tho15, Prop. 3.14]. More pre-

cisely, that reference proves the proposition under the assumption that Λv =

OJO×Fv
(p)nK, but also shows that minimal prime ideals of Λv generate minimal

prime ideals of R4v . The more general case where Λv is allowed to be a quotient

of OJO×Fv
(p)nK by the intersection of an arbitrary collection of minimal prime

ideals follows from this. �

Our analysis of the ring Rdet,ord
v will be coarser. It begins with the following

lemma:
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Lemma 6.2.11. Let K be a field, G a group and ρ : G → GLn(K) a

representation. Suppose that there exist pairwise distinct characters χ1, . . . , χn :

G→ K× satisfying the following conditions :

(1) For all g ∈ G,

det(X − ρ(g)) =
n∏

i=1

(X − χi(g)).

(2) For all g1, . . . , gn ∈ G,

(ρ(g1)− χ1(g1))(ρ(g2)− χ2(g2)) · · · (ρ(gn)− χn(gn)) = 0.

Then there is a filtration 0 = Fil0 ⊂ · · · ⊂ Filn = Kn by G-stable subspaces such

that for each i = 1, . . . , n, Fili /Fili−1 ∼= K(χi).

Proof. We define subspaces 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V = Kn

be declaring that for each i = 1, . . . , n, Vi/Vi−1 is the maximal subspace of

V/Vi−1 where G acts by the character χi. Each Vi is G-stable, and the second

condition of the lemma implies that Vn = V . On the other hand, each Vi/Vi−1
is isomorphic to K(χi)

dimK Vi/Vi−1 . The first condition of the lemma implies

that we must therefore have dimK Vi/Vi−1 = 1 for each i = 1, . . . , n. The proof

is complete on taking Fili = Vi. �

Let U⊂SpecΛv be the open subscheme where the characters χuniv
1 , . . . , χuniv

n

are pairwise distinct, and let Z denote its complement.

Proposition 6.2.12. Let f : SpecR4v → SpecΛv , g : SpecRdet,ord
v →

SpecΛv be the structural maps. Suppose that ρ|GFv
is trivial and that [Fv :

Qp] >
n(n+1)

2 + 1.

(1) We have f−1(U) = g−1(U) as subspaces of SpecR�
v . Consequently, for

each irreducible component C of SpecΛv , there is a unique irreducible

component C ′ of SpecRdet,ord
v which dominates C . It has dimension n2 +

1 + n(n+1)
2 [Fv : Qp].

(2) Let C ′ be an irreducible component of Rdet,ord
v which does not dominate an

irreducible component of SpecΛv . Then C
′ ⊂ g−1(Z) and C ′ has dimension

at most n2 − 1 + n(n+1)
2 [Fv : Qp].

Proof. We have already observed that there is an inclusion SpecR4v ⊂
SpecRdet,ord

v . We must first show that if s : SpecK → g−1(U) ⊂ SpecRdet,ord
v

is a geometric point, then s factors through SpecR4v . By Lemma 6.2.9, s

lifts to a point s′ : SpecK → Spec R̃det,ord
v . Then Lemma 6.2.11 shows that

s factors through R4v . The first part of the proposition now follows from

Proposition 6.2.10, which says that f |U induces a bijection on generic points,

hence on irreducible components.
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For the second part, let C ′ be an irreducible component of Rdet,ord
v which

does not dominate an irreducible component of SpecΛv. It follows from the

first part that we must have g(C ′) ⊂ Z. To bound the dimension of C ′, we

claim that there is a permutation σ ∈ Sn such that C ′ is contained in the closed

subspace h−1(Z) of SpecR4,σv , where h : SpecR4,σv → SpecΛv is the quotient

of R�
v which is defined in the same way as R4v , except that we require the

action of IFv on the ith graded piece of the filtration to be by the character

χuniv
σ(i) . There is a corresponding surjective morphism Gσv → SpecR4,σv . To

show the claim, it suffices to check that there is a σ such that a geometric

generic point of C ′ is contained in SpecR4,σv . To see this, we observe that

the Galois representation corresponding to a geometric generic point of C ′

has semisimplification a direct sum of characters whose restriction to Iv is the

push-forward of ⊕ni=1χ
univ
i . It follows that this representation has a filtration

with the Galois action on its graded pieces given by the universal characters in

some order.

We thus have

dimC ′ ≤ dimh−1(Z) ≤ dimGσv ×SpecΛv Z.

We can bound dimGσv ×SpecΛvZ by bounding the dimension of the completed lo-

cal rings at its closed points, using essentially the same tangent space calculation

as in [Ger19, Lem. 3.7] (although over a finite field). This yields

dimGσv ×SpecΛv Z ≤ 1 + n2 + n(n+ 1)/2 + n(n+ 1)[Fv : Qp]/2− [Fv : Qp]

≤ n2 − 1 + n(n+ 1)[Fv : Qp]/2,

using our assumption [Fv : Qp] >
n(n+1)

2 + 1. This completes the proof. �

6.2.13. Fontaine–Laffaille deformations. We again suppose v|p, but take
Λv = O. We assume that Fv/Qp is unramified. Recall that in Section 4.1 we

defined a category MFO and a functor G on MFO that take values in the

category of finite O-modules with continuous O-linear GFv -action.

For each embedding τ : Fv ↪→ E, let λτ = (λτ,1, . . . , λτ,n) be a tuple of

integers satisfying

λτ,1 ≥ λτ,2 ≥ · · · ≥ λτ,n
and

λτ,1 − λτ,n < p− n.
We say a representation of GFv on a finite O-module W is Fontaine–Laffaille of

type (λτ )τ∈Hom(Fv ,E) if there exists an M ∈MFO with W ∼= G(M) such that

FLτ (M ⊗O k) = {λτ,1 + n− 1, λτ,2 + n− 2, . . . , λτ,n}
for each τ : Fv ↪→ E. The following proposition follows from [CHT08, §2.4.1]

and a twisting argument; see Section 4.1.
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Proposition 6.2.14. Assume that ρ|GFv
is Fontaine–Laffaille of type

(λτ )τ∈Hom(Fv ,E). Then there is a quotient RFL
v of R�

v satisfying the following :

(1) RFL
v represents a local deformation problem DFL

v .

(2) For a CNLO-algebra A that is finite over O, a lift ρ ∈ D�
v (A) lies in DFL

v

if and only if ρ is Fontaine–Laffaille of type (λτ )τ∈Hom(Fv ,E).

(3) RFL
v is a formally smooth over O of dimension 1 + n2 + n(n−1)

2 [Fv : Qp].

6.2.15. Level raising deformations. Assume that qv ≡ 1 mod p, that ρ|GFv

is trivial, and that p > n. We take Λv = O.
Let χ = (χ1, . . . , χn) be a tuple of continuous characters χi : O×Fv

→ O×
that are trivial modulo $. We let Dχv be the functor of lifts ρ : GFv → GLn(A)

such that

charρ(σ)(X) =
n∏

i=1

(X − χi(Art−1Fv
(σ)))

for all σ ∈ IFv . Then Dχv is a local deformation problem, and we denote its

representing object by Rχv . The following two propositions are contained in

[Tay08, Prop. 3.1].

Proposition 6.2.16. Assume that χi = 1 for all 1 ≤ i ≤ n. Then R1
v

satisfies the following properties :

(1) SpecR1
v is equidimensional of dimension 1 + n2 and every generic point

has characteristic zero.

(2) Every generic point of SpecR1
v/$ is the specialization of a unique generic

point of SpecR1
v .

Proposition 6.2.17. Assume that the χi are pairwise distinct. Then

SpecRχv is irreducible of dimension 1 + n2, and its generic point has character-

istic zero.

6.2.18. Taylor–Wiles deformations. Assume that qv ≡ 1 mod p, and that

ρ|GFv
is unramified. We take Λv = O. We assume that ρ|GFv

has n-distinct

eigenvalues α1, . . . , αn ∈ k. For each 1 ≤ i ≤ n, let γi : GFv → k× be the

unramified character that sends Frobv to αi.

Lemma 6.2.19. Let ρ : GFv → GLn(A) be any lift of ρ. There are unique

continuous characters γi : GFv → A×, for 1 ≤ i ≤ n, such that ρ is GLn(A)-

conjugate to a lift of the form γ1 ⊕ · · · ⊕ γn, where γi mod mA = γi for each

1 ≤ i ≤ n.
Proof. This is similar to [DDT97, Lem. 2.44]. The details are left to the

reader. �
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Let ∆v = k(v)×(p)n, where k(v)×(p) is the maximal p-power quotient of

k(v)×. Let ρ : GFv → GLn(R
�
v ) denote the universal lift. Then ρ is GLn(R

�
v )-

conjugate to a lift of the form γ1 ⊕ · · · ⊕ γn, with γi mod mR� = γi. For each

1 ≤ i ≤ n, the character γi ◦ArtFv |O×
Fv

factors through k(v)×(p), so we obtain

a canonical local O-algebra morphism O[∆v]→ R�
v . Note that this depends

on the choice of ordering α1, . . . , αn. It is straightforward to check that this

morphism is formally smooth of relative dimension n2.

6.2.20. Formally smooth deformations. Assume that v - p. The following

is a standard argument in obstruction theory, and the proof is left to the reader.

Proposition 6.2.21. If H2(Fv, ad ρ) = 0, then R�
v is isomorphic to a

power series ring over O in n2 variables.

6.2.22. Presentations. Fix a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S),

and for each v ∈ S, let Rv denote the object representing Dv. Let T be a

(possibly empty) subset of S such that Λv = O for all v ∈ S r T , and define

RT,locS = “⊗v∈TRv, with the completed tensor product being taken over O. It
is canonically a Λ-algebra, via the canonical isomorphism “⊗v∈TΛv ∼= “⊗v∈SΛv.
For each v ∈ T , the morphism DTS → Dv given by (ρ, {αv}v∈T ) 7→ α−1v ρ|GFv

αv
induces a local Λv-algebra morphism Rv → RTS . We thus have a local Λ-algebra

morphism RT,locS → RTS . To understand the relative tangent space of this map,

we use a Galois cohomology complex following [CHT08, §2] (cf. [KT17, §4.2]).

We let ad ρ denote the space of n×n matrices Mn×n(k) over k with adjoint

GF -action via ρ. For each v ∈ S, we let Z1(Fv, ad ρ) denote the k-vector space

of continuous 1-cocycles of GFv with coefficients in ad ρ. The map c 7→ (1+εc)ρ

gives an isomorphism

Z1(Fv, ad ρ)
∼−→ HomCNLΛv

(R�

v , k[ε]/(ε
2)).

We denote by L1v the pre-image of

HomCNLΛv
(Rv, k[ε]/(ε

2)) ⊆ HomCNLΛv
(R�

v , k[ε]/(ε
2))

under this isomorphism. Note that L1v contains the subspace of coboundaries.

We then let Lv be the image of L1v in H1(Fv, ad ρ).
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We define a complex C•S,T (ad ρ) by

CiS,T (ad ρ)

=





C0(FS/F, ad ρ) if i = 0,

C1(FS/F, ad ρ)⊕
⊕

v∈T C
0(Fv, ad ρ) if i = 1,

C2(FS/F, ad ρ)⊕
⊕

v∈T C
1(Fv, ad ρ)⊕v∈SrT C1(Fv, ad ρ)/L1v if i = 2,

Ci(FS/F, ad ρ)⊕
⊕

v∈S C
i−1(Fv, ad ρ) otherwise,

with boundary map CiS,T (ad ρ)→ Ci+1
S,T (ad ρ) given by

(φ, (ψv)v) 7→ (∂φ, (φ|GFv
− ∂ψv)v).

We denote the cohomology groups of this complex by H i
S,T (ad ρ) and denote

their k-dimension by hiS,T (ad ρ). (We use similar notation for the k-dimension

of local and global Galois cohomology groups.)

There is a long exact sequence in cohomology

0→ H0
S,T (ad ρ)→ H0(FS/F, ad ρ)→ ⊕v∈TH0(Fv, ad ρ)

→ H1
S,T (ad ρ)→ H1(FS/F, ad ρ)

→ ⊕v∈TH1(Fv, ad ρ)⊕v∈SrT H1(Fv, ad ρ)/Lv
→ H2

S,T (ad ρ)→ H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv, ad ρ)→ · · · .

(6.2.23)

Since we are assuming that p > 2, the groups H i(FS/F, ad ρ) vanish for i ≥ 3,

as do the groups H i(Fv, ad ρ). So H i
S,T (ad ρ) = 0 for i > 3, and we have a

relation among Euler characteristics

(6.2.24)

χS,T (ad ρ) = χ(FS/F, ad ρ)−
∑

v∈S

χ(Fv, ad ρ)−
∑

v∈SrT

(dimk Lv − h0(Fv, ad ρ)).

The trace pairing (X,Y ) 7→ tr(XY ) on ad ρ is perfect and GF -equivariant,

so ad ρ(1) is isomorphic to the Tate dual of ad ρ. For each v ∈ S, we let

L⊥v ⊆ H1(Fv, ad ρ(1)) be the exact annihilator of Lv under local Tate duality.

We then define

H1
S⊥,T (ad ρ(1)) = ker

(
H1(FS/F, ad ρ(1))→

∏

v∈SrT

H1(Fv, ad ρ(1))/L⊥v
)
.

The following is proved in the same way as [KT17, Prop. 4.7], based on ideas

of Kisin [Kis07, Prop. 4.1.5, Rem. 4.1.7].

Proposition 6.2.25. Let the notation and assumptions be as in the

beginning of Section 6.2.22, and assume further that T is nonempty. Then
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there is a local Λ-algebra surjection RT,locS JX1, . . . , XgK→ RTS , with

g = h1S,T (ad ρ) = h1S⊥,T (ad ρ(1))− h0(FS/F, ad ρ(1))

−
∑

v|∞

h0(Fv, ad ρ) +
∑

v∈SrT

(dimk Lv − h0(Fv, ad ρ)).

Proof. The first claim with g = h1S,T (ad ρ) follows from showing

H1
S,T (ad ρ)

∼= HomCNLΛ
(RTS/(mRT,loc

S
), k[ε]/(ε2))

∼= Homk(mRT
S
/(m2

RT
S
,m

RT,loc
S

), k).

To see this, note that any T -framed lifting of ρ to k[ε]/(ε2) can be written as

((1 + εκ)ρ, (1 + εαv)v∈T ), with κ ∈ Z1(FS/F, ad ρ), and αv ∈ ad ρ. It is the

trivial lift at v ∈ T if and only if

(1− εαv)(1 + εκ|GFv
)ρ|GFv

(1 + εαv) = ρ|GFv
,

equivalently,

κ|GFv
= (ad ρ|GFv

− 1)αv.

Such a lift is further of type S if and only if κ|GFv
∈ L1v for all v ∈ S r T . This

sets up a bijection between the set of 1-cocycles of the complex C•S,T (ad ρ) and

the set of T -framed lifts of type S that are trivial at v ∈ T . Two cocycles

(κ, {αv}v∈T ) and (κ′, {α′}v∈T ) define strictly equivalent T -framed lifts if and

only if there is β ∈ ad ρ such that

κ′ = κ+ (ad ρ− 1)β and α′v = αv + β

for all v ∈ T , i.e., if and only if they differ by a coboundary. This induces the

desired isomorphism

H1
S,T (ad ρ)

∼= HomCNLΛ
(RTS/(mRT,loc

S
), k[ε]/(ε2)).

Since T is nonempty, h0S,T (ad ρ) = 0. Then (6.2.24) together with the local

and global Euler characteristic formulas imply

h1S,T (ad ρ) = h2S,T (ad ρ)− h3S,T (ad ρ)
−
∑

v|∞

h0(Fv, ad ρ) +
∑

v∈SrT

(dimk Lv − h0(Fv, ad ρ)).

To finish the proof, we deduce equalities h2S,T (ad ρ) = h1
S⊥,T

(ad ρ(1)) and

h3S,T (ad ρ) = h0(FS/F, ad ρ(1)) by comparing the exact sequence

→ H1(FS/F, ad ρ)→ ⊕v∈TH1(Fv, ad ρ)⊕v∈SrT H1(Fv, ad ρ)/Lv
→ H2

S,T (ad ρ)→ H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv, ad ρ)

→ H3
S,T (ad ρ)→ 0,



1042 ALLEN ET AL.

which is part of (6.2.23), with the exact sequence

→ H1(FS/F, ad ρ)→ ⊕v∈TH1(Fv, ad ρ)⊕v∈SrT H1(Fv, ad ρ)/Lv
→ H1

S⊥,T (ad ρ(1))
∨ → H2(FS/F, ad ρ)→ ⊕v∈SH2(Fv, ad ρ)

→ H0(FS/F, ad ρ(1))
∨ → 0,

which is part of the Poitou–Tate long exact sequence. �

We will apply this with our choices of local deformation rings as in

Section 6.2.5. By applying Propositions 6.2.14, 6.2.16, 6.2.17, 6.2.21, and

[BLGHT11, Lem. 3.3], we obtain the following:

Lemma 6.2.26. We assume that our deformation problem S and T ⊆ S
satisfy the following :

• T is a disjoint union Sp tR t Sa.
• For each v ∈ Sp, we assume that Fv/Qp is unramified and that ρ|GFv

is as

in Proposition 6.2.14. We take Dv = DFL
v .

• For each v ∈ R, we assume that qv ≡ 1 mod p and that ρ|GFv
is trivial.

We take Dv = Dχv
v for some tuple χv = (χv,1, . . . , χv,n) of characters

χv,i : O×Fv
→O× that are trivial modulo $.

• For each v ∈ Sa, we assume that H2(Fv, ad ρ) = 0, and we take Dv = D�
v .

Then RT,locS satisfies the following properties :

(1) Assume that χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n. Then SpecRT,locS is

equidimensional of dimension 1 + n2|T |+ n(n−1)
2 [F : Q], and every generic

point has characteristic 0. Further, every generic point of SpecRT,locS /$ is

the specialization of a unique generic point of SpecRT,locS .

(2) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R. Then

SpecRT,locS is irreducible of dimension 1 + n2|T | + n(n−1)
2 [F : Q] and its

generic point has characteristic 0.

In the ordinary case, we will use the following:

Lemma 6.2.27. We assume that our deformation problem S and T ⊆ S
satisfy the following :

• T is a disjoint union Sp tR t Sa.
• For each v ∈ Sp, we assume that [Fv : Qp] >

n(n+1)
2 + 1 and that ρ|GFv

is

trivial. We take Λv to be the quotient of OJO×Fv
(p)nK by a minimal prime

ideal ℘v and take Dv = Ddet,ord
v to be the local deformation problem classified

by Rdet,ord
v .

• For each v ∈ R, we assume that qv ≡ 1 mod p and assume that ρ|GFv
is

trivial. We take Dv=Dχv
v for some tuple χv=(χv,1, . . . , χv,n) of characters

χv,i : O×Fv
→ O× that are trivial modulo $.
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• For each v ∈ Sa, we assume that H2(Fv, ad ρ) = 0 and we take Dv = D�
v .

Then RT,locS satisfies the following properties :

(1) Assume that χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n. Then SpecRT,locS

has dimension 1 + n2|T | + n(n+1)
2 [F : Q], any irreducible component of

maximum dimension has a characteristic 0 generic point, and any irreducible

component that does not have maximum dimension has dimension ≤ n2|T |−
1 + n(n+1)

2 [F : Q]. Further, any irreducible component of SpecRT,locS /(λ)

of maximum dimension is the specialization of a unique generic point of

SpecRT,locS .

(2) Assume that χv,1, . . . , χv,n are pairwise distinct for each v ∈ R. Then

SpecRT,locS has dimension 1 + n2|T | + n(n+1)
2 [F : Q], it has a unique

irreducible component of maximum dimension, and the generic point of this

irreducible component has characteristic 0. Any other irreducible component

has dimension ≤ n2|T | − 1 + n(n+1)
2 [F : Q].

(3) If x is a point of SpecRT,locS lying in an irreducible component of non-

maximum dimension, then there is some v ∈ Sp such that the image of x

in SpecΛv lies in the closed locus defined by χuniv
i = χuniv

j for some i 6= j.

Proof. For each v ∈ Sp, Proposition 6.2.12 implies that SpecRv has a

unique irreducible component of dimension dimRv = 1 + n2 + n(n+1)
2 [Fv : Qp],

and this irreducible component has characteristic 0. Let qv be the minimal

prime of Rv corresponding to this irreducible component. Then we can apply

[BLGHT11, Lem. 3.3] to

R′ = “⊗v∈SpRv/qv“⊗v∈R∪SaRv

together with Propositions 6.2.16, 6.2.17, and 6.2.21 to obtain the following:

(1) If χv,i = 1 for each v ∈ R and 1 ≤ i ≤ n, then SpecR′ is equidimensional

of dimension 1 + n2|T |+ n(n+1)
2 [F : Q], and every generic point has charac-

teristic 0. Further, every generic point of SpecR′/$ is the specialization of

a unique generic point of SpecR′.

(2) If χv,1, . . . , χv,n are pairwise distinct for each v ∈ R, then SpecR′ is irre-

ducible of dimension 1 + n2|T | + n(n+1)
2 [F : Q] and its generic point has

characteristic 0.

Since any minimal prime p of RT,locS pulls back to minimal prime ideals pv of

Rv for each v ∈ T and induces a surjection

“⊗v∈TRv/pv → RT,locS /p,

we see that SpecR′ is a union of irreducible components of SpecRT,locS . To

finish the proof of the lemma, it suffice to note that if pv 6= qv for some v ∈ Sp,
then by Proposition 6.2.12, dimRv/pv ≤ n2−1+ n(n+1)

2 [Fv : Qp] and the image
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of pv in Λv lies in the closed locus defined by χuniv
i = χuniv

j for some i 6= j. In

this case, dimRT,locS /p ≤ n2|T | − 1 + n(n+1)
2 [F : Q]. �

6.2.28. Taylor–Wiles primes. In this section we show how to generate

Taylor–Wiles data. We first need to introduce a definition, essentially equivalent

to that of [KT17, Def. 4.10] and [CG18, §9.2] (see Remark 6.2.31 below). For

the moment, let k be any algebraic extension of Fp.

Definition 6.2.29. Let ad0 denote the space of trace zero matrices in

Mn×n(k) with the adjoint GLn(k)-action. An absolutely irreducible subgroup

H ⊆ GLn(k) is called enormous over k if it satisfies the following:

(1) H has no nontrivial p-power order quotient.

(2) H0(H, ad0) = H1(H, ad0) = 0.

(3) For any simple k[H]-submodule W ⊆ ad0, there is a regular semisimple

h ∈ H such that W h 6= 0.

Note that this only depends on the image of H in PGLn(k). If p divides n,

then no subgroup of GLn(k) is enormous (because ad0 contains the scalar

matrices).

Lemma 6.2.30. Let k′/k be an algebraic extension, and let H ⊂ GLn(k)

be a subgroup. Then H is enormous over k if and only if it is enormous over k′.

Proof. It suffices to address condition (3), which is equivalent to the

following statement: for all non-zero k[H]-submodules W ⊆ ad0, there is a

regular semisimple element h ∈ H such that W h 6= 0. This makes it clear that

if H is enormous over k′, then it is enormous over k.

Suppose therefore that H is enormous over k. The property that a k′[H]-

module V satisfies V h = 0 is closed under taking direct sums and taking

quotients. (The latter is true because V h 6= 0 if and only if Vh 6= 0.) If V ⊂
ad0⊗kk′, then σhv = hσv for all σ ∈ Gal(k′/k) (since H ⊂ GLn(k)) and

so V h 6= 0 if and only if (σV )h 6= 0. In particular, if W ′ is a simple k′[H]-

submodule of ad0⊗kk′ with no invariants by h ∈ H, the same is true for σW ′

for all σ ∈ Gal(k′/k), as well as the submodule of ad0⊗kk′ generated by the

sum of all such σW ′. But the latter is stable under both H and Gal(k′/k), and

thus (by descent) has the form W ⊗k k′ for some k[H]-submodule of ad0. But

now applying condition (3) to any k[H]-simple submodule of W , we deduce

that W h 6= 0 for some regular semisimple h, from which it follows that the

same holds for W ′. �

Henceforth we drop the “over k” and refer simply to enormous subgroups

of GLn(k).
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Remark 6.2.31. Assuming that k is sufficiently large to contain all eigenval-

ues of the elements of H, it can be checked that Definition 6.2.29 is equivalent

to [KT17, Def. 4.10].

We now return to the assumptions described at the beginning of Section 6.2,

assuming further that k contains all eigenvalues of the elements of ρ(GF ). We

again fix a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S).
We define a Taylor–Wiles datum to be a tuple (Q, (αv,1, . . . , αv,n)v∈Q) consisting

of

• a finite set of finite places Q of F , disjoint from S, such that qv ≡ 1 mod p

for each v ∈ Q;

• for each v ∈ Q, an ordering αv,1, . . . , αv,n of the eigenvalues of ρ(Frobv),

which are assumed to be k-rational and distinct.

Given a Taylor–Wiles datum (Q, (αv,1, . . . , αv,n)v∈Q), we define the augmented

global deformation problem

SQ = (ρ, S ∪Q, {Λv}v∈S ∪ {O}v∈Q, {Dv}v∈S ∪ {D�

v }v∈Q).
Set ∆Q =

∏
v∈Q k(v)

×(p)n. By Section 6.2.18, the fixed ordering αv,1, . . . , αv,n
for each v ∈ Q determines a Λ[∆Q]-algebra structure on RTSQ for any subset

T of S. Letting aQ = ker(Λ[∆Q]→ Λ) be the augmentation ideal, the natural

surjection RTSQ → RTS has kernel aQR
T
SQ

.

