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Abstract. The response of the hydrological cycle to anthropogenic climate change, especially across the tropical oceans, 35 
remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-
water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics, 
rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled 
at monthly to annual resolution. Most coral-based reconstructions utilize stable oxygen isotope composition (δ18O) that 
tracks the combined change in sea surface temperature (SST) and the oxygen isotopic composition of seawater (δ18Osw), a 40 
measure of hydrologic variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium 
ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variability through time. To increase 
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the utility of such reconstructions, we present the CoralHydro2k database: a compilation of published, peer-reviewed coral 
Sr/Ca and δ18O records from the Common Era. The database contains 54 paired Sr/Ca-δ18O records and 125 unpaired Sr/Ca 
or δ18O records, with 88% of these records providing data coverage from 1800 CE to present. A quality-controlled set of 45 
metadata with standardized vocabulary and units accompanies each record, informing the use of the database. The 
CoralHydro2k database tracks large-scale temperature and hydrological variability. As such, it is well-suited for 
investigations of past climate variability, comparisons with climate model simulations including isotope-enabled models – 
and application in paleo-data assimilation projects. The CoralHydro2k database will be available on the NOAA National 
Center for Environmental Information’s Paleoclimate data service with serializations in MATLAB, R, Python, and LiPD.  50 

1 Introduction 

The global hydrological cycle is changing in response to ongoing anthropogenic climate change (Held and Soden, 

2006; Cheng et al., 2020), yet regional trends in hydrology remain uncertain in many areas of the world (Song et al., 2021; 

Madakumbura et al., 2021; Ummenhofer et al., 2021). Observed and projected trends in large-scale hydrology are consistent 

with the “wet get wetter, dry get drier” paradigm (Held and Soden, 2006) as surface ocean fluxes increase as the planet warms.  55 

Rising global temperatures means that the atmosphere can hold more moisture, which contributes to more extreme rainfall 

across a variety of spatiotemporal scales. In the tropics, many aspects of large-scale hydrology are tied to changes in large-

scale coupled ocean-atmosphere dynamics associated with the El Niño-Southern Oscillation (ENSO; Power et al., 2013; Cai 

et al., 2014), tropical Pacific decadal variability (Gu and Adler, 2013; Dong and Dai, 2015), the Indian Ocean Dipole (Webster 

et al., 1999; Saji et al., 1999; Cai et al., 2019), and Atlantic Multidecadal Variability (Zhang et al., 2019), to name a few of the 60 

most prominent modes.  

The detection of potential anthropogenic trends in regional hydrology against a rich background of natural regional 

hydrological variability is complicated by a dearth of instrumental climate data from across the tropics. In particular, 

instrumental sea surface temperature (SST) observations are sparse prior to the advent of satellites in 1979 (Reynolds et al., 

2002; Rayner et al., 2003; Freeman et al., 2017; Huang et al., 2017; Kennedy et al., 2019) and the vast majority of sea surface 65 

salinity (SSS) observations only become available in the 1990’s, with the advent of the Global Tropical Moored Buoy array 

(McPhaden et al., 1998, 2010) and World Ocean Circulation Experiment (WOCE)  (Good et al., 2013; Friedman et al., 2017; 

Cheng et al., 2020; Gould and Cunningham, 2021). Both natural and anthropogenic shifts in regional hydroclimate on 

interannual to multi-decadal timescales have profound impacts on societies, economies, and ecosystems, such that resolving 

regional trends in past hydrological variability prior to available observational records is a scientific and societal priority.  70 

Shallow-water corals have been extensively used to reconstruct past regional to oceanic-scale climate variability at 

data scarce locations in the tropical and subtropical oceans (as reviewed by Gagan et al., 2000; Corrège, 2006; Lough, 2010; 

Felis, 2020). Seasonally banded coral skeletons (e.g., Lough and Barnes, 1997) can yield monthly to annually resolved proxy 

records that can be calibrated to instrumental climate observations and thus used to extend the relatively short instrumental 

SST and SSS records back to the pre-instrumental era. Most coral-based reconstructions are based on the oxygen isotopic 75 

composition (δ18O) and/or strontium-to-calcium ratios (Sr/Ca) of coral skeletal aragonite. Coral δ18O tracks changes in SST as 

well as the oxygen isotopic composition of seawater (δ18Osw) (Epstein et al., 1953; Weber and Woodhead, 1972). Like salinity, 
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variability in δ18Osw reflects the balance of precipitation and evaporation, terrestrial runoff, continental ice melt and formation, 

and ocean circulation and mixing (e.g., LeGrande and Schmidt, 2006, 2011; Hasson et al., 2013; Conroy et al., 2014). Coral 

Sr/Ca primarily tracks SST variability (Weber, 1973; Smith et al., 1979; Beck et al., 1992) and can be used to decouple the 80 

temperature and δ18Osw signals in coral δ18O records (e.g., Gagan et al., 1998; Ren et al., 2003; Corrège, 2006; Cahyarini et 

al., 2008). As such, paired coral δ18O and Sr/Ca records can be used to independently investigate trends in SST and hydrology 

(Hendy et al., 2002; Linsley et al., 2006; Quinn et al., 2006; Zinke et al., 2008; Felis et al., 2009, 2018; Hetzinger et al., 2010; 

Nurhati et al., 2011; Cahyarini et al., 2014; Wu et al., 2014; Murty et al., 2017, 2018b; Hennekam et al., 2018; von Reumont 

et al., 2018; Pfeiffer et al., 2019; Ramos et al., 2019, 2020; Sayani et al., 2019). Whereas coral-based reconstructions have 85 

provided much-needed insights on local SST and SSS at many tropical sites, the utility of this archive in reconstructing 

regional- and global-scale signals has been limited by the scarcity of long-term paired coral δ18O and Sr/Ca records and the 

methodological challenges of deriving seawater δ18O changes from these records. 

Recent data synthesis efforts within the international paleoclimate community, under the auspices of the Past Global 

Changes (PAGES) 2k Network, have produced several databases to contextualize modern climate change against the 90 

background of natural climate variability over the last ~2000 years; a time interval known as the Common Era (CE) (e.g., 

PAGES 2k Consortium, 2013; Tierney et al., 2015; PAGES2k Consortium, 2017; Konecky et al., 2020). These data sets, 

combined with climate simulations, have been instrumental in improving our understanding of CE climate variability and its 

dynamics (e.g., Abram et al., 2016; Neukom et al., 2019; PAGES 2k Consortium, 2019). Notably, the PAGES Ocean2k project 

compiled a network of published coral δ18O, Sr/Ca, and extension rate records to reconstruct tropical SST evolution over the 95 

past few centuries (Tierney et al., 2015). More recently, the PAGES Iso2k project compiled water isotope records from a 

variety of terrestrial and marine archives (Konecky et al., 2020), including corals, to investigate temperature-driven changes 

in the global hydrological cycle (Konecky et al., submitted). Building on these previous efforts, the CoralHydro2k project 

brought the global coral paleoclimate community together to address existing data archiving needs and access issues as well 

as the lack of standardized, best-practice methodology for calibrating coral proxies to climate variables and deriving δ18Osw 100 

changes from paired δ18O and Sr/Ca records. 

Here we present the PAGES CoralHydro2k database: a new, actively curated compilation of coral δ18O and Sr/Ca 

records from the last 2,000 years that serve as proxies for near-surface conditions across the tropical and subtropical oceans. 

This new database employs metadata standards established by Marine Annually Resolved Proxy Archives (MARPA, Dassié 

et al., 2017) and Paleoclimate Community reporTing Standard (PaCTS 1.0, Khider et al., 2019), and is built using the Linked 105 

Paleo Data (LiPD) framework (McKay and Emile-Geay, 2016). This first paper from the CoralHydro2k project outlines this 

new database, its functionality, as well as plans for active curation of records and future updates. As this database represents 

the most comprehensive collection of coral records to date, we highlight the existing spatiotemporal coverage and identify 

opportunities for future data collection. 
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2 Methods 110 

2.1 Collaborative model 

CoralHydro2k is one of nine projects that make up Phase 3 of the PAGES 2k Network, a long-standing effort to study 

climate variability over the last 2,000 years (PAGES 2k Network Coordinators, 2017). The CoralHydro2k project was 

established at the 2017 PAGES Open Science Meeting in Zaragoza, Spain, inspired by the PAGES Hydro2k Workshop in 

2016 (PAGES Hydro2k Consortium, 2017). Recurring calls for participation were distributed within the international 115 

paleoclimate community to recruit a team with diverse expertise ranging from coral paleothermometry to paleodata 

assimilation. The resulting CoralHydro2k community is composed of 40+ volunteer scientists from all academic levels, 

including undergraduate and graduate students, postdoctoral researchers, and early to senior-level scientists from a variety of 

international academic and research institutions. Data compilation, initial analysis, and interpretation were done collaboratively 

and subdivided among thematic working groups as the project progressed. The majority of the work was completed remotely 120 

and asynchronously across several virtual platforms (Google Suite, Slack, and Zoom). One in-person meeting with limited 

remote participation took place in 2019 as a side meeting at the 13th International Conference on Paleoceanography (ICP13) 

in Sydney, Australia (Hargreaves et al., 2020).  

2.2 Record selection and aggregation 

Record selection criteria for the CoralHydro2k database were designed to be as inclusive and comprehensive as 125 

possible to develop a versatile database that supports the project’s goal of reconstructing tropical hydroclimatic variability at 

seasonal and longer timescales. The database also supports the broader climate community’s need for a uniform global database 

of coral records for comparison with climate model output over the past 2000 years, especially isotope-enabled models. The 

CoralHydro2k team selected Common Era coral records that were at least 10 years in length; measured either δ18O, Sr/Ca, or 

both; were published in a peer-reviewed scientific journal; and were archived with an absolute chronology (i.e., time in years 130 

CE). For studies where “composite records”, or average time series of multiple cores from a single site, were publicly available, 

we included either the composite record or its constituent time series but not both. Composite records are flagged as such in 

the database.  

