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Summary

AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido

synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies

demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense

hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to

form isochorismate-9-glutamate, which is then used to produce SA through spontaneous

decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its

function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive

regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-

off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory

effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also

plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis

flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C

and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of

plant development and responses to biotic and/or abiotic stresses, but the molecular

mechanisms underlying its diverse roles remain obscure.

Introduction

Plants have developed a sophisticated immune system to resist the
invasion of pathogens. This system not only shares similarities with
the innate immune system of animals, but also has some unique
defense mechanisms. Plants can produce a powerful defense
hormone, salicylic acid (SA), which is required for broad-spectrum
disease resistance and induces systemic acquired resistance (SAR)
against biotrophic and semibiotrophic pathogens (Klessig
et al., 2018; Peng et al., 2021). The SA biosynthetic pathway is
well elucidated in the model plant Arabidopsis thaliana. A previous
study identified Arabidopsis ISOCHORISMATE SYNTHASE 1

(ICS1) as an enzyme in pathogen-induced SA biosynthesis
(Wildermuth et al., 2001). In the chloroplast, ICS1 catalyzes the
formation of isochorismic acid (IC) from chorismic acid. The
Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY 5
(EDS5) protein acts as a transporter to transport IC from the
chloroplast into the cytoplasm (Rekhter et al., 2019). However,
how IC is further catalyzed into functional SA in the cytoplasm
remained elusive for a long time. In 2019, two research groups
reported that Arabidopsis acyl acid amido synthetase AVRPPHB
SUSCEPTIBLE 3 (PBS3), also known as GRETCHENHAGEN
3.12 (GH3.12), conjugates glutamate to IC to produce
isochorismate-9-glutamate (IC-9-Glu), which is then used to
produce SA (Rekhter et al., 2019; Torrens-Spence et al., 2019).
This groundbreaking discovery fills a long-standing gap in plant SA*These authors contributed equally to this work.
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biosynthesis. However, many studies have shown that the function
of PBS3 is not limited to SA biosynthesis.

Plant immune system

The plant immune system consists of two layers of plant defense
responses. Pattern recognition receptors (PRRs) on the plant cell
surface recognize conserved molecules of plant pathogens called
pathogen-associated molecular patterns (PAMPs) to activate
PAMP-triggered immunity (PTI), which is the first layer of plant
immune responses. To enhance pathogenicity, pathogens secrete
effectors into plant cells to suppress PTI. Facing this challenge,
plant intracellular resistance (R) proteins, which are also known as
nucleotide-binding domain and leucine-rich repeat containing
receptors (NLRs), can directly or indirectly recognize pathogen-
secreted effectors, thereby inducing a stronger immune response
than PTI, termed effector-triggered immunity (ETI) (Chisholm
et al., 2006; Jones & Dangl, 2006).

Twomajor classes of plant PRRs that confer PTI are leucine-rich
repeat receptor-like kinases (LRR-RLKs) and leucine-rich repeat
receptor-like proteins (LRR-RLPs) (W. L. Wan et al., 2019). For
example, the LRR-RLK protein FLAGELLIN-SENSITIVE 2
(FLS2) recognizes flg22, a conserved 22-amino-acid peptide from
bacterial flagellin (Zipfel et al., 2004); the LRR-RLP protein
RECEPTOR LIKE PROTEIN 23 (RLP23) recognizes nlp20, a
conserved 20-amino-acid peptide of NECROSIS AND
ETHYLENE-INDUCING PEPTIDE 1-LIKE PROTEINS
(NLPs) secreted by a wide range of plant-associated microbes
(Albert et al., 2015). Unlike LRR-RLKs, LRR-RLPs do not have a
cytoplasmic kinase domain. Instead, they form a constitutive
heteromeric complex with the LRR-RLK protein SUPPRESSOR
OF BIR1 1 (SOBIR1) (Liebrand et al., 2014). Upon ligand
binding, LRR-RLKs and LRR-RLP/SOBIR1 complexes recruit
the co-receptor protein BRI1-ASSOCIATED RECEPTOR
KINASE 1 (BAK1) to transduce downstream immune signaling
(W. L. Wan et al., 2019).