Lemma 6.2.32. Let T ⊆ S. Assume that F is CM with maximal totally

real subfield F+, that ζp /∈ F , and that ρ(GF (ζp)) is enormous. Let q ≥
h1
S⊥,T

(ad ρ(1)). Then for every N ≥ 1, there is a choice of Taylor–Wiles datum

(QN , (αv,1, . . . , αv,n)v∈QN
) satisfying the following :

(1) #QN = q.

(2) For each v ∈ QN , qv ≡ 1 mod pN , and v has degree one over Q.

(3) h1
S⊥QN

,T
(ad ρ(1)) = 0.

Proof. Since the augmented deformation datum SQN
has Dv = D�

v for

v ∈ QN , we have Lv = H1(Gv, ad ρ) and

H1
S⊥QN

,T
(ad ρ(1)) = ker

(
H1
S⊥,T (ad ρ(1))→

∏

v∈QN

H1(Fv, ad ρ(1))
)
.

So by induction, it suffices to show that given any cocycle κ representing a

nonzero element of H1
S⊥,T

(ad ρ(1)), there are infinitely many finite places v of

F such that

• v has degree one over Q and splits in F (ζpN );

• ρ(Frobv) has n-distinct eigenvalues αv,1, . . . , αv,n in k;

• the image of κ in H1(Fv, ad ρ(1)) is nonzero.
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The set of places of F that have degree one over Q has density one, so it suffices

to show that the remaining properties are satisfied by a positive density set

of places of F . Then by Chebotarev density, we are reduced to showing that

given any cocycle κ representing a nonzero element of H1
S⊥,T

(ad ρ(1)), there is

σ ∈ GF (ζ
pN

) such that

• ρ(σ) has distinct k-rational eigenvalues;
• pσκ(σ) 6= 0, where pσ : ad ρ→ (ad ρ)σ is the σ-equivariant projection.

(The second condition guarantees that the restriction of κ will not be a cobound-

ary.) Since p - n, we have a GF -equivariant decomposition ad ρ = k ⊕ ad0 ρ,

and we treat separately the cases where κ represents a cohomology class in

H1(FS/F, ad
0 ρ(1)) and in H1(FS/F, k(1)).

First assume that κ represents a cohomology class in H1(FS/F, ad
0 ρ(1)).

Let L/F be the splitting field of ρ. The definition of enormous implies that the

restriction map

H1(FS/F, ad
0 ρ(1))→ H1(FS/L(ζpN ), ad

0 ρ(1))GF

is injective. Indeed, letting H = ρ(GF (ζp)), since H has no p-power order

quotients, H = ρ(GF (ζ
pN

)) and H
0(H, ad0 ρ) = 0 implies that the restriction

to H1(FS/F (ζpN ), ad
0 ρ) is injective. Then the condition H1(H, ad0 ρ) = 0

implies that the further restriction to H1(FS/L(ζpN ), ad
0 ρ(1)) is injective.

So the restriction of κ defines a nonzero GF (ζ
pN

)-equivariant homomorphism

Gal(FS/L(ζpN ))→ ad0 ρ.

Let W be a nonzero irreducible subrepresentation in the k-span of

κ(Gal(FS/L(ζpN )).

The enormous assumption implies that there is σ0 ∈ GF (ζ
pN

) such that ρ(σ0)

has distinct k-rational eigenvalues and such that W σ0 6= 0. This implies that

κ(Gal(FS/L(ζpN )) is not contained in the kernel of the σ0-equivariant projection

pσ0 : ad0 ρ→ (ad0 ρ)σ0 . If pσ0κ(σ0) 6= 0, then we take σ = σ0. Otherwise, we

choose τ ∈ GL(ζ
pN

) such that pσ0κ(τ) 6= 0, and we take σ = τσ0. This does the

job since ρ(σ) = ρ(σ0) and κ(σ) = κ(σ0) + κ(τ).

Now assume that κ represents a cohomology class in H1(FS/F, k(1)).

The cohomology class of κ corresponds to a Kummer extension F (ζp, y) with

yp ∈ F (ζp). Since κ is nontrivial and ζp /∈ F , this extension F (ζp, y) is not

abelian over F . It follows that yp /∈ F (ζpN ) for any N ≥ 1, and the restriction of

κ to GF (ζ
pN

) is nontrivial. Since the extension F (ζpN , y)/F (ζpN ) has degree p,

it is disjoint from the extension cut out by the restriction of ρ to GF (ζ
pN

) by

the enormous assumption. It follows that we can find σ ∈ GF (ζ
pN

) such that

ρ(σ) has distinct eigenvalues and such that κ(σ) 6= 0 ∈ k. This completes the

proof. �
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Proposition 6.2.33. Take T = S, and let q ≥ h1
S⊥,T

(ad ρ(1)). Assume

that F = F+F0 with F+ totally real and F0 an imaginary quadratic field, that

ζp /∈ F , and that ρ(GF (ζp)) is enormous. Then for every N ≥ 1, there is a choice

of Taylor–Wiles datum (QN , (αv,1, . . . , αv,n)v∈QN
) satisfying the following :

(1) #QN = q.

(2) For each v ∈ QN , qv ≡ 1 mod pN and the rational prime below v splits in

F0.

(3) There is a local Λ-algebra surjection RT,locS JX1, . . . , XgK→ RTSQN
, with

g = qn− n2[F+ : Q].

Proof. If v is a finite place of F that is degree one over Q, then the rational

prime below it must split in F0. So Proposition 6.2.25 and Lemma 6.2.32 imply

that the proposition holds with

g = −h0(FS/F, ad ρ(1))− n2[F+ : Q] +
∑

v∈Q

(dimLv − dimh0(Fv, ad ρ)).

The assumptions that ρ(GF (ζp)) is enormous and that ζp 6∈ F imply that

H0(FS/F, ad ρ(1)) is trivial. For each v ∈ Q, we have Lv = H1(Fv, ad ρ), so

dimLv − dimh0(Fv, ad ρ) = h0(Fv, ad ρ(1)) = n,

where the first equality follows from local Tate duality and the local Euler

characteristic, and the second from the fact that qv ≡ 1 mod p and ρ(Frobv)

has distinct eigenvalues. �

6.3. Avoiding Ihara’s lemma. In this section we will axiomatically explain

how to deduce a patched automorphy theorem from the result of the patching

process. See Section 6.3.5 and particularly Proposition 6.3.8. We begin, however,

with a little commutative algebra.

6.3.1. Some commutative algebra.

Lemma 6.3.2. Suppose that T is an excellent local ring with SpecT irre-

ducible, that f ∈ mT , and that T/(f) has Krull dimension 0.

If T has dimension 0, then for every finitely generated T module M , we

have

lgT (M/fM)− lgT (M [f ]) = 0

(and these lengths are both finite).

Otherwise T has dimension 1 and a unique prime ideal p other than mT .

In this case there is a constant a ∈ Z>0 such that for any finitely generated

T -module M , we have

lgT (M/fM)− lgT (M [f ]) = a lgTp(Mp)

(and all these lengths are finite).
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Proof. If T has dimension 0, then it is Artinian and every finitely generated

T -module has finite length. If the desired length equality holds for two modules

in a short exact sequence, it also holds for the third (by the snake lemma).

Thus we are reduced to checking the lemma in the case M = T/mT , in which

case it is obvious.

Now suppose that T has dimension 1. Note that T/(f) is Artinian and

so any finitely generated T/(f)-module has finite length over T . Let T̃ denote

the normalization of T/p. As T is excellent, T̃ is a finitely generated T -module.

We will take a = lgT (T̃ /(f)). (This is positive because f is not a unit in T̃ . In

fact it lies in every maximal ideal.)

Note that the conclusion of the lemma is true forM = T/m and forM = T̃ .

Also note that if the conclusion of the lemma holds for two modules in a short

exact sequence, then it holds for the third (again by the snake lemma). In

particular, the lemma holds for all finite length T -modules.

Filtering M by the submodules piM we reduce to checking the lemma

for M a T/p-module. Write Q for the quotient T̃ /(T/p). It has support

{mT } ⊂ SpecT . If M is any finitely generated T/p-module, we have an exact

sequence

TorT1 (M,Q) −→M −→M ⊗T T̃ −→M ⊗T Q −→ (0).

Both M ⊗T Q and TorT1 (M,Q) are finitely generated T -modules with support

contained in {mT }, and hence of finite length. Thus we are reduced to proving

the lemma for M a finitely generated T̃ -module.

Note that T̃ is a Dedekind domain with only finitely many maximal ideals,

and hence a PID. By the structure theorem for finitely generated modules over

a PID, it suffices to check the conclusion of the lemma in the following two

cases: M is a finite length T̃ -module, and M = T̃ . However we have already

treated both these cases. �

We will actually make use of a derived version of this lemma. Suppose that

S is a ring, that T is a noetherian S-algebra, and that C ∈ Db(S) is equipped

with a map T → EndDb(S)(C) over S such that the cohomology of C has finite

length over T . Then we define

lgT (C) =
∑

i

(−1)i lgT (H i(C)).

Note that if

C1 −→ C2 −→ C3 −→
is an exact triangle in Db(S) with compatible actions of T , and if two of the Ci
have cohomology of finite length over T , then so does the third and we have

lgT (C2) = lgT (C1) + lgT (C3).
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Note also that if f ∈ S and the cohomology of C is finitely generated over T ,

then the cohomology of C ⊗L
S S/(f) is also finitely generated over T ; look at

the long exact sequence in cohomology coming from the exact triangle

(C
f−→ C −→ C ⊗L

S S/(f) −→) = C ⊗L
S (S

f−→ S −→ S/(f) −→).

Before stating the derived version we need one other remark:

Lemma 6.3.3. Suppose that A is a noetherian ring and that m is a maximal

ideal of A that is simultaneously a minimal prime ideal. Then A
∼−→ Am ×B

for some ring B.

Proof. Let p1, . . . , pr denote the other minimal prime ideals of A, and set

I = p1 ∩ · · · ∩ pr. If m ⊃ I, then m ⊃ pi for some i, a contradiction. Thus

m + I = A and A/(m ∩ I) ∼−→ A/m × A/I. However, m ∩ I is nilpotent

so we can lift the idempotent (1, 0) ∈ A/m × A/I to an idempotent e ∈ A.
Then 1− e ∈ m, and e will lie in every prime ideal of A other than m. Thus

m = em × (1 − e)A ⊂ eA × (1 − e)A, and every other prime ideal of A

contains e and so has the form eA× q. In particular, eA is Artinian local and

Am = (eA)em = eA. �

Suppose that S is a noetherian ring, that T is a finite S-algebra, that p

is a minimal prime ideal of T , and that C ∈ Db(S) is equipped with a map

T → EndDb(S)(C) over S. Let q denote the contraction of p to S. As T is finite

over S, we see that p is also maximal ideal in Tq, and so by the above lemma

we can write Tq ∼= Tp×B for some S-algebra B. Let ep ∈ Tq be the idempotent

corresponding (1, 0) ∈ Tp ×B. Then, perhaps by an abuse of notation, we will

write

Cp = ep(C ⊗S Sq).
It is an object of Db(Sq) with an action of Tp. It is not literally a localization

over T , but if C (with its action of T ) happens to be represented by a complex

of T -modules Ci, then Cp is represented by the complex Cip. Moreover if the

cohomology of C is finitely generated over S, then the cohomology of Cp has

finite length over Tp (being finitely generated over the Artinian ring Tp).

Lemma 6.3.4. Suppose that S is an excellent local ring and that f ∈ mS

is a non-zero divisor. Suppose also that T is a finite S-algebra with a maximal

ideal m such that SpecTm is irreducible and Tm/(f) has Krull dimension 0.

Note that Tm has dimension at most 1.

If Tm has dimension 0, then for every C∈Db(S) such that T→EndDb(S)(C)

over S and C has finitely generated cohomology, we have

lgTm((C ⊗L
S S/(f))m) = 0.

If not, then Tm has a unique prime ideal p other than m. In this case there

is a ∈ Z>0 with the following property :
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Suppose that C ∈ Db(S) such that C has finitely generated cohomology,

and that T → EndDb(S)(C) over S. Then

lgTm((C ⊗L
S S/(f))m) = a lgTp(Cp).

Proof. We will take the a as in Lemma 6.3.2 for the ring Tm. If the lemma

holds for two terms in an exact triangle, it holds for the third term too. Thus

one may inductively reduce to the case that C is quasi-isomorphic to M [i] for

a finitely generated S-module M with a compatible action of T . In this case

C ⊗L
S S/(f) is quasi-isomorphic to (M

f→M)[−i]. Moreover,

lgTm((C ⊗L
S S/(f))m) = (−1)i(lgTm((M)/fM)m)− lgTm(M [f ]m))

and
lgTp(Cp) = (−1)i lgTp(Mp).

Thus the present lemma follows from Lemma 6.3.2. �

We remark that if C is perfect, then the cohomology of C and C ⊗S S/(f)
will automatically be finitely generated (over S and hence over T ). In this case,

if T is an S subalgebra of EndDb(S)(C), then it will automatically be finite

over S.

6.3.5. Application. Let Λ be a ring that is isomorphic to a power series

ring over O. We assume given the following objects:

(1) A power series ring S∞ = Λ[[X1, · · · , Xr]] with augmentation ideal a∞ =

(X1, . . . , Xr).

(2) Perfect complexes C∞, C
′
∞ of S∞-modules, and a fixed isomorphism

C∞ ⊗L
S∞

S∞/$ ∼= C ′∞ ⊗L
S∞

S∞/$

in D(S∞/$).

(3) Two S∞-subalgebras

T∞ ⊂ EndD(S∞)(C∞)

and
T ′∞ ⊂ EndD(S∞)(C

′
∞),

which have the same image in

EndD(S∞/$)(C∞ ⊗L
S∞

S∞/$) = EndD(S∞/$)(C
′
∞ ⊗L

S∞
S∞/$),

where these endomorphism algebras are identified using the fixed isomor-

phism. Call this common image T∞. Note that T∞ and T ′∞ are finite

S∞-algebras.

(4) Two Noetherian complete local S∞-algebras R∞ and R′∞ and surjections

R∞ � T∞/I∞, R′∞ � T ′∞/I
′
∞, where I∞ and I ′∞ are nilpotent ideals. We

write I∞ and I
′
∞ for the image of these ideals in T∞. Note that it then

makes sense to talk about the support of H∗(C∞) and H
∗(C ′∞) over R∞,

R′∞, even though they are not genuine modules over these rings. These
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supports actually belong to the closed subsets of SpecR∞, SpecR′∞ given

by SpecT∞, SpecT ′∞, and hence are finite over SpecS∞.

(5) An isomorphism R∞/$ ∼= R′∞/$ compatible with the S∞-algebra structure

and the actions (induced from T∞ and T ′∞) on

H∗(C∞ ⊗L
S∞

S∞/$)/(I∞ + I
′
∞) = H∗(C ′∞ ⊗L

S∞
S∞/$)/(I∞ + I

′
∞),

where these cohomology groups are identified using the fixed isomorphism.

(6) Integers q0 ∈ Z and l0 ∈ Z≥0.

Assumption 6.3.6. Our set-up is assumed to satisfy the following:

(1) dimR∞ = dimR′∞ = dimS∞ − l0, and dimR∞/$ = dimR′∞/$ =

dimS∞ − l0 − 1.

(2) (Behavior of components). Assume that each generic point of SpecR∞/$

of maximal dimension (i.e., of dimension dimR∞ − 1) is the specialization

of a unique generic point of SpecR∞ of dimension dimR∞, and SpecR′∞
has a unique generic point x′ of dimension dimR∞. Assume also that any

generic points of SpecR∞, SpecR′∞, SpecR∞/$ which are not of maximal

dimension have dimension < dimS∞ − l0 − 1.

These hypotheses imply every generic point of SpecR∞ and SpecR′∞ of

dimension dimR∞ has characteristic 0.

(3) (Generic concentration). There exists a dimension 1 characteristic 0 prime

p of S∞ containing a∞ such that

H∗(C∞ ⊗L
S∞

S∞/p)[
1

p
] 6= 0,

and these groups are non-zero only for degrees in the interval [q0, q0 + l0].

Note that SuppR∞
(H∗(C∞))=SpecT∞ and SuppR′

∞
(H∗(C ′∞))=SpecT ′∞

— the only point being that the kernel of T∞ → EndS∞(H∗(C∞)) is nilpotent.

The following result is an immediate corollary of Lemma 6.3.4.

Lemma 6.3.7. Suppose that x is a minimal prime of R∞/($) of dimension

dimS∞− l0−1 containing a minimal prime x of R∞ of dimension dimS∞− l0.
Note that R∞,x has a unique minimal prime ideal x, and that R∞,x/($) has

Krull dimension 0. Moreover,

(1) If x ∈ SpecT∞ and if lgT∞,x
((C∞ ⊗L

S∞
S∞/($))x) 6= 0, then x ∈ SpecT∞

and lgT∞,x
(C∞,x) 6= 0.

(2) If x ∈ SpecT∞, then x ∈ SpecT∞. If, moreover, lgT∞,x
(C∞,x) 6= 0, then

lgT∞,x
((C∞ ⊗L

S∞
S∞/($))x) 6= 0.

The same is true with R′∞, T ′∞, C ′∞ replacing R∞, T∞ and C∞.

We now come to the principal result of this section.
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Proposition 6.3.8. With the notation and assumptions just established,

SuppR∞
(H∗(C∞)) = SpecT∞ ⊂ SpecR∞

contains every irreducible component of SpecR∞ of maximal dimension.

Proof. As T∞ andH∗(C∞) are finite over S∞ we see that SuppS∞
(H∗(C∞))

is the image of SpecT∞ → SpecS∞. Thus SuppS∞
(H∗(C∞)) has dimension

at most dimR∞ = dimS∞ − l0, and any prime in SuppS∞,p
(H∗(C∞,p)) has

codimension at least l0 in SpecS∞,p.

Since S∞,p/p ∼= (S∞/p)[
1
p ], our assumptions imply that C∞,p ⊗L S∞,p/p

is non-zero and has cohomology concentrated in degrees [q0, q0 + l0]. Thus

C∞,p is quasi-isomorphic to a perfect complex of S∞,p-modules concentrated in

degrees [q0, q0 + l0]. (See, for instance, [KT17, Lem. 2.3].) From the key [CG18,

Lem. 6.2] we deduce that H∗(C∞,p) is non-zero exactly in degree q0 + l0 and

that SuppS∞,p
(Hq0+l0(C∞,p)) contains a prime of codimension at most l0 in

SpecS∞,p. Thus SuppS∞
(H∗(C∞)) contains a prime of dimension dimS∞ − l0.

Let x1 denote a pre-image of this prime in SpecT∞, so that x1 must be a

generic point of SpecR∞ − SpecR∞/($) of dimension dimS∞ − l0. Moreover

lgT∞,x1
(C∞,x1) 6= (0). Choose a generic point x1 of SpecR∞/(x1, $), which

must have dimension dimS∞− l0−1 and be a generic point of SpecR∞/($) in

the image of SpecT∞. Let x′1 denote the corresponding point of SpecR′∞/($).

It cannot be generic in SpecR′∞ and so must generalize to x′.

Now let x2 be any other generic point of SpecR∞ of dimension dimS∞ −
l0. We wish to show that it lies in SpecT∞. Choose a generic point x2 of

SpecR∞/(x2, $), which must have dimension dimS∞− l0− 1 and be a generic

point of SpecR∞/($). Let x′2 denote the corresponding point of SpecR′∞/($).

It cannot be generic in SpecR′∞ and so must generalize to x′.

We now repeatedly use Lemma 6.3.7. As lgT∞,x1
(C∞,x1) 6=(0), we deduce

that x1∈SpecT∞ and lgT∞,x1
((C∞⊗L

S∞
S∞/($))x1) 6=0. Thus x′1∈SpecT ′∞ and

lgT ′
∞,x′1

((C ′∞⊗L
S∞

S∞/($))x′1) 6=0, from which we deduce that x′∈SpecT ′∞ and

lgT ′
∞,x′

(C ′∞,x′) 6=0. We further deduce that x′2∈SpecT ′∞ and lgT ′
∞,x′2

((C ′∞ ⊗L
S∞

S∞/($))x′2) 6= 0. Thus x2 ∈ SpecT∞ and lgT∞,x2
((C∞ ⊗L

S∞
S∞/($))x2) 6= 0,

from which we finally deduce that x2 ∈ SpecT∞ (and lgT∞,x2
(C∞,x2) 6= (0)). �

Corollary 6.3.9. Let x be a prime of R∞ lying in an irreducible com-

ponent of SpecR∞ of maximal dimension. Let y be the contraction of x

in S∞. Then the support of H∗(C∞ ⊗L
S∞

S∞/y)y over SpecR∞ contains x. If

y is one dimensional of characteristic 0, this says that x is in the support of

H∗(C∞ ⊗L
S∞

S∞/y)[1/p].
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Proof. It follows from Proposition 6.3.8 that x is contained in SpecT∞ and

occurs in the support of H∗(C∞). It also occurs in the support of H∗(C∞,y) =

H∗(C∞)y. Let r be maximal such that Hr(C∞,y)x is non-zero. From the Tor

spectral sequence

Tor
S∞,y

−i (Hj(C∞,y), S∞,y/y)⇒ H i+j(C∞,y ⊗L
S∞,y

S∞,y/y)

we see that Hr(C∞,y ⊗L
S∞,y

S∞,y/y)x surjects onto Hr(C∞,y)x/y 6= (0), so

that x lies in the support of Hr(C∞,y ⊗L
S∞,y

S∞,y/y)=H
r(C∞ ⊗L

S∞
S∞/y)y, as

desired. �

6.4. Ultrapatching.

6.4.1. Set-up for patching. We begin by fixing a non-principal ultrafilter F

on the set N = {N ≥ 1}. We fix a ring Λ that is isomorphic to a power series

ring over O.
Let δ, g, q be positive integers, and set ∆∞ = Znqp . We let T be a formal

power series ring over Λ (it will come from framing variables in our application)

and let S∞ = T [[∆∞]]. We view S∞ as an augmented Λ-algebra and denote

the augmentation ideal by a∞. We also suppose we have two rings Rloc, R′ loc

in CNLΛ with a fixed isomorphism Rloc/$ ∼= R′ loc/$ and denote by R∞ and

R′∞ the formal power series rings in g variables over Rloc and R′ loc.

Our input for patching is the following data for each N ∈ N ∪ {0}:
(1) A quotient ∆N of ∆∞ such that the kernel of ∆∞ → ∆N is contained in

(pNZp)
nq ⊂ ∆∞. If N = 0, we let ∆0 be the trivial group, thought of as a

quotient of ∆∞. We set SN = T [∆N ].

(2) A pair of perfect complexes CN , C′N in D(Λ[∆N ]), together with an isomor-

phism CN ⊗L
Λ[∆N ] Λ/$[∆N ] ∼= C′N ⊗L

Λ[∆N ] Λ/$[∆N ] in D(Λ/$[∆N ]). We

denote these complexes by CN/$ and C′N/$ for short. We moreover as-

sume that we have commutative Λ[∆N ]-subalgebras TN ⊂ EndD(Λ[∆N ])(CN ),

T ′N ⊂ EndD(Λ[∆N ])(C′N ) that map to the same subalgebra

TN ⊂ EndD(Λ/$[∆N ])(CN/$) = EndD(Λ/$[∆N ])(C′N/$),

where these endomorphism algebras are identified using our fixed quasi-

isomorphism CN/$ ∼= C′N/$.

(3) A pair of rings RN , R′N in CNLΛ[∆N ] with an isomorphism RN/$ ∼= R′N/$

together with Rloc- and R′ loc-algebra structures on T “⊗ΛRN and T “⊗ΛR
′
N

respectively that are compatible modulo $ with the isomorphisms RN/$ ∼=
R′N/$ and Rloc/$ ∼= R′ loc/$.

(4) Surjective Rloc- and R′ loc-algebra maps R∞ → T “⊗ΛRN and R′∞ →
T “⊗ΛRN , which are compatible modulo $.

(5) Nilpotent ideals IN of TN and I ′N of T ′N with nilpotence degree ≤ δ, and
continuous surjections RN → TN/IN , R

′
N → TN/I

′
N . We demand that
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these maps are also compatible modulo $, in the following sense: denote

by IN and I
′
N the images of IN and I ′N in TN . Then the induced maps

RN/$ → TN/(IN + I
′
N ) and R

′
N/$ → TN/(IN + I

′
N ) are equal when we

identify RN/$ and R′N/$ via the fixed isomorphism between them.

We moreover assume that for each N ≥ 1, we have isomorphisms πN :

CN ⊗L
Λ[∆N ] Λ

∼= C0 and π′N : C′N ⊗L
Λ[∆N ] Λ

∼= C′0 in D(Λ) that are compatible

mod $. We obtain induced maps TN ⊗Λ[∆N ] Λ→ EndD(Λ)(C0) and T ′N ⊗Λ[∆N ]

Λ→ EndD(Λ)(C′0) that we assume factor through maps TN ⊗Λ[∆N ] Λ→ T0 and

T ′N ⊗Λ[∆N ] Λ→ T ′0 that are surjective when composed with the projections to

T0/I0 and T ′0/I
′
0.