Coral records were sourced from past PAGES 2k data compilations with more restrictive selection criteria, such as 

Ocean2k (Tierney et al., 2015) and Iso2k (Konecky et al., 2020), as well as from public repositories such as the World Data 135 

Center PANGAEA (https://www.pangaea.de/) and the NOAA National Centers for Environmental Information (NCEI) World 

Data Service for Paleoclimatology (https://www.ncei.noaa.gov/products/paleoclimatology). For a few studies where data were 

not archived in public repositories, we retrieved the records from publications and supplemental information or contacted the 

corresponding authors. In addition to being compiled in the CoralHydro2k database, 27 previously unarchived records were 

submitted to NOAA’s NCEI database for archival by CoralHydro2k project members. 140 
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2.3 Database organization 

Coral records in the database are organized into seven groups based on the availability of paired proxy time series, temporal 

coverage, and record resolution (Table 1). Groups 1–3 contain records with paired Sr/Ca-δ18O time series. Group 1 records 

have monthly to bimonthly temporal resolution and cover at least 80% of the 20th century. Records in Group 2 are similar in 

resolution to records in Group 1, but cover less than 80% of the 20th century. Group 3 records contain any paired Sr/Ca-δ18O 145 

time series that have lower than bimonthly resolution. Group 4 records are δ18O-only time series with monthly to bimonthly 

resolution, while Group 5 records are δ18O-only time series with lower than bimonthly resolution. Groups 6 and 7 mirror 

Groups 4 and 5 respectively, but for Sr/Ca-only records. 

Table 1. Summary table of group descriptions for the CoralHydro2k database. 

Group Proxy data Temporal resolution Temporal coverage # Records 

1 paired Sr/Ca-δ18O monthly to bimonthly > 80 years of 20th century 20 

2 paired Sr/Ca-δ18O monthly to bimonthly < 80 years of 20th century 24 

3 paired Sr/Ca-δ18O seasonal or lower within CE 10 

4 δ18O monthly to bimonthly within CE 56 

5 δ18O seasonal or lower within CE 23 

6 Sr/Ca monthly to bimonthly within CE 36 

7 Sr/Ca seasonal or lower within CE 10 

 150 

Following the Iso2k database protocols (Konecky et al., 2020), each record in the CoralHydro2k database is assigned a unique 

nine-digit alphanumeric identifier. These unique identifiers are generated using the first two letters of the lead author surname 

(AN), the last two digits of publication year (01), a three-letter code indicating the location of the record (ABC), and a two-

digit core-ID number (02). The two-digit core-ID number begins at ‘01’ by default and increases with each successive record 

from the same site and publication. Identifiers have the final format “AN01ABC02”. For example, record AB08MEN01 was 155 

published by Abram et al., in 2008, is a record from the Mentawai Islands, and is the first core from that study. 

2.4 Metadata 

The CoralHydro2k database contains 55 metadata fields that inform the use of each coral record: 32 metadata fields 

are standardized and quality controlled, while 23 fields are unstructured. Standardized metadata fields use controlled 

vocabulary or numeric information with uniform units, making them easily searchable by database users. Unstructured 160 

metadata are free-form text entries that are less rigorously quality controlled but are included to aid the interpretation of the 

coral records.   

Metadata included in the CoralHydro2k database is organized into four categories (Entity, Publication, Analysis, and 

Calibration) based on standards recommended by MARPA (Dassié et al., 2017) and PaCTS1.0 (Khider et al., 2019). Entity 
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metadata provides identifying information for each coral record (Table 2), including geographic coordinates, location names, 165 

water depth of the coral colony, coral species, and any core names included in the original publications. Also included in entity 

metadata is resolution information and the start and end years of each record. Record resolution is provided as the minimum, 

maximum, mean, and median data points per year for each record. A nominal label for resolution (monthly, bimonthly, 

quarterly, biannual, annual, or >annual; described in Table 3), based on the modal resolution of a record, is also included to 

allow users to easily search for records. The term ‘_uneven’ is appended to the nominal label for records that have a variable 170 

resolution. Care should be used when interpolating these records to even sampling resolution for analysis because although 

most are relatively evenly sampled, some records have sections of substantially higher or lower resolution.  

Table 2. Entity metadata. Describes information relating directly to the coral proxy record, including location, core names, species, 
and time span. Standardized fields are italicized. 

Field name Variable Type Description 

paleoData_ch2kCoreCode Core ID text Core ID used to identify the record within the 

CoralHydro2k database. 

paleoData_coralHydro2kGroup Group numeric Group into which the record is sorted in the 

CoralHydro2k database, ranges from 1-7 based on 

criteria outlined in Table 1. 

geo_latitude Latitude numeric Latitude for the coral core. Positive values are north 

of the equator; negative values are south. 

geo_longitude Longitude numeric Longitude for the coral core. Positive values are east 

of the Prime Meridian; negative values are west. 

geo_siteName Site text Standardized location names. Names follow the 

format [island/city/province 1], 

[island/city/province 2 (optional)], [country]. 

Exceptions to this are reefs (reef, country) and other 

named, water-based locations (e.g. named areas 

within the Red Sea). 

geo_secondarySiteName Site 2 text Secondary location names. May include regional 

names (e.g. Line Islands, Great Barrier Reef) or 

names of specific sites (e.g. Silabu). 

geo_ocean Ocean basin text Ocean basin of the coral core as determined by its 

latitude and longitude according to the World Ocean 

Atlas (Boyer et al. 2018). 
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geo_ocean2 Ocean basin 2 text Secondary ocean basin names listed in publication 

that are not included in the official World Ocean 

Atlas designations. 

geo_elevation Elevation numeric Elevation of corals. Values are negative to indicate 

corals were found below sea level. All elevation is 

expressed in meters (m). 

paleoData_coreName Core name text Core name as specified in publications and data sets. 

Allows for the tracing of the coral record through 

past and future publications. 

paleoData_archiveSpecies Coral species text Genus and species (if known) of the coral archive. 

Records where species name is unknown or not 

given are notated as '[Genus] sp.' 

geo_description Site Type text Any general description of the type of site in which 

the coral was found (e.g. fringing reef, open ocean, 

etc.). 

hasResolution_nominal Nominal resolution text Nominal temporal resolution of the proxy record. 

See Table 3 for term definitions. 

hasResolution_hasMaxValue Maximum 

resolution 

numeric Minimum temporal resolution of the proxy record. 

Units: years. 

hasResolution_hasMeanValue Mean resolution numeric Mean temporal resolution of the proxy record. 

Units: years. 

hasResolution_hasMedianValue Median resolution numeric Median temporal resolution of the proxy record. 

Units: years. 

hasResolution_hasMinValue Minimum resolution numeric Minimum temporal resolution of the proxy record. 

Units: years. 

minYear Minimum year numeric Minimum year of the proxy record. Expressed in 

integer years CE. 

maxYear Maximum year numeric Maximum year of the proxy record. Expressed in 

integer years CE. 

paleoData_variableName Data type text Data type for paleoData_values. Proxy types will be 

δ18O (d18O), Sr/Ca (SrCa), or seawater δ18O 

(d18Osw). Annual averages will have 'annual' 
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appended to the proxy type, and error data will have 

'Uncertainty' appended to the proxy type. 

paleoData_values Data numeric An Nx1 vector of proxy or error data. Data type is 

specified by paleoData_variableName. 

paleoData_units Data units text Units for paleoData_values. 

year Year numeric Time data for the proxy record in paleoData_values. 

yearUnits Year units text Units for year. 

paleoData_TSid TSid text Contains a unique LiPD ID string for the data within 

the database. Used to match error vectors with their 

given data vectors. 

paleoData_hasUncertainty Error TSid text Field containing the paleoData_TSid of the error 

timeseries for the given data set (error will be in 

paleoData_values of that TSid). 

paleoData_isComposite Composite data flag logic Indicates whether the proxy record in 

paleoData_values is a composite of multiple cores' 

proxy data. 

paleoData_isAnomaly Anomaly data flag logic Indicates whether proxy data in paleoData_values is 

anomaly data. 

 175 

Table 3. Nominal resolution descriptors. Lists the definitions in 'data points per year' that were used to determine the nominal 
resolution label for each proxy record. 

Nominal resolution Data points per year 

monthly; monthly_uneven 12 data points per year; "_uneven" is added to records with variable resolutions that 

typically have over 12 data points per year 

bimonthly; bimonthly_uneven 6 data points per year; "_uneven" is added to records with variable resolutions that typically 

have 6–11 data points per year 

quarterly; quarterly_uneven 4 data points per year; "_uneven" is added to records with variable resolutions that typically 

have 4–5 data points per year 

biannual; biannual_uneven 2 data points per year; "_uneven" is added to records with variable resolutions that typically 

have 2–3 data points per year 

annual; annual_uneven 1 data point per year; "_uneven" is added to records with variable resolutions that typically 

have 1 data point per year 

>annual Less than 1 data point per year 
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Publication metadata (Table 4) contains bibliographical information for each coral record including digital object 

identifiers (DOIs) for publications and links to the public repository from which the data was retrieved. For records featured 

in multiple publications, bibliographical information for publications is stored in the order established by the source data 180 

repository. First citations are found in the pub1 metadata fields, and subsequent citations are found in pub2 and pub3.  

Analysis metadata (Table 5) provides information about the laboratory analysis of the samples, including (when 

available) information related to subsampling the cores, coral extension rate and tissue thickness, the units of reported 

variables, and analytical precision for geochemical time series. When available, information on the measurement of the 

international coral reference material JCp-1 (Okai et al., 2002; Hathorne et al., 2013) is included for Sr/Ca records. Calibration 185 

metadata (Table 6) includes any proxy-SST slopes, intercepts, correlations, and information about regression methods used, 

as reported in the original publications. These calibration metadata may differ from the standardized calibration results that we 

calculate across the whole database and report in section 3.2 below. 