Based on the difference in theN-terminus, themajority ofNLRs
are classified into three types: coiled-coil (CC) NLRs (CNLs), toll/
interleukin-1 receptor (TIR) NLRs (TNLs), and RPW8-like
coiled-coil (CCR) NLRs (RNLs) (Shao et al., 2019). The CNL
protein HOPZ-ACTIVATEDRESISTANCE 1 (ZAR1) has been
shown to form a narrow pore on the plasmamembrane as the Ca2+-
permeable channel to trigger cell death and plant immunity (Wang
et al., 2019; Bi et al., 2021). Unlike CNLs, some TNLs have been
shown to possess the nicotinamide adenine dinucleotide (NAD+)
hydrolase (NADase) activity and the 20,30-cAMP/cGMP syn-
thetase activity, which are required for the activation of down-
stream immune responses (Horsefield et al., 2019; L. Wan
et al., 2019; Yu et al., 2022). Notably, the cell death induction
activity of TNLs requires the help of other proteins, such as EDS1
and RNLs (RNLs are also known as ‘helper’ NLRs) (L. Wan
et al., 2019). In Arabidopsis, ACTIVATED DISEASE RESIS-
TANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1)
are two subfamilies of RNLs, and both of themhave been proven to
form Ca2+ channels (Jacob et al., 2021).

Even though PTI and ETI are triggered by different elicitors,
they eventually lead to similar downstream defense responses. Both
PTI and ETI can induce reactive oxygen species (ROS) burst,
mitogen-activated protein kinase pathway, PATHOGENESIS-
RELATED (PR) gene expression, and SA accumulation (Lu &
Tsuda, 2021). Increasing evidence suggests that PTI and ETI share
common signaling components (Ngou et al., 2021; Pruitt
et al., 2021; Tian et al., 2021; Yuan et al., 2021; Chang
et al., 2022). The PRR/co-receptor triple mutants fls2 efr cerk1
(fec) and bak1 bkk1 cerk1 (bbc) are markedly impaired in ETI
responses, indicating that PTI is necessary for a robust ETI response
(Yuan et al., 2021). The ETI responses mediated by NLR proteins
can be strongly enhanced by the activation of PRR proteins (Ngou
et al., 2021). TheNLRproteins potentiate the activation of key PTI
signaling components by increasing their mRNA levels or protein
accumulation (Ngou et al., 2021). The intracellular signaling
protein EDS1 forms distinct protein complexes with PHYTOA-
LEXIN DEFICIENT 4 (PAD4) and SENESCENCE ASSO-
CIATEDGENE 101 (SAG101) to mediate ETI responses (Lapin
et al., 2020;Dongus&Parker, 2021). Recent studies found that the
EDS1–PAD4–ADR1 and the EDS1–SAG101–NRG1 nodes are
convergent points for PTI and ETI (Pruitt et al., 2021; Tian
et al., 2021). Altogether, these data indicate that PTI and ETI
responses can bemutually enhanced, and their crosstalk is necessary
for conferring stronger plant defense responses.

Diverse roles of SA in plant immunity

Salicylic acid is a phenolic plant defense hormone. Pathogen
infection induces the accumulation of SA in plants, and highly
accumulated SA modulates the expression of immune-related
genes, such as PR genes, indicating that SA plays an important role
in plant immune signaling (Vlot et al., 2009). Salicylic acid is also
closely related to ETI. Usually ETI is accompanied by a rapid
localized programmed cell death (PCD) called hypersensitive
response (HR). Salicylic acid plays dual roles in regulating PCD of
plants (Radojicic et al., 2018). Effector-triggered immunity
induced by the Pseudomonas syringae type III effector AvrRpm1
or AvrRpt2 results in a dramatic increase in SA level in an ICS1-,
EDS5-, andPBS3-dependentmanner (Nawrath&Metraux, 1999;
Jagadeeswaran et al., 2007; Nobuta et al., 2007; Chen et al., 2022).
Salicylic acid strongly accumulates in some lesion mimic mutants,
such as lesion-simulating disease 6 (lsd6), lsd7, accelerated cell death 6
(acd6), and acd11mutants, which exhibit a spontaneous cell death
phenotype. The cell death phenotypes can be suppressed by
expressing the salicylate hydroxylase geneNahG in thesemutants to
prevent SA accumulation (Weymann et al., 1995; Rate et al., 1999;
Brodersen et al., 2005). However, other lesion mimic mutants,
such as lsd2 and lsd4, do not require SA accumulation to activate
spontaneous cell death (Dietrich et al., 1994; Hunt et al., 1997). In
the meanwhile, elevated SA levels have been observed in some
autoimmune mutants without the spontaneous cell death pheno-
type (Yu et al., 1998; Li et al., 2001). These results indicate that
PCD in ETI is not a necessary condition for activating SA
biosynthesis.