Finally, we assume that we have isomorphisms RN ⊗Λ[∆N ] Λ ∼= R0 and

R′N ⊗Λ[∆N ] Λ ∼= R′0 that are compatible mod $ and with the maps from R∞ in

part (4). We also also demand compatibility with the maps TN ⊗Λ[∆N ] Λ→ T0
and T ′N ⊗Λ[∆N ] Λ→ T ′0 above. More precisely, we denote by IN,0 and I ′N,0 the

images of IN and I ′N in T0/I0 and T ′0/I
′
0, and we demand that the surjective

maps RN ⊗Λ[∆N ] Λ → (T0/I0)/IN,0 and R′N ⊗Λ[∆N ] Λ → (T ′0/I
′
0)/I

′
N,0 are

identified with the maps R0 → (T0/I0)/IN,0 and R′0 → (T ′0/I
′
0)/I

′
N,0 via the

isomorphisms RN ⊗Λ[∆N ] Λ ∼= R0 and R′N ⊗Λ[∆N ] Λ ∼= R′0.

6.4.2. Patched complexes. Apart from Remark 6.4.14 and Proposition 6.4.17,

results and definitions in this subsection will be stated just for the complexes

CN and the associated objects and structures, but they also apply to the

complexes C′N .
Definition 6.4.3. Let J be an open ideal in S∞. Let IJ be the (cofinite)

subset of N ∈ N such that J contains the kernel of S∞ → SN . For N ∈ IJ , we
define

C(J,N) = S∞/J ⊗L
Λ[∆N ] CN ∈ D(S∞/J),

let T (J,N) denote the image of S∞/J ⊗Λ[∆N ] TN in EndD(S∞/J)(C(J,N)), and

denote by I(J,N) the ideal generated by the image of IN in T (J,N). We have

I(J,N)δ = 0.

Additionally, for d ≥ 1, we define

R(d, J,N) = RN/m
d
RN
⊗Λ[∆N ] S∞/J.

For every d, J and N , we have a surjective Rloc-algebra map R∞ → R(d, J,N),

which factors through a finite quotient R∞/m
e(d,J)
R∞

for some e(d, J) that is

independent of N .

For each pair (J,N) such that C(J,N) is defined, we fix a choice F(J,N)

of minimal complex of finite free S∞/J-modules that is quasi-isomorphic to

C(J,N) (cf. [KT17, Lem. 2.3]). Then for any i ∈ Z, we have

rkS∞/J(F(J,N)i) = dimkH
i(C0 ⊗L

Λ k).



POTENTIAL AUTOMORPHY OVER CM FIELDS 1055

Remark 6.4.4. Recall that we have a surjective map RN → TN/IN . We

therefore obtain a surjective map RN ⊗Λ[∆N ] S∞/J → T (J,N)/I(J,N). For d

sufficiently large depending on J (but not depending on N), this map factors

through a surjective map R(d, J,N)→ T (J,N)/I(J,N). Indeed, it suffices to

show that there is an integer d0(J) such that for any d ≥ d0(J), and for any

x ∈ mTN , the image of xd in EndD(S∞/J)(C(J,N)) (and therefore the image of

xd in T (J,N)) is zero. Since

H∗(C(J,N)⊗L
S∞/J k)

∼= H∗(C0 ⊗L
Λ k)

is a vector space of finite dimension independent of N and J , we can find an

integer d1 such that xd1H∗(C(J,N) ⊗L
S∞/J k) = 0 (because x acts through a

nilpotent endomorphism). The existence of the spectral sequence of a filtered

complex implies that there is an integer d2 such that xd2H∗(C(J,N)) = 0.

(Here we are using the fact that S∞/J has finite length as a module over itself).

Finally, the fact that C(J,N) is a perfect complex, with cohomology bounded

in a range that depends only on C0, implies the existence of the integer d0(J)

(use [KT17, Lem. 2.5].) (A similar argument appears at the start of the proof

of [KT17, Prop. 3.1].)

Remark 6.4.5. If J contains a∞, then we can identify S∞/J with Λ/s(J),

where s(J) is an open ideal of Λ. For each N ∈ IJ , the isomorphism πN :

CN ⊗L
Λ[∆N ] Λ

∼= C0 induces an isomorphism πJ,N : C(J,N) ∼= C0 ⊗L
Λ Λ/s(J).

Remark 6.4.6. Suppose we have open ideals J1 ⊂ J2 of S∞ and N ∈
IJ1 . Then we have a natural map C(J1, N) → C(J2, N) that induces a quasi-

isomorphism

S∞/J2 ⊗L
S∞/J1

C(J1, N) ∼= C(J2, N).

We obtain a surjective map T (J1, N) → T (J2, N), and the image of I(J1, N)

under this map is equal to I(J2, N). So we also obtain a surjective map

T (J1, N)/I(J1, N)→ T (J2, N)/I(J2, N).

For J an open ideal in S∞, F restricts to give a non-principal ultrafil-

ter on IJ , which we again denote by F. This corresponds to a point xF ∈
Spec(

∏
N∈IJ

S∞/J) by [GN22, Lem. 2.2.2], with localization (
∏
N∈IJ

S∞/J)xF
canonically isomorphic to S∞/J .

Definition 6.4.7. We make the following definitions:

C(J,∞) =
( ∏

N∈IJ

S∞/J
)
xF
⊗∏

N∈IJ
S∞/J

∏

N∈IJ

C(J,N) ∈ D(S∞/J),

R(d, J,∞) =
( ∏

N∈IJ

S∞/J
)
xF
⊗∏

N∈IJ
S∞/J

∏

N∈IJ

R(d, J,N),
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and T (J,∞) is defined to be the image of
( ∏

N∈IJ

S∞/J
)
xF
⊗∏

N∈IJ
S∞/J

∏

N∈IJ

T (J,N)

in EndD(S∞/J)(C(J,∞)), and the ideal I(J,∞) ⊂ T (J,∞) is defined to be the

image of (
∏
N∈IJ

S∞/J)xF ⊗∏N∈IJ
S∞/J

∏
N∈IJ

I(J,N) in T (J,∞).

Remark 6.4.8. Since the rings R(d, J,N) are all quotients of R∞/m
e(d,J)
R∞

(and are, in particular, finite of bounded cardinality), the ultraproductR(d, J,∞)

is itself a quotient of R∞/m
e(d,J)
R∞

.

Lemma 6.4.9.

(1) I(J,∞) is a nilpotent ideal of T (J,∞), with I(J,∞)δ = 0.

(2) The maps R(d, J,N)→ T (J,N)/I(J,N) for d sufficiently large depending

on J (see Remark 6.4.4) induce a surjective S∞/J-algebra map R(d, J,∞)→
T (J,∞)/I(J,∞).

Proof. The first part follows from the fact that
∏
N∈IJ

I(J,N) is a nilpotent

ideal of
∏
N∈IJ

T (J,N) with nilpotence degree ≤ δ. The second part follows

by first considering the map
∏
N∈IJ

R(d, J,N)→∏
N∈IJ

(T (J,N)/I(J,N)) =

(
∏
N∈IJ

T (J,N))/(
∏
N∈IJ

I(J,N)), localizing at xF and finally passing to the

image in T (J,∞)/I(J,∞). �

Proposition 6.4.10.

(1) C(J,∞) is a perfect complex of S∞/J-modules.

(2) The maps R∞→T (J,N)/I(J,N) induce a surjection R∞→T (J,∞)/I(J,∞).

(3) If J contains a∞, then the isomorphisms πJ,N induce an isomorphism

πJ,∞ : C(J,∞) ∼= C0 ⊗L
Λ Λ/s(J).

(4) Suppose we have open ideals J1 ⊂ J2 of S∞. Then the maps C(J1, N)→
C(J2, N) in D(S∞/J1) for N ∈ IJ1 induce an isomorphism

S∞/J2 ⊗L
S∞/J1

C(J1,∞) ∼= C(J2,∞).

(5) Let J1, J2 be as in the previous part. The map C(J1,∞)→ C(J2,∞) induces

a surjective map T (J1,∞)→ T (J2,∞), and the image of I(J1,∞) under

this map is equal to I(J2,∞).

Proof.

(1) Perfectness of C(J,∞) follows from [GN22, Cor. 2.2.7] — to apply this

corollary we need to show that there are constantsD, a, b (independent ofN)

such that the complexes C(J,N) are each quasi-isomorphic to complexes

of finite free S∞/J-modules of rank ≤ D concentrated in degrees [a, b].

This follows from the theory of minimal resolutions, which we have already

applied in order to assert the existence of the complexes F(J,N) above.
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(2) By the previous part of the proof, the complexes F(J,N) (N ∈ IJ) fall

into finitely many isomorphism classes. Therefore there is an element Σ0 of

the ultrafilter F on IJ such that the F(J,N) are isomorphic for all N ∈ Σ0.

We fix isomorphisms (of complexes) between the F(J,N) for N ∈ Σ0 and

a single complex F(J,∞). Then for all N ∈ Σ0, we can identify all the

finite endomorphism algebras EndD(S∞/J)(C(J,N)) with each other. We

deduce that there is a subset Σ1 ⊂ Σ0 with Σ1 ∈ F such that, under this

identification, the finite Hecke rings T (J,N) and their ideals I(J,N) are

also identified. So T (J,∞) ∼= T (J,N) and I(J,∞) corresponds to I(J,N)

for N ∈ Σ1. Since each map R∞ → T (J,N)/I(J,N) is surjective, the map

R∞ → T (J,∞)/I(J,∞) is also surjective.

(3) The third part follows immediately from the exactness of products and

localization.

(4) First we consider the map of complexes
∏

N∈IJ1

C(J1, N)→
∏

N∈IJ1

C(J2, N).

Since
∏
N∈IJ1

S∞/J2 is a finitely presented
∏
N∈IJ1

S∞/J1-module (as di-

rect products are exact), the tensor product (
∏
N∈IJ1

S∞/J2)⊗∏S∞/J1

commutes with direct products ([Stacks, Tag 059K]). We deduce (using

Remark 6.4.6) that
( ∏

N∈IJ1

S∞/J2

)
⊗L∏

S∞/J1

∏

N∈IJ1

C(J1, N)

=
∏

N∈IJ1

S∞/J2 ⊗L
S∞/J1

C(J1, N) ∼=
∏

N∈IJ1

C(J2, N).

Localizing at xF gives the desired statement; since IJ1 is cofinite in IJ2 ,

we can naturally identify the localization of
∏
N∈IJ1

C(J2, N) with the

localization of
∏
N∈IJ2

C(J2, N).

(5) The final statement follows from the proof of part (2): there is a Σ ⊂ IJ1
with Σ ∈ F such that T (Ji,∞) ∼= T (Ji, N) and I(Ji,∞) corresponds to

I(Ji, N) under these isomorphisms for allN ∈ Σ. Now the desired statement

is a consequence of Remark 6.4.6. �

We write F(J,∞) for the minimal complex isomorphic to C(J,∞) in

D(S∞/J) constructed in the proof of the previous proposition.

Definition 6.4.11. We define a complex of S∞-modules

C∞ = lim←−
r

F(mr
S∞
,∞),

where the transition maps in the inverse limit are given by making a choice

for each r ≥ 1 of a map of complexes lifting the natural maps C(mr+1
S∞

,∞)→
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C(mr
S∞
,∞) in D(S∞/m

r+1
S∞

). To see that such a map of complexes exists, note

that since F(mr+1
S∞

,∞) is a bounded complex of free S∞/m
r+1
S∞

-modules, viewed

as an element of the homotopy category K(S∞/m
r+1
S∞

) of chain complexes

of S∞/m
r+1
S∞

-modules, we have

Hom
K(S∞/mr+1

S∞
)(F(mr+1

S∞
,∞),F(mr

S∞
,∞))

= Hom
D(S∞/mr+1

S∞
)(C(mr+1

S∞
,∞), C(mr

S∞
,∞)).

Similarly, we let T∞ = lim←−J T (J,∞), where the transition maps in the

inverse limit are described in Proposition 6.4.10(5). The inverse system of

ideals I(J,∞) defines an ideal I∞ of T∞ that satisfies Iδ∞ = 0.

Proposition 6.4.12.

(1) C∞ is a bounded complex of finite free S∞-modules, and for each open ideal

J of S∞, there is an isomorphism C∞ ⊗S∞ S∞/J ∼= C(J,∞) in D(S∞/J).

(2) The natural map EndD(S∞)(C∞) → lim←−J EndD(S∞/J)(C(J,∞)) is an iso-

morphism, and we therefore obtain an injective map T∞ → EndD(S∞)(C∞).

(3) The surjective Λ-algebra maps R∞ → T (J,∞)/I(J,∞) induce a surjec-

tion R∞ → T∞/I∞, which factors as a composition of the map R∞ →
lim←−d,J R(d, J,∞) and the S∞-algebra map lim←−d,J R(d, J,∞)→ T∞/I∞ de-

fined by taking the inverse limit of the maps in Lemma 6.4.9(2).

Proof.

(1) It follows from the proof of Proposition 6.4.10(1) that

rkS∞/mr
S∞

(F(mr
S∞
,∞)i) = dimkH

i(C0 ⊗L
Λ k)

for all r. Moreover, it follows from Proposition 6.4.10(4) and the fact that

any quasi-isomorphism of minimal complexes is an isomorphism that the

transition map F(mr+1
S∞

,∞)→ F(mr
S∞
,∞) induces an isomorphism

S∞/m
r
S∞
⊗S∞/mr+1

S∞
F(mr+1

S∞
,∞) ∼= F(mr

S∞
,∞).

It is now clear that C∞ is a bounded complex of finite free S∞-modules.

If J is an open ideal of S∞, then for r sufficiently large so that mr
S∞
⊂ J ,

C∞⊗S∞ S∞/J is isomorphic to S∞/J ⊗S∞/mr
S∞
F(mr

S∞
,∞), which is quasi-

isomorphic to C(J,∞) by Proposition 6.4.10(4).

(2) For the second part, we first note that T∞ injects into the inverse limit

lim←−J EndD(S∞/J)(C(J,∞)), since inverse limits are left exact. The natural

map EndD(S∞)(C∞) → lim←−J EndD(S∞/J)(C(J,∞)) is an isomorphism, by

the first part of this proposition and (the proof of) [KT17, Lem. 2.13(3)].

(3) Since the T (J,∞) are finite rings, it follows that the inverse system I(J,∞)J
satisfies the Mittag-Leffler condition and the natural map T∞/I∞ →
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lim←−J T (J,∞)/I(J,∞) is an isomorphism. For each J , the surjective map

R∞ → T (J,∞)/I(J,∞) factors through a finite quotient R∞/m
d(J)
R∞

of R∞.

Again, finiteness implies that the Mittag-Leffler condition holds, so taking

the inverse limit over J gives a surjective map R∞ = lim←−J R∞/m
d(J)
R∞
→

T∞/I∞ = lim←−J T (J,∞)/I(J,∞). The desired factorization of the map

R∞ → T∞/I∞ follows from the fact that the maps R∞ → T (J,∞)/I(J,∞)

factor through R(d, J,∞) for d sufficiently large. �

Remark 6.4.13. There is a natural isomorphism H∗(C∞) ∼= lim←−J H
∗(C∞/J)

= lim←−J H
∗(C(J,∞)), so the cohomology of C∞ is independent of the choices

of transition maps made to construct C∞. Moreover, if we denote by D∞
the complex constructed with a different choice of transition maps, we have

HomD(S∞)(C∞,D∞) = lim←−J HomD(S∞/J)(C(J,∞), C(J,∞)) by the argument of

Proposition 6.4.12(2), so there is a canonical isomorphism between C∞ and D∞
in D(S∞).

Remark 6.4.14. Note that the map α : R∞ → lim←−d,J R(d, J,∞) is surjec-

tive, and lim←−d,J R(d, J,∞) is an S∞-algebra. As S∞ is formally smooth over Λ,

we can choose a lift of the map S∞ → α(R∞) to a map S∞ → R∞. In fact, we

can and do make such a choice for R∞ and R′∞ compatibly mod $ since

(lim←−
d,J

R(d, J,∞))/$ = lim←−
d,J

(R(d, J,∞)/$) ∼= lim←−
d,J

(R′(d, J,∞)/$)

and since the sequence

R∞ R∞/$ × lim←−d,J
R(d, J,∞) R(d, J,∞)/$

x 7→(x mod $,α(x)) (y,z) 7→α(y)−z mod $

(and the analogous one for R′∞) is exact. We regard R∞ as an S∞-algebra from

now on. The map R∞ → T∞/I∞ is an S∞-algebra map.

Lemma 6.4.15. The isomorphisms R(d, J,N) ⊗S∞/J S∞/(J + a∞) ∼=
R0/(m

d
R0
, s(J + a∞)) induce a surjective map R∞/a∞ → R0.

Proof. First we note that, following the proof of 6.4.10(4), the isomorphisms

R(d, J,N)⊗S∞/J S∞/(J + a∞) ∼= R0/(m
d
R0
, s(J + a∞))

induce an isomorphism

R(d, J,∞)⊗S∞/J S∞/(J + a∞) ∼= R0/(m
d
R0
, s(J + a∞)).

In particular, the map

R∞/a∞ → R(d, J,∞)⊗S∞/J S∞/(J + a∞) = R0/(m
d
R0
, s(J + a∞))

is surjective and factors through R∞/(m
e(d,J)
R∞

+ a∞) for some e(d, J). Taking

the inverse limit, we obtain a surjective map R∞/a∞ → R0. �
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Proposition 6.4.16. There is an isomorphism C∞/a∞ → C0 in D(Λ)

that induces a map T∞ → T0 that becomes surjective when composed with the

projection T0 → T0/I0. Denoting the image of I∞ under this surjective map

by I∞,0, we obtain a surjective map R∞/a∞ → (T0/I0)/I∞,0. This map is

the composition of the map R∞/a∞ → R0 in Lemma 6.4.15 with the map

R0 → (T0/I0)/I∞,0 coming from our original set-up.

Proof. We have C∞/a∞ = lim←−r F(m
r
S∞
,∞)/a∞, and F(mr

S∞
,∞)/a∞ is

a minimal resolution of C∞/(mr
S∞

+ a∞) ∼= C(mr
S∞

+ a∞,∞). By Proposi-

tion 6.4.10(3), this is quasi-isomorphic to C0 ⊗L
Λ Λ/s(mr

S∞
+ a∞). Replacing C0

by a quasi-isomorphic bounded complex of finite projective Λ-modules and ap-

plying [KT17, Lem. 2.13], we see that the quasi-isomorphisms F(mr
S∞
,∞)/a∞ ∼=

C0 ⊗L
Λ Λ/s(mr

S∞
+ a∞) induce a quasi-isomorphism lim←−r F(m

r
S∞
,∞)/a∞ ∼= C0.

The induced map T∞ → EndD(Λ)(C0) is the composite of the surjec-

tive map T∞ → lim←−a∞⊂J
T (J,∞) and an inverse limit of maps T (J,∞) →

EndD(Λ/s(J))(C0 ⊗L
Λ Λ/s(J)). Each of these maps factors through T0, and if

we denote the image of T0 in EndD(Λ/s(J))(C0 ⊗L
Λ Λ/s(J)) by T J0 , then T (J,∞)

surjects onto T J0 /I0. Passing to the inverse limit gives the desired map T∞ → T0.

The compatibility with the map R∞ → R0 follows from the compatibility

between the maps TN → T0 and RN → R0 in our original set-up. �

We now separate out the primed and unprimed situations; so we have two

perfect complexes of S∞-modules, C∞ and C′∞.

Proposition 6.4.17.

(1) The quasi-isomorphisms CN/$ ∼= C′N/$ induce a quasi-isomorphism C∞/$
∼= C′∞/$.

(2) Via the identification C∞/$ ∼= C′∞/$ of the previous part, T∞ and T ′∞
have the same image in EndD(S∞)(C∞/$) and EndD(S∞)(C′∞/$). Call

this common image T∞.

(3) Write I∞ and I
′
∞ for the images of I∞ and I ′∞ in T∞ The actions of

R∞/$ ∼= R′∞/$ (induced from T∞ and T ′∞ respectively) on H∗(C∞/$)/

(I∞ + I
′
∞) and H∗(C′∞/$)/(I∞ + I

′
∞) are identified via C∞/$ ∼= C′∞/$.

Proof.

(1) The isomorphisms CN/$ ∼= C′N/$ in D(Λ[∆N ]) induce compatible isomor-

phisms C(J +$,∞)∼=C′(J +$,∞) for all J . Since

C∞/$=lim←−
r

F(mr
S∞
,∞)/$

and F(mr
S∞
,∞)/$ is a minimal resolution of C(mr

S∞
+$,∞), we have

HomD(S∞/$)(C∞/$, C′∞/$)

= lim←−
J

HomD(S∞/(J+$))(C(J +$,∞), C′(J +$,∞)).
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We therefore deduce the first part of the proposition.

(2) By the proof of the previous part, it suffices to show that the images of

T∞ and T ′∞ in EndD(S∞/(J+$))(C(J +$,∞)) and EndD(S∞/(J+$))(C′(J +

$,∞)) respectively (which are T (J+$,∞) and T ′(J+$,∞)) are identified

via the quasi-isomorphisms C(J + $,∞) ∼= C′(J + $,∞). This follows

from the fact that for every N ∈ IJ+$, T (J +$,N) and T ′(J +$,N) are

identified via the quasi-isomorphism C(J +$,N) ∼= C′(J +$,N), which is

a consequence of our original assumptions; see point (2) in Section 6.4.1.

(3) It suffices to show that the maps R∞/$ → T (J +$,∞)/I(J +$,∞) and

R′∞/$ → T ′(J +$,∞)/I ′(J +$,∞) are equal when we identify R∞/$

with R′∞/$, T (J +$,∞) with T ′(J +$,∞) and pass to the quotient by

I(J +$,∞) + I ′(J +$,∞). This follows from the compatibility in point

(5) of Section 6.4.1. �

6.5. The proof of Theorem 6.1.1. We are now in a position to prove the

first main theorem of this chapter (Theorem 6.1.1). We first establish the result

under additional conditions in Section 6.5.1, and then reduce to this case using

soluble base change in Section 6.5.12.

6.5.1. Application of the patching argument (Fontaine–Laffaille case). We

take F to be an imaginary CM number field and fix the following data:

(1) an integer n ≥ 2 and a prime p > n2;

(2) a finite set S of finite places of F , including the places above p;

(3) a (possibly empty) subset R ⊂ S of places prime to p;

(4) a cuspidal automorphic representation π of GLn(AF ), regular algebraic of

some weight λ;

(5) a choice of isomorphism ι : Qp
∼= C.

We assume that the following conditions are satisfied:

(6) If l is a prime lying below an element of S, or which is ramified in F , then

F contains an imaginary quadratic field in which l splits. In particular,

each place of S is split over F+ and the extension F/F+ is everywhere

unramified.

(7) The prime p is unramified in F .

(8) For each embedding τ : F ↪→ C, we have

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n.

(9) For each v ∈ Sp, let v denote the place of F+ lying below v. Then there

exists a place v′ 6= v of F+ such that v′|p and
∑

v′′ 6=v,v′

[F+
v′′ : Qp] >

1

2
[F+ : Q].

(10) The residual representation rι(π) is absolutely irreducible.
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(11) If v is a place of F lying above p, then πv is unramified.

(12) If v ∈ R, then πIwv
v 6= 0.

(13) If v ∈ S− (R∪Sp), then πv is unramified, v /∈ Rc, and H2(Fv, ad rι(π)) = 0.

(14) S−(R∪Sp) contains at least two places with distinct residue characteristics.

(15) If v 6∈ S is a finite place of F , then πv is unramified.

(16) If v ∈ R, then qv ≡ 1 mod p and rι(π)|GFv
is trivial.

(17) The representation rι(π) is decomposed generic in the sense of Defini-

tion 4.3.1, and the image of rι(π)|GF (ζp)
is enormous in the sense of Defini-

tion 6.2.29.

We define an open compact subgroup K =
∏
vKv of GLn(“OF ) as follows:

• If v 6∈ S, or v ∈ Sp, then Kv = GLn(OFv).

• If v ∈ R, then Kv = Iwv.

• If v ∈ S − (R ∪ Sp), then Kv = Iwv,1 is the pro-v Iwahori subgroup of

GLn(OFv).

The following lemma shows that K is neat and hence is a good subgroup of

GLn(A
∞
F ).

Lemma 6.5.2. Suppose that K =
∏
vKv ⊂ GLn(“OF ) is an open compact

subgroup and that there exist two places v, v′ of F such that v, v′ have distinct

residue characteristics q, q′ and Kv = Iwv,1, Kv′ = Iwv′,1. Then K is neat.

Proof. We show that if (gv, gv′) ∈ Iwv,1 × Iwv′,1; then the group Γv ∩ Γv′

(see the definition of neat in Section 2.1.1) is trivial. Suppose this is not the

case, then it contains a root of unity ζ of some prime order q′′.

If α is an eigenvalue of gv in F v, then α− 1 is in the maximal ideal of OF v
.