Table 4. Publication metadata. Details publication information for up to three publications associated with each coral record. 
Standardized fields are italicized. 190 

Field name Variable Type Description 

First author (publication X) pubX_firstauthor text First author listed for each listed publication (X = 1,2,3) 

Publication year (publication X) pubX_year numeric Year of publication for each listed publication (X = 

1,2,3) 

DOI (publication X) pubX_doi text Digital object identifier (DOI) for each listed 

publication (X = 1,2,3) 

Full citation (publication X) pubX_citation text Complete citation for each listed publication (X = 1,2,3) 

Title (publication X) pubX_title text Title of each listed publication (X = 1,2,3) 

Full author list (publication X) pubX_author text Full list of authors from each listed publication (X = 

1,2,3) 

Journal (publication X) pubX_journal text Journal of each listed publication (X = 1,2,3) 

Original data source originalDataUrl text Link to data set published in this database. 

Additional data source additionalDataUrl text Any additional links to published data related to this 

record. 

 

Table 5. Analysis metadata. Coral sampling information, units used, and any additional notes on the coral record. Standardized 
fields are italicized. 

Field name Variable Type Description 

paleoData_samplingResolution Sampling resolution text Physical distance between individual 

samples from the coral archive. 
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paleoData_samplingNotes Sampling notes text Any notes on sampling methods - 

point vs. continuous measurements, 

homogenization, etc. 

paleoData_coralExtensionRate Extension rate (mm/year) numeric Average coral extension rate in 

mm/year. If a range is given in the 

publication, 'Extension rate' is the 

average of the range. 

paleoData_coralExtensionRateNotes Extension rate notes text Average coral extension rate given in 

the publication. This entry includes 

any units, uncertainty, or ranges in 

values noted in publication. 

paleoData_coralTissueThickness Tissue thickness (mm) numeric Average coral tissue thickness in mm. 

If a range is given in the publication, 

'Tissue thickness' is the average of the 

range. 

paleoData_jcpUsed JCP use flag logic Indicates whether the JCp-1 trace-

element standard was used in the study 

(Okai et al. 2002, Hathorne et al. 

2013). 

paleoData_jcpMeasured JCP value numeric If JCp-1 was used in the study, this is 

the measured value reported in the 

publication. Units are mmol/mol. 

paleoData_jcpCorrected JCP corrected logic Indicates whether proxy data in the 

study was standardized to JCp-1. 

paleoData_jcpNotes JCP notes text Any additional notes on information 

pertaining to JCp-1. 

paleoData_analyticalError Analytical error numeric Published analytic error for measured 

proxy values. 

paleoData_analyticalErrorUnits Analytical error units text Units for analytic error. 

paleoData_notes Additional coral record notes text Any notes on metadata, published 

values, citations, or the proxy record 

that did not fit in other fields. 
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Table 6. Calibration metadata. Any published information on the calibration of the coral record to sea surface temperature. 195 
Standardized fields are italicized. 

Field name Variable Type Description 

calibration_method Regression method text Regression method used with this data 

set in publication. Abbreviations are 

used for Ordinary Least Squares (OLS), 

Reduced Major Axis (RMA), Geometric 

Mean (GM), Weighted Least Squares 

(WLS), Multiple Linear Regression 

(MLR), and Composite Plus Scale 

(CPS). 

calibration_dataset SST product text SST data set used in publication for 

proxy-SST calibrations. 

calibration_datasetRange SST range text Average arithmetic SST range reported 

in publication for the coral site. Units: 

°C. 

calibration_equationSlope Proxy-SST slope text The published proxy-SST calibration 

slope for the coral record. Calibration 

equations take the form proxy = 

slope*SST + intercept. (Units: 

[paleoData_units]/°C ) 

calibration_equationIntercept Proxy-SST intercept text The published proxy-SST calibration 

intercept for the coral record. Calibration 

equations take the form proxy = 

slope*SST + intercept. (Units: 

[paleoData_units]/°C ) 

calibration_equationR2 Proxy-SST r-square value text The published proxy-SST calibration r-

squared value for the coral record. 

calibration_equationSlopeUncertainty Proxy-SST slope uncertainty text Published proxy-SST slope uncertainty 

for the coral record. Calibration 

equations take the form proxy = 

slope*SST + intercept. (Units: 

[paleoData_units]/°C ) 
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2.5 Quality control and validation 

As records included in the CoralHydro2k database are published in peer-reviewed scientific journals, our quality 

control efforts were focused on the consistency of metadata and the accurate integration of records into the database. More 

specifically, the quality control team worked to ensure that (i) metadata and proxy time series were entered correctly into the 200 

database, (ii) metadata followed a standardized vocabulary or format, and (iii) records were sorted into the correct group based 

on the types of proxies available, length, and resolution. For sites where coral records were either extended or revised in 

subsequent studies, we include the most recent version of the record in the database and include citation information and other 

metadata from previous studies. A quality control checklist was used to ensure each field was in a standard format and 

contained information consistent with that in original publications and other online repositories. When information was 205 

unavailable, the corresponding fields were left blank. 

Users of the database should not view the inclusion of a record as an endorsement of its fidelity by CoralHydro2k for 

reconstructing a climate parameter, as non-climatic factors (e.g., coral skeletal structure or growth rate) can complicate the 

extraction of climate signals from geochemical records (see Reed et al., 2021; DeLong et al., 2013, 2016). We strongly suggest 

users further assess records and original publications, or consult the original author or a coral paleoclimate expert if they have 210 

questions or concerns.  

2.6 Relation to other PAGES2k products 

CoralHydro2k was inspired by PAGES (2k) compilations of marine and hydrological proxy records such as Ocean2k 

(Tierney et al., 2015; McGregor et al., 2015), SISAL (Atsawawaranunt et al., 2018; Comas-Bru et al., 2020), and Iso2k 

(Konecky et al., 2020), but was created to address a different set of research questions. As the database is designed specifically 215 

for coral-based proxy records, we employ more inclusive record selection criteria that allow us to include records that do not 

meet the length requirements of previous PAGES 2k data compilations but are important to contextualize ongoing climate 

change during the Common Era. The CoralHydro2k database also contains new, updated, or extended records that were 

published after previous PAGES efforts, and will continue to be actively curated and updated annually. With a more 

comprehensive coral database, the CoralHydro2k project will investigate methodological differences in proxy-SST 220 

calibrations, explore methodologies for deriving coral-based δ18Osw reconstructions, refine proxy system models for coral 

Sr/Ca and δ18O time series that enable proxy data and climate model intercomparison, and provide a denser proxy network for 

paleodata assimilation efforts.  
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3 Key characteristics of the CoralHydro2k database 

 225 

Figure 1. CoralHydro2k database records are divided across Groups 1–7 based on their available proxy information. (a) Spatial 
distribution of all records in the CoralHydro2k database. (b) Temporal coverage of all records in the CoralHydro2k database. Inset 

shows earlier records (0–1750 CE). 

3.1 Spatial and temporal coverage 

The CoralHydro2k database includes 233 proxy time series from 124 unique locations sorted into seven groups (Fig. 230 

1a). The proxy time series are stored as “records”, with 54 records containing paired Sr/Ca and δ18O time series, 79 records 

containing only δ18O time series, and 46 records containing only Sr/Ca time series. For 19 of the paired δ18O and Sr/Ca records, 

we also include in the database the coral-derived δ18Osw time series calculated by the authors of the original publication. 

Records in the CoralHydro2k database extend from 33° N to 28° S and across all tropical oceans. The majority of these records 

are concentrated in the Indo-Pacific Warm Pool and the western tropical Atlantic, as conditions there are favorable for coral 235 

growth and reefs are more accessible to researchers. Record density is low in the eastern tropical Pacific and eastern tropical 

Atlantic, where cooler and/or more variable ocean conditions are generally unfavorable for coral growth. 

The majority of records in the database fall between 1800 and 2010 CE (Fig. 1b). Approximately 28% of records in 

the database cover time intervals earlier than the 1800s, with most of these records coming from corals that are dead when 
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collected (often referred to as “fossil” corals), which provide short, discrete time series often spanning several decades. The 240 

oldest such record in the database is a coral from Hainan Island in the South China Sea that covers 167–309 CE (Xiao et al., 

2017).   

 

Figure 2. Total number of records with core top dates between 1900 and 2020 CE, sorted into 5-year bins and organized by (a) ocean 
basin and (b) available proxy data. Records with core top dates prior to 1900 CE are not shown. East and West Pacific Ocean are 245 
split at 180° longitude. (c) Global core top date spatial distribution of coral records in the CoralHydro2k database. Records with 
core top dates prior to 1975 CE are not shown (31 records). 

A surge in coral-based proxy record generation began in the early 1990s and is reflected in the most common core-

top ages occurring in the period from 1990 to 2015 CE (Fig. 2a–b). Peak record density occurs between the late 1980s to early 

1990s (Fig. 1b), reflecting increased coral coring efforts in all tropical oceans from 1985–2015 CE (Fig. 2) that increases data 250 
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coverage across this interval. Record density precipitously drops after 1998 CE (Fig. 1b), which may simply reflect the 5- to 

15-year delay between core collection and record publication. However, we observe that fewer new records are available from 

more remote regions of the tropics (Fig. 2c). The availability of Sr/Ca and paired records began in the late 1990s (Fig. 2b) with 

the development of a rapid, high precision, and cost-effective method for measuring Sr/Ca using ICP-OES (Schrag, 1999). 

Sr/Ca and paired records in the database that have core top dates prior to the late 1990s typically represent updates or extensions 255 

to previously published δ18O records (e.g., Felis et al., 2000, 2018) or fossil records.  