� 2022 The Authors
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Besides, emerging evidence shows that the activation of SA
biosynthesis and signaling can negatively regulate PCD in ETI.
Both SA pretreatment and overexpression of SA receptor
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES
1 (NPR1) can inhibit HR activated by the P. syringae type III
effector AvrRpm1, while npr1mutants or NahG transgenic plants
show a stronger PCD (Rate & Greenberg, 2001; Devadas &
Raina, 2002). In the SA biosynthesis defective eds5 mutants, the
P. syringae type III effector AvrRpt2 can induce stronger PCD
compared with wild-type plants (Radojicic et al., 2018). Preinfec-
tion by P. syringae carrying AvrRpt2 can significantly inhibit PCD
induced by secondary infection in adjacent leaf tissues, and this
inhibition is dependent on SA biosynthesis and signaling (Zavaliev
et al., 2020). Mechanistically, NPR1 can accumulate in the
cytoplasm by forming protein condensates together with many
stress response proteins, and the SA-induced NPR1 condensate
(SINC) has been proven to be essential for the inhibition of cell
death induced by AvrRpt2 (Zavaliev et al., 2020). Interestingly, the
SINC can recruit the Cullin3 E3 ubiquitin ligase in the cytoplasm
for protecting cell survival in ETI responses by degrading the
SINC-localized substrates, such as EDS1 (Zavaliev et al., 2020).

Salicylic acid is also a core regulator of SAR in plant immunity
(Klessig et al., 2018). The biosynthesis and signaling of SA are
necessary for plants to establish immune responses in infected and
noninfected tissues. The SAR-positive regulator NPR1 and the
SAR-negative regulator NPR3/NPR4 have been identified as SA
receptors, with NPR1 as a transcriptional coactivator and NPR3/
NPR4 as transcriptional co-repressors (Fu et al., 2012; Wu
et al., 2012; Ding et al., 2018). Notably, SA itself is not a mobile
signalingmolecule of SAR (Vernooij et al., 1994). A variety of SAR
signaling molecules have been identified, such as SA derivative
methyl salicylate (Park et al., 2007), azelaic acid (Jung et al., 2009),
glycerol-3-phosphate (Chanda et al., 2011), dehydroabietinal
(Chaturvedi et al., 2012), and pipecolic acid (Navarova
et al., 2012). Pipecolic acid can be converted to another mobile
signaling molecule N-hydroxypipecolic acid (NHP) by FLAVIN-
DEPENDENT-MONOOXYGENASE 1 (FMO1), which func-
tions as a pipecolate N-hydroxylase (Chen et al., 2018; Hartmann
et al., 2018). As a mobile signal, NHP plays a crucial role in
initiating SAR signaling in Arabidopsis, and NHP can be further
catalyzed to a nonmobile molecule NHP-O-glycoside (NHP-
OGlc) by the glycosyltransferase UGT76B1 to balance growth and
defense responses (Bauer et al., 2021;Holmes et al., 2021;Mohnike
et al., 2021).

SA functions in plant responses to abiotic stresses

In addition to regulating biotic stresses, SA also plays a significant
role in plant responses to abiotic stresses, such as salinity, drought,
heat, osmotic, andmetal stresses (Khan et al., 2015). In general, the
dramatically reduced or elevated level of SA can lead to enhanced
sensitivity of plants to abiotic stresses, indicating that maintaining
SA concentration in an appropriate range plays an important role in
plants to resist abiotic stresses (Yuan & Lin, 2008). Mechanisti-
cally, the regulatory effect of SA on abiotic stresses is related to the
accumulation of ROS, which acts as a secondmessenger to regulate

further physiological activities of plants (Qi et al., 2017; Van
Butselaar &Van den Ackerveken, 2020). The protective role of SA
in abiotic stresses is mainly due to the induction of antioxidant
system components, which has been confirmed inArabidopsis, rice,
and other plants (Khan et al., 2015; Nadarajah et al., 2021).