The same is then true for ζ, thus q′′ = q. However, running the above for v′

instead of v also shows q′′ = q′, so q′ = q, a contradiction. �

By Theorem 2.4.10, we can find a coefficient field E ⊂ Qp and a maximal

ideal m ⊂ TS(K,Vλ) such that ρm
∼= rι(π). After possibly enlarging E, we

can and do assume that the residue field of m is equal to k. For each tuple

(χv,i)v∈R,i=1,...,n of characters χv,i : k(v)
× → O× that are trivial modulo $, we

define a global deformation problem by the formula

Sχ = (ρm, S, {O}v∈S , {DFL
v }v∈Sp ∪ {Dχv }v∈R ∪ {D�

v }v∈S−(R∪Sp)).

We fix representatives ρSχ of the universal deformations that are identified

modulo $ (via the identifications RSχ/$
∼= RS1/$). We observe that the

local deformation problems defining Sχ are formally smooth away from the

places in R. We define an O[KS ]-module Vλ(χ−1) = Vλ ⊗O O(χ−1), where KS

acts on Vλ by projection to Kp and on O(χ−1) by the projection KS → KR =∏
v∈R Iwv →

∏
v∈R(k(v)

×)n.
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Proposition 6.5.3. There exist an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂ TS(RΓ(XK ,Vλ(χ−1)))m such that Jδ = 0, and a

continuous surjective homomorphism

fSχ : RSχ → TS(RΓ(XK ,Vλ(χ−1)))m/J
such that for each finite place v 6∈ S of F , the characteristic polynomial of

fSχ ◦ ρSχ(Frobv) equals the image of Pv(X) in TS(RΓ(XK ,Vλ(χ−1)))m/J .
Proof. This is a matter of combining the various local-global compatibility

results we have proved so far. The existence of a Galois representation ρm :

GF,S∪Sc → GLn(T
S(RΓ(XK ,Vλ(χ−1)))m/J) satisfying the required condition

at finite places v 6∈ S ∪ Sc is contained in Theorem 2.3.7. After conjugation,

we can assume that ρm mod m equals ρm. To prove the proposition, we need

to show that for each v ∈ S, ρm|GFv
is a lifting of ρ|GFv

of the appropriate

type, and that for each v ∈ Sc − S, ρm|GFv
is unramified and the characteristic

polynomial of ρm(Frobv) has the correct form. Theorem 4.5.1 shows that the

Fontaine–Laffaille condition is satisfied for each v|p. We apply Theorem 3.1.1

with the set S of places there equal to S ∪ Sc and the set R equal to S − Sp.
This shows that the appropriate condition on the characteristic polynomials

of elements ρm(σ) (σ ∈ IFv) is satisfied for each v ∈ R, and that ρm|GFv
is

unramified with the characteristic polynomial ρm(Frobv) of the correct form

for v ∈ Sc − S. �

Recall (as in (6.3.5)) that it makes sense to talk about the support of

H∗(XK ,Vλ(1))m over RS1 , even though H∗(XK ,Vλ(1))m is not literally an

RS1-module. We can now state our first key technical result, which we will

prove below.

Theorem 6.5.4. Under assumptions (1)–(17) above, H∗(XK ,Vλ(1))m has

full support over RS1 .

Corollary 6.5.5. Under assumptions (1)–(17) above, suppose given a

continuous representation ρ : GF → GLn(Qp) satisfying the following condi-

tions :

(1) We have ρ ∼= rι(π).

(2) For each place v|p of F , ρ|GFv
is crystalline. For each embedding τ : F ↪→

Qp, we have

HTτ (ρ) = {λιτ,1 + n− 1, . . . , λιτ,n}.
(3) For each finite place v 6∈ S of F , ρ|GFv

is unramified.

(4) For each place v ∈ R, ρ|GFv
is unipotently ramified.

Then ρ is automorphic: there exists a cuspidal, regular algebraic automorphic

representation Π of weight λ such that ρ ∼= rι(Π). Moreover, if v is a finite

place of F such that v|p or v 6∈ S, then Πv is unramified.
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Proof. After possibly enlarging the coefficient field E, and replacing ρ

by a GLn(Qp)-conjugate, we can assume that it takes values in GLn(O),
and that ρ mod $ = ρm. Then ρ is a lifting of type S1, so it determines

a homomorphism f : RS1 → E. Theorem 6.5.4 implies that ker f is in the

support of H∗(XK ,Vλ(1))m[1/p]; Theorem 2.4.10 then implies that there exists

a cuspidal, regular algebraic automorphic representation Π of weight λ such

that ρ ∼= rι(Π) and (Π∞)K 6= 0. This is the desired result. (Recall that

Kv = GLn(OFv) if v|p or v 6∈ S.) �

Before proceeding to the proof of Theorem 6.5.4, we need to introduce

auxiliary level subgroups. These will be associated to a choice of Taylor–Wiles

datum (Q, (αv,1, . . . , αv,n)v∈Q) for S1; see Section 6.2.28. We assume that for

each v ∈ Q, there exists an imaginary quadratic subfield of F in which the

residue characteristic lv of v splits. This Taylor–Wiles datum is automatically

a Taylor–Wiles datum for all the global deformation problems Sχ, and so the

auxiliary deformation problems Sχ,Q are defined, and the deformation ring

RSχ,Q
has a natural structure of O[∆Q]-algebra, where ∆Q =

∏
v∈Q∆v =∏

v∈Q k(v)
×(p)n. The constructions we are about to give necessarily involve a

lot of notation. Accordingly, we invite the reader to review the notation related

to Hecke algebras in Section 2.2.1 before continuing.

We define two auxiliary level subgroups K1(Q) ⊂ K0(Q) ⊂ K. They are

good subgroups of GLn(A
∞
F ), determined by the following conditions:

• If v 6∈ S ∪Q, then K1(Q)v = K0(Q)v = Kv.

• If v ∈ Q, then K0(Q)v = Iwv and K1(Q)v is the maximal pro-prime-to-p

subgroup of Iwv.

Then there are a natural isomorphism K0(Q)/K1(Q) ∼= ∆Q, and surjective

morphisms of TS∪Q-algebras

(6.5.6)
K0(Q)/K1(Q)T

S∪Q(K0(Q)/K1(Q),Vλ(χ−1))→ TS∪Q(K0(Q),Vλ(χ−1))
→ TS∪Q(K,Vλ(χ−1)).

The first of these arises by taking K0(Q)-invariants (cf. Section 2.2.1, and note

O[∆Q] acts trivially on invariants), and the second is given by the formula

t 7→ [K : K0(Q)]
−1πQ,∗ ◦ t ◦ π∗Q, where πQ : XK0(Q) → XK is the canonical

projection; note that [K : K0(Q)] ≡ (n!)|Q| mod p is a unit in O because of our

assumption that p > n. We define

TS∪Q
Q (K0(Q),Vλ(χ−1)) ⊂ EndD(O)(RΓ(XK0(Q),Vλ(χ−1)))

as in Section 3.1; it is the commutative TS∪Q(K0(Q),Vλ(χ−1))-subalgebra
generated by the operators Uv,i (v ∈ Q, i = 1, . . . , n), or equivalently the image
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of the algebra TS∪Q
Q defined in Section 3.1. Similarly, we define

TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1))
⊂ EndD(O[∆Q])(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1)));

it is an O[∆Q]-algebra, which coincides with the image of the algebra TS∪Q
Q .

The first map in (6.5.6) extends to a surjective homomorphism

(6.5.7) TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1))→ TS∪Q

Q (K0(Q),Vλ(χ−1))
that takes Uv,i to Uv,i for each v ∈ Q and for each i = 1, . . . , n.

We define mQ ⊂ TS∪Q(K,Vλ(χ−1)) to be the pullback of m under the

inclusion

TS∪Q(K,Vλ(χ−1)) ⊂ TS(K,Vλ(χ−1)).
We define

m
Q
0 ⊂ TS∪Q(K0(Q),Vλ(χ−1))

to be the pullback of mQ and define

m
Q
1 ⊂K0(Q)/K1(Q) T

S∪Q(K0(Q)/K1(Q),Vλ(χ−1))

to be the pullback of mQ
0 , these pullbacks being taken under the maps in (6.5.6).

We define n
Q
0 ⊂ TS∪Q

Q (K0(Q),Vλ(χ−1)) to be the ideal generated by m
Q
0 and

the elements Uv,i − qi(1−i)/2v αv,1 · · ·αv,i for each v ∈ Q and i = 1, . . . , n. We

define n
Q
1 ⊂ TS∪Q

Q (K0(Q)/K1(Q),Vλ(χ−1)) to be the pre-image of nQ0 under

the map (6.5.7).

Lemma 6.5.8. Each ideal mQ, mQ
0 , m

Q
1 , n

Q
0 , and n

Q
1 is a (proper) maximal

ideal.

Proof. This is clear for the ideals mQ, mQ
0 , and m

Q
1 . Since n

Q
1 is the pre-

image of nQ0 under a surjective algebra homomorphism, we just need to check

that nQ0 is a proper ideal. Equivalently, we must check that

H∗(XK0(Q),Vλ(χ−1)/$)[mQ
0 ]

contains a non-zero vector on which each operator Uv,i (v ∈ Q, i = 1, . . . , n)

acts by the scalar αv,1 · · ·αv,i. This will follow from [KT17, Lem. 5.3] (or rather

its proof) if we can show that H∗(XK ,Vλ(χ−1))[mQ] is annihilated by a power

of m. This follows from the existence of ρm and its local-global compatibility at

the places v ∈ Q. �

We can therefore form the localized complexes

RΓ(XK ,Vλ(χ−1))m, RΓ(XK ,Vλ(χ−1))mQ ,

RΓ(XK0(Q),Vλ(χ−1))mQ
0
, RΓ(XK0(Q),Vλ(χ−1))nQ0 ,
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RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))mQ
1
, RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 .

The first four lie in D(O), and the last two lie in D(O[∆Q]).

Lemma 6.5.9. The natural morphisms

RΓ(XK ,Vλ(χ−1))mQ → RΓ(XK ,Vλ(χ−1))m,
RΓ(XK0(Q),Vλ(χ−1))nQ0 → RΓ(XK ,Vλ(χ−1))mQ ,

and

RΓ(∆Q, RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )→ RΓ(XK0(Q),Vλ(χ−1))nQ0
in D(O) are isomorphisms.

Proof. We must show that these morphisms in the derived category give

isomorphisms at the level of cohomology. For the first morphism, it is enough

to show that m is the unique maximal ideal of TS∪Q(K0(Q),Vλ(χ−1)) lying

above mQ, and we have seen this already in the proof of Lemma 6.5.8. It is clear

from the definitions for the third morphism. For the second, it is enough to check

that we have an isomorphism after applying the functor −⊗L
O k : D(O)→ D(k).

We are therefore reduced to showing that the map of k-vector spaces

trK/K0(Q) : H
∗(XK0(Q),Vλ(χ−1)/$)

n
Q
0
→ H∗(XK ,Vλ(χ−1)/$)mQ

is an isomorphism. This is the content of [KT17, Lem. 5.4]. �

We see that there is a surjective homomorphism

K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )

→ TS∪Q(RΓ(XK ,Vλ(χ−1))mQ) = TS∪Q(K,Vλ(χ−1))mQ .
(6.5.10)

The first ring K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ) is a local

O[∆Q]-algebra, its unique maximal ideal being identified with the pre-image

of mQ under the surjective homomorphism (6.5.10); indeed, this follows from

the fact that it acts nearly faithfully on H∗(XK1(Q),Vλ(χ−1))nQ1 . (We recall

([Tay08, Def. 2.1]) that a finitely generated module over a Noetherian local

ring is said to be nearly faithful if its annihilator is a nilpotent ideal.) We can

now state a result asserting the existence of Galois representations valued with

coefficients in this Hecke algebra.

Proposition 6.5.11. There exist an integer δ ≥ 1, depending only on n

and [F :Q], an ideal J⊂K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )

such that Jδ = 0, and a continuous surjective O[∆Q]-algebra homomorphism

fSχ,Q
: RSχ,Q

→K0(Q)/K1(Q) T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )/J
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such that for each finite place v 6∈ S ∪Q of F , the characteristic polynomial of

fSχ,Q
◦ ρSχ,Q

(Frobv) equals the image of Pv(X) in

K0(Q)/K1(Q)T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )/J.

Proof. To save notation, let

T =K0(Q)/K1(Q) T
S∪Q(RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 )

and T′ = TS∪Q
Q (K0(Q)/K1(Q),Vλ(χ−1))nQ1 . Then T ⊂ T′, and the inclusion

T→ T′ is a local homomorphism of finite O[∆Q]-algebras. By Theorem 2.3.7,

there are a nilpotent ideal J ′ ⊂ T′ and a Galois representation ρ
n
Q
1
: GF,S∪Q →

GLn(T
′/J ′) satisfying local-global compatibility at unramified places. After

conjugation, we can assume that ρ
n
Q
1
mod n

Q
1 equals ρm. We first need to show

that ρ
n
Q
1
is a lifting of ρm of type Sχ,Q. The necessary conditions at places of S

can be checked just as in the proof of Proposition 6.5.3. There is no condition

at places of Q, so we obtain a morphism fSχ,Q
: RSχ,Q

→ T′/J ′ (which in fact

factors through the image of T in T′/J ′).

It remains to check that fSχ,Q
is a homomorphism of O[∆Q]-algebras.

Equivalently, we must check that it is a homomorphism of O[∆v]-algebras for

each place v ∈ Q. To this end, let us fix a place v ∈ Q. For each i = 1, . . . , n, we

define a character ψv,i :WFv → (T′)× by the formula ψv,i(ArtFv(α)) = tv,i(α)

(notation as in Section 2.2.5). Theorem 3.1.1 shows that (after possibly enlarging

J ′) for each σ ∈WFv , we have the identity

det(X − ρ
n
Q
1
(σ)) =

n∏

i=1

(X − ψv,i(σ)).

Observe that the characters ψv,i mod n
Q
1 are pairwise distinct (because they take

Frobenius to αv,i, and these elements of k are pairwise distinct, by definition of

a Taylor–Wiles datum). We can therefore apply [BC09, Prop. 1.5.1] to conclude

that ρ
n
Q
1
|WFv

is isomorphic to ⊕ni=1ψv,i, which shows that fSχ,Q
is indeed a

homomorphism of O[∆v]-algebras; cf. Section 6.2.18 for the definition of the

O[∆v]-algebra structure on RSχ,Q
. The proof is complete on taking J to be the

kernel of the map T→ T′/J ′. �

We are now ready to begin the proof of Theorem 6.5.4.

Proof of Theorem 6.5.4. Let

q = h1(FS/F, ad ρm(1)) and g = qn− n2[F+ : Q],

and set ∆∞ = Znqp . Let T be a power series ring over O in n2|S| − 1 many

variables, and let S∞ = T J∆∞K. Viewing S∞ as an augmented O-algebra, we
let a∞ denote the augmentation ideal.
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Enlarging E if necessary, we can assume that E contains a primitive pth

root of unity. Then since p > n, for each v ∈ R we can choose a tuple of

pairwise distinct characters χv = (χv,1, . . . , χv,n), with χv,i : O×Fv
→ O× trivial

modulo $. We write χ for the tuple (χv)v∈R as well as for the induced character

χ =
∏
v∈R χv :

∏
v∈R Iv → O×. For each N ≥ 1, we fix a choice of Taylor–Wiles

datum (QN , (αv,1, . . . , αv,n)v∈QN
) as in Proposition 6.2.33. (This is possible

by our assumption that rι(π)(GF (ζp)) is enormous; we choose any imaginary

quadratic subfield of F in the application of Proposition 6.2.33.) For N = 0, we

set Q0 = ∅. For each N ≥ 1, we let ∆N = ∆QN
and fix a surjection ∆∞ → ∆N .

The kernel of this surjection is contained in (pNZp)
nq, since each v ∈ Q satisfies

qv ≡ 1 mod pN . We let ∆0 be the trivial group, viewed as a quotient of ∆∞.

For each N ≥ 0, the auxiliary deformation problems S1,QN
and Sχ,QN

are

defined, and we set RN = RS1,QN
and R′N = RSχ,QN

. Note that R0 = RS1 and

R′0 = RSχ . Let R
loc = RS,locS1

and R′ loc = RS,locSχ
denote the corresponding local

deformation rings as in Section 6.2.22. For any N ≥ 1, we have RS,locS1,QN
= Rloc

and RS,locSχ,QN
= R′ loc. There are canonical isomorphisms Rloc/$ ∼= R′ loc/$ and

RN/$ ∼= R′N/$ for all N ≥ 0. For each N ≥ 1, RN and R′N are canonically

O[∆N ]-algebras and there are canonical isomorphisms RN ⊗O[∆N ] O ∼= R0 and

R′N ⊗O[∆N ] O ∼= R′0, which are compatible with the isomorphisms modulo $.

By Lemma 6.2.4, we have an Rloc-algebra structure on RN“⊗OT and an R′ loc-

algebra structure on R′N“⊗OT . The canonical isomorphism Rloc/$ ∼= R′ loc/$ is

compatible with these algebra structures and with the canonical isomorphisms

RN/$ ∼= R′N/$. We let R∞ and R′∞ be formal power series rings in g variables

over Rloc and R′ loc, respectively. Using Proposition 6.2.25 when N = 0 (noting

that H0(FS/F, ad ρm(1)) = 0, because rι(π)|GF (ζp)
is irreducible and ζp 6∈ F ),

and Proposition 6.2.32 when N ≥ 1, there are local O-algebra surjections

R∞ → RN and R′∞ → R′N for any N ≥ 0. We can (and do) assume that

these are compatible with our fixed identifications modulo $, and with the

isomorphisms RN ⊗O[∆N ] O ∼= R0 and R′N ⊗O[∆N ] O ∼= R′0.

Let C0 = RHomO(RΓ(XK ,Vλ(1))m,O)[−d], and let T0 = TS(K,Vλ(1))m.
Then H i(C0)[1/p] ∼= HomE(H

d−i(XK ,Vλ(1))m[1/p], E) as T0-modules. Also,

we let C′0 = RHomO(RΓ(XK ,Vλ(χ−1))m,O)[−d] and T ′0 = TS(K,Vλ(χ−1))m.
For any N ≥ 1, we let

CN = RHomO[∆N ](RΓK0(Q)/K1(Q)(XK1(Q),Vλ(1))nQ1 ,O[∆N ])[−d]

and

TN =K0(Q)/K1(Q) T
S∪QN (RΓK0(Q)/K1(Q)(XK1(Q),Vλ(1))nQ1 ).

Similarly, we let

C′N = RHomO[∆N ](RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ,O[∆N ])[−d]
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and

T ′N =K0(Q)/K1(Q) T
S∪QN (RΓK0(Q)/K1(Q)(XK1(Q),Vλ(χ−1))nQ1 ).

For any N ≥ 0, there are canonical isomorphisms CN⊗L
O[∆N ]k[∆N ] ∼= C′N⊗L

O[∆N ]

k[∆N ] in D(k[∆N ]). Using this isomorphism to identify EndD(O)(CN ⊗L
O

k) = EndD(O)(C′N ⊗L
O k), the images of TN and T ′N in this endomorphism

algebra are the same, and we denote it by TN . By Lemma 6.5.9, there

are canonical isomorphisms CN ⊗L
O[∆N ] O ∼= C0 and C′N ⊗L

O[∆N ] O ∼= C′0 in

D(O), and these isomorphisms are compatible with our fixed isomorphisms

modulo $. By Proposition 6.5.11 we have nilpotent ideals IN of TN and I ′N
of T ′N for each N ≥ 0, both of nilpotence degree ≤ δ, and local O[∆N ]-algebra

surjections RN → TN/IN and R′N → T ′N/I
′
N . The surjections are compatible

with the canonical isomorphisms modulo $. Moreover, using the isomorphism

RN/$ ∼= R′N/$ and letting IN and I
′
N denote the images of IN and I ′N ,

respectively, in TN , the induced surjections RN/$ → TN/(IN + I
′
N ) and

R′N/$→TN/(IN+I
′
N ) agree. The maps TN⊗O[∆]O→T0 and T ′N⊗O[∆]O→T ′0

induce surjections onto T0/I0 and T ′0/I
′
0 respectively. (Surjectivity follows

from Chebotarev density and the existence of the Galois representations with

coefficients in T0/I0 and T0/I
′
0.)

The objects introduced above satisfy the setup described in Section 6.4.1.

We can then apply the results of Section 6.4.2 and obtain the following:

• Bounded complexes C∞ and C′∞ of free S∞-modules, subrings

T∞ ⊂ EndD(S∞)(C∞) and T ′∞ ⊂ EndD(S∞)(C′∞),

and ideals I∞ and I ′∞ satisfying Iδ∞ = 0 and I ′δ∞ = 0. We also have S∞-

algebra structures on R∞ and R′∞ and S∞-algebra surjections R∞ → T∞/I∞
and R′∞ → T ′∞/I

′
∞; see Proposition 6.4.12 and Remark 6.4.14.

• Surjections of local O-algebras R∞/a∞ → R0 and R′∞/a∞ → R′0. We

have isomorphisms C∞ ⊗L
S∞

S∞/a∞ ∼= C0 and C′∞ ⊗L
S∞

S∞/a∞ ∼= C′0 in

D(O), inducing maps T∞ → T0 and T ′∞ → T ′0 that become surjective when

composed with the projections T0 → T0/I0 and T ′0 → T ′0/I
′
0, respectively.

We let I∞,0 and I ′∞,0 denote the images of I∞ and I ′∞, respectively, under

these surjective maps. Then the induced maps R∞/a∞ → (T0/I0)/I∞,0 and

R′∞/a∞ → (T ′0/I
′
0)/I

′
∞,0 factor through R∞/a∞ → R0 and R′∞/a∞ → R′0,

respectively; see Lemma 6.4.15 and Proposition 6.4.16.

• An isomorphism

C∞ ⊗L
S∞

S∞/$ ∼= C′∞ ⊗L
S∞

S∞/$

in D(S∞/$). Under this identification, T∞ and T∞ have the same image

T∞ in

EndD(S∞/$)(C∞ ⊗L
S∞

S∞/$) = EndD(S∞)(C′∞ ⊗L
S∞

S∞/$).
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Let I∞ and I
′
∞ denote the images of I∞ and I ′∞, respectively, in T∞. Then

the actions of R∞/$ ∼= R′∞/$ on

H∗(C∞ ⊗L
S∞

$)/(I∞ + I
′
∞) ∼= H∗(C′∞ ⊗L

S∞
S∞/$)/(I∞ + I

′
∞)

are identified via C∞ ⊗L
S∞

S∞/$ ∼= C′∞ ⊗L
S∞

S∞/$; see Proposition 6.4.17.

Recall that R∞ and R′∞ are power series rings over Rloc and R′ loc, re-

spectively, in g = qn − n[F+ : Q] many variables. By Lemma 6.2.26, we

have

• Each generic point of SpecR∞/$ is the specialization of a unique generic

point of SpecR∞, and every generic point of SpecR∞ has characteristic

zero. Also, SpecR′∞ is irreducible and has characteristic zero generic point.

• R∞ is equidimensional, and R∞ and R′∞ have the common dimension

1 + g + n2|S|+ n(n−1)
2 [F : Q].

Since F is CM, the quantity l0 for the locally symmetric space XK is

l0 = n[F+ : Q]−1. Then since dimS∞ = n2|S|+qn and g = qn−n[F+ : Q],

we have

dimR∞ = dimR′∞ = dimS∞ − l0.
Finally, the isomorphism C∞⊗L

S∞
S∞/a∞∼=C0 implies that (C∞⊗L

S∞
S∞/a∞)[1/p]

has cohomology isomorphic to HomE(H
d−∗(XK ,Vλ(1))m[1/p], E). So Theo-

rem 2.4.10 implies that H∗(C∞⊗L
S∞

S∞/a∞)[1/p] 6= 0 and that the cohomology

is concentrated in degrees [q0, q0+ l0]. We have now satisfied all the assumptions

of Section 6.3.5, so we can apply Proposition 6.3.8 to conclude that H∗(C∞)
has full support over R∞, hence that H∗(C∞ ⊗L

S∞
S∞/a∞) = H∗(C0) has full

support over R∞/(a∞), hence that H∗(C0) has full support over RS1 . This

concludes the proof. �

6.5.12. End of the proof (Fontaine–Laffaille case). We now deduce Theo-

rem 6.1.1 from Corollary 6.5.5. The proof will be an exercise in applying soluble

base change. We first state the results that we need. Note that while up to

now E has denoted the coefficient field of our Galois representations, having

carried out our patching argument we no longer need this notation; we find it

convenient to use E to denote a number field in the rest of the proof.

Proposition 6.5.13. Fix an integer n ≥ 2, a prime p, and an isomor-

phism ι : Qp → C. Let F be an imaginary CM or totally real number field, and

let E/F be finite Galois extension such that Gal(E/F ) is soluble and E is also

imaginary CM or totally real. Then

(1) Let π be a cuspidal, regular algebraic automorphic representation of GLn(AF )

of weight λ = (λτ )τ∈Hom(F,C). Suppose that rι(π)|GE
is irreducible. Then

there exists a cuspidal, regular algebraic automorphic representation πE
of GLn(AE) of weight λE,τ = λτ |E such that rι(πE) ∼= rι(π)|GE

. If w is a
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finite place of E lying above the place v of F , then we have recEw(πE) =

recFv(π)|WEw
.

(2) Let ρ : GF → GLn(Qp) be a continuous representation such that ρ|GE
is

irreducible. Suppose that there exists a cuspidal, regular algebraic auto-

morphic representation π of GLn(AE) of weight λ such that ρ|GE
∼= rι(π).