 

Figure 3. Resolution of coral records in the CoralHydro2k database. Spatial distributions of temporal resolution for (a) paired 
Sr/Ca-δ18O, (b) δ18O-only, and (c) Sr/Ca-only records. 

A majority of the records included in the CoralHydro2k database offer seasonal or sub-seasonal resolution: 76% of 260 

the records in the CoralHydro2k database have monthly or bimonthly resolution, 6% have quarterly to biannual resolution, 

and 18% have annual or lower resolution (Fig. 3).  
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3.2 Relationship to sea surface temperature 

Figure 4. Absolute correlations between coral δ18O and Sr/Ca and local sea surface temperature (SST) from 1950–2020 CE (a-d) and 265 
between coral δ18O and local sea surface salinity (SSS) (e-f) from 1970–2010 CE at bimonthly (left) and annual (April–March; right) 
resolutions. SST and SSS were taken from the grid box nearest to each coral record in the NOAA ERSSTv5 (Huang et al., 2017) and 
Hadley EN4 (Good et al., 2013) data sets, respectively. Significant correlations are denoted by circles (greater than 90% confidence 

interval) and non-significant correlations are denoted by diamonds. We note that significance can vary based on the choice of gridded 
data set and grid box, annual averaging period and correlation interval, and as such, the values shown here may differ from those 270 
reported in the original publications for each record. Correlations are shown as absolute values for ease of visualization, but we note 
that the linear relationship between SST and coral Sr/Ca or δ18O is negative.  

Proxy records in the CoralHydro2k database capture SST variability on seasonal and longer timescales. To highlight 

relationships between temperature and proxy records in CoralHydro2k, we calculate Pearson correlation coefficients between 

the records and local SST (2º grid area) from the NOAA ERSSTv5 data set (Huang et al., 2017). Significance is assessed here 275 

at the 90% confidence level: for bimonthly average data, 92% of Sr/Ca and 96% of δ18O records have a significant correlation 

with SST. Significant absolute correlations range from 0.23–0.94 (Sr/Ca-SST) and 0.13–0.89 (δ18O-SST) for the interval 1950–

2020 CE, with a median correlation of 0.74 for Sr/Ca-SST and 0.59 for δ18O-SST (Fig. 4a,c). Bimonthly average correlations 

are generally stronger at higher latitudes where the seasonal range in temperature is larger. 

Significant absolute correlations between annual-average proxy time series and local SST range from 0.26–0.89 for 280 

Sr/Ca data and 0.26–0.92 for δ18O data, with medians of 0.50 for Sr/Ca-SST and 0.57 for δ18O-SST correlations (Fig. 4b,d). 

For annual-average data, 43% of Sr/Ca-SST and 56% of δ18O-SST correlations are significant. Here, we use the April–March 

tropical year for annual averages to avoid splitting large-scale tropical variability between years (Ropelewski and Halpert, 
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1987). The higher annual proxy-SST correlations occur near the equator, particularly in the central and western tropical Pacific, 

where the ENSO drives large SST changes on interannual timescales.  285 

We note that significant discrepancies exist among gridded SST data products (e.g., HadISST, ERSST, OISST) due 

to the scarcity of observations across space and time and the different statistical techniques used to infill missing data in each 

SST data product (e.g., Deser et al., 2010; Freeman et al., 2017; Kennedy et al., 2019). Thus, the proxy-SST correlations 

presented here may deviate from those stated in each record’s original publication. 

 290 

Figure 5. Percent variance of coral Sr/Ca (a,c,e) and δ18O (b,d,f) records calculated as the fraction of variance that each time scale 
of variability contributes to total time series variance. Variance is calculated across the full length of each coral record. (a–b) 

Highpass variability calculated using a 13-month filter. (c–d) 2–7 year bandpass percent variability that includes interannual 
variance driven by the El Niño-Southern Oscillation (ENSO). (e–f) 10-year lowpass variability. All percent variability was calculated 
only for records at least 30 years in length. 295 

Patterns observed in proxy-SST correlations are also mirrored in the dominant mode of variability displayed by each 

record. To examine the relative contributions of seasonal, interannual, and decadal variability in coral records, we apply a 13-

month highpass (seasonal), a 2–7 year bandpass (interannual), and a 10-year lowpass filter to all monthly and bimonthly 

records that are at least 30 years long. Filtering was performed using a 6th-order Butterworth filter in MATLAB, with the filter 

order used to optimize filtering in the decadal band. Variance for each filtered series is normalized by the proxy record variance 300 
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determined for the entire record length to enable comparison between δ18O and Sr/Ca (Fig. 5). The seasonal variance in both 

proxies increases with latitude (Fig. 5a-b), with records in the subtropics exhibiting greater seasonal variance than records 

close to the equator. Conversely, records close to the equator contain higher proportions of interannual variance (Fig. 5c-d). 

This pattern is more apparent among longer coral δ18O records, as several Sr/Ca records in the database do not meet the 30-

year length requirement for bandpass filtering.  305 

 

Figure 6. Median absolute coral proxy-sea surface temperature (SST) correlation within 3000 km of each SST grid box (ERSSTv5). 
Bimonthly (left) and annual (April–March; right) correlations shown are significant at the 90% confidence level. Grid boxes with 
records within 3000 km but no significant correlations are shaded gray. Correlations are calculated using available data from 1950–
2020 CE. Record locations are indicated by black asterisks.     310 

For global or regional climate reconstructions, it is useful to consider the relationship of gridded SST data products 

to the proxy network as opposed to the relationship of individual records to the nearest grid point in those data products. To 

assess the reconstruction potential of the CoralHydro2k proxy network, we calculate the median absolute correlation between 

each ERSSTv5 grid box and all available records in the database within a 3,000 km radius (Fig. 6). We find significant 

(assuming a 90% confidence interval) annual Sr/Ca-SST correlations across 56% of the tropical and subtropical oceans (Fig. 315 

6b), and significant annual δ18O-SST correlations across 60% (Fig. 6d). Consistent with previous results, bimonthly 

correlations between SST and both proxies are higher (Fig. 6a,c) due to the seasonal cycle. Whereas non-climatic factors, such 

as age-model errors (Comboul et al., 2014; Lawman et al., 2020b; Loope et al., 2020), may lower the correlation between coral 

proxies and SST in some regions, significant correlations observed here highlight the fact the CoralHydro2k database captures 

regional to global patterns of climate variability, and thus, is suitable for reconstructing SST variability across much of the 320 

tropical and subtropical oceans. Reconstruction potential is limited in the eastern Pacific and eastern Atlantic due to the scarcity 

of corals from those regions.  
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3.3 Relationship to hydrology 

Coral δ18O records capture combined changes in local SST and δ18Osw, with the latter reflecting the balance among 

hydrological processes (e.g., precipitation, evaporation, horizontal and vertical ocean advection). Since observed δ18Osw data 325 

coverage is limited through space and time (e.g., LeGrande and Schmidt, 2006; Boyer et al., 2018; Breitkreuz et al., 2018), we 

compare each coral δ18O record to SSS from the nearest Hadley EN4.2.1 grid box (Good et al., 2013; Gouretski and Reseghetti, 

2010) as both SSS and δ18Osw variability are driven by similar hydrological processes. However, we do note that the 

relationship between these two variables may not be spatiotemporally constant (Conroy et al., 2014, 2017). Significant absolute 

correlations between coral δ18O and SSS between 1970 and 2010 range from 0.16–0.69 at bimonthly resolution and 0.28–0.79 330 

at annual resolution (Fig. 4e-f). The highest correlations occur in the Western Pacific Warm Pool region, where there is stronger 

SSS variability due to factors that do not strongly covary with temperature such as terrestrial runoff and ocean mixing (Qu et 

al., 2014; Murty et al., 2017, 2018b). For western Pacific sites further away from the Maritime Continent, higher SSS-δ18O 

correlations may reflect the strong covariance between SSS and SST, especially on interannual timescales. In contrast, coral 

δ18O records from sites close to the equator in the Indian and central equatorial Pacific oceans exhibit lower δ18O-SSS 335 

correlations, which suggests that SSS variability at these sites is smaller relative to SST or may point to potential biases in 

gridded SSS data products.  

Many δ18O-SSS correlations at annual resolution are not significant; however, this may be more reflective of the SSS 

data set used here rather than the integrity of records in the database. Historical SSS observational records are much shorter 

and sparser than SST before the satellite era (Good et al., 2013; Boyer et al., 2018; Friedman et al., 2017), especially in the 340 

tropical and subtropical oceans. Consequently, much larger discrepancies exist among gridded SSS data sets than those found 

between gridded SST products (Carton et al., 2018, 2019; Zweng et al., 2019). New and emerging salinity products such as 

NASA's Soil Moisture Active Passive (SMAP) Sea Surface Salinity (Vazquez-Cuervo and Gomez-Valdes, 2018), ESA’s Soil 

Moisture and Ocean Salinity Mission (SMOS; Boutin et al., 2016), Aquarius (Drucker and Riser, 2014), and Argo (Schmid et 

al., 2007) will be important calibration data sets for future coral studies or reconstructions that cover the years since 2011 CE. 345 

Nonetheless, the lack of long, historical SSS records highlights the need for independent coral-based constraints on long-term 

hydrological trends across the tropical and subtropical oceans. 
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3.4 Local reproducibility of Sr/Ca and δ18O records 

 

Figure 7. Median absolute correlation of coral proxy records to other records within a 50 km radius. Correlation was calculated 350 
over the common time period between two records, provided that there was a minimum of 20 years of overlap. Marker size indicates 
the number of records used in the median correlation calculation at each site (largest: N = 6). 