Salicylic acid also interacts with other phytohormones to
regulate plant responses to abiotic stresses, and the crosstalk
between these phytohormones plays an essential role in balancing
biotic and abiotic stress responses of plants (Khan et al., 2015).
Abiotic stresses can induce the synthesis of plant stress hormone
abscisic acid (ABA) and improve plant tolerance to abiotic stresses
(Sah et al., 2016). In Arabidopsis, studies have found that ABA can
inhibit the expression of ICS1 and promote the degradation of SA
receptor NPR1 through the 26S proteasome pathway (Yasuda
et al., 2008;Ding et al., 2016), indicating thatABAcan suppress the
SA-mediated immune response during plant responses to abiotic
stresses.

Discovery of PBS3

Warren et al. (1999) identified three Arabidopsis mutants pbs1,
pbs2, andpbs3,which show increased susceptibility to theP. syringae
avirulent effector AvrPphB by genetic screening. The PBS3 gene
was also identified by other screening methods and named GH3-
LIKE DEFENSE GENE 1 (GDG1) (Jagadeeswaran et al., 2007)
and HOPW1-1-INTERACTING 3 (WIN3) (Lee et al., 2007).
Loss-of-function of PBS3 results in increased susceptibility to both
virulent P. syringae pv. tomato (Pst) DC3000 strains and Pst
DC3000 strains carrying the avirulent genes AvrB, AvrRpt2,
AvrRps4, or AvrPphB, indicating that PBS3 functions in both basal
resistance and R protein (including RPM1, RPS2, RPS4, and
RPS5)-mediated resistance (Warren et al., 1999). In the past two
decades, many new features of PBS3 have been found, but the
whole picture about the role ofPBS3 in plant cells is still in themist.

PBS3 is involved in plant immunity

PBS3 is a key SA biosynthesis enzyme

AVRPPHB SUSCEPTIBLE 3, also known as GH3.12, belongs to
the GH3 family which can conjugate amino acids to diverse acyl
acid substrates through a two-step mechanism. Notably, the
subfamily of GH3 proteins that PBS3/GH3.12 is a member of is
only found in Arabidopsis to date (Jez, 2022). The first step is the
adenylation reaction, forming an acyl-adenylate intermediate by
transferring AMP fromATP to the carboxylic acid group of an acyl
substrate. The second step is the transferase reaction, in which a
specific amino acid is conjugated to the acyl substrate. AVRPPHB
SUSCEPTIBLE 3 has been proven to be specific for glutamate
(Glu) in the transferase reaction (Okrent et al., 2009; Westfall
et al., 2012).

The PBS3 protein has a large N-terminal domain and a small C-
terminal domain (PDB: 4EPM) (Fig. 1;Westfall et al., 2012). The
N-terminal domain (1–419 aa) contains one b barrel, two b sheets,
and several a helices. The C-terminal domain (420–575 aa) is
composed of four b sheets in the center flanked with two a helices
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on each side. One flexible hinge loop (Val420-Glu432) connects the
N- and C-terminal domains at the interface between b15 and a15,
and this loop structure is essential for the rotation of C-terminal
domain during the catalytic process. The active sites of PBS3 are
located at the junction of the N- and C-terminal domains (Fig. 1).
Ser328, Asp398, and Lys550 are the key amino acids for the
association of PBS3 with ATP/AMP, and Glu329 is crucial for the
interaction of PBS3 with Mg2+. Successful bindings of PBS3 with
ATP/AMP andMg2+ are the basis of the adenylation reaction. For
the transferase reaction, two lysine residues Lys428 and Lys146 have
been proven to be essential for conjugatingGlu to the acyl substrate
catalyzed by PBS3.

In pbs3 mutants, SA accumulation induced by pathogen
infection is significantly compromised compared with the wild-
type Arabidopsis Col-0 (Jagadeeswaran et al., 2007; Nobuta
et al., 2007). Besides, SA pretreatment can restore the basal
resistance deficiency of pbs3 mutants to Pst DC3000 (Jagadees-
waran et al., 2007), suggesting an essential role of SA in PBS3-
mediated immunity. Due to the amino acid conjugation activity of
GH3 family proteins, PBS3 was originally proposed to be
functional in SA biosynthesis or metabolism. However, in vitro
biochemical and structural studies proved that SA is an extremely
poor substrate of PBS3 (Okrent et al., 2009). In contrast, PBS3
shows stronger binding activity to 4-substituted benzoates, such as
4-aminobenzoate and 4-hydroxybenzoate (4-HBA), and the latter
is a para isomer of SA (SA also can be seen as 2-HBA) (Okrent
et al., 2009). Surprisingly, SA specifically and reversibly inhibits the
binding activity of PBS3 to these 4-substituted benzoates (Okrent
et al., 2009). These results make the exact enzyme activity of PBS3
seem confusing for a rather long time.