Define λF = (λF,τ )τ∈Hom(F,C) by the formula λF,τ = λτ ′ , where τ
′ : E ↪→ C

is any extension of τ from F to E. Then λF is independent of any choices,

and there exists a cuspidal, regular algebraic automorphic representation

πF of GLn(AF ) of weight λF such that ρ ∼= rι(πF ). If w is a finite place

of E lying above the place v of F , then we have recEw(π) = recFv(πF ).

Proof. In either case we can reduce, by induction, to the case that E/F is

cyclic of prime order. Let σ ∈ Gal(E/F ) be a generator of the Galois group,

and let η : Gal(E/F )→ C× be a non-trivial character. We first treat the first

part of the proposition. We claim that π ⊗ (η ◦Art−1F ) 6∼= π. Otherwise, there

would be an isomorphism

rι(π)⊗ ι−1η ∼= rι(π),

implying that rι(π)|GE
is reducible. We can therefore apply [AC89, Ch. 3,

Th. 4.2] and [AC89, Ch. 3, Th. 5.1] to conclude the existence of a cuspidal,

regular algebraic automorphic representation Π of GLn(AE) of weight λE such

that for almost all finite places w of E such that πw|F is unramified, Πw is a

lift of πw|F . The Chebotarev density theorem then implies that we must have

rι(Π) ∼= rι(π)|GE
, so we can take πE = Π.

We now treat the second part of the proposition. The isomorphism

ρ|GE
∼= rι(π), together with strong multiplicity one for GLn, implies that we

have πσ ∼= π. By [AC89, Ch 3, Th. 4.2] and [AC89, Ch. 3, Th. 5.1], there exists

a cuspidal automorphic representation Π of GLn(AF ), which is regular algebraic

of weight λF , such that for almost all finite places w of E such that Πw|F is

unramified, πw is a lift of Πw|F . The Chebotarev density theorem then implies

that we must have rι(Π)|GE
∼= rι(π) ∼= ρ|GE

. Using the irreducibility of ρ|GE
, we

conclude that there is a twist Π⊗ (η ◦Art−1F )i such that rι(Π⊗ (η ◦Art−1F )i) ∼= ρ.

We are done on taking πF = Π⊗ (η ◦Art−1F )i. �

Proof of Theorem 6.1.1. For the convenience of the reader, we recall the

hypotheses of Theorem 6.1.1. Let F be an imaginary CM or totally real

field, and let c ∈ Aut(F ) be complex conjugation. We are given a continuous

representation ρ : GF → GLn(Qp) satisfying the following conditions:

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is crystalline. The prime

p is unramified in F .
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(3) ρ is absolutely irreducible and decomposed generic (Definition 4.3.1). The

image of ρ|GF (ζp)
is enormous (Definition 6.2.29).

(4) There exists σ ∈ GF −GF (ζp) such that ρ(σ) is a scalar. We have p > n2.

(5) There exists a cuspidal automorphic representation π of GLn(AF ) satisfying

the following conditions:

(a) π is regular algebraic of weight λ, this weight satisfying

λτ,1 + λτc,1 − λτ,n − λτc,n < p− 2n.

(b) There exists an isomorphism ι : Qp → C such that ρ ∼= rι(π) and the

Hodge–Tate weights of ρ satisfy the formula for each τ : F ↪→ Qp:

HTτ (ρ) = {λιτ,1 + n− 1, λιτ,2 + n− 2, . . . , λιτ,n}.

(c) If v|p is a place of F , then πv is unramified.

The case where F is a totally real field can be reduced to the case where

F is totally imaginary by base change. We therefore assume now that F is

imaginary and write F+ for its maximal totally real subfield. Let K/F (ζp) be

the extension cut out by ρ|GF (ζp)
. Choose finite sets V0, V1, V2 of finite places

of F having the following properties:

• For each v ∈ V0, v splits in F (ζp). For each proper subfield K/K ′/F (ζp),

there exists v ∈ V0 such that v splits in F (ζp) but does not split in K
′.

• For each proper subfield K/K ′/F , there exists v ∈ V1 that does not split in

K ′.

• There exists a rational prime p0 6= p that is decomposed generic for ρ, and

V2 is equal to the set of p0-adic places of F .

• For each v ∈ V0 ∪ V1 ∪ V2, v - 2, v - p, and ρ and π are both unramified at v.

If E/F is any finite Galois extension that is V0 ∪ V1 ∪ V2-split, then ρ|GE
has

the following properties:

• ρ(GE) = ρ(GF ) and ρ(GE(ζp)) = ρ(GF (ζp)). In particular, ρ|GE(ζp)
has

enormous image and there exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• ρ|GE
is decomposed generic. Indeed, the rational prime p0 splits in E.

Let E0/F be a soluble CM extension satisfying the following conditions:

• Each place of V0∪V1∪V2 splits in E0, and the rational prime p is unramified

in E0.

• For each finite place w of E0, π
Iww
E0,w

6= 0.

• For each finite prime-to-p place w of E0, either both πE0,w and ρ|GE0,w
are

unramified or ρ|GE0,w
is unipotently ramified, qw ≡ 1 mod p, and ρ|GE0,w

is

trivial.
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• For each place w|p of E+
0 , w splits in E0 and there exists a place w′ 6= w of

E+
0 such that w′|p and

∑

w′′ 6=w,w′

[E+
0,w′′ : Qp] >

1

2
[E+

0 : Q].

We can find imaginary quadratic fields Ea, Eb, Ec satisfying the following con-

ditions:

• Each rational prime lying below a place of V0 ∪ V1 ∪ V2 splits in Ea ·Eb ·Ec.
The prime p is unramified in Ea · Eb · Ec.
• The primes 2, p split in Ea.

• If l 6∈ {2, p} is a rational prime lying below a place of E0 at which πE0,w or

ρ|E0,w is ramified, or that is ramified in E0 · Ea · Ec, then l splits in Eb.
• If l 6∈ {2, p} is a rational prime that is ramified in Eb, then l splits in Ec.

For example, we can choose any Ea satisfying the given condition. Then we

can choose Eb = Q(
√−pb), where pb is a prime satisfying pb ≡ 1 mod 4 and

pb ≡ −1 mod l for any prime l 6∈ {2, p} either lying below a place w of E0 at

which πE0,w or ρ|E0,w is ramified, or ramified in E0 · Ea, and Ec = Q(
√−pc),

where pc ≡ 1 mod 4pb is any prime not equal to p. (Use quadratic reciprocity

to show that pc splits in Eb.)

We let E = E0 · Ea · Eb · Ec. Then E/F is a soluble CM extension in

which each place of V0 ∪ V1 ∪ V2 splits, and the following conditions hold by

construction:

• The prime p is unramified in E.

• Let R denote the set of prime-to-p places w of E such that πE,w or ρ|GEw

is ramified. Let Sp denote the set of p-adic places of E. Let S′ = Sp ∪ R.
Then if l is a prime lying below an element of S′, or which is ramified in E,

then E contains an imaginary quadratic field in which l splits.

• If w ∈ R then ρ|GEw
is trivial and qw ≡ 1 mod p.

• The image of ρ|GE(ζp)
is enormous. The representation ρ|GE

is decomposed

generic.

• There exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• For each place w|p of E+, there exists a place w′ 6= w of E+ such that w′|p
and ∑

w′′ 6=w,w′

[E+
w′′ : Qp] >

1

2
[E+ : Q].

By the Chebotarev density theorem, we can find infinitely many places v0
of E of degree 1 over Q such that ρ(Frobv0) is scalar and qv0 6≡ 1 mod p,

v0 /∈ S′ ∪Rc and the residue characteristic of v0 is odd. Then H2(Ev0 , ad ρ) =

H0(Ev0 , ad ρ(1))
∨ = 0. We choose v0, v

′
0 with distinct residue characteristics

satisfying these conditions, and we set S = S′ ∪ {v0, v′0}. Note that if l0, l
′
0
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denotes the residue characteristic of v0, v
′
0, then l0, l

′
0 splits in any imaginary

quadratic subfield of E.

We see that the hypotheses (1)–(17) of Section 6.5.1 are now satisfied

for E, πE , and the set S. We can therefore apply Corollary 6.5.5 to ρ|GE

and Proposition 6.5.13 to conclude that ρ is associated to a cuspidal, regular

algebraic automorphic representation Π of GLn(AF ) of weight λ. Taking into

account the final sentence of Corollary 6.5.5, we see that ΠE,w is unramified

if w 6∈ S.
To finish the proof, we must show that Πv is unramified if v is a finite

place of F such that v - p and both ρ and π are unramified at v. Using our

freedom to vary the choice of places v0, v
′
0, we see that if v - p is a place of F

such that both ρ and π are unramified at v, then ΠE,w is unramified for any

place w|v of E. This implies that recFv(Πv) is a finitely ramified representation

of the Weil group WFv . Using the main theorem of [Var14] and the fact that ρ

is unramified at v, we see that recFv(Πv) is unramified, hence that Πv itself is

unramified. This concludes the proof. �

6.6. The proof of Theorem 6.1.2. We proceed to the proof of the second

main theorem of this chapter (Theorem 6.1.2). As in the case of the first

theorem, we begin by establishing the result under additional conditions (Sec-

tion 6.6.1), then reduce the general case to this one by using soluble base change

(Section 6.6.10).

6.6.1. Application of the patching argument (ordinary case). We take F

to be an imaginary CM number field, and fix the following data:

(1) an integer n ≥ 2 and a prime p > n;

(2) a finite set S of finite places of F , including the places above p;

(3) a (possibly empty) subset R ⊂ S of places prime to p;

(4) a cuspidal automorphic representation π of GLn(AF ), regular algebraic of

some weight µ;

(5) a choice of isomorphism ι : Qp
∼= C.

We assume that the following conditions are satisfied:

(6) If l is a prime lying below an element of S, or that is ramified in F , then

F contains an imaginary quadratic field in which l splits. In particular,

each place of S is split over F+ and the extension F/F+ is everywhere

unramified.

(7) The residual representation rι(π) is absolutely irreducible.

(8) If v ∈ Sp, then πIwv(1,1)
v 6= 0 and π is ι-ordinary at v (in the sense of [Ger19,

Def. 5.3]).

(9) If v ∈ R, then πIwv
v 6= 0.

(10) If v ∈ S− (R∪Sp), then πv is unramified, v /∈ Rc, and H2(Fv, ad rι(π)) = 0.
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(11) S−(R∪Sp) contains at least two places with distinct residue characteristics.

(12) If v 6∈ S is a finite place of F , then πv is unramified.

(13) If v ∈ R, then qv ≡ 1 mod p and rι(π)|GFv
is trivial.

(14) The representation rι(π) is decomposed generic and the image of rι(π)|GF (ζp)

is enormous.

(15) If v ∈ Sp, then [Fv : Qp] >
n(n+1)

2 + 1 and rι(π)|GFv
is trivial.

Theorem 6.6.2. With assumptions (1)–(15) as above, suppose given a

continuous representation ρ : GF → GLn(Qp) and a weight λ ∈ (Zn+)
Hom(F,Qp)

satisfying the following conditions :

(1) We have ρ ∼= rι(π).

(2) For each place v|p, there is an isomorphism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,

where for each i = 1, . . . , n the character ψv,i : GFv → Q
×
p agrees with the

character

σ ∈ IFv 7→
∏

τ∈Hom(Fv ,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on the inertia group IFv .

(3) For each place v|p of F , for each i = 1, . . . , n, and for each p-power root

of unity x ∈ OFv , we have
∏

τ∈Hom(Fv ,Qp)

τ(x)λτ,n+1−i−µιτ,n+1−i = 1.

(4) For each finite place v 6∈ S of F , ρ|GFv
is unramified.

(5) For each place v ∈ R, ρ|GFv
is unipotently ramified.

Then ρ is ordinarily automorphic of weight ιλ: there exists an ι-ordinary cuspidal

automorphic representation Π of GLn(AF ) of weight ιλ such that ρ ∼= rι(Π).

Moreover, if v is a finite place of F and v 6∈ S, then Πv is unramified.

Note that we do not prove an analogue of Theorem 6.5.4 here, but rather

only an analogue of Corollary 6.5.5. This is due to our poor understanding of

the irreducible components of the local lifting rings of type Ddet,ord
v . Before

giving the proof of Theorem 6.6.2, we need to introduce some deformation

rings, Hecke algebras, and complexes on which they act. These complexes will

represent the ordinary part of completed homology with O-coefficients. We will

use the notation for ordinary parts established in Section 5.1.

We define an open compact subgroup K =
∏
vKv of GLn(“OF ) as follows:
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• If v 6∈ S, then Kv = GLn(OFv).

• If v ∈ Sp, then Kv = Iwv(1, 1).

• If v ∈ R, then Kv = Iwv.

• If v ∈ S − (R ∪ Sp), then Kv = Iwv,1 is the pro-v Iwahori subgroup of

GLn(OFv).

Then (by Lemma 6.5.2) K is neat, and so is a good subgroup of GLn(A
∞
F ). By

Theorem 2.4.10, we can find a coefficient field E ⊂ Qp and a maximal ideal

m ⊂ TS(K,µ)ord of residue field k such that ρm
∼= rι(π). If v ∈ Sp, we let

Λ1,v = OJO×Fv
(p)nK. We define Λ1 = “⊗v∈SpΛ1,v, the completed tensor product

being over O. The n-tuple of characters

χµ,v,i : O×Fv
(p)→ O×, x 7→

∏

τ∈HomQp (Fv ,E)

τ(x)−(µιτ,n−i+1+i−1) (i = 1, . . . , n)

determines a homomorphism pµ,v : Λ1,v → O. We define ℘µ,v = ker pµ,v and

write ℘0,v for the unique minimal prime of Λ1,v that is contained in ℘µ,v. We set

Λv = Λ1,v/℘0,v and Λ = “⊗v∈SpΛv. We write pµ : Λ→ O for the homomorphism

induced by the pµ,v and the universal property of the completed tensor product,

and we set ℘µ = ker pµ. We use similar notation for pλ; note that condition (3)

in the statement of the theorem implies that ℘0,v is also the unique minimal

prime contained in ℘λ,v for each v ∈ Sp.
We define a global deformation problem for each character χ : KR → O×

that is trivial modulo $ by the formula

Sχ=(ρm, S,{O}v∈S−Sp∪{Λv}v∈Sp ,{Ddet,ord
v }v∈Sp∪{Dχv }v∈R∪{D�

v }v∈S−(R∪Sp)).

We fix representatives ρSχ of the universal deformations that are identified

modulo $ (via the identifications RSχ/$
∼= RS1/$). We define an O[KS ]-

module Vµ(χ−1) = Vµ ⊗O O(χ−1), where KS acts on Vµ by projection to Kp

and on O(χ−1) by projection to KR. After possibly enlarging E, we can assume

that ρ takes values in O and that ρ mod $ = ρm; then ρ is a lifting of ρm of

type S1.
If c ≥ 1 is an integer, then we define

Λ1,c = O[
∏

v∈Sp

ker(Tn(OFv/$
c
v)→ Tn(OFv/$v))];

it is naturally a quotient of Λ1. For any c≥1, the complex RΓ(XK(c,c),Vµ(χ−1))ord
is defined as an object of D(Λ1,c). We define

A1(µ, χ, c) = RHomΛ1,c(RΓ(XK(c,c),Vµ(χ−1))ord,Λ1,c)[−d].
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It is a perfect complex in D(Λ1,c) (because RΓ(XK(c,c),Vµ(χ−1))ord is). The

Hecke algebra TS,ord acts on this complex by transpose. Moreover, Corol-

lary 5.2.16 shows that for any c′ ≥ c ≥ 1, there is a TS,ord-equivariant isomor-

phism

(6.6.3) A1(µ, χ, c
′)⊗L

Λ1,c′
Λ1,c
∼= A1(µ, χ, c)

in D(Λ1,c). By construction, there are canonical TS,ord-equivariant isomor-

phisms

(6.6.4) A1(µ, χ, c)⊗L
Λ1,c

Λ1,c/$ ∼= A1(µ, 1, c)⊗L
Λ1,c

Λ1,c/$

in D(Λ1,c/$). By [KT17, Lem. 2.13], we can find a perfect complex A1(µ, χ) ∈
D(Λ1) that comes equipped an action by TS,ord and with TS,ord-equivariant

isomorphisms

A1(µ, χ)⊗L
Λ1

Λ1,c
∼= A1(µ, χ, c)

in D(Λ1,c) (for each c ≥ 1) and

A1(µ, χ)⊗L
Λ1

Λ1/$ ∼= A1(µ, 1)⊗L
Λ1

Λ1/$

in D(Λ1/$). These isomorphisms are compatible with the isomorphisms (6.6.3)

for c′ ≥ c and with the isomorphisms (6.6.4) for varying characters χ, trivial

modulo $. Finally, we define A(µ, χ) = A1(µ, χ)⊗L
Λ1

Λ ∈ D(Λ).

Let ν ∈ X∗((ResF/Q T )E) = (Zn)Hom(F,E) be defined by

ντ = (0, 1, . . . , n− 1)

for all τ ∈ Hom(F,E). We define B1(µ, χ) = A1(µ, χ) ⊗O O(ν + wG0 µ)
−1,

where O(ν + wG0 µ)
−1 is the O[Tn(Fp)]-module described in Section 5.2.1. (In

particular, the action of Tn(OF,p) extends uniquely to an action of the completed

group algebra OJTn(OF,p)K.) Thus B1(µ, χ) is a perfect complex in D(Λ1), on

which the algebra TS,ord acts. We define B(µ, χ) = B1(µ, χ)⊗L
Λ1

Λ.

Lemma 6.6.5. The complex B1(µ, χ) is independent of µ. More pre-

cisely, for any µ′ ∈ (Zn+)
Hom(F,E), there is a TS,ord-equivariant isomorphism

B1(µ, χ) ∼= B1(µ
′, χ) in D(Λ1).

Proof. This follows from Proposition 5.2.17 and [KT17, Lem. 2.13]. �

Corollary 6.6.6. Let µ′ ∈ (Zn+)
Hom(F,E). Then there is a TS,ord-

equivariant isomorphism in D(O):
B1(µ, χ)⊗L

Λ1
O(ν + wG0 µ

′)−1 ∼= A1(µ
′, χ, 1)⊗O O(ν + wG0 µ

′)−1.

Proof. By the lemma, it suffices to treat the case µ′ = µ. In this case the

left-hand side may be identified with

A1(µ, χ)⊗OO(ν+wG0 µ)−1⊗L
Λ1
O(ν+wG0 µ)−1 ∼= A1(µ, χ)⊗L

Λ1
O⊗OO(ν+wG0 µ)−1.
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Essentially by definition, this complex admits a TS,ord-equivariant isomorphism

to A1(µ, χ, 1)⊗O O(ν + wG0 µ)
−1 in D(O). This completes the proof. �

Let TS,Λ1 = TS ⊗O Λ1 ⊂ TS,ord.

Proposition 6.6.7. There exist an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂ TS,Λ1(A(µ, χ)m ⊗O O(ν +wG0 µ)
−1) such that Jδ = 0,

and a continuous surjective homomorphism of Λ-algebras

fSχ : RSχ → TS,Λ1(A(µ, χ)m ⊗O O(ν + wG0 µ)
−1)/J

such that for each finite place v 6∈ S of F , the characteristic polynomial of fSχ ◦
ρSχ(Frobv) equals the image of Pv(X) in TS,Λ1(A(µ, χ)m⊗OO(ν+wG0 µ)−1)/J .

Proof. We will construct a compatible family of homomorphisms

fSχ,c : RSχ → TS,Λ1(A(µ, χ, c)m ⊗O O(ν + wG0 µ)
−1)/Jc,

one for each c ≥ 1. The desired homomorphism fSχ is then obtained by passage

to the limit, in a similar way to the proof of Theorem 4.5.1. It even suffices to

construct a family of homomorphisms

RSχ → TS,Λ1(RΓ(XK(c,c),Vµ(χ−1))ordm )/Jc;

in fact, the Hecke algebras are the same (the isomorphism being given by

transpose and twist by O(ν + wG0 µ)). Finally, it even suffices to construct a

family of homomorphisms

RSχ → TS,ord(RΓ(XK(c,c),Vµ(χ−1))ord)m/Jc;
an application of Carayol’s lemma (cf. [CHT08, Lem. 2.1.10]) then implies that

the image of RSχ is in fact contained in a nilpotent quotient of the subalgebra

TS,Λ1(RΓ(XK(c,c),Vµ(χ−1))ordm ) ⊂ TS,ord(RΓ(XK(c,c),Vµ(χ−1))ord)m.
This family of homomorphisms can be constructed exactly as in the proof of

Proposition 6.5.3, with the appeal to Theorem 4.5.1 being replaced instead

with an appeal to Theorem 5.5.1; here we are using the characterization of the

deformation functor Ddet,ord
v given in Section 6.2.6. �

We now need to describe the auxiliary objects associated to a choice of

Taylor–Wiles datum (Q, (αv,1, . . . , αv,n)v∈Q) for S1 (see Section 6.2.28), where

each place of Q is assumed to have residue characteristic split in some imaginary

quadratic subfield of F . Once again, this datum is automatically a Taylor–

Wiles datum for all the global deformation problems Sχ, and so the auxiliary

deformation problems Sχ,Q are defined, and the deformation ring RSχ,Q
has a

natural structure of O[∆Q]-algebra, where ∆Q =
∏
v∈Q∆v =

∏
v∈Q k(v)

×(p)n.

If c ≥ 1 is an integer, then we define two auxiliary level subgroups

K(c, c)1(Q) ⊂ K(c, c)0(Q) ⊂ K(c, c).
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They are good subgroups of GLn(A
∞
F ), determined by the following conditions:

• If v 6∈ S ∪Q, then K(c, c)1(Q)v = K(c, c)0(Q)v = K(c, c)v.

• If v ∈ Q, then K(c, c)0(Q)v = Iwv and K(c, c)1(Q)v is the maximal pro-

prime-to-p subgroup of Iwv.

Then there is a natural isomorphism K(c, c)0(Q)/K(c, c)1(Q) ∼= ∆Q. We

define A1(µ, χ,Q, c) to be

RHomΛ1,c[∆Q](RΓK(c,c)0(Q)/K(c,c)1(Q)(XK(c,c)1(Q),Vµ(χ−1))ord,Λ1,c[∆Q])[−d],

an object of D(Λ1,c[∆Q]). The algebra TS∪Q,ord
Q = TS∪Q,ord ⊗TS∪Q TS∪Q

Q acts

on A1(µ, χ,Q, c) by transpose. As in the case where Q is empty, we can pass

to the limit with respect to c to obtain a complex A1(µ, χ,Q) ∈ D(Λ1[∆Q])

that comes equipped with an action of TS∪Q,ord
Q and with TS∪Q,ord

Q -equivariant

isomorphisms

A1(µ, χ,Q)⊗L
Λ1

Λ1,c
∼= A1(µ, χ,Q, c)

in D(Λ1,c) (for each c ≥ 1) and

A1(µ, χ,Q)⊗L
Λ1

Λ1/$ ∼= A1(µ, 1, Q)⊗L
Λ1

Λ1/$

in D(Λ1/$), all compatible with the similar data at level c. We define mQ

to be the contraction of m to TS∪Q,ord, and nQ to be the ideal of TS∪Q,ord
Q

generated by mQ and the elements Uv,i − αv,1 · · ·αv,i (v ∈ Q, i = 1, . . . , n).

Lemma 6.6.8. The ideal nQ occurs in the support of H∗(A1(µ, χ,Q)).

There are TS∪Q,ord-equivariant isomorphisms

A1(µ, χ,Q)nQ ⊗L
Λ1[∆Q] Λ1

∼= A1(µ, χ)mQ
∼= A1(µ, χ)m.

Proof. These properties can be established in the same way as in the finite

level (Fontaine–Laffaille) case. See Section 6.5.1. We omit the details. �

We define A(µ, χ,Q) = A1(µ, χ,Q)⊗L
Λ1

Λ and ∆Q
TS∪Q,Λ1 = TS∪Q,Λ1 ⊗O

O[∆Q]. Note that this acts on A(Λ, χ,Q)nQ via our identifications

K(c, c)0(Q)/K(c, c)1(Q) ∼= ∆Q

for each c and passing to the limit. Thus ∆Q
TS∪Q,Λ1(A(Λ, χ,Q)nQ) is a local

Λ[∆Q]-algebra.

Proposition 6.6.9. There exist an integer δ ≥ 1, depending only on n

and [F : Q], an ideal J ⊂∆Q
TS∪Q,Λ1(A(Λ, χ,Q)nQ ⊗O O(ν + wG0 µ)

−1) such

that Jδ = 0, and a continuous surjective homomorphism of Λ[∆Q]-algebras

fSχ,Q
: RSχ,Q

→∆Q
TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O O(ν + wG0 µ)

−1)/J

such that for each finite place v 6∈ S of F , the characteristic polynomial of

fSχ ◦ ρSχ(Frobv) equals the image of Pv(X) in ∆Q
TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O

O(ν + wG0 µ)
−1)/J .
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Proof. The existence of a Λ-algebra homomorphism

RSχ,Q
→∆Q

TS∪Q,Λ1(A(µ, χ,Q)nQ ⊗O O(ν + wG0 µ)
−1)/J

satisfying the given condition at finite places v 6∈ S ∪ Q of F is proved just

as in the proof of Proposition 6.6.7 above. The key point is to show that

this is a homomorphism of Λ[∆Q]-algebras. This can be proved in the same

way as in the proof of Proposition 6.5.11, by considering the enlarged algebra

TS∪Q,ord
Q (A(µ, χ,Q)⊗O O(ν + wG0 µ)

−1)nQ . �

We are now ready to begin the proof of Theorem 6.6.2.