We assess the “local” reproducibility of coral records in the database by comparing each proxy record to records of 

the same type within a 50 km radius with at least 20 years in common (Fig. 7). As the CoralHydro2k database represents the 

most comprehensive coral-based proxy compilation effort to date, approximately 36% of the records are within a 50 km radius 355 

of one to five contemporaneous records. Bimonthly absolute correlations for Sr/Ca records within 50 km of each other range 

from 0.11–0.95 (Fig. 7a), and bimonthly δ18O correlations range from 0.24–0.79 (Fig. 7c). Similarly, annual correlations for 

Sr/Ca records within 50 km of each other range from 0.04–0.59 (Fig. 7b), and annual correlations for δ18O records range from 

0.01–0.87 (Fig. 7d). Whereas we observe good reproducibility at most sites, the highest degree of local reproducibility among 

both Sr/Ca and δ18O records occurs in more open ocean settings (e.g., the central Pacific), where there is less spatial variability 360 

in growth environments, ocean advection patterns, local SST, and SSS across short distances.  

Reproducibility studies show that proxy records from corals growing on the same reef can exhibit inconsistent mean 

values (e.g., Giry et al., 2012; Felis et al., 2003, 2004, 2014; DeLong et al., 2007, 2013; Sayani et al., 2021) or proxy-SST 

relationships (e.g., DeLong et al., 2012; Sayani et al., 2019). The exact causes of intercolony variability are not known. 

Intercolony differences in mean values are often attributed to subtle differences in reef environments, unresolved interspecies 365 

differences, or “vital effects”: a catch-all term used to describe a myriad of unknown physiological and/or metabolic processes 

that impact the incorporation of oxygen isotopes and trace elements into coral skeletons (Weber, 1973; Weber and Woodhead, 

1972; McConnaughey, 1989). Proxy-SST relationships may also vary among sites due to different coral micro-sampling 
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methods (e.g., punch/spot drilling versus continuous micro-milling), the lack of standardized analytical methods for measuring 

Sr/Ca prior to the use of the coral reference material JCp-1 (Hathorne et al., 2013), differences in regression methods and 370 

instrumental data sets used to calculate regressions (Corrège, 2006), and other regional parameters (Murty et al., 2018a). 

Despite these intercolony differences, contemporaneous proxy records often exhibit similar seasonal and interannual variability 

(e.g., Felis et al., 2004; Giry et al., 2012; DeLong et al., 2012, 2014; Kuffner et al., 2017; Sayani et al., 2019), highlighting that 

coral records are indeed capturing common climate signals and can be used to reconstruct regional and global climate trends 

and variability. 375 

Whereas intercolony variability has mostly been studied in massive Porites spp. corals, which are widely distributed 

throughout the Indian and Pacific oceans and most commonly used in paleoclimate reconstructions, some species (e.g., 

Siderastrea siderea, found in the Atlantic Ocean) exhibit more reproducibility among coral colonies in Sr/Ca, δ18O, and 

calibration equations (Maupin et al., 2008; DeLong et al., 2014, 2016; Kuffner et al., 2017; Weerabaddana et al., 2021). More 

work is needed to both quantify intercolony variability in different coral species and understand the impact of calibration 380 

method on coral-based temperature reconstructions.  

4 Usage notes 

4.1 General applications 

The CoralHydro2k database is the most comprehensive compilation of coral δ18O and Sr/Ca records to date. The 

database offers extensive coverage of monthly to annually resolved marine proxy records that can be used to investigate near-385 

surface hydrology and temperature variability across the global tropics and subtropics. Comparable information at similarly 

high resolution is rarely available with other marine paleo-archives. Paired coral Sr/Ca-δ18O records allow for independent 

reconstruction and investigation of pre-industrial temperature and hydrologic changes at seasonal, interannual, and decadal 

time scales. The inclusion of both unpaired and short proxy records, many of which did not meet the selection criteria of 

previous PAGES 2k data compilations, allows the CoralHydro2k database to be used for applications beyond large-scale 390 

temperature and hydrology reconstructions. This includes, and is certainly not limited to, proxy calibration studies, proxy-

system model development, and paleo-data assimilation efforts. Records in the CoralHydro2k database can also be compared 

to model outputs, either by converting coral Sr/Ca into temperature for direct comparison or by using proxy system modeling 

to estimate proxy composition from climate model output. Coral δ18O records and coral-derived δ18Osw records can also be 

directly compared with new simulations from isotope-enabled models. A brief overview of how to access, query, and cite the 395 

database is provided in the sections below. 

4.2 Searching the CoralHydro2k database 

Each LiPD serialization of the CoralHydro2k database contains the variables 'D' and 'TS', where 'D' is a site-centric 

storage of data and 'TS' is an expanded data structure holding the same information stored in a ‘per time series’ format. 
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MATLAB and R serializations also contain an 'sTS' variable to be consistent with other PAGES2k data sets, which contains 400 

the same information as variable ‘TS’. Proxy records stored in the CoralHydro2k database can be searched for using a variety 

of keywords or parameters. We suggest users initially narrow their search by filtering for groups of interest using the field 

paleoData_coralHydro2kGroup, which sorts records based on proxy type, record resolution, and temporal coverage. A 

detailed summary of group definitions is in Table 1. The database can also be queried by: 

• Proxy type, using the field paleoData_variableName. 405 

• Temporal coverage, using minYear and maxYear to search for proxy record start and end years, respectively. 

• Record resolution, which can be searched by nominal resolution (Table 3) using hasResolution_nominal or numerically 

(minimum, mean, median, maximum) using fields beginning with ‘hasResolution_’. See Table 2 for more information. 

• Location, using geographic coordinates (geo_latitude and geo_longitude), site name (geo_siteName), or ocean basin 

(geo_ocean). geo_ocean is the level one ocean basin listed in the World Ocean Atlas (Boyer et al., 2018) for the geographic 410 

coordinates of the record. 

• Coral species, using paleoData_archiveSpecies. 

4.3 Data availability, updates, and versioning 

The development of the CoralHydro2k database was guided by FAIR data principles (Wilkinson et al., 2016), which 

strive to make scholarly data Findable, Accessible, Interoperable, and Reusable. Thus, the CoralHydro2k database employs 415 

the LiPD framework (McKay and Emile-Geay, 2016), a standardized, machine-readable format for archiving and describing 

paleoclimate data, with serializations for MATLAB, R, and Python available at https://doi.org/10.25921/yp94-v135 (Walter 

et al., 2022). Also available on the database website is a MATLAB example script to help new users search the database.  

One of CoralHydro2k’s core goals is to create an actively curated coral database. We encourage the community to 

submit newly published coral δ18O and Sr/Ca records using the data submission form located on the repository website linked 420 

above. Newly published records will be compiled and added to the database on an annual basis. Updates to the database will 

follow the versioning scheme used by the PAGES2k database (PAGES2k Consortium, 2017). The first release of the 

CoralHydro2k database is version 1.0.0. The version number has three counters in the following form C1.C2.C3. The first 

counter, C1, is updated with each publication of a formal update of the data set.  The second counter, C2, is updated when a 

record is added or removed. The third counter, C3, is updated when a modification is made to the data or metadata. It is 425 

anticipated that future versions and a change log describing updates with each new version will be made available at the same 

location as the original data release. 

4.4 Citation 

Researchers utilizing the whole CoralHydro2k database or a significant portion of the database should cite this paper 

and the paper describing the most recent version of the database. If only a small subset of the records is being used, researchers 430 
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should also cite the papers that originally describe each coral record used. Citation information associated with each record in 

the database as well as a link to the original public archive of each data set is included in the metadata to facilitate users in 

crediting the original data generators in their use of the coral data. 

5 Conclusion 

Shallow-water corals provide monthly to annually resolved climate records from data-scarce locations across the 435 

tropical and subtropical oceans and are incredibly useful for extending modern-day observations back into the preindustrial 

era, contextualizing anthropogenic climate trends, and improving the skill of future climate projections. The PAGES 

CoralHydro2k project was formed to facilitate the use of coral paleoclimate records by the broader scientific community. Our 

first effort on this front is the CoralHydro2k database: a mostly unfunded endeavor representing the collective efforts of 40+ 

researchers across different career stages, institutes, and time zones, meeting monthly to bi-weekly and working 440 

asynchronously over the past four years. Subsequent publications from the CoralHydro2k project will use this database to 

evaluate proxy-SST calibrations and methodological differences used in coral-based climate reconstructions as well as 

investigate past tropical ocean hydroclimate trends using data assimilation and comparison to isotope enabled-models. 

Furthermore, the CoralHydro2k team has also been collecting instrumental seawater δ18O data as part of our database 

compilation efforts. That database will be released in the near future — also following the FAIR standards — and will also be 445 

maintained with active curation (see DeLong et al., in press). While the fruits of the CoralHydro2k database are likely to come 

over the next 5–10 years, continuing to invest as a community in compiling standardized data sets will inevitably elevate the 

utility of each record. 

The CoralHydro2k database is a comprehensive, machine-readable, standardized, and actively curated database of 

coral δ18O and Sr/Ca records. Records in the CoralHydro2k database track large-scale regional SST and hydrology signals 450 

across seasonal, interannual, and decadal timescales with a high degree of reproducibility. As such, the records in the database 

can be used for investigating tropical and subtropical SST and hydrology variability on societally relevant time scales and can 

be combined with large networks of terrestrial paleo-archives of climate variability such as tree rings, ice cores, or speleothems 

to investigate past and present ocean-atmosphere-land interactions. Moreover, the database enables global-scale comparisons 

of coral-based paleoclimate reconstructions with state-of-the-art climate models, either through the use of forward models 455 

(Thompson et al., 2011; Dee et al., 2015, 2017; Tardif et al., 2019), or directly in the case of isotope-enabled models (Konecky 

et al., 2020). The comprehensive and high-resolution nature of the CoralHydro2k database also makes it ideally suited as an 

input database for paleoclimate data assimilation efforts such as the Last Millennium Reanalysis (Hakim et al., 2016; Steiger 

et al., 2018; Tardif et al., 2019; Sanchez et al., 2021).  
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Appendix A 460 

Table A1. Reference table of publications sited in the CoralHydro2k database. Citations in the Cited publications column are listed 
in the order presented in the database (pub1, pub2, pub3). 