Until 2019, two independent groups reported that PBS3
functions as an acyl acid amido synthetase, which catalyzes the
conjugation of Glu to IC to form IC-9-Glu, which is then
spontaneously degraded to SA and a by-product (2-hydroxy-
acryloyl-N-glutamate) (Fig. 2; Rekhter et al., 2019; Torrens-
Spence et al., 2019). Interestingly, another protein called
ENHANCED PSEUDOMONAS SUSCEPTIBILITY 1 (EPS1)
was reported to promote the decomposition of IC-9-Glu to SA by

its IC-9-Glu pyruvoyl-glutamate lyase activity (Torrens-Spence
et al., 2019). These two studies make the IC pathway of SA
biosynthesis in Arabidopsis complete. In the chloroplast, choris-
mate produced from phosphoenolpyruvate and erythrose-4-
phosphate is converted to IC by ICS1 (Wildermuth et al., 2001).
The chloroplast envelop-localized EDS5 was believed to function
as a MATE-transporter protein to transport SA from the chloro-
plast into the cytoplasm (Serrano et al., 2013). However, there is
also evidence, which supports the idea that EDS5 functions to
export IC, rather than SA, into the cytoplasm (Rekhter et al., 2019).
In the cytoplasm, PBS3 conjugatesGlu to IC to generate IC-9-Glu,
which can then be converted to SA by the enzyme EPS1 or through
spontaneous decay (Rekhter et al., 2019; Torrens-Spence
et al., 2019). Interestingly, another group found that PBS3 also
can use chorismate as a substrate with an eightfold higher activity
compared with 4-HBA and catalyze the conjugation of Glu to
chorismate (Holland et al., 2019), which leads to a new question
whether chorismate–Glu can be used as an intermediate in SA
biosynthesis or metabolism.

PBS3 is a positive regulator in ETImediated by bothCNLs and
TNLs

In the Arabidopsis ecotype Col-0 wild-type plants, infection by
virulent Pst DC3000 or P. syringae pv maculicola (Psm) ES4326
significantly induces the expression of PBS3, whereas avirulent
P. syringae strains carrying the type III effector AvrRpm1,
AvrRpt2, or AvrRps4 can activate PBS3 expression more rapidly
(Thilmony et al., 2006; Jagadeeswaran et al., 2007; Lee
et al., 2007). These results imply a potential role of PBS3 in
ETI. To analyze the function of PBS3, researchers obtained pbs3
mutants in different ways. The pbs3-1 mutant is generated
through ethyl methanesulfonate mutagenesis (Warren
et al., 1999), while the pbs3-2 mutant (SALK_018225, also
known as gdg1-1 or win3-T) is a T-DNA insertion line
(Jagadeeswaran et al., 2007; Lee et al., 2007; Nobuta
et al., 2007). Effector-triggered immunity induced by different
avirulent effectors were reduced in pbs3mutants at different levels

Fig. 1 Domains and key amino acids of AVRPPHB SUSCEPTIBLE 3 (PBS3) (PDB: 4EPM). AVRPPHB SUSCEPTIBLE 3 belongs to theGH3 family of enzymeswith
adenylation and transferase activities. During salicylic acid biosynthesis, PBS3 catalyzes the conjugation of glutamate (Glu) to isochorismate to generate
isochorismate-9-glutamate. The crystal structure of PBS3 shows that it contains a largeN-terminal domain (1–419 aa, blue area) anda small C-terminal domain
(420–575 aa, yellow area). The active sites are located at the interface of the two domains. Glu329 is the key amino acid forMg2+ binding (green arrow). Ser328,
Asp398, and Lys550 are the key amino acids for ATP/AMP binding (red arrow). Lys146 and Lys428 are the key amino acids for glutamate binding sites (purple
arrow).
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compared with the wild-type Arabidopsis Col-0 (Warren
et al., 1999; Lee et al., 2007). The loss of ETI activated by
AvrRpt2 (recognized by the CNL R protein RPS2) and AvrRps4
(recognized by the TNL R protein RPS4) in pbs3 mutants was
relatively more significant (Lee et al., 2007), indicating that PBS3
is involved in ETI signaling mediated by both CNL and TNL R
proteins.