Proof of Theorem 6.6.2. We recall that we have constructed a homomor-

phism f : RS1 → O, classifying the representation ρ that we wish to show is

automorphic. We will show that ker f is in the support of

H∗(B(µ, 1)m ⊗L
Λ O(ν + wG0 λ)

−1).

By Corollary 6.6.6, this will show that ker f is in the support of

H∗(A(λ, 1, 1)m ⊗O O(ν + wG0 λ)
−1)[1/p],

in turn a quotient of

HomE(H
d−∗(XK(1,1),Vλ)m,O(ν + wG0 λ)

−1[1/p]).

The ι-ordinary automorphy of ρ will then follow from Theorem 2.4.10.

Our proof now closely follows the proof of Theorem 6.5.4. Let

q = h1(FS/F, ad ρm(1)) and g = qn− n2[F+ : Q],

and set ∆∞ = Znqp . Let T be a power series ring over Λ in n2|S| − 1 many

variables, and let S∞ = T J∆∞K. Viewing S∞ as an augmented Λ-algebra, we

let a∞ denote the augmentation ideal.

As in the proof of Theorem 6.5.4, we choose a character

χ=
∏

v∈R

χv :
∏

v∈R

Iwv → O×

such that for each v ∈ R, the n characters χv,i : k(v)
× → O× are trivial modulo

$ and pairwise distinct.

Let Rloc = RS,loc
Sord1

and R′ loc = RS,loc
Sordχ

denote the corresponding local defor-

mation rings as in Section 6.2.22. We let R∞ and R′∞ be formal power series

rings in g variables over Rloc and R′ loc, respectively.

We can then apply the results of Section 6.4.2 to complexes A(µ, χ,Q)nQ⊗O
O(ν+wG0 µ)−1 (for choices of Taylor–Wiles data (Q, (αv,1, . . . , αv,n)v∈Q), proved

to exist using Proposition 6.2.33) and obtain the following:
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• Bounded complexes C∞ and C′∞ of free S∞-modules, subrings

T∞ ⊂ EndD(S∞)(C∞) and T ′∞ ⊂ EndD(S∞)(C′∞),

and ideals I∞ and I ′∞ satisfying Iδ∞ = 0 and I ′δ∞ = 0. We also have S∞-

algebra structures on R∞ and R′∞ and S∞-algebra surjections R∞ → T∞/I∞
and R′∞ → T ′∞/I

′
∞.

• Surjections of local Λ-algebras R∞/a∞ → RSord1
and R′∞/a∞ → RSordχ

.

• Isomorphisms C∞ ⊗L
S∞

S∞/a∞ ∼= A(µ, 1)m ⊗O O(ν + wG0 µ)
−1 = B(µ, 1)m

and C′∞ ⊗L
S∞

S∞/a∞ ∼= A(µ, χ)m ⊗O O(ν + wG0 µ)
−1 = B(µ, χ)m in D(Λ).

This gives the necessary input for Section 6.3.5. Recall that R∞ and R′∞ are

power series rings over Rloc and R′ loc, respectively, in g = qn − n[F+ : Q]

many variables. It follows from parts (1) and (2) of Lemma 6.2.27 that we

have satisfied assumptions (1) and (2) of Section 6.3.5. To verify assumption

(3), if we let p denote the inverse image in S∞ of AnnΛ(O(ν + wG0 µ)
−1), then

(Corollary 6.6.6) the complex

(C∞ ⊗L
S∞

S∞/p)[1/p] ∼= (B(µ, 1)m ⊗L
Λ O(ν + wG0 µ)

−1)[1/p]

has cohomology isomorphic to a quotient of HomE(H
d−∗(XK(1,1),Vµ)m[1/p], E).

Since π contributes to this quotient, Theorem 2.4.10 implies that H∗(C∞ ⊗L
S∞

S∞/p)[1/p] 6= 0 and that the cohomology is concentrated in degrees [q0, q0 + l0].

We have now satisfied all the assumptions of Section 6.3.5, and we apply

Corollary 6.3.9 with x ∈ Spec(R∞) the inverse image of ker f , so y ∈ Spec(S∞)

is the inverse image of AnnΛ(O(ν + wG0 λ)
−1). For each v ∈ Sp, the inertial

characters on the diagonal of ρ|GFv
are distinct, so x lies on a maximal dimension

irreducible component of Spec(R∞) by part (3) of Lemma 6.2.27, and this

corollary does apply. We deduce that the support of

H∗(B(µ, 1)m ⊗L
Λ O(ν + wG0 λ)

−1) [1/p]

contains ker f . This completes the proof. �

6.6.10. End of the proof (ordinary case). We can now deduce Theo-

rem 6.1.2, our main automorphy lifting result in the ordinary case, from

Theorem 6.6.2. The proof is a minor variation of the proof of our main auto-

morphy lifting result in the Fontaine–Laffaille case; see Section 6.5.12.

Proof of Theorem 6.1.2. For the convenience of the reader, we recall the

hypotheses of Theorem 6.1.2. Let F be an imaginary CM or totally real

field, and let c ∈ Aut(F ) be complex conjugation. We are given a continuous

representation ρ : GF → GLn(Qp) satisfying the following conditions:

(1) ρ is unramified almost everywhere.

(2) For each place v|p of F , the representation ρ|GFv
is potentially semi-stable,

ordinary with regular Hodge–Tate weights. In other words, there exists
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a weight λ ∈ (Zn+)
Hom(F,Qp) such that for each place v|p, there is an

isomorphism

ρ|GFv
∼

á
ψv,1 ∗ ∗ ∗
0 ψv,2 ∗ ∗
...

. . .
. . . ∗

0 · · · 0 ψv,n

ë

,

where for each i = 1, . . . , n the character ψv,i : GFv → Q
×
l agrees with the

character

σ ∈ IFv 7→
∏

τ∈Hom(Fv ,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on an open subgroup of the inertia group IFv .

(3) ρ is absolutely irreducible and generic. The image of ρ|GF (ζp)
is enormous.

There exists σ ∈ GF −GF (ζp) such that ρ(σ) is a scalar. We have p > n.

(4) There exist a regular algebraic cuspidal automorphic representation π of

GLn(AF ) and an isomorphism ι : Qp → C such that π is ι-ordinary and

rι(π) ∼= ρ.

The case where F is a totally real field can be reduced to the case where F is

totally imaginary by base change. We therefore assume now that F is imaginary,

and we write F+ for its maximal totally real subfield. Let K/F (ζp) be the

extension cut out by ρ|GF (ζp)
. Choose finite sets V0, V1, V2 of finite places of F

having the following properties:

• For each v ∈ V0, v splits in F (ζp). For each proper subfield K/K ′/F (ζp),

there exists v ∈ V0 such that v splits in F (ζp) but does not split in K
′.

• For each proper subfield K/K ′/F , there exists v ∈ V1 that does not split in

K ′.

• There exists a rational prime p0 6= p that is decomposed generic for ρ, and

V2 is equal to the set of p0-adic places of F .

• For each v ∈ V0 ∪ V1 ∪ V2, v - 2, v - p, and ρ and π are both unramified at v.

If E/F is any finite Galois extension that is V0 ∪ V1 ∪ V2-split, then ρ|GE
has

the following properties:

• ρ(GE) = ρ(GF ) and ρ(GE(ζp)) = ρ(GF (ζp)). In particular, ρ|GE(ζp)
has

enormous image and there exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• ρ|GE
is decomposed generic. Indeed, the rational prime p0 splits in E.

Let E0/F be a soluble CM extension satisfying the following conditions:

• Each place of V0 ∪ V1 ∪ V2 splits in E0.

• For each finite place w of E0, π
Iww
E0,w

6= 0.
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• For each finite prime-to-p place w of E0, either both πE0,w and ρ|GE0,w
are

unramified or ρ|GE0,w
is unipotently ramified, qw ≡ 1 mod p, and ρ|GE0,w

is

trivial.

• For each place w|p of E0, ρ|GE0,w
is trivial and [E0,w : Qp] > n(n+ 1)/2 + 1.

• For each place v|p of F , for each w|v of E0, and for each i = 1, . . . , n, the

character ψv,i : GFv → Q
×
p agrees with the character

σ ∈ IFv 7→
∏

τ∈Hom(Fv ,Qp)

τ(Art−1Fv
(σ))−(λτ,n−i+1+i−1)

on the whole of the inertia subgroup IE0,w ⊂ IFv .

• Let µ denote the weight of πE0 . Then for each place w|p of E0, and for each

p-power root of unity x ∈ E0,w, we have

ψv,i(ArtE0,w(x))
∏

τ∈Hom(E0,w,Qp)

τ(x)µιτ,n−i+1+i−1 = 1.

We can find imaginary quadratic fields Ea, Eb, Ec satisfying the following con-

ditions:

• Each rational prime lying below a place of V0 ∪ V1 ∪ V2 splits in Ea ·Eb ·Ec.
• The primes 2, p split in Ea.

• If l 6∈ {2, p} is a rational prime lying below a place of E0 at which πE0,w or

ρ|E0,w is ramified, or that is ramified in E0 · Ea · Ec, then l splits in Eb.
• If l 6∈ {2, p} is a rational prime that is ramified in Eb, then l splits in Ec.

For example, we can choose any Ea satisfying the given conditions. Then we

can choose Eb = Q(
√−pb), where pb is a prime satisfying pb ≡ 1 mod 4 and

pb ≡ −1 mod l for any prime l 6∈ {2, p} either lying below a place w of E0 at

which πE0,w or ρ|E0,w is ramified, or ramified in E0 · Ea, and Ec = Q(
√−pc),

where pc ≡ 1 mod 4pb is a prime. (Use quadratic reciprocity to show that pc
splits in Eb.)

We let E = E0 · Ea · Eb · Ec. Then E/F is a soluble CM extension in

which each place of V0 ∪ V1 ∪ V2 splits, and the following conditions hold by

construction:

• Let R denote the set of prime-to-p places w of E such that πE,w or ρ|GEw

is ramified. Let Sp denote the set of p-adic places of E. Let S′ = Sp ∪ R.
Then if l is a prime lying below an element of S′, or which is ramified in E,

then E contains an imaginary quadratic field in which l splits.

• If w ∈ R, then ρ|GEw
is trivial and qw ≡ 1 mod p.

• The image of ρ|GE(ζp)
is enormous. The representation ρ|GE

is decomposed

generic.

• There exists σ ∈ GE −GE(ζp) such that ρ(σ) is a scalar.

• For each place w|p of E, ρ|GEw
is trivial and [Ew : Qp] > n(n+ 1)/2 + 1.
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• Let πE denote the base change of π to E, which exists, by Proposition 6.5.13.

Then πE is ι-ordinary, by [Ger19, Lem. 5.7].

By the Chebotarev density theorem, we can find infinitely many places

v0 of E of degree 1 over Q such that ρ(Frobv0) is scalar and qv0 6≡ 1 mod p,

v0 /∈ S′ ∪Rc and the residue characteristic of v0 is odd. Then H2(Ev0 , ad ρ) =

H0(Ev0 , ad ρ(1))
∨ = 0. We choose v0, v

′
0 with distinct residue characteristics

satisfying these conditions, and we set S = S′ ∪ {v0, v′0}. Note that if l0, l
′
0

denotes the residue characteristic of v0, v
′
0, then l0, l

′
0 splits in any imaginary

quadratic subfield of E.

We see that the hypotheses (1)–(15) of Section 6.6.1 are now satisfied for E,

πE , and the set S. We can therefore apply Theorem 6.6.2 to ρ|GE
to conclude

the existence of a cuspidal, regular algebraic automorphic representation ΠE

of GLn(AE) such that ΠE is ι-ordinary of weight λE and rι(ΠE) ∼= ρ|GE
. By

Proposition 6.5.13 and [Ger19, Lem. 5.7], we can descend ΠE to obtain a

cuspidal, regular algebraic automorphic representation Π of GLn(AF ) such

that Π is ι-ordinary of weight λ and rι(Π) ∼= ρ. Taking into account the final

sentence of the statement of Theorem 6.6.2, we see that ΠE,w is unramified if

w 6∈ S.
To finish the proof, we must show that Πv is unramified if v is a finite

place of F such that v - p and both ρ and π are unramified at v. Using our

freedom to vary the choice of places v0 v
′
0, we see that if v - p is a place of F

such that both ρ and π are unramified at v, then ΠE,w is unramified for any

place w|v of E. This implies that recFv(Πv) is a finitely ramified representation

of the Weil group WFv . Using the main theorem of [Var14] and the fact that ρ

is unramified at v, we see that recFv(Πv) is unramified, hence that Πv itself is

unramified. This concludes the proof. �

7. Applications

7.1. Compatible systems. Suppose that F is a number field. We will

use a slight weakening of the definition of a weakly compatible system from

[BLGGT14]: By a rank n very weakly compatible system R of l-adic represen-

tations of GF defined over M we shall mean a 5-tuple

(M,S, {Qv(X)}, {rλ}, {Hτ}),
where

(1) M is a number field.

(2) S is a finite set of primes of F .

(3) For each prime v 6∈ S of F , Qv(X) is a monic degree n polynomial in M [X].

(4) For τ : F ↪→M , Hτ is a multiset of n integers.

(5) For each prime λ of M (with residue characteristic l say),

rλ : GF −→ GLn(Mλ)
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is a continuous, semi-simple representation such that

(a) if v /∈ S and v 6 |l is a prime of F , then rλ is unramified at v and

rλ(Frobv) has characteristic polynomial Qv(X);

(b) for l outside a set of primes of Dirichlet density 0, the representation

rλ|GFv
is crystalline for all v|l, and for any M ↪→Mλ over M , we have

HTτ (rλ) = Hτ ;

(c) for all λ, we have HTτ (det rλ) =
∑

h∈Hτ
h.

If we further drop hypothesis (5b), then we say that R is an extremely weakly

compatible system. The only dependence of an extremely weakly compatible

system on Hτ is via the condition on the determinant via hypothesis (5c). The

difference between very weakly compatible systems and the (merely) weakly

compatible systems in [BLGGT14] is that if v|l, then we only insist that rλ|GFv

is de Rham for l in a set of Dirichlet density 1. The notion of an extremely

weakly compatible system is what used to be known as a compatible system,

but we use this language so as to emphasize that the condition of being a very

weakly compatible system is more stringent than being an extremely weakly

compatible system. (Here we implicitly use the following fact: any compatible

family of one-dimensional representations is always de Rham [Hen82].) Of

course, we expect that any extremely weakly compatible system should give

rise to a weakly compatible system for an appropriate choice of Hτ . We have

adopted the present definition so that, as a consequence of Theorem 4.5.1, we

can deduce that the Galois representations constructed in [HLTT16] for n = 2

form a very weakly compatible system; see Lemma 7.1.10.

We will often write l for the residue characteristic of a prime λ of M

without comment. We shall write rλ for the semi-simplified reduction of rλ.

The representation rλ is a priori defined over the algebraic closure of OM/λ.
However, because its trace lies in OM/λ and because the Brauer groups of all

finite fields are trivial, it is actually a representation

rλ : GF −→ GLn(OM/λ).

We recall some further definitions from Section 5.1 of [BLGGT14] that

apply mutatis mutandis to both very weakly and extremely weakly compatible

families:

A very (or extremely) weakly compatible system R is regular if, for each τ ,

the set Hτ has n distinct elements.

A very (or extremely) weakly compatible system R is irreducible if there

is a set L of rational primes of Dirichlet density 1 such that for λ|l ∈ L, the
representation rλ is irreducible. We say that it is strongly irreducible if for all

finite extensions F ′/F the compatible system R|GF ′ is irreducible.
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Lemma 7.1.1. If R is an extremely weakly compatible system of rank 2,

then either rλ is irreducible for all λ or there exist weakly compatible systems

X1 and X2 of rank 1 with rλ ∼= χ1,λ ⊕ χ2,λ for all λ.

Proof. Suppose that for one prime λ0 the representation rλ0 is a sum of

characters rλ0 = χ1 ⊕ χ2. By the main result of [Hen82], we see that rλ0 is

de Rham. Hence each χi is also de Rham and so there are weakly compatible

systems X1 and X2 of rank 1 with χi,λ0 = χi for i = 1, 2. Then for all λ, we

have rλ ∼= χ1,λ ⊕ χ2,λ. �

In view of Lemma 7.1.1, we say that an extremely weakly compatible

system of rank 2 is reducible if it is not irreducible, in which case every

representation rλ is reducible. Say that a very (or extremely) weakly compatible

system of rank 2 is Artin up to twist if there exists an irreducible Artin

representation ρ : GF → GL2(M) with traces inM (possibly after increasingM)

and a weakly compatible system of one-dimensional representations χλ such

that rλ ' ρ⊗ χλ.
Lemma 7.1.2. If R is an extremely weakly compatible system of rank 2

and R is irreducible, then either

(1) R is strongly irreducible; or

(2) R is Artin up to twist ; or

(3) there is a quadratic extension F ′/F and a weakly compatible system X of

characters of GF ′ such that

R ∼= IndGF
GF ′
X ,

in which case we say that R is induced.

Proof. Suppose that R is not strongly irreducible, so that there exists a

finite extension E/F such that R|GE
is reducible. We may suppose that E/F

is Galois. Choose a prime λ of M of residue characteristic greater than 2. Write

rλ|GE
= χ1 ⊕ χ2.

Suppose that χ1 = χ2 = χ. As in the proof of Lemma 7.1.1, we deduce

that χ is de Rham. On the other hand, let φ denote the determinant of rλ, and

let 〈φ〉 be the character such that φ/〈φ〉 is the Teichmüller lift of the reduction φ

of φ. Since φ is a finite order character, we may assume (increasing E if

necessary) that this character is trivial after restriction to GE . By construction,

〈φ〉 = 1 and thus (because λ is assumed to have odd residue characteristic) 〈φ〉
admits a square root character ψ as a representation of GF . But then ψ

2|GE

and χ2 coincide as representations of GE , since they are both equal to the

determinant of rλ|GE
. In particular, their ratio is a character of order dividing 2.

Increasing E by a finite extension if necessary, we may assume that ψ|GE
= χ.

Hence ψ|GE
is de Rham, and thus ψ is de Rham and extends to a compatible
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system of characters of GF . After twisting R by this compatible system, we

may assume that rλ|GE
is trivial. In particular, rλ factors through Gal(E/F ),

and is thus coming from an Artin representation ρλ : GF → GL2(Mλ), which

automatically extends to a (strongly) compatible system coming from an Artin

representation ρ : Gal(E/F )→ GL2(M) with traces in some finite extension

of M (specifically, the extension of M coming from the coefficient field of the

compatible family ψ). Hence R is Artin up to twist in this case.

Now assume that χ1 6= χ2. The group Gal(E/F ) permutes the two

characters χi and, because rλ is irreducible, this action is transitive. Let F ′

denote the stabilizer of χ1. Then χ1 extends to a character of GF ′ and rλ =

IndGF
GF ′

χ1. As in the proof of Lemma 7.1.1, there is a weakly compatible system

of characters X of GF ′ with χλ = χ1. Then R ∼= IndGF
GF ′
X , as desired. �

Lemma 7.1.3. If R is an extremely weakly compatible system of rank 2

and R is irreducible, then for all l in a set of Dirichlet density 1 and all λ|l,
the residual representation rλ is absolutely irreducible.

If, moreover, R is neither induced nor Artin up to twist and ‹F denotes

the normal closure of F/Q, then one may additionally assume that the image

rλ(G‹F ) contains SL2(Fl).

Proof. This is immediate if R is Artin up to twist. If R ∼= IndGF
GF ′
X

then choose a prime v 6∈ S of F that splits in F ′ and such that Qv(X) has

distinct roots. (If no such prime v existed, then we would have X = σX , where
1 6= σ ∈ Gal(F ′/F ), contradicting the irreducibility of R.) Then for any λ not

dividing the residue characteristic of v and modulo that Qv(X) still has distinct

roots, we see that rλ is irreducible.

Hence we may assume thatR is strongly irreducible. In particular, since the

only connected Zariski closed subgroups of GL2 that act irreducibly contain SL2,

it follows that the Zariski closure of the image of rλ contains SL2(Mλ) for all λ.

We first prove, replacing M by a finite extension if necessary, that the Galois

representations rλ can all be made to land inside GL2(Mλ).

The image of rλ contains an element with distinct eigenvalues. Hence, by

the Cebotarev density theorem, there exists an auxiliary prime v 6∈ S such

that rλ(Frobv) has distinct eigenvalues. These eigenvalues are defined over a (at

most) quadratic extension of M . By enlarging M if necessary, we deduce that

the images of rλ for all λ - N(v) contain an element with distinct eigenvalues

in Mλ, which allows one to conjugate the representation rλ to land in Mλ.

By choosing a second auxiliary prime of different residue characteristic and

enlargingM once again, we may ensure the image of rλ lies in GL2(Mλ) for all λ.

Let

sl =
⊕

λ|l

rλ : GF −→ GL2[M :Q](Ql),
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so that S = {sl} form an extremely weakly compatible system with coeffi-

cients Q. Let Gl denote the Zariski closure of the image of sl. It is contained

in (ResMQ GL2)×Q Ql. The pushforward of Gl to GL2/Ql via any embedding

of M ↪→ Ql will contain SL2. We will write G◦l for the connected component

of the identity of Gl, G
ad
l for the quotient of Gl by its center and Gsc

l for the

(simply connected) universal cover of Gad
l . Then G0

l is unramified for all l ∈ L
a set of rational primes of Dirichlet density 1 (see [LP92, Prop. 8.9]). Also

over Ql, we see that G
ad
l is contained in PGL

[M :Q]
2 and surjects onto each factor.

The following facts are either well known or easy to check in the order

indicated:

(1) The only morphisms PGL2 → PGL2 over Ql are the trivial map and

conjugation by an element of PGL2(Ql).

(2) The only morphisms PGLr2 → PGL2 over Ql are the trivial map and projec-

tion onto one factor composed with conjugation by an element of PGL2(Ql).

(3) If I and J are finite sets, then up to conjugation by an element of PGL2(Ql)
J ,

the only morphisms PGLI2 → PGLJ2 over Ql are induced by a pair (J0, φ)

where J0 ⊂ J and φ : J0 → I.

(4) If I is a finite set, then the automorphism group of PGLI2 is PGLI2 o SI ,

where SI is the group of permutations of I.

(5) If J is a finite set and G is a connected algebraic subgroup of PGLJ2 over

Ql that surjects onto PGL2 via each projection, then G ∼= PGLI2 and the

inclusion PGLI2 ↪→ PGLJ2 corresponds, up to conjugation by an element

of PGL2(Ql)
I to a map φ : J � I. (Use induction on #J and Goursat’s

lemma.)

(6) IfM/Ql is a finite extension, then (ResMQl
PGL2)×Ql

Ql
∼= PGL

HomQl
(M,Ql)

2

and the action of GQl
is via the map GQl

→ SHomQl
(M,Ql)

where GQl
acts

by left translation.

(7) Forms of PGLr2 are classified by the middle term of the (split) exact sequence

of pointed sets

H1(Ql,PGLr2/Ql)→ H1(Ql,Aut(PGLr2/Ql))→ H1(Ql, Sr).

In order to split over an unramified extension, the image in H1(Ql, Sr) =

Hom(GQl
, Sr) must be unramified and hence land in H1(Fl, Sr). Every

class in H1(Fl, Sr) comes from the image of a group of the form G =∏
iRes

Ni
Ql

PGL2, where Ni/Ql are unramified extensions. On the other

hand, the fibres of [G] ∈ H1(Ql, Sr) are inner forms of G, and there is a

unique quasi-split form amongst all inner forms. Since G is quasi-split, the

only forms of PGLr2 that are unramified (that is, quasi-split and split over an

unramified extension) are thus given by
∏
iRes

Ni
Ql

PGL2 for unramified Ni.
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(8) Suppose that for j ∈ J , a finite set, Mj/Ql is a finite extension, and

that G ⊂ ∏
j∈J Res

Mj

Ql
PGL2 is an unramified connected algebraic sub-

group over Ql such that, after base change to Ql, the projection of G

onto each factor of
∏
j∈J(Res

Mj

Ql
PGL2) ×Ql

Ql
∼= PGL

∐
j HomQl

(Mj ,Ql)

2 is

surjective. Then there are unramified extensions Ni/Ql for i in some

finite set I such that G ∼= ∏
i∈I Res

Ni
Ql

PGL2. Moreover for each j ∈ J

and each τ : Mj ↪→ Ql, the projection of the base change of G to Ql to

the (j, τ) factor of
∏
j∈J(Res

Mj

Ql
PGL2) ×Ql

Ql
∼= PGL

∐
j HomQl

(Mj ,Ql)

2 is

conjugate by an element of PGL2(Ql) to projection onto one of the factors

of
∏
i∈I(Res

Ni
Ql

PGL2)×Ql
Ql
∼= PGL

∐
i HomQl

(Ni,Ql)

2 .