Unique ID Group Proxies Cited publications Latitude Longitude Location 

Atlantic Ocean 

AL16PUR01 6 Sr/Ca (Alpert et al., 2017) 18.1153 -67.9374 Mona Island, Puerto Rico 

AL16PUR02 6 Sr/Ca (Alpert et al., 2017) 17.93 -67.01 Pinacles Reef, Puerto Rico 

AL16YUC01 6 Sr/Ca (Alpert et al., 2017) 20.8321 -86.8789 Puerto Morelos, Mexico 

(Yucatan Peninsula) 

CA13DIA01 4 d18O (Carilli et al., 2013) 16.064 -86.951 Diamond Caye, Utila, 

Honduras (Gulf of 

Honduras) 

CA13PEL01 4 d18O (Carilli et al., 2013) 15.978 -86.485 Cayos Cochinos, Honduras 

(Gulf of Honduras) 

CA13SAP01 4 d18O (Carilli et al., 2013) 16.129 -88.25 Sapodilla Cayes, Belize 

(Gulf of Honduras) 

CA13TUR01 4 d18O (Carilli et al., 2013) 17.307 -87.801 Turneffe Atoll, Belize (Gulf 

of Honduras) 

DE14DTO01 6 Sr/Ca (DeLong et al., 2014, 

2016; Flannery et al., 

2017) 

24.6988 -82.7974 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

DE14DTO02 6 Sr/Ca (DeLong et al., 2014, 

2016; Flannery et al., 

2017) 

24.617 -82.867 Dry Tortugas, Florida, USA 

(south of Long Key, Florida 

Keys) 

DE14DTO03 6 Sr/Ca (DeLong et al., 2014, 

2016, 2011) 

24.6988 -82.7974 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

DE14DTO04 6 Sr/Ca (DeLong et al., 2014, 

2016, 2011) 

24.6949 -82.7947 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

DR00KSB01 5 d18O (Draschba et al., 

2000) 

32.467 -64.568 Kitchen Shoals, Bermuda 

(Sargasso Sea) 
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DR00NBB01 5 d18O (Draschba et al., 

2000) 

32.5 -64.7 Northeast Breakers, 

Bermuda (Sargasso Sea) 

EV18ROC01 7 Sr/Ca (Evangelista et al., 

2018) 

-3.86 -33.77 Rocas Atoll, Rio Grande do 

Norte, Brazil 

FL17DTO01 6 Sr/Ca (Flannery et al., 

2017; Flannery and 

Poore, 2013; DeLong 

et al., 2011) 

24.6986 -82.7986 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

FL17DTO02 6 Sr/Ca (Flannery et al., 

2017; Weinzierl et 

al., 2016) 

24.699 -82.799 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

FL18DTO01 6 Sr/Ca (Flannery et al., 

2018, 2017; Flannery 

and Poore, 2013) 

24.6949 -82.7983 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

FL18DTO02 6 Sr/Ca (Flannery et al., 

2018; Hickey et al., 

2013) 

24.6946 -82.7949 Dry Tortugas, Florida, USA 

(Pulaski Reef, Florida 

Keys) 

FL18DTO03 6 Sr/Ca (Flannery et al., 

2018; Weinzierl et 

al., 2016) 

24.703 -82.848 Dry Tortugas, Florida, USA 

(near North Key Harbor, 

Florida Keys) 

FL18DTO04 6 Sr/Ca (Flannery et al., 

2018; Weinzierl et 

al., 2016) 

24.703 -82.844 Dry Tortugas, Florida, USA 

(near North Key Harbor, 

Florida Keys) 

GO08BER01 1 d18O, Sr/Ca (Goodkin et al., 2008, 

2005; Goodkin, 

2007) 

32.33 -64.68 Bermuda 

HE08LRA01 4 d18O (Hetzinger et al., 

2008) 

11.77 -66.75 Cayo Sal, Los Roques 

Archipelago, Venezuela 

HE10GUA01 1 d18O, Sr/Ca (Hetzinger et al., 

2010, 2006) 

16.2 -61.49 Isle de Gosier, Guadeloupe 

(Lesser Antilles) 

KI08PAR01 3 d18O, Sr/Ca (Kilbourne et al., 

2008, 2010) 

17.93 -67 La Parguera, Puerto Rico 

(Turrumote Reef) 
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KI14PAR01 3 d18O, Sr/Ca (Kilbourne et al., 

2014; Watanabe et 

al., 2001; Kilbourne 

et al., 2008) 

18 -67 La Parguera, Puerto Rico 

(Turrumote Reef) 

MA08DTO01 2 d18O, Sr/Ca (Maupin et al., 2008; 

DeLong et al., 2016) 

24.6167 -82.8667 Dry Tortugas, Florida, USA 

(Long Key, Dry Tortugas) 

MO06PED01 4 d18O (Moses et al., 2006) 16.76 -22.89 Pedra de Lume, Sal Island 

(Cape Verde Islands) 

RE18CAY01 1 d18O, Sr/Ca (von Reumont et al., 

2018, 2016) 

19.7 -80.06 Little Cayman, Cayman 

Islands 

RO19MAR01 6 Sr/Ca (Rodriguez et al., 

2019) 

14.4512 -60.929 Grande Cai, Martinique 

RO19PAR01 7 Sr/Ca (Rodriguez et al., 

2019; Kilbourne et 

al., 2010; Watanabe 

et al., 2001) 

17.9368 -67.0184 Parguera, Puerto Rico 

RO19YUC01 7 Sr/Ca (Rodriguez et al., 

2019; Vásquez-

Bedoya et al., 2012) 

20.8321 -86.8789 Puerto Morelos, Mexico 

(Yucatan Peninsula) 

SM06LKF01 2 d18O, Sr/Ca (Smith et al., 2006) 24.56 -81.41 Looe Key, Florida, USA 

(Florida Keys) 

SM06LKF02 2 d18O, Sr/Ca (Smith et al., 2006) 24.56 -81.41 Looe Key, Florida, USA 

(Florida Keys) 

SW98STP01 5 d18O (Swart et al., 1998) 1.67 7.58 Ponta Banana, Principe 

Island (Gulf of Guinea) 

SW99LIG01 5 d18O (Swart et al., 1999) 25.23 -80.4167 Lignumvitae Basin, Florida, 

USA (Florida Bay) 

SW99LIG02 5 d18O (Swart et al., 1999, 

1996) 

25 -80.6 Lignumvitae Basin, Florida 

Bay (Florida Bay) 

XU15BVI01 6 Sr/Ca (Xu et al., 2015) 18.72 -64.3167 Anegada, British Virgin 

Islands (Soldier Point) 

XU15BVI02 6 Sr/Ca (Xu et al., 2015) 18.72 -64.3167 Anegada, British Virgin 

Islands (Soldier Point) 
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XU15BVI03 6 Sr/Ca (Xu et al., 2015) 18.72 -64.3167 Anegada, British Virgin 

Islands (Soldier Point) 

Pacific Ocean 

AS05GUA01 4 d18O (Asami et al., 2005) 13.598 144.836 Double Reef, Guam 

BA04FIJ01 3 d18O, Sr/Ca (Bagnato et al., 2004) -16.82 179.23 Savusavu Bay, Vanua 

Levu, Fiji 

BA04FIJ02 2 d18O, Sr/Ca (Bagnato et al., 2004) -16.82 179.23 Savusavu Bay, Vanua 

Levu, Fiji 

BO14HTI01 2 d18O, Sr/Ca (Bolton et al., 2014; 

Goodkin et al., 2021) 

12.21 109.31 Hon Tre Island, Vietnam 

BO14HTI02 2 d18O, Sr/Ca (Bolton et al., 2014; 

Goodkin et al., 2021) 

12.21 109.31 Hon Tre Island, Vietnam 

BO99MOO01 4 d18O (Boiseau et al., 1999, 

1998) 

-17.5 -149.83 Moorea, French Polynesia 

CA07FLI01 3 d18O, Sr/Ca (Calvo et al., 2007) -17.73 148.43 Flinders Reef, Australia 

(Coral Sea) 

CA14BUT01 2 d18O, Sr/Ca (Carilli et al., 2014) 3.2 172.8 Butaritari Atoll, Republic 

of Kiribati (Gilbert Islands) 

CH03BUN01 4 d18O (Charles et al., 2003) 1.5 124.83 Bunaken Island, Indonesia 

(North Sulawesi) 

CH03LOM01 4 d18O (Charles et al., 2003) -8.25 115.5 Padang Bai, Bali, Indonesia 

(Lombok Strait) 

CH18YOA01 6 Sr/Ca (Chen et al., 2018) 16.448 111.605 Lingyang Reef, Yongle 

Atoll (South China Sea) 

CH18YOA02 6 Sr/Ca (Chen et al., 2018) 16.448 111.605 Lingyang Reef, Yongle 

Atoll (South China Sea) 

CO03PAL01 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL02 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 
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CO03PAL03 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL04 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL05 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL06 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL07 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL08 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL09 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO03PAL10 4 d18O (Cobb et al., 2003a, 

b) 

5.87 -162.13 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

CO93TAR01 4 d18O (Cole et al., 1993) 1.42 173.03 Tarawa Atoll, Republic of 

Kiribati (Gilbert Islands) 

DE12ANC01 6 Sr/Ca (DeLong et al., 2012, 

2007) 

-22.48 166.46 Amedee Island, New 

Caledonia 

DE13HAI01 3 d18O, Sr/Ca (Deng et al., 2013) 19.29 110.656 Longwan, Qionghai, China 

(Hainan Island) 