EDS1 is a core regulator of both SA accumulation and ETI (Lapin
et al., 2020; Dongus & Parker, 2021). One study found that the C-
terminus (420–575 aa) of PBS3 can directly interact with EDS1 in
both the cytoplasm and the nucleus (Fig. 2; Chang et al., 2019).
Importantly, PBS3 promotes the protein stability of EDS1 by
inhibiting the 26S proteasome-mediated degradation, and EDS1 and
PBS3 contribute additively to both PTI and ETI (Chang et al., 2019).

Fig. 2 A proposed model illustrating AVRPPHB SUSCEPTIBLE 3 (PBS3)-mediated signaling network. AVRPPHB SUSCEPTIBLE 3 is a crucial enzyme in the
isochorismate (IC) pathway of salicylic acid (SA) biosynthesis in Arabidopsis. Biochemically, PBS3 conjugates glutamate (Glu) to IC to form isochorismate-9-
glutamate (IC-9-Glu) in the cytoplasm, and IC-9-Glu can be degraded to SA spontaneously or in cooperation with ENHANCED PSEUDOMONAS
SUSCEPTIBILITY 1 (EPS1). Salicylic acid is a core phytohormone in plant immune signaling. Upon pathogen infection, SA can induce the formation of
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) condensates in the cytoplasm, which are enriched with stress response proteins such as
Cullin3 E3 ubiquitin ligases (purple particles surround NPR1 condensates). The SA-induced NPR1 condensate is a hub in suppressing programmed cell death
during effector-triggered immunity (ETI). Importantly, PBS3 is also required for ETImediated byboth TIR-type andCC-type resistance (R) proteins. In addition,
PBS3 interacts with another immune signaling node protein ENHANCEDDISEASE SUSCEPTIBILITY 1 (EDS1) in both the cytoplasm and the nucleus, and PBS3
protects EDS1 from the26Sproteasome-mediateddegradation.However,whether the PBS3–EDS1protein complex is also involved in SAbiosynthesis remains
to be further explored. In the nucleus, EDS1 functions as a transcriptional coactivator by cooperating with NPR1 andMediator in the transcription machinery.
Whether PBS3 is also involved in the transcriptional regulation of downstream genes by associating with EDS1 and/or NPR1 is still an open question. Besides,
PBS3 plays a role in balancing the trade-off between abiotic and biotic stress responses by blocking the inhibitory effect of abiotic stress-induced abscisic acid
(ABA) on SA-mediated plant immunity. Solid lines indicate direct relationships; dashed lines indicate indirect relationships; blunt-ended arrows indicate
inhibition.Orange lines represent the SA biosynthesis and signaling pathway; green lines represent the ETI signaling pathway; blue lines represent the crosstalk
between ABA and SA; purple lines represent the protective effect of PBS3 on EDS1 protein stability; black lines represent the transcriptional regulation in the
nucleus mediated by transcriptional coactivators EDS1 and NPR1.
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PBS3 is a target protein of the Pseudomonas type III effector
HopW1-1

Different bacterial pathogen strains secrete diverse repertoires of
type III effectors. In general, effectors can suppress plant immune
signaling by interacting with components of the PTI. If this
interaction is species- or ecotype-specific, it influences the host
range of a pathogen (Greenberg & Vinatzer, 2003). Psm ES4326
secretes a rare effector,HopW1-1, whilePstDC3000 does not have
this effector. In the Arabidopsis ecotype Ws-0, HopW1-1 elicits an
immune response leading to the accumulation of SA and expression
of HOPW1-1-INDUCED GENE 1 (Guttman et al., 2002; Lee
et al., 2008). Three HopW1-1 interacting proteins were identified
inArabidopsisplants, amongwhichWIN3 is PBS3 (Lee et al., 2007,
2008). Structurally, PBS3 interacts with the C-terminus (420–774
aa) of HopW1-1, while HopW1-1 is mainly associated with the C-
terminus (335–575 aa) of PBS3 (Lee et al., 2008). HopW1-1-
induced disease resistance in the Ws-0 ecotype is partially
dependent on PBS3 (Lee et al., 2008). Whether and how
HopW1-1 induces resistance in the Ws-0 ecotype by regulating
the activity of its interacting protein PBS3 still requires more
genetic and biochemical studies.