Thus for l ∈ L, there are finite unramified extensions Nl,i/Ql for i in some finite

index set Il such that Gad
l
∼=∏i∈Il

Res
Nl,i

Ql
PGL2. Moreover for any prime λ of

M , there are an index i ∈ Il and an embedding τ : Nl,i ↪→Mλ such that the pro-

jection of Gad
l ×Ql

Mλ to PGL2/Mλ is conjugate by an element of PGL2(Mλ) to

to the projection onto the (i, τ) factor of Gad
l ×Ql

Mλ
∼= PGL

∐
i∈Il

HomQl
(Nl,i,Mλ)

2 .

Let Γl denote the image of sl, let Γ
◦
l = Γl ∩G◦, and let Γad denote the

image of Γ0
l in Gad

l . By [Lar95, Th. 3.17], after replacing L by a smaller set

of Dirichlet density 1, we may suppose that for l ∈ L, the group Γad
l contains a

conjugate of
∏
i∈Il

SL2(ONi)/{±12}. Thus, for l ∈ L and λ|l, we may suppose

that the image of rλ(GF ) in PGL2(Mλ) contains SL2(Zl)/{±12} and the image

rλ(GF ) in PGL2(OM/λ) contains SL2(Fl)/{±12}.
Now we may suppose that l ∈ L implies that l > 3 so that SL2(Fl) is perfect.

Suppose λ|l ∈ L. For every g ∈ SL2(Fl), the image of rλ contains an element

z(g)g where z(g) ∈ (OM/λ)× and is well defined modulo Z = (OM/λ)× ∩ im r.

Then z defines a homomorphism SL2(Fl) → (OM/λ)×/Z that must be iden-

tically 1. Thus SL2(Fl) is contained in the image of rλ.

Finally if we remove finitely many primes from L, we may suppose that

PSL2(Fl) is not a subquotient of Gal(‹F/F ) from which the last assertion

follows. �

We now prove some further preliminary lemmas concerning enormous and

decomposed generic representations.

Lemma 7.1.4. If n ≥ 2 and l > 2n + 1 and H is a finite subgroup of

GL2(Fl) containing SL2(Fl), then Symmn−1H ⊂ GL2(Fl) is enormous.

Proof. The image of H in PGL2(Fl) must be conjugate to PSL2(k) or

PGL2(k) for some finite extension k/Fl; see, for instance, [DDT97, Th. 2.47(b)].

Thus
F
×
l Symmn−1GL2(k) ⊃ H ⊃ Symmn−1 SL2(k),

and the lemma follows from [GN22, Lem. 3.2.5]. �
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Lemma 7.1.5. Suppose that L is a number field, that k is a finite field

of characteristic l and that r : GL → GLn(k) is a continuous representation.

Let M denote the normal closure over Q of F
ker ad r

. If M does not contain a

primitive lth root of unity, then r is decomposed generic.

Proof. If a rational prime p splits completely in M , but not in M(ζl), then

p is decomposed generic for r. �

Lemma 7.1.6. Suppose that F/Q is a finite extension with normal closure
‹F/Q and that m ∈ Z>0. Suppose also that l > 2m + 3 is a rational prime

and that r : GF −→ GL2(Fl) is a continuous representation such that r(G‹F ) ⊃
SL2(Fl). Finally suppose that F ′/F is a finite extension that is linearly disjoint

from F
ker r

over F .

(1) If l is unramified in F ′/Q, then ζl 6∈ F ker ad Symmm r
F ′.

(2) (Symmm r)(GF ′(ζl)) is enormous.

(3) Let ‹F ′ denote the normal closure of F ′ over Q. Suppose that ad r(G‹F ′) ⊃
PSL2(Fl). Then Symmm r|GF ′ is decomposed generic.

(4) Suppose that F ′/Q is unramified at l and that no quotient of im ad r is

unramified at all primes above l. Then Symmm r|GF ′ is decomposed generic.

(5) If l > [‹F : F ], then Symmm r is decomposed generic.

Proof. The image rλ(GF ) in PGL2(Fl) must be conjugate to PSL2(k)

or PGL2(k) for some finite extension k/Fl. (See, for instance, [DDT97, Th.

2.47(b)].)

For assertion (1), it suffices to treat the case m = 1, in which case

the assertion follows because Gal(F ′(ζl)/F
′) ∼= (Z/lZ)×, while (ad r)(GF ′) =

(ad r)(GF ) does not surject onto (Z/lZ)×.

For assertion (2), note that r(GF ′) = r(GF ) ⊃ SL2(Fl) and so, because

SL2(Fl) is perfect, we have that r(GF ′(ζl)) ⊃ SL2(Fl). The assertion now

follows from Lemma 7.1.4.

For assertion (3), it suffices to prove that Symmm r|GF ′ is decomposed

generic after replacing F ′ with some finite extension. We first replace F ′

by ‹F ′(ζl), which we can do as PSL2(Fl) is perfect. Then, as above, (up

to conjugacy) the image of (ad r)(GF ′) is PSL2(k) or PGL2(k) for some fi-

nite extension k/Fl. Perhaps making a further extension, we may assume

that ad r(GF ′) = PSL2(k) for some finite extension k/Fl, while maintaining

the fact that F ′/Q is Galois. Let H/F ′ denote the finite Galois extension with

Galois group PSL2(k) cut out by this projective representation, and let H ′

denote its normal closure over Q. Using the simplicity of PSL2(k), we deduce,

from Goursat’s Lemma, that Gal(H ′/F ′) = PSL2(k)
n for some n. Moreover the

conjugation action of any σ ∈ Gal(H ′/Q) on Gal(H ′/F ′) ∼= PSL2(k)
n is via an

element of Aut(PSL2(k)
n) ∼= (PGL2(k)oGal(k/Fl))

n o Sn. (To see this note
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two things. Firstly PSL2(k) has automorphism group PGL2(k) o Gal(k/Fl);

see, for instance, [Die51]. Secondly the only normal subgroups of PSL2(k)
n

are PSL2(k)
I for I ⊂ {1, . . . , n}, as can be seen by induction on n, and so any

automorphism of PSL2(k)
n permutes the n factors of this product.)

There exists an element A ∈ PSL2(Fl) ⊂ PSL2(k) such that a preimage in

SL2(Fl) has two distinct Fl-rational eigenvalues with ratio α satisfying α±i 6= 1

for 1 ≤ i ≤ m. By the Cebotarev density theorem, there exists a rational

prime p such that 〈Frobp〉 in Gal(H ′/Q) is (the conjugacy class of) the el-

ement (A, . . . , A) in PSL2(k)
n = Gal(H ′/F ′). The image of this element is

trivial in the quotient Gal(F ′/Q), and thus, in addition, we see that p splits

completely in F ′ and (hence) that p ≡ 1 mod l. By construction, the ratio

of any two roots of the characteristic polynomial of Frobenius of any prime

above p in Symmm r is given by α±i for i = 1, . . . ,m. In particular, these ratios

are not equal to p ≡ 1 mod l. Hence Symmm r|GF ′ is decomposed generic.

Assertion (4) follows from assertion (3), because ‹F ′ is unramified above l

so that (‹F ′ ∩ F ker ad r
)/F is unramified above l and hence ‹F ′ ∩ F ker ad r

= F

and ‹F ′ is linearly disjoint from F
ker ad r

over F .

For assertion (5), note that [‹F ∩ F ker ad r
: F

ker ad r
] < l, so that we have

(ad r)(G‹F∩F ker ad r) ⊃ PSL2(Fl). However, being Galois extensions of F , the

fields ‹F and F
ker ad r

are linearly disjoint over ‹F ∩ F ker ad r
, so that again the

result follows from assertion (3). �

Lemma 7.1.7. Suppose that r : GF → GLn(Fl) is decomposed generic and

absolutely irreducible. Let E/Q be a Galois extension that is linearly disjoint

from the Galois closure of F
ker r

(ζl) over Q. Then r|GFE
is decomposed generic

and absolutely irreducible.

Proof. The irreducibility claim is clear. Write H for the Galois closure

of F
ker r

(ζl) over Q. As in the proof of Lemma 4.3.2, there exists a conjugacy

class of elements σ ∈ Gal(H/Q) such that any rational prime unramified in H

whose Frobenius element corresponds to σ is decomposed generic for r. By

assumption, Gal(HE/Q) = Gal(H/Q) × Gal(E/Q), and now any rational

prime whose conjugacy class in Gal(HE/Q) is of the form (σ, 1) ∈ Gal(H/Q)×
Gal(E/Q) will be decomposed generic for r|GFE

. �

Lemma 7.1.8.

(1) Suppose that K/Ql is an unramified extension and that r : GK → GL2(Zl)

is a crystalline representation with Hodge–Tate numbers {0, 1} for each

embedding K ↪→ Ql. Either r|ssIl ∼= 1⊕ ε−1l or r|Il ∼= ω−1l,2 ⊕ ω−ll,2 .
(2) Suppose that K is a number field in which l is unramified and that r :

GK → GL2(Zl) is a crystalline representation with Hodge–Tate numbers
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{0, 1} for each embedding K ↪→ Ql. If the image of r contains SL2(Fl),

then the only subextension of K
ker r

/K unramified at all primes above l is

K itself.

Proof. The first part is presumably well known, but for lack of a reference

we give a proof. (Note the slight subtlety that the result would be false if we

replaced the coefficients Zl with the ring of integers in an arbitrary extension

of Ql, which is one obstacle to finding a suitable reference.) Recall that r∨ arises

from the Tate module of a height 2 l-divisible group G over OK (see [Bre00]

and [Kis06].) Moreover G 6= G0 6= (0), as otherwise we would have Hodge–Tate

numbers {1, 1} or {0, 0}. Thus there is a finite flat group scheme H over the

ring of integers of the completion of the maximal unramified extension of K

of order l2 killed by l giving rise to r∨. Moreover H 6= H0 6= (0). By [Ray74,

Prop. 3.2.1, Th. 3.4.3], either r|ssIl ∼= 1⊕ ε−1l or r|Il ∼= ω−1l,2 ⊕ ω−ll,2 or r|ssIl ∼= 1⊕ 1

or r|ssIl ∼= ε−1l ⊕ ε−1l . If l = 2, then 1 = ε−1l and we are done, so suppose that

l > 2. Then since det r is a crystalline character with all Hodge–Tate weights

equal to 1, we have det r|Il = ε−1l , so the last two possibilities cannot occur,

and the first part follows.

Consider now the second part. It follows from the first part that the image

under det r of any inertia group above l is F×l , and so im r = GL2(Fl). Let ∆

denote the subgroup of GL2(Fl) generated by the images of all inertia groups

above l. It is a normal subgroup of GL2(Fl) that surjects under the determinant

map onto F×l . But any normal subgroup of GL2(Fl) either contains SL2(Fl) or

is central, and so ∆ = GL2(Fl) and the second part follows. �

A very (or extremely) weakly compatible system R is defined to be pure

of weight w if

• for each v 6∈ S, each root α of Qv(X) in M and each ı :M ↪→ C, we have

|ıα|2 = qwv ;

• and for each τ : F ↪→M and each complex conjugation c in Gal(M/Q), we

have

Hcτ = {w − h : h ∈ Hτ}.
If R is rank one, then it is automatically pure; see [Ser98]. The same is true if

R is induced from an extremely weakly compatible system of characters over a

finite extension of F , or if R is Artin up to twist.

If R is pure of weight w and if ı : M ↪→ C, then the partial L-function

LS(ıR, s) is defined as an analytic function in <s > 1 + w/2. If R is pure and

regular and if v is an infinite place of F , then the Euler factor Lv(ıR, s) can be

defined (see [BLGGT14, §5.1]).

The very (or extremely) weakly compatible system R is defined to be

automorphic if there are a regular algebraic, cuspidal automorphic representation
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π of GLn(AF ) and an embedding ı : M ↪→ C, such that if v 6∈ S, then

πv is unramified and rec(πv| det |(1−n)/2v )(Frobv) has characteristic polynomial

ı(Qv(X)). Note that if R is automorphic, then LS(ıR, s) defines an analytic

function in <s � 0 that, for n > 1, has analytic continuation to the whole

complex plane. It follows from [Clo90, Th. 3.13] that if R is automorphic,

then for any embedding ı′ : M ↪→ C, there is a regular algebraic, cuspidal

automorphic representation πı′ of GLn(AF ) such that if v 6∈ S, then πı′,v

is unramified and rec(πı′,v| det |(1−n)/2v )(Frobv) has characteristic polynomial

ı′(Qv(X)).

Suppose that F is a CM field and π is a regular algebraic cuspidal auto-

morphic representation on GLn(AF ) of weight (aτ,i). From the main theorems

of [HLTT16] and [Var14] we may associate to π an extremely weakly compatible

system
Rπ = (Mπ, Sπ, {Qπ,v(X)}, {rπ,λ}, {Hπ,τ}),

where

• Mπ ⊂ C is the fixed field of {σ ∈ Aut(C) : σπ∞ ∼= π∞};
• Sπ is the set of primes of F with πv ramified;

• Qπ,v(X) is the characteristic polynomial of rec(πv| det |(1−n)/2v )(Frobv);

• Hπ,τ = {aτ,1 + n− 1, . . . , aτ,n}.
We now note that this can be upgraded to a very weakly compatible system

under some hypotheses.

Lemma 7.1.9. Let F be a CM field, and let π be a regular algebraic cuspidal

automorphic representation on GLn(AF ) of weight ξ = (aτ,i). Suppose that the

following hypothesis holds :

(DGI) (decomposed generic and absolutely irreducible). For a set of primes l

of Dirichlet density one, the representations

rπ,λ : GF → GLn(OM/λ)
are decomposed generic and absolutely irreducible for all λ | l.

Then Rπ is a very weakly compatible system.

Proof. The lemma follows from Theorem 4.5.1 (taking p there to be our l).

Indeed, the assumption that m is not Eisenstein is implied (for a set l of density

one) by hypothesis (DGI). Conditions (3), (4), and (5) hold automatically

for large enough l. Similarly, l will be unramified in F for large enough l.

Conditions (1), (2), and (6), can always be satisfied after after making a solvable

Galois base change F ′/F (using [AC89]) that is disjoint over F from the Galois

closure of F
ker r

over Q and in which all primes dividing either S or l are

unramified. (We are free to make a different such base change for each prime l.)

In particular, one can take the compositum of F with a Galois extension E/Q

that is the compositum of various imaginary quadratic fields in which all primes
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dividing S or l split completely for (1), (2), and the compositum with a large

totally real cyclic extension E/Q in which l splits completely for condition (6),

where E may be easily be chosen to be linearly disjoint over Q from F
ker rπ,λ(ζl).

By Lemma 7.1.7, hypothesis (DGI) is preserved under such base extensions.

Condition (8a) holds by the existence of π, and finally, condition (7) holds for l

for a set of l of density one, by hypothesis (DGI). �

Lemma 7.1.10. Let F be a CM field, and let π be a regular algebraic

cuspidal automorphic representation on GL2(AF ) of weight ξ = (aτ,i). Then

the extremely weakly compatible system Rπ is irreducible. Moreover hypothesis

(DGI) of Lemma 7.1.9 holds and Rπ is a very weakly compatible system.

Proof. If Rπ were reducible, then by Lemma 7.1.1 and the automorphy of

all weakly compatible systems of rank 1, we see that there would be grossen-

characters χ1 and χ2 of A×F /F
× such that πv ∼= χ1,v � χ2,v for all but finitely

many v. By [JS81a], this would contradict the cuspidality of π. Thus Rπ is

irreducible.

By Lemma 7.1.9 it only remains to verify hypothesis (DGI). The absolute

irreducibility condition follows from Lemma 7.1.3. For the decomposed generic

condition, we treat the three possibilities of Lemma 7.1.2 separately.

Suppose first that Rπ is strongly irreducible. By Lemma 7.1.3 and part (5)

of Lemma 7.1.6, we deduce that hypothesis (DGI) holds and so Rπ is very

weakly compatible.

Suppose second that Rπ ∼= IndGF
GE
X for some quadratic extension E/F and

some very weakly compatible system of characters X of GE . Let ‹F (resp. ‹E)
denote the normal closure of F (resp. E) over Q, so that Gal(‹E/‹F ) is an

elementary abelian 2-group. Let 1 6= τ ∈ Gal(E/F ). Then Gal(E/F ) acts

on Gal(E
kerχλ/χ

τ
λ/E) via the non-trivial character Gal(E/F )→ {±1}. If L(λ)

denotes the normal closure of E
kerχλ/χ

τ
λ over Q, then L(λ)/‹E is the compositum

of abelian Galois extensions on which some subgroup of Gal(‹E/Q) acts by a

non-trivial character of order 2.

Suppose that a rational prime l is unramified in ‹E. Then εl(Gal(L(λ)/‹E))

can have order at most 2 (as any subgroup of Gal(‹E/Q) will act trivially on

it). Thus, if l > 3, then ζl 6∈ L(λ) for any λ. It follows from Lemma 7.1.5

that if λ lies above a rational prime l > 3 that is unramified in ‹E, then rπ,λ is

decomposed generic.

Finally suppose that Rπ is Artin up to twist; i.e., there exists an irreducible

Artin representation ρ : GF → GL2(Mπ) such that for all λ, the representation

rπ,λ is the twist of ρ by some character. In particular, F
ker ad rπ,λ ⊂ F ker ad ρ

. Let

L denote the normal closure of F
ker ad ρ

over Q. If l > 2 is unramified in L, then

ζl 6∈ L, and by Lemma 7.1.5 we see that rπ,λ is decomposed generic for all λ|l. �
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If ı0 is the canonical embedding Mπ ↪→ C, then LS(ı0Rπ, s) = LS(π, s). If

moreover Rπ is pure, and hypothesis (DGI) of Lemma 7.1.9 holds, then for each

infinite place v of F we have Lv(ı0Rπ, s) = Lv(π, s). (This follows from the

definition of Lv(ı0Rπ, s) in [BLGGT14, §5.1] together with the determination

of the Hodge–Tate weights of Rπ in Lemma 7.1.9 and, in the case that F is

totally real, the main result of [CLH16].)

The following is our main theorem.

Theorem 7.1.11. Suppose that F/F0 is a finite Galois extension of CM

fields. Suppose also that F avoid
0 is a finite Galois extension of F and that L0

is a finite set of rational primes. Suppose, moreover, that I is a finite set and

that for i ∈ I , we are given mi ∈ Z>0 and a strongly irreducible rank 2 very

weakly compatible system of l-adic representations of GF

Ri = (Mi, Si, {Qi,v(X)}, {ri,λ}, {{0, 1}})

with Si disjoint from L0.
Then there are

– a finite set L ⊃ L0 of rational primes ;

– a finite CM Galois extension F suffices/F unramified above L, such that F suffices

is Galois over F0; and

– a finite Galois extension F avoid/F containing F avoid
0 , which is linearly disjoint

from F suffices over F

with the following property : For any finite CM extension F ′/F containing F suffices

that is unramified above L and linearly disjoint from F avoid over F , the rep-

resentations Symmmi Ri|GF ′ are all automorphic, and each arises from an

automorphic representation unramified above L0.
We have phrased this in a rather technical way in the hope that it will be

helpful for applications. However let us record a simpler immediate consequence.

Corollary 7.1.12. Suppose that F is a CM field and that the 5-tuple

R = (M,S, {Qv(X)}, {rλ}, {{0, 1}}) is a strongly irreducible rank 2 very weakly

compatible system of l-adic representations of GF . If m is a non-negative

integer, then there exists a finite Galois CM extension F ′/F such that the

weakly compatible system SymmmR|GF ′ is automorphic.

Before proving Theorem 7.1.11 in the next section, we record some conse-

quences.

Corollary 7.1.13 (Potential modularity and purity for rank two compati-

ble systems over CM fields of weight zero and their symmetric powers). Suppose

that F is a CM field and that the 5-tuple R = (M,S, {Qv(X)}, {rλ}, {Hτ}) is
an irreducible rank 2 very weakly compatible system of l-adic representations of
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GF such that Hτ = {0, 1} for all τ . Suppose further that m is a non-negative

integer. Then

(1) R is pure of weight 1;

(2) the partial L-functions LS(ı SymmmR, s) have meromorphic continuation

to the entire complex plane;

(3) for v ∈ S, there are Euler factors Lv(ı SymmmR, s) = Pm,ı,v(q
−s
v )−1, where

Pm,ı,v is a polynomial of degree at most m+ 1 and qv is the order of the

residue field of v, such that

Λ(ı SymmmR, s)
= LS(ı SymmmR, s)

∏

v|∞

Lv(ı SymmmR, s)
∏

v∈S

Lv(ı SymmmR, s)

satisfies a functional equation of the form

Λ(ı SymmmR, s) = ABsΛ(ı SymmmR∨, 1− s).
Suppose further that R is strongly irreducible and that m > 0. Then

Ls(ı SymmmR, s) is holomorphic and non-vanishing for Re(s) ≥ m/2 + 1 and,

in particular, has neither a pole nor a zero at s = m/2 + 1.

Proof. If R is not strongly irreducible, then by Lemma 7.1.2 there are a

quadratic extension F ′/F and a weakly compatible system X of characters of

GF ′ such that R = IndGF
GF ′
X . In this case X is pure, necessarily of weight 1,

and automorphic. The corollary follows easily.

So suppose that R is strongly irreducible. Then for any positive integer m,

we see from Theorem 7.1.11 that there are a finite Galois CM extension Fm/F

and, for any embedding ı :M ↪→ C, a cuspidal automorphic representation πı,m
of GLm+1(AFm), such that for each w|v 6∈ S, the roots of the characteristic

polynomial of rec(πı,m,w| det |−m/2w )(Frobw) are the images under ı of the roots

of QSymmmR|GFm
,w(X).

For the first part of the corollary, we combine the “Deligne–Langlands

method” with our theorem: because detR is pure of weight 2, it suffices to

show that for every v 6∈ S, for every root α of QR,v(X), and every ı :M ↪→ C,

we have
|ıα| ≤ q1/2v .

It even suffices to show that for every m > 0, for every v 6∈ S, for every root β

of QSymmmR,v(X) and every ı :M ↪→ C, we have

|ıβ| ≤ q(m+1)/2
v .

(For then |ıα| ≤ q
1/2+1/(2m)
v .) Equivalently, it suffices to show that for every

m > 0, for every w|v 6∈ S, for every root γ of QSymmmR|GFm
,w(X), and every

ı :M ↪→ C, we have
|ıγ| ≤ q(m+1)/2

w .
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If χπı,m denotes the central character of πı,m, we see that det SymmmR|GFm

is equivalent to Rχ
πı,m|| det ||−m/2

and so

|χπı,m(x)| = 1

for all x ∈ A×Fm
. Thus πı,m is unitary and, applying the bound of [JS81b, Cor.

2.5] (which applies since each local factor of πı,m is generic, by the final corollary

of [Sha74]), we see that the image under ı of all the roots of the characteristic

polynomial of rec(πı,m,w)(Frobw) have absolute value ≤ q1/2w . Thus the absolute

value of the image under ı of any root of QSymmmR|GFm
,w(X) is ≤ q

(m+1)/2
w .

The first part of the corollary follows.

The rest of the corollary follows on using the usual Brauer’s theorem argu-

ment (together with known non-vanishing properties of automorphic L-functions

as in [JS77]) as in [HSBT10, Th. 4.2]. �

Corollary 7.1.14 (Sato–Tate for Elliptic curves over CM fields). Suppose

that F is a CM field and that E/F is a non-CM elliptic curve. Then the numbers

(1 + #k(v)−#E(k(v)))/2
»

#k(v)

are equidistributed in [−1, 1] with respect to the measure (2/π)
√
1− t2 dt.

Proof. This follows from Corollary 7.1.13 and the corollary to [Ser98, Th. 2],

as explained on page I-26 of [Ser98]. �

Corollary 7.1.15 (Ramanujan conjecture for weight 0 automorphic

representations for GL(2) over CM fields). Suppose that F is a CM field and

that π is a regular algebraic cuspidal automorphic representation of GL2(AF )

of weight (0)τ,i. Then, for all primes v of F , the representation πv is tempered.

Proof. The result is immediate for all primes v such that πv is a twist of

the Steinberg representation. At the remaining places, since πv is not a twist

of the Steinberg representation, it follows from the main theorems of [HLTT16]

and [Var14], together with [TY07, Lem. 1.4 (3)], that it suffices to prove that

if v - l, then the restriction to GFv of any of the l-adic Galois representations

associated to π is pure in the sense of [TY07, §1]. By [TY07, Lem. 1.4 (2)] and

solvable base change, we can reduce to the case that πv is unramified, in which

case the result follows from Corollary 7.1.13(1), after noting by Lemma 7.1.10

that the compatible system R associated to π is very weakly compatible of the

expected Hodge–Tate weights. �

Corollary 7.1.16. Suppose that F is a CM field and that the 5-tuples

R=(M,S, {Qv(X)}, {rλ}, {{0, 1}}) and R′=(M ′, S′, {Q′v(X)}, {r′λ}, {{0, 1}})
are a pair of strongly irreducible rank 2 very weakly compatible systems of

l-adic representations of GF . Suppose further that m and m′ are non-negative

integers, and that R and R′ are not twists of each other. Then LS(ı SymmmR⊗
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Symmm′ R′, s) is meromorphic for s ∈ C, has no zeroes or poles for Re(s) ≥
1 +m/2 +m′/2, and satisfies a functional equation relating LS(ı SymmmR⊗
Symmm′ R′, s) and LS(ı SymmmR∨ ⊗ Symmm′

(R′)∨, 1 +m+m′ − s).
Proof. This follows from Theorem 7.1.11 by the same argument as [Har09]

(for example, Theorem 5.3 of ibid.). (As usual, this argument involves the

known non-vanishing results of Rankin–Selberg convolutions as established in

Theorem 5.2 of [Sha81]). �

7.2. Proof of the main potential automorphy theorem.

7.2.1. Preliminaries. Before turning to the proof of Theorem 7.1.11, we

record some preliminaries.