DO18DAV01 6 Sr/Ca (D’Olivo et al., 2018) -18.8 147.63 Davies Reef, Australia 

(Great Barrier Reef) 
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DR99ABR01 5 d18O (Druffel and Griffin, 

1999, 1993) 

-22.1 153 Abraham Reef, Australia 

(Great Barrier Reef) 

DU94URV01 5 d18O (Dunbar et al., 1994) -0.4084 -91.234 Urvina Bay, Isabela Island, 

Ecuador (Galapagos 

Islands) 

DU94URV02 5 d18O (Dunbar et al., 1994) -0.4084 -91.234 Urvina Bay, Isabela Island, 

Ecuador (Galapagos 

Islands) 

EV98KIR01 4 d18O (Evans et al., 1998) 2 -157.3 Kiritimati (Christmas) 

Island, Republic of Kiribati 

(Line Islands) 

FE09OGA01 1 d18O, Sr/Ca (Felis et al., 2009) 27.1059 142.1941 Ogasawara Islands, Japan 

(Chichijima) 

GO12SBV01 1 d18O, Sr/Ca (Gorman et al., 2012; 

Lawman et al., 

2020a) 

-15.94 166.07 Sabine Bank, Vanuatu 

GU99NAU01 5 d18O (Guilderson and 

Schrag, 1999) 

-0.54 166.97 Nauru Island, Republic of 

Nauru 

GU99NAU02 4 d18O (Guilderson and 

Schrag, 1999) 

-0.54 166.97 Nauru Island, Republic of 

Nauru 

HE02GBR01 3 d18O, Sr/Ca (Hendy et al., 2002) -17.78 146.13 Central Great Barrier Reef, 

Australia (Great Barrier 

Reef) 

HE13MIS01 2 d18O, Sr/Ca (Hereid et al., 2013) -10.69 152.81 Misima Island, Papua New 

Guinea 

HE13MIS02 2 d18O, Sr/Ca (Hereid et al., 2013) -10.69 152.81 Misima Island, Papua New 

Guinea 

JI18GAL01 6 Sr/Ca (Jimenez et al., 2018) 1.386 -91.832 Shark Bay, Wolf Island, 

Ecuador (Galapagos 

Islands) 

JI18GAL02 6 Sr/Ca (Jimenez et al., 2018) 1.386 -91.832 Shark Bay, Wolf Island, 

Ecuador (Galapagos 

Islands) 
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KA17RYU01 7 Sr/Ca (Kawakubo et al., 

2017, 2014) 

28.3 130 Kikai Island, Japan 

(Ryukyu Islands) 

KI04MCV01 2 d18O, Sr/Ca (Kilbourne et al., 

2004b, a) 

-15.7 167.2 Espiritu Santo Island, 

Vanuatu (Malo Channel) 

KR20SAR01 2 d18O, Sr/Ca (Krawczyk et al., 

2020) 

4.2922 113.8259 Sarawak, Malaysia (Miri-

Sibuti Coral Reefs National 

Park) 

KR20SAR02 2 d18O, Sr/Ca (Krawczyk et al., 

2020) 

4.3433 113.8983 Sarawak, Malaysia (Miri-

Sibuti Coral Reefs National 

Park) 

LI00RAR01 1 d18O, Sr/Ca (Linsley et al., 2000; 

Ren et al., 2003; 

Linsley et al., 2004) 

-21.24 -159.83 Rarotonga, Cook Islands 

LI04FIJ01 1 d18O, Sr/Ca (Linsley et al., 2004) -16.82 179.23 Vanua Levu, Fiji (Savusavu 

Bay) 

LI06FIJ01 5 d18O (Linsley et al., 2006) -16.82 179.23 Savusavu Bay, Vanua 

Levu, Fiji 

LI06RAR01 4 d18O (Linsley et al., 2004, 

2006) 

-21.2378 -159.828 Rarotonga, Cook Islands 

LI06RAR02 4 d18O (Linsley et al., 2004, 

2006)  

-21.2378 -159.828 Rarotonga, Cook Islands 

LI94SEC01 4 d18O (Linsley et al., 1994) 7.983 -82.05 Secas Island, Panama (Gulf 

of Chiriqui) 

LI99CLI01 4 d18O (Linsley et al., 1999) 10.3 -109.22 Clipperton Island 

MC04PNG01 5 d18O (McGregor and 

Gagan, 2004; 

McGregor et al., 

2008) 

-3.4118 143.637 Muschu Island, Papua New 

Guinea 

MC11KIR01 4 d18O (McGregor et al., 

2011) 

2 -157.3 Kiritimati (Christmas) 

Island, Republic of Kiribati 

(Line Islands) 

MO20KOI01 2 d18O, Sr/Ca (Mohtar et al., 2021) 5.3 163 Kosrae Island, Fed. States 

of Micronesia 
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MO20WOA01 2 d18O, Sr/Ca (Mohtar et al., 2021) 7.4 144 Wolei Atoll, Fed. States of 

Micronesia 

MU17DOA01 4 d18O (Murty et al., 2017) -5.382 117.914 Doangdoangan Besar, 

Indonesia (Makassar Strait) 

MU18GSI01 1 d18O, Sr/Ca (Murty et al., 2018b) -8.38 115.71 Gili Selang, Bali, Indonesia 

(Lombok Strait) 

NU09FAN01 2 d18O, Sr/Ca (Nurhati et al., 2009) 3.85 -159.35 Tabuaeran (Fanning 

Island), Republic of 

Kiribati (Line Islands) 

NU09KIR01 2 d18O, Sr/Ca (Nurhati et al., 2009) 1.8667 -157.4 Kiritimati (Christmas) 

Island, Republic of Kiribati 

(Line Islands) 

NU11PAL01 1 d18O, Sr/Ca (Nurhati et al., 2011, 

2009; Cobb et al., 

2001) 

5.867 -162.133 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

OS13NGP01 4 d18O (Osborne et al., 2013) 7.4064 134.4353 Ngaragabel, Palau 

OS13NLP01 4 d18O (Osborne et al., 2013) 7.6569 134.5651 Ngeralang, Palau 

OS14RIP01 4 d18O (Osborne et al., 2014, 

2013) 

7.2708 134.3837 Rock Islands, Palau 

OS14UCP01 4 d18O (Osborne et al., 2014, 

2013) 

7.2859 134.2503 Ulong Channel, Palau 

QU06RAB01 1 d18O, Sr/Ca (Quinn et al., 2006) -4.18 151.98 Rabaul, East New Britain, 

Papua New Guinea 

QU96ESV01 5 d18O (Quinn et al., 1996, 

1993) 

-15 167 Espiritu Santo Island, 

Vanuatu 

RA19PAI01 1 d18O, Sr/Ca (Ramos et al., 2019) 18.54 122.15 Palaui Island, Philippines 

(Luzon Strait) 

RA20TAI01 1 d18O, Sr/Ca (Ramos et al., 2020) 21.9 120.7 Houbihu, Taiwan (Luzon 

Strait) 

RE19GBR01 2 d18O, Sr/Ca (Reed et al., 2019) -12.5 143.52 Eel Reef, Australia (Great 

Barrier Reef) 

RE19GBR02 2 d18O, Sr/Ca (Reed et al., 2019) -12.6 143.3 Portland Roads, Australia 

(Great Barrier Reef) 
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RE19GBR03 2 d18O, Sr/Ca (Reed et al., 2019) -13.33 143.95 Reef 13-050, Australia 

(Great Barrier Reef) 

RE19GBR04 6 Sr/Ca (Reed et al., 2019) -12.09 143.29 Nomad Reef, Australia 

(Great Barrier Reef) 

RE19GBR05 6 Sr/Ca (Reed et al., 2019) -11.97 143.28 Clerke Reef, Australia 

(Great Barrier Reef) 

SA16CLA01 5 d18O (Sanchez et al., 2016) 18.4 -114.7 Clarion Island, Mexico 

(Revillagigedos 

Archipelago) 

SA18GBR01 6 Sr/Ca (Saha et al., 2018, 

2021) 

-23.15 150.97 Great Keppel Island, 

Australia (Great Barrier 

Reef) 

SA19PAL01 2 d18O, Sr/Ca (Sayani et al., 2019) 5.878 -162.142 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

SA19PAL02 2 d18O, Sr/Ca (Sayani et al., 2019) 5.878 -162.142 Palmyra Island, United 

States Minor Outlying 

Islands (Line Islands) 

SA20FAN01 4 d18O (Sanchez et al., 2020) 3.85 -159.35 Tabuaeran (Fanning 

Island), Republic of 

Kiribati (Line Islands) 

SA20FAN02 4 d18O (Sanchez et al., 2020) 3.85 -159.35 Tabuaeran (Fanning 

Island), Republic of 

Kiribati (Line Islands) 

SH92PUN01 5 d18O (Shen et al., 1992) -0.67 -89.17 Punta Pitt, Isla San 

Cristobal, Ecuador 

(Galapagos Islands) 

TA18TAS01 4 d18O (Tangri et al., 2018) -14.27 -169.5 Ta'u, American Samoa 

TU01DEP01 5 d18O (Tudhope et al., 

2001) 

-5.217 145.817 Madang Lagoon, Papua 

New Guinea (Deplik Tabat 

Reef) 

TU01LAI01 5 d18O (Tudhope et al., 

2001) 

-4.15 144.883 Laing Island, Papua New 

Guinea 
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TU01SIA01 5 d18O (Tudhope et al., 

2001) 

-6.08 147.6 Sialum, Huon Peninsula, 

Papua New Guinea 

TU95MAD01 5 d18O (Tudhope et al., 

1995) 

-5.22 145.82 Madang Lagoon, Papua 

New Guinea 

UR00MAI01 4 d18O (Urban et al., 2000) 1 173 Maiana, Republic of 

Kiribati (Gilbert Islands) 