PBS3 has functions beyond SA biosynthesis

PBS3 regulates the balance of abiotic and biotic stress
responses in Arabidopsis young leaves

It will be intriguing to find out whether PBS3 plays a role in plant
responses to abiotic stresses by regulating SA biosynthesis. Berens
et al. (2019) found that pbs3mutants exhibit higher tolerance to salt
stress compared with the wild-type Arabidopsis Col-0. Interestingly,
the regulatory effect of PBS3 on abiotic stresses is closely related to
leaf age. The expression of PBS3 is decreased in old leaves and
increased in young leaves after ABA treatment, and another SA
synthase gene, ICS1, also has a similar expression pattern (Berens
et al., 2019). Importantly, ABA treatment shows similar inhibitory
effects on plant immunity in both old and young leaves of pbs3
mutants, while ABA only shows a strong immunosuppressive effect
in old leaves of Col-0 and the SA biosynthesis defective sid2/ics1
mutants, indicating that PBS3 can suppress the inhibitory effect of
ABA on plant immunity in young leaves through a mechanism
distinct from its role in SA biosynthesis (Fig. 2; Berens et al., 2019).

Interestingly, young leaves of npr1 mutants also show a similar
increased susceptibility to Pst DC3000 hrcC� compared with old
leaves in the presence of ABA as pbs3 mutants, indicating that not
only PBS3 but also the SA receptor NPR1 is required in young
leaves of Col-0 plants to counteract ABA (Fig. 2; Berens
et al., 2019). However, data on SA levels in Col-0, sid2, pbs3,
and npr1 plants challenged with Pst DC3000 hrcC� in combina-
tion with ABA treatment are still lacking, so it is difficult to make a
clear connection between SA levels andABA-induced susceptibility
in young leaves of these plants. Endogenous ABA biosynthesis
activated by drought or salt stress also suppresses immune responses
in old leaves, while the presence of PBS3maintains the resistance of
young leaves to biotic stresses (Berens et al., 2019). During the

combined stresses, PBS3 plays a role in balancing the trade-off
between biotic and abiotic responses, especially in young leaves
(Berens et al., 2019), and this function is also a concrete
manifestation of the sophisticated environmental adaptability
acquired by plants in the long evolutionary process.

PBS3 regulates flowering time under long-day conditions

Another unexpected role of PBS3 is its involvement in regulating
flowering time in Arabidopsis. The regulation of flowering time by
PBS3 is related to photoperiod. According to reported data, PBS3
negatively regulates flowering time mainly under long-day condi-
tions (16 h : 8 h, light : dark) (G. F. Wang et al., 2011; Chang
et al., 2019). Notably, the excess SA accumulation mutant acd6-1
shows little difference in flowering time compared with the wild-
type Arabidopsis Col-0, while the acd6-1 pbs3-2 double mutant
exhibits a great reduction in SA level and a marked early flowering
phenotype compared with acd6-1 mutants, suggesting that the
PBS3-mediated early flowering phenotype is largely independent
of SA (G. F. Wang et al., 2011). Unlike pbs3-2 mutants, the SA
biosynthesis/accumulation-deficientmutants sid2-1 and pad4-1 do
not show obvious early flowering phenotypes under long-day
conditions (G. F.Wang et al., 2011). These data support the notion
that PBS3 regulates flowering time in plants independent of its
function in SA biosynthesis.

Under long-day conditions, both pbs3-2 and npr1-1 mutants
show distinct early flowering phenotypes compared with Col-0
plants (G. F. Wang et al., 2011). There is evidence that the floral
repressor gene FLOWERING LOCUS C (FLC) is suppressed at 16
or 25 d in pbs3-2 and npr1-1mutants compared with Col-0 plants.
In contrast, the key flowering gene FLOWERING LOCUS T (FT)
is induced in 25-d-old pbs3-2 and npr1-1 mutants compared with
Col-0 plants (G. F. Wang et al., 2011). However, future
comparison of flowering time among pbs3-2 and npr1-1 single
mutants and pbs3-2 npr1-1 double mutants will be required to
determine whether PBS3 and NPR1 function together or individ-
ually in the regulation of flowering time in Arabidopsis.