If L/Ql is a finite extension and χ (resp. χ) is an unramified character of GL
valued in F×l (resp. Z×l ), we will write H1

f (GL,Fl(εlχ)) (resp. H
1
f (GL,Zl(εlχ)))

for the kernel of the composite

H1(GL,Fl(εlχ)) −→ H1(GLnr ,Fl(εl)) ∼= Lnr,×/(Lnr,×)l −→ Z/lZ

(resp.

H1(GL,Zl(εlχ)) −→ H1(GLnr ,Zl(εl)) ∼= lim
←r

Lnr,×/(Lnr,×)l
r −→ Zl),

where the latter maps are induced by the valuation map. Note that if χ (resp. χ)

is non-trivial, then

H1
f (GL,Fl(εlχ)) = H1(GL,Fl(εlχ))

(resp.

H1
f (GL,Zl(εlχ)) = H1(GL,Zl(εlχ))).

Also note that

H1(GL,Fl(εl))/H
1
f (GL,Fl(εl))

∼= Fl.

Lemma 7.2.2. The map

H1
f (GL,Zl(εlχ)) −→ H1

f (GL,Fl(εlχ))

is always surjective.

Proof. We will consider three cases. If the reduction of χ is non-trivial,

we may suppress the f and the cokernel is simply H2(GL,Zl(εlχ))[l]. Because

H0(GL,Ql/Zl(χ
−1)) = (0), Tate duality shows that this cokernel is zero.

Suppose now that χ is non-trivial but that χ is trivial. Using duality as

above, we have an exact sequence

H1(GL,Zl(εlχ)) −→ H1(GL,Fl(εl)) −→ Fl −→ (0).
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The image of H1(GL,Zl(εlχ)) = H1
f (GL,Zl(εlχ)) in H

1(GL,Fl(εl)) is contained

in H1
f (GL,Fl(εl)). As H1(GL,Fl(εl))/H

1
f (GL,Fl(εl))

∼= Fl, we conclude that

this image equals H1
f (GL,Fl(εl)), as desired.

Suppose finally that χ = 1. In this case the assertion of the lemma is just

the surjectivity of

lim
←r
O×L/(O×L )l

r
� O×L/(O×L )l. �

We will need a slight strengthening of [BLGGT14, Th. 3.1.2], which we

now state. We will use the notation and definitions from [BLGGT14]. The

proof of this theorem given in [BLGGT14] immediately proves this variant also.

Proposition 7.2.3. Suppose that

• F/F0 is a finite, Galois extension of totally real fields ;

• I is a finite set ;

• for each i ∈ I , ni is a positive even integer, li is an odd rational prime, and

ıi : Qli

∼−→ C;

• F avoid/F is a finite Galois extension ;

• L is a finite set of rational primes that are unramified in F and not equal to

li for any i ∈ I ; and
• r̄i : GF → GSpni

(Fli) is a mod li Galois representation with open kernel

and multiplier ε1−ni
li

, which is unramified above L.
Then we can find finite Galois extensions F suffices/F0 and F avoid

1 /Q, such that

• F suffices contains F and is linearly disjoint from F avoidF avoid
1 over F ;

• F avoid
1 and F avoid are linearly disjoint over Q; and

• F suffices is totally real and unramified above L
and that has the following property : For each finite totally real extension

F1/F
suffices which is linearly disjoint from F avoidF avoid

1 over F and for each

i ∈ I , there is a regular algebraic, cuspidal, polarized automorphic representation

(πi, χi) of GLni(AF1) such that

(1) (rli,ıi(πi), rli,ıi(χi)ε
1−ni
li

) ∼= (ri|GF1
, ε1−ni
li

);

(2) πi is ıi-ordinary of weight 0.

(In the notation of the proof of [BLGGT14, Th. 3.1.2] one must choose N

not divisible by any prime in L; Mi/Q unramified at primes in L and primes di-

viding N ; q unramified in F avoid(ζ4N ) and not in L; φi unramified above L and

all rational primes that ramify in F avoid; and l′ 6∈ L and not ramified in F avoid.

We set F avoid
1 = Q

ker
∏

i r
′
i(ζl′). It is linearly disjoint from F avoid over Q because

no rational prime ramifies in both these fields. We choose F ′/F (ζN )
+ to be

linearly disjoint from F avoidF avoid
1 F (ζN )+ over F (ζN )+ with F ′/F (ζN )+ unrami-

fied above L. The last choice is possible because ri and r′i are unramified above L,
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so that ri becomes isomorphic to Vni [λi]((N−1−ni)/2)0 and r′i becomes isomor-

phic to Vni [λ
′]((N − 1− ni)/2)0 over some unramified extension of F (ζN )

+
v for

any prime v above L. We take F suffices to be the field F ′. The fields F suffices and

F avoidF avoid
1 are linearly disjoint over F because F avoidF avoid

1 and F (ζN )
+ are

linearly disjoint over F , because, in turn, all primes dividing N are unramified

in F avoidF avoid
1 . The point P ∈ T̃ (F ′) also provides a point of T̃ (F1). Moreover

r′i(GF1(ζl′ )
) is adequate because F1 is linearly disjoint from F

ker ri(ζl′) over F .)

Corollary 7.2.4. Suppose thatM is a finite set of positive integers, that

E/Q is a non-CM elliptic curve, and that L is a finite set of rational primes at

which E has good reduction. Suppose also that F avoid/Q is a finite extension.

Then we can find

• a finite Galois extension F avoid
2 /Q linearly disjoint from F avoid over Q; and

• a finite totally real Galois extension F suffices/Q unramified above L such that

F suffices is linearly disjoint from F avoidF avoid
2 over Q;

that have the following property :

For any finite totally real extension F ′/F suffices, which is linearly disjoint

from F avoid
2 over Q, and for any m ∈M, there is a regular algebraic, cuspidal,

polarizable automorphic representation π of GLm+1(AF ′) of weight (0)τ,i such

that for some, and hence every, rational prime l and any ı : Ql
∼= C, we have

Symmm rE,l|∨GF ′
∼= rl,ı(π).

Moreover, π is unramified above any prime where E has good reduction.

Proof. We may, and will, suppose that F avoid/Q is Galois. Choose a

rational prime l ≥ maxm∈M 2(m+ 2) such that E has good ordinary reduction

at l, rE,l has image GL2(Fl), l 6∈ L, and l is unramified in F avoid. (By [Ser81,

Th. 20], the condition that E is ordinary at l excludes a set of primes of Dirichlet

density 0. By the main result of [Ser72], each of the other conditions excludes

a finite number of primes.) Note that Q
ker rE,l contains ζl and, by part 2 of

Lemma 7.1.8, is linearly disjoint from F avoid over Q.

Choose an imaginary quadratic field L that is unramified at all primes in L,
at all primes where E has bad reduction, and all primes that ramify in F avoid,

and in which l splits. Also choose a rational prime q 6∈ L ∪ {l} that splits as
vqv
′
q in L, that is unramified in F avoid and at which E has good reduction.

If m ∈M is even, also choose a character

ψm : GL −→ Q
×
l

such that

• ψm is crystalline above l with Hodge–Tate numbers 0 at one place above l

and m+ 1 at the other;
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• q|#(ψm/ψ
c
m)(GFnr

vq
);

• ψm is unramified above L and all primes that ramify in F avoid and all primes

at which E has bad reduction;

• ψmψcm = ε
−(m+1)
l .

([BLGGT14, Lem. A.2.5] tells us that this is possible.) The representation

Ind
GQ

GL
ψm has determinant ε

−(m+1)
l . (This is true on GL by the construction

of ψm and true on complex conjugation because m is even.)

Let L2 denote the compositum of theQ
ker Ind

GL
GQ

ψm form ∈M even. Let L1

denote the maximal sub-extension of L2 ramified only at l, and let T denote the

set of primes other than l that ramify in L2. Then L2∩Qker rE,l = L1∩Qker rE,l .

Let L3 = L2Q
ker rE,l . We will now show that F avoid is linearly disjoint from L3

over Q; the argument is somewhat involved, and the reader may find it helpful

to refer to the diagram of field extensions:

Q

L1 ∩Q
ker rE,l

Q(ζl) L1

Q
ker rE,l L1(ζl)

M1

L2

L3

SL2(Fl)

H

Let M1 denote the maximal subfield of L3 in which the primes of T are

all unramified. Then M1⊃Q
ker rE,l (because rE,l can only be ramified at l and

places where E has bad reduction), andM1∩L2=L1 andM1=L1Q
ker rE,l . Thus

Gal(M1/(L1 ∩Q
ker rE,l))

∼= Gal(Q
ker rE,l/(L1 ∩Q

ker rE,l))×Gal(L1/(L1 ∩Q
ker rE,l))

∼= Gal(M1/L1)×Gal(M1/Q
ker rE,l).
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As Gal(L1/Q) is soluble, we see that L1 ∩Q
ker rE,l ⊂ Q(ζl) and we see that

Gal(M1/Q
ker rE,l) is soluble and hence that Gal(M1/(L1 ∩Qker rE,l)) contains a

unique copy of SL2(Fl) (because this latter group is perfect and, in particular,

admits no solvable quotient), and this copy is therefore normal in Gal(M1/Q).

Its fixed field is L1(ζl).

Let H be the subgroup of Gal(M1/Q) generated by the inertia groups

above l. The group H maps surjectively to Gal(Q
ker rE,l/Q) (because H

is normal, and the only subfield of Q
ker rE,l unramified at l is Q itself, by

Lemma 7.1.8) and so must contain the unique copy of SL2(Fl). Thus the

maximal sub-extensionM0 of L3 in which l and all elements of T are unramified

is contained in L1(ζl). This latter field is only ramified above l and so M0 = Q.

Finally we deduce that F avoid is linearly disjoint from L3 over Q (using that

all of the primes in T ∪ {l} are unramified in F avoid).

If m ∈M is odd, set

rm = Symmm r∨E,l : GQ −→ GSpm+1(Ql).

It has multiplier ε−ml , is unramified above L, and is crystalline and ordinary at

l with Hodge–Tate numbers {0, 1, . . . ,m}. If m ∈M is even, set

rm = (Symmm r∨E,l)⊗ Ind
GQ

GF
ψm.

As the representation (Symmm r∨E,l) is orthogonal with multiplier ε−ml , we see

that

rm : GQ −→ GSp2(m+1)(Ql)

with multiplier ε
−(2m+1)
l . It is unramified above L and it is crystalline and

ordinary at l with Hodge–Tate numbers {0, 1, . . . , 2m+ 1}.
We apply Proposition 7.2.3 to F = F0 = Q, {rm : m ∈M}, L and F avoidL3,

producing fields F avoid
1 and F suffices. Set F avoid

2 = F avoid
1 L3. Then F avoid

2 is

linearly disjoint from F avoid over Q, and F suffices is linearly disjoint from

F avoidF avoid
2 over Q.

Suppose that F ′/F suffices is a finite totally real extension linearly disjoint

from F avoid
2 over Q. Then Symmm SL2(Fl) ⊂ Symmm r∨E,l(GLF ′(ζl)), and so for

m ∈M, the tautological representation of the subgroup of Symmm r∨E,l(GLF ′(ζl))

generated by its elements of l-power order is absolutely irreducible. If m ∈M
is even, then rm|GLF ′(ζl)

is the direct sum of two absolutely irreducible con-

stituents. The group Gal(L3F
′/Q

ker rE,lLF ′) acts by different characters on

these two constituents, and Gal(Q
ker rE,lLF ′/Q

ker rE,lF ′) interchanges these

two characters. (Consider the action of inertia above q.) Thus rm|GF ′(ζl)
is

absolutely irreducible. It follows from [BLGGT14, Prop. 2.1.2] that for m ∈M
odd or even, rm(GF ′(ζl)) is adequate.
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Combining Proposition 7.2.3 with [BLGGT14, Th. 2.4.1], we deduce that

rm is automorphic for m ∈ M. It follows (using, in the case that m is

even, [BLGGT14, Lem. 2.2.4] and the argument of [CHT08, Lem. 4.2.2]) that

Symmm r∨E,l|GF ′ is automorphic. This finishes the proof of the corollary. �

7.2.5. The main proof. Finally we turn to the proof of Theorem 7.1.11.

Proof of Theorem 7.1.11. Choose a non-CM elliptic curve E/Q with good

reduction above L0. Choose distinct rational primes l1 and l2 and a prime λi|l2
of Mi for each i ∈ I such that

Assumption 7.2.6.

(1) l2 splits completely in each Mi.

(2) The image ofGF on E[l1] contains SL2(Fl1), and ri,λi(GF ) contains SL2(Fl2)

for each i ∈ I.
(3) l1 and l2 are unramified in F .

(4) E has good reduction above l1 and l2.

(5) l1 and l2 lie under no prime of any Si.

(6) l1, l2 > 2mi + 3 for all i.

This is possible because all the conditions are satisfied for a set of primes

of Dirichlet density 1 (using Lemma 7.1.3), except for the first condition for l2,

which is satisfied for a set of primes of positive Dirichlet density.

Set L = L0 ∪ {l1, l2}. The weakly compatible system of characters

(Mi, Si, li, {q−1v Qi,v(0)}, {εl det ri,λ}, {{0}})
has all Hodge–Tate numbers 0 and so there is a character ψi : GF →M×i with

open kernel unramified outside Si such that det ri,λ = ψiε
−1
l for all λ (a prime

of Mi with residue characteristic l). There is a sequence

Hom(GF ,M
×
i )

2−→ Hom(GF ,M
×
i )

∂−→ H2(GF , {±1}) = BrF [2] ↪→ ⊕vBrFv [2],

which is exact at the second term. The element ∂ψi is non-trivial only at

places v ∈ Si. We can find a soluble Galois totally real extension F+
1 /Q,

unramified above L and linearly disjoint over Q from the normal closure F avoid
1

of F avoid
0 F

ker(rE,l1
×
∏

i ri,λi ) over Q, such that for each v ∈ ⋃i∈I Si, the rational

prime pv below v has inertia degree in F+
1 divisible by 2[Fv : Qpv ]. (See, for

instance, [CHT08, Lem. 4.1.2].) Then we see that for each i ∈ I, ∂ψi|G
FF+

1

is

trivial so that there is a continuous homomorphism

φi : GFF+
1
−→M

×
i

such that φ2i = ψi|G
FF+

1

. For v|l ∈ L, we see that φi|2I
FF+

1 ,v
= 1. By the

Grunwald–Wang theorem (see Theorem 5 of Chapter X of [AT09]), we can find
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a continuous character δi : GFF+
1
→ {±1} such that φiδi is unramified at all

places above L. Replacing φi by φiδi we may suppose that φi is unramified at

all places above L. Set
R′i = R|GFF+

1

⊗ φ−1i

with S′i = Si.

We apply Corollary 7.2.4 to {mi : i ∈ I}, E, L and F avoid
1 F+

1 . We obtain

a finite Galois extension F avoid
2 /Q linearly disjoint from F avoid

1 F+
1 over Q and

a finite totally real Galois extension F+,suffices/Q, which is unramified above L
and linearly disjoint from F avoid

1 F avoid
2 F+

1 over Q. Set F avoid = F avoid
1 F avoid

2 . It

is Galois over Q, and certainly contains F
ker(rE,l1

×
∏

i ri,λi ) ⊂ F avoid
1 by definition.

Moreover, it is linearly disjoint from F+
1 F

+,suffices over Q. (See the diagram of

field extensions later in this proof.)

Let Vr′i,λi
denote the vector space underlying r′i,λi , and give it a non-

degenerate symplectic pairing, which r′i,λi will then preserve up to multiplier ε−1l2 .

Let Yi/FF
+
1 denote the moduli space of elliptic curves D along with isomor-

phisms α1 : E[l1]
∼−→ D[l1] and α2 : V ∨r′i,λi

∼−→ D[l2], which preserve symplectic

pairings. Let Xi/F
+F+

1 denote the restriction of scalars of Yi.

If v is an infinite place of F+F+
1 , then a point of Xi((F

+F+
1 )v) is the same

as an (FF+
1 )v-point of Yi and hence Xi((F

+F+
1 )v) 6= ∅.

Suppose that w is a place of F+
1 F above L0∪{l1}. Then we can find a pos-

itive integer f such that r′i,λi(Frobw)
−f ∼ rE,l2(Frobw)f . Thus E gives rise to a

point of Yi over the unramified extension of degree f of (F+
1 F )w. Hence Xi has a

point over an unramified extension of (F+
1 F

+)v for every place v above L0 ∪ {l1}.
Moreover this point corresponds to an elliptic curve with good reduction.

Now suppose that v is a place of F+
1 F

+ above l2. We will show that Xi

has a rational point over an unramified extension of (F+
1 F

+)v corresponding

to an elliptic curve with good reduction. It suffices to show that Yi has a point

over an unramified extension of (F+
1 F )w for every prime w of F+

1 F over v and

that this point corresponds to an elliptic curve with good reduction. Because

Ql2
∼= Mi,λi , part 1 of Lemma 7.1.8 implies that the restriction r′i,λi |G(F+

1 F )w

must have one of the following two forms:

(1) the induction from the unramified quadratic extension of (F+
1 F )w of ω−1l2,2δ,

where δ is the unramified quadratic character;

(2)
(
χ ∗

0 χ−1ε−1
l2

)
, where χ is unramified and where the extension class is peu

ramifié in the sense that it lies in

H1
f (G(F+

1 F )w
,Fl2(εl2χ

2)) ⊂ H1(G(F+
1 F )w

,Fl2(εl2χ
2)).
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(While the statement of Lemma 7.1.8 does not prescribe the direction of the

extension in the second possibility, nor specify that it is peu ramifié, these follow

easily from the connected-étale sequence for the finite flat group scheme H

considered in the proof of Lemma 7.1.8.) In the first case, let D/(F+
1 F )w be an

elliptic curve with good supersingular reduction. Choose a positive integer f

such that rE,l1(Frobv)
2f = (−l2)f mod l1. Then D provides a point of Yi over

the unramified extension of (F+
1 F )w of degree 2f .

In the second case, let D/k(w) be an ordinary elliptic curve, and let

ψ : Gk(w) → Z×l2 denote the character by which Gk(w) acts on the Tate module

Tl2D. If L/Fw is a finite extension then, by Serre–Tate theory, liftings of D to

OL are parametrized by H1(GL,Zl2(εl2ψ
−2)) = H1

f (GL,Zl2(εl2ψ
−2)), and we

shall write De for the lifting corresponding to a class e. (Note that ψ−2 always

has infinite order.) Then

rDe,l2
∼=
Ç
εl2ψ

−1 ∗
0 ψ

å
,

and the extension class is the image of e in H1
f (GL,Fl2(εl2ψ

−2
)). Choose a

positive integer f such that χf = 1 and ψf ≡ 1 mod l2 and rE,l1(Frobl2)
f = 1

and Frobfw = 1 on D[l1](k(w)). Let L/Fw denote the unramified extension

of degree f , and let e ∈ H1
f (GL,Zl2(εl2ψ

−2)) lift the negative of the class

of r′i,λi |GL
in H1

f (GL, k(w)(εl2χ
2)). (The existence of such an e follows from

Lemma 7.2.2.) Then De/L has De[l1] ∼= E[l1] and rDe,l2
∼= (r′i,λi)

∨.

It follows (for instance, by [BLGGT14, Prop. 3.1.1]) that there is a finite

extension F+
2 /F

+
1 F

+ such that

• F+
2 is Galois over F+

0 ;

• F+
2 is totally real;

• all primes above L are unramified in F+
2 /F

+, and Di has good reduction

at all primes in L;
• F+

2 is linearly disjoint over F+
1 F

+ from F avoidF+,sufficesF+
1 ;

• ∏iXi has an F
+
2 -rational point, i.e., there exist elliptic curves Di over F2

such that Di[l1] ∼= E[l1]|GF2
and Di[l2] ∼= r′i,λi |

∨
GF2

.

Set F suffices = F+,sufficesF+
2 F , a CM extension of F that is unramified above

L and Galois over F0. We now show that this is linearly disjoint from F avoid

over F ; the reader may find it helpful to consult the diagram of field exten-

sions below. As F+,suffices is linearly disjoint from F+
1 F

avoid over Q, we see

that F+F+
1 F

+,suffices is linearly disjoint from F+
1 F

avoid over F+F+
1 , and so

F+
2 F

+,suffices is linearly disjoint from F+
1 F

avoid over F+F+
1 . Thus F suffices is

linearly disjoint from F+
1 F

avoid over FF+
1 . On the other hand, F+

1 is linearly

disjoint from F avoid over Q and so F avoid is linearly disjoint from FF+
1 over F .
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We conclude that F suffices is linearly disjoint from F avoid over F :

QF+,suffices

F+F+
1 F

+,suffices F+F+
1 F

F+,sufficesF+
2 F+

2 FF+
1 F avoid

F suffices F+
1 F

avoid

Suppose that F ′/F is a finite CM extension containing F suffices and that is

unramified above L and linearly disjoint from F avoid over F .

By Corollary 7.2.4, there are regular algebraic, cuspidal, polarizable auto-

morphic representations πi of GL1+mi(AF ′) unramified above L and of weight

(0)τ,z such that for any ı : Ql1
∼= C, we have

Symmmi rE,l1 |∨GF ′
∼= rl1,ı(πi).

Applying Theorem 6.1.1 (the conditions on the residual representations are

satisfied by parts (1), (2) and (4) of Lemmas 7.1.6 and 7.1.8), we see that there

are regular algebraic, cuspidal automorphic representations π′i of GL1+mi(AF ′)

unramified above L and of weight (0)τ and ı : Ql1
∼= C such that

Symmmi rDi,l1 |∨GF ′
∼= rl1,ı(π

′
i),

and so, for some ı : Ql2
∼= C, we have

Symmmi rDi,l2 |∨GF ′
∼= rl2,ı(π

′
i).

Applying Theorem 6.1.1 again (the conditions on the residual representations

again being satisfied by parts (1), (2) and (4) of Lemma 7.1.6 and Lemma 7.1.8)

we see that there are regular algebraic, cuspidal automorphic representations

π′′i of GL1+mi(AF ′) unramified above L and of weight (0)τ,i, and ı : Ql2
∼= C

such that
Symmmi r′i,λi |GF ′

∼= rl2,ı(π
′′
i ).

Untwisting completes the proof of Theorem 7.1.11. �
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(4) 13 no. 2 (1980), 165–210. MR 0584084. Zbl 0441.22014. Available

at http://www.numdam.org/item?id=ASENS 1980 4 13 2 165 0.

(Received: December 24, 2018)

(Revised: June 14, 2022)

McGill University, Montreal, Canada

E-mail : patrick.allen@mcgill.ca

University of Chicago, Chicago, IL, USA

E-mail : fcale@math.uchicago.edu

Mathematisches Institüt der Universität de Bonn, Bonn, Germany and

Department of Mathematics, Imperial College London, London, UK

E-mail : caraiani.ana@gmail.com

Imperial College London, London, UK

E-mail : toby.gee@imperial.ac.uk

Imperial College London, London, UK

E-mail : d.helm@imperial.ac.uk

Northwestern University Evanston, IL, USA

E-mail : lhvietbao@googlemail.com

Mathematical Institute, University of Oxford, Oxford, UK

E-mail : newton@maths.ox.ac.uk

Mathematisches Institüt der Universität de Bonn, Bonn, Germany

E-mail : scholze@math.uni-bonn.de

Stanford University, Stanford CA, USA

E-mail : rltaylor@stanford.edu

Department of Pure Mathematics and Mathematical Statistics,

University of Cambridge, Cambridge, UK

E-mail : thorne@dpmms.cam.ac.uk


	1. Introduction
	1.1. A brief overview of the argument
	Acknowledgments
	1.2. Notation

	2. Preliminaries on the cohomology of locally symmetric spaces and Galois representations
	2.1. Arithmetic locally symmetric spaces: generalities
	2.2. Arithmetic locally symmetric spaces: the quasi-split unitary group
	2.3. Some automorphic Galois representations
	2.4. Boundary cohomology

	3. Local-global compatibility, l ne p
	3.1. Statements
	3.2. The proof of [prop:lgcatlneqpdetversion]Proposition 3.1.2

	4. Local-global compatibility, l eq p (Fontaine–Laffaille case)
	4.1. Statements
	4.2. A direct summand of the boundary cohomology
	4.3. Cohomology in the middle degree
	4.4. The degree shifting argument
	4.5. The end of the proof

	5. Local-global compatibility, l eq p (ordinary case)
	5.1. Statements
	5.2. Hida theory
	5.3. The ordinary part of a parabolic induction
	5.4. The degree shifting argument
	5.5. The end of the proof

	6. Automorphy lifting theorems
	6.1. Statements
	6.2. Galois deformation theory
	6.3. Avoiding Ihara's lemma
	6.4. Ultrapatching
	6.5. The proof of [thm:mainautomorphyliftingtheorem]Theorem 6.1.1
	6.6. The proof of [thm:mainordinaryautomorphyliftingtheorem]Theorem 6.1.2

	7. Applications
	7.1. Compatible systems
	7.2. Proof of the main potential automorphy theorem

	References