WE09ARR01 3 d18O, Sr/Ca (Wei et al., 2009) -16.72 146.03 Arlington Reef, Australia 

(Great Barrier Reef) 

WU13TON01 3 d18O, Sr/Ca (Wu et al., 2013; 

Linsley et al., 2008) 

-19.9333 -174.717 Ha'afera, Tonga 

WU14CLI01 1 d18O, Sr/Ca (Wu et al., 2014; 

Linsley et al., 1999) 

10.3 -109.22 Clipperton Island 

XI17HAI01 3 d18O, Sr/Ca (Xiao et al., 2017) 19.395 110.753 Fengjiawan, Wenchang, 

China (Hainan Island) 

Indian Ocean and Bay of Bengal 

AB08MEN01 4 d18O (Abram et al., 2008) -0.13 98.52 Mentawai Islands, 

Indonesia (West Sumatra) 

AB15BHB01 4 d18O (Abram et al., 2015) -6.53 105.63 Batu Hitam Beach, 

Indonesia (Sunda Strait) 

AB20MEN01 4 d18O (Abram et al., 2020, 

2015) 

-3.18 100.517 Mentawai Islands, 

Indonesia (Tinopo) 

AB20MEN02 4 d18O (Abram et al., 2020; 

Gagan et al., 2015) 

-2.37 99.745 Mentawai Islands, 

Indonesia (Siruamata) 

AB20MEN03 4 d18O (Abram et al., 2020) -3.126 100.309 Mentawai Islands, 

Indonesia (Saomang) 

AB20MEN04 4 d18O (Abram et al., 2020) -2.752 99.995 Mentawai Islands, 

Indonesia (Silabu) 

AB20MEN05 4 d18O (Abram et al., 2020) -3.037 100.231 Mentawai Islands, 

Indonesia (Pororogat) 

AB20MEN06 4 d18O (Abram et al., 2020) -3.0366 100.2307 Mentawai Islands, 

Indonesia (Pororogat) 

AB20MEN07 4 d18O (Abram et al., 2020) -3.1261 100.3097 Mentawai Islands, 

Indonesia (Saomang) 

https://doi.org/10.5194/essd-2022-172
Preprint. Discussion started: 17 August 2022
c� Author(s) 2022. CC BY 4.0 License.



34 
 

AB20MEN08 4 d18O (Abram et al., 2020) -3.1261 100.3098 Mentawai Islands, 

Indonesia (Saomang) 

AB20MEN09 4 d18O (Abram et al., 2020) -3.1259 100.3094 Mentawai Islands, 

Indonesia (Saomang) 

CA14TIM01 1 d18O, Sr/Ca (Cahyarini et al., 

2014) 

-10.2 123.51 Timor, Indonesia (Ombai 

Strait) 

CH97BVB01 4 d18O (Charles et al., 1997) -4.6162 55.817 Mahe Island, Republic of 

the Seychelles (Beau 

Vallon Bay) 

CH98PIR01 5 d18O (Chakraborty and 

Ramesh, 1998) 

22.6 70 Pirotan Island, Gujarat, 

India (Gulf of Kutch, 

Northern Arabian Sea) 

CO00MAL01 5 d18O (Cole et al., 2000; 

Fleitmann et al., 

2007) 

-3.26 40.14 Malindi Marine Park, 

Kenya 

DA06MAF01 4 d18O (Damassa et al., 

2006) 

-8.0167 39.5 Fungu Mrima Reef, 

Tanzania (Mafia 

Archipelago, Bwejuu 

Island) 

DA06MAF02 4 d18O (Damassa et al., 

2006) 

-8.0167 39.5 Fungu Mrima Reef, 

Tanzania (Mafia 

Archipelago, Bwejuu 

Island) 

GR13MAD01 6 Sr/Ca (Grove et al., 2013) -17.095 49.858 Nosy Boraha, Madagascar 

(formerly Ile Sainte-Marie) 

GR13MAD02 6 Sr/Ca (Grove et al., 2013) -17.089 49.861 Nosy Boraha, Madagascar 

(formerly Ile Sainte-Marie) 

HE18COC01 1 d18O, Sr/Ca (Hennekam et al., 

2018) 

-12.0875 96.8752 Cocos (Keeling) Islands, 

Australia 

HE18COC02 2 d18O, Sr/Ca (Hennekam et al., 

2018) 

-12.095 96.8805 Cocos (Keeling) Islands, 

Australia 

KU00NIN01 4 d18O (Kuhnert et al., 2000) -21.905 113.965 Ningaloo Reef, Australia 

(Western Australia) 
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KU99HOU01 4 d18O (Kuhnert et al., 1999; 

Zinke et al., 2014a) 

-28.4617 113.7683 Houtman Abrolhos Islands, 

Australia 

MU18NPI01 1 d18O, Sr/Ca (Murty et al., 2018b) -8.67 115.51 Nusa Penida, Indonesia 

(Lombok Strait) 

NA09MAL01 4 d18O (Nakamura et al., 

2009) 

-3.2 40.1 Malindi Marine Park, 

Kenya 

PF04PBA01 4 d18O (Pfeiffer et al., 

2004b) 

-5.43 71.77 Peros Banhos Atoll, Chagos 

Archipelago 

PF19LAR01 1 d18O, Sr/Ca (Pfeiffer et al., 2019, 

2004a) 

-21 55 St. Gilles Reef, La Reunion 

RI10PBL01 4 d18O (Rixen et al., 2011) 11.5 92.69 Port Blair, Andaman 

Islands, India 

ST13MAL01 1 d18O, Sr/Ca (Storz et al., 2013) 4.29 72.98 Rasdhoo Atoll, Maldives 

WA17BAN01 2 d18O, Sr/Ca (Watanabe et al., 

2017) 

23.5 58.75 Bandar Khayran, Oman 

ZI04IFR01 2 d18O, Sr/Ca (Zinke et al., 2004) -23.15 43.58 Ifaty Reef, Madagascar 

(Mozambique Channel) 

ZI08MAY01 1 d18O, Sr/Ca (Zinke et al., 2008) -12.65 45.1 Mayotte (Comoro 

Archipelago) 

ZI14HOU01 3 d18O, Sr/Ca (Zinke et al., 2014a) -28.46 113.75 Houtman Abrolhos Islands, 

Australia 

ZI14IFR02 5 d18O (Zinke et al., 2014b, 

2004) 

-23.1573 43.5882 Ifaty Reef, Madagascar 

ZI14TUR01 5 d18O (Zinke et al., 2014b, 

2004) 

-23.3572 43.6195 Tulear Reef, Madagascar 

ZI15BUN01 7 Sr/Ca (Zinke et al., 2015) -21.836 114.178 Ningaloo Reef, Australia 

(Bundegi Reef) 

ZI15CLE01 7 Sr/Ca (Zinke et al., 2015) -17.26 119.26 Rowley Shoals, Australia 

(Clerke Reef) 

ZI15IMP01 7 Sr/Ca (Zinke et al., 2015) -17.5369 118.974 Rowley Shoals, Australia 

(Imperieuse Reef) 

ZI15IMP02 7 Sr/Ca (Zinke et al., 2015) -17.5196 118.969 Rowley Shoals, Australia 

(Imperieuse Reef) 
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ZI15MER01 7 Sr/Ca (Zinke et al., 2015) -17.1 119.6 Rowley Shoals, Australia 

(Mermaid Reef) 

ZI15TAN01 7 Sr/Ca (Zinke et al., 2015) -21.893 113.963 Ningaloo Reef, Australia 

(Tantabiddi Reef) 

ZI16ROD01 6 Sr/Ca (Zinke et al., 2016) -19.671 63.429 Rodrigues, Republic of 

Mauritius (Totor Reef) 

ZI16ROD02 6 Sr/Ca (Zinke et al., 2016) -19.667 63.434 Rodrigues, Republic of 

Mauritius (Cabri Reef) 

Red Sea 

BR19RED01 6 Sr/Ca (Bryan et al., 2019) 19.89 39.96 Canyon, Red Sea 

DE16RED01 6 Sr/Ca (DeCarlo et al., 2016; 

Alpert et al., 2017) 

22.0314 38.8778 Red Sea 

FE18RUS01 1 d18O, Sr/Ca (Felis et al., 2018, 

2000) 

27.8483 34.31 Ras Umm Sidd, Egypt 

(Sinai Peninsula) 

KL97DAH01 5 d18O (Klein et al., 1997; 

Ionita et al., 2014) 

15.7167 39.9 Dur-Ghella Island, Eritrea 

(Dahlak Archipelago) 

MU18RED01 6 Sr/Ca (Murty et al., 2018a) 27.98 34.81 Semicolon, Red Sea 

MU18RED02 6 Sr/Ca (Murty et al., 2018a) 25.58 36.55 Popponesset, Red Sea 

MU18RED03 6 Sr/Ca (Murty et al., 2018a) 23.7 37.97 Abu Galawa, Red Sea 

MU18RED04 6 Sr/Ca  (Murty et al., 2018a; 

Bryan et al., 2019) 

21.78 38.83 Coral Gardens, Red Sea 

 

6 Author contributions 
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selection and standardization. Data curation efforts were led by HRS, RMW, BE, JAH, LDB and KHK, with RMW, HRS, TF, 
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data sets and/or metadata included in the CoralHydro2k database. Quality control efforts were led by RMW, HK, BE, MJF, 470 

and KHK, with assistance from AKA, LDB, ARA, EPD, KLD, TF, NFG, SAM, RDR, EVR, HRS, and JZ. Manuscript text 

was written by HRS and RMW, with significant contributions from TF, KHK, KLD, NFG, and JZ, and with all coauthors 
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providing edits and feedback throughout the process. RMW generated all figures for this paper with inputs from HRS, TF, 

KMC, NJA, ARA, KLD, BE, MJF, NFG, KHK, HK, DS, and SCS, and with all coauthors providing feedback on design and 
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