Concluding remarks and future perspectives

The PBS3 gene was first reported in 1999 (Warren et al., 1999).
Over the past more than 20 yr, PBS3 has been proven to be an
important player inmany physiological and pathological processes,
including SA biosynthesis, balancing of plant responses to biotic
and abiotic stresses, and flowering time regulation. Of particular
importance, in 2019, two research groups elucidated that PBS3
converts IC to IC-9-Glu through its acyl acid amido synthetase
activity, ultimately producing SA with or without the help of EPS1
(Figs 1, 2; Rekhter et al., 2019; Torrens-Spence et al., 2019).
Identifying the enzyme activity of PBS3 is obviously a break-
through in explaining how PBS3 regulates SA-mediated immunity
upon pathogen infection. However, emerging evidence suggests
that pbs3mutants have distinct phenotypes compared with the SA-
deficient mutant sid2, indicating that PBS3 has a role beyond SA
biosynthesis. For example, PBS3 has a negative effect on ABA-
mediated SA pathway inhibition in young Arabidopsis leaves
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(Berens et al., 2019), and PBS3 can adjust Arabidopsis flowering
time by regulating the expression of flowering regulators (G. F.
Wang et al., 2011).

Salicylic acid is a core plant defense hormone in protecting plants
from pathogen infection, but excess levels of SA can be detrimental
to plant growth and development (Van Butselaar & Van den
Ackerveken, 2020). Therefore, the SA biosynthesis and accumu-
lation processes must be tightly regulated. Since PBS3 is a key
enzyme in SA biosynthesis of Arabidopsis, it is reasonable to
speculate that the expression and/or the activity of PBS3 is finely
regulated during pathogen infection. The expression of SA
biosynthesis-related genes can be rapidly and highly induced upon
pathogen infection. The transcription of ICS1, EDS5, and PBS3
can be positively regulated by transcription factors SYSTEMIC
ACQUIRED RESISTANCE DEFICIENT 1 and CAM-
BINDING PROTEIN 60G (CBP60g) (Zhang et al., 2010; L.
Wang et al., 2011; Ding & Ding, 2020). CBP60a, ABSCISIC
ACID-RESPONSIVE NAC 019, and ETHYLENE INSENSI-
TIVE 3 can negatively regulate ICS1 transcription (Chen
et al., 2009; Zheng et al., 2012; Truman et al., 2013), while DP-
E2F-LIKE 1 negatively regulates EDS5 transcription (Chandran
et al., 2014). To date, the negative regulator of PBS3 transcription
remains unknown. Besides, considering that the protein stability of
PBS3-interacting protein, EDS1, can be regulated by E3 ubiquitin
ligase adaptors NPR3 and NPR4 through the 26S proteasome
pathway (Fig. 2; Chang et al., 2019), whether the highly induced
expression of PBS3 during pathogen infection can be fine-tuned at
the transcriptional level and/or the protein level to reduce the
adverse effects of SA on plant growth remains an open question to
be answered.

Another fascinating question is whether and how PBS3 plays a
role in the transcriptional regulation of gene expression. As
mentioned above, PBS3 was originally reported to influence the
expression of flowering regulatory genes FLC and FT together with
the transcriptional coactivator NPR1 (G. F. Wang et al., 2011).
Large-scale transcriptome studies may be deployed to find out
whether PBS3 can regulate gene expression in an SA-dependent or
SA-independent manner. Researchers found a set of genes that are
similarly affected by pbs3, eds1, and pad4 but not by npr1, eds5, or
sid2 in response to Psm ES4326 infection; this supports the notion
that PBS3/EDS1/PAD4 might regulate processes which are
different from those regulated by the classical SA pathway (Wang
et al., 2008). Based on the differential gene expression patterns
among pbs3, eds1, pad4, eds5, sid2, and npr1, Wang et al. (2008)
placed PBS3 upstream of the EDS5/SID2/NPR1 node and
downstream of the EDS1/PAD4 node in the immune signaling
network. What increases the complexity is the fact that the PBS3-
interacting protein EDS1 has been shown to be a transcriptional
coactivator and cooperates with NPR1 and Mediator in the
transcription machinery to enhance the activation of defense genes
upon pathogen infection (Fig. 2; Chen et al., 2021). Therefore, it
will be intriguing to determine whether PBS3 is also involved in the
transcription machinery through its interaction with EDS1.

In conclusion, PBS3, as one of the players in the intracellular
signaling network, plays a principal role in plant development and
resistance against biotic or abiotic stresses. In addition to the

enzyme activity of PBS3 in SA biosynthesis, the molecular
mechanism by which PBS3 regulates SA-dependent and SA-
independent signaling pathways remains to be explored in the
future.
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