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Abstract

This paper concerns solving the steady radiative transfer equation with diffusive scaling,
using the physics informed neural networks (PINNs). The idea of PINNs is to minimize a
least-square loss function, that consists of the residual from the governing equation,
the mismatch from the boundary conditions, and other physical constraints such as
conservation. It is advantageous of being flexible and easy to execute, and brings the
potential for high dimensional problems. Nevertheless, due the presence of small
scales, the vanilla PINNs can be extremely unstable for solving multiscale steady transfer
equations. In this paper, we propose a new formulation of the loss based on the
macro-micro decomposition. We prove that, the new loss function is uniformly stable
with respect to the small Knudsen number in the sense that the L2-error of the neural
network solution is uniformly controlled by the loss. When the boundary condition is
an-isotropic, a boundary layer emerges in the diffusion limit and therefore brings an
additional difficulty in training the neural network. To resolve this issue, we include a
boundary layer corrector that carries over the sharp transition part of the solution and
leaves the rest easy to be approximated. The effectiveness of the new methodology is
demonstrated in extensive numerical examples.

Keywords: Radiative transfer equation, Diffusion limit, Boundary layer, PINN, Uniform
stability
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1 Introduction
Developing efficient and robust numerical scheme for multiscale kinetic equation has
always been a challenging yet important subject of research, and has attracted a lot of
attention in thepast decade.Themaindifficulty comes from the stiffness raisedbymultiple
scales of the equation, which generically requires fine spatial mesh grid and short time
step to guarantee both accuracy and stability. A large number of numerical schemes has
been devoted to relaxing such a requirement, in the traditional grid-based framework,
including the finite difference method, finite volume method, discrete Galerkin method,
and etc [5,12,22]. Recently, deep learning method has emerged as a competitive mesh-
free method for solving partial differential equations (PDEs). The idea is to represent
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solutions of PDEs by (deep) neural networks to take advantage of the rich expressiveness
of neural networks representation. The parameters of neural networks are chosen by
training or optimizing some loss functions associated with the PDE. It is advantageous of
being intuitive and easy to execute, and also offers an innovational approach for solving
high dimensional problems.
Many deep learning methods, based on optimizing different loss functions, have been

developed for solving PDEs. To the best of our knowledge, the first neural networkmethod
PDE solver dates back to [18] and builds on minimizing the L2-residual of the PDE and
that of the boundary/initial conditions. The now-days popular physical informed neural
network (PINN) [32] and deep Galerkin method (DGM) [34] fail into the same residual
minimization framework. Another method called Deep Ritz Method [39] is designed to
solve some PDE problems with variational structures by exploiting the Ritz formulation
of PDEs. The deep BSDE method [10] was developed for solving some parabolic PDEs
based on the stochastic representation of the solutions. For discussions of other machine
learning methods for PDEs, we refer the interested reader to the excellent review article
[9].
Recently, several works [4,11,26] proposed neural network methods for solving kinetic

equations by employing the framework of PINNs. However, the error bounds proved
in those works for vanilla PINNs deteriorate in the diffusive regime where the Knudsen
number is small. More specifically, the stability estimates proved for the vanilla PINN
loss functions blow up as the Knudsen number tends to zero. The purpose of the present
paper is to build a new loss function which satisfies a stability estimate that is uniform
with respect to the Knudsen number in the diffusive regime. Consider the steady radiative
transfer equation (RTE), which takes the following general form:

⎧
⎨

⎩

εv · ∇xf (x, v) = σs(x)Lf (x, v) − ε2σa(x)f + ε2G(x), (x, v) ∈ � := �x × Sd−1 ,

f (x, v) = φ(x, v), (x, v) ∈ �−.
(1.1)

Here f (t, x, v) is the distribution of particles at time t and location x with velocity v, G(x)
is source function and �− := {(x, v) ∈ ∂�x × Sd−1| v · nx < 0} is the inflow boundary.
Assume that�x is bounded and Lipschitz onRd .We also assume that the inflowboundary
value φ(x, v) ∈ L2(�−). The parameter ε > 0, often termed as Knudsen number, is a
dimensionless parameter that governs the regime of the equation. In particular, ε ∼ O(1)
refers to kinetic regime, and ε � 1 corresponds to the diffusive regime. The scattering
operator L is defined by

Lf = 1
|Sd−1|

∫

Sd−1
K (v, v′)(f (v′) − f (v))dv′,

where K : Sd−1 × Sd−1→R is a nonnegative kernel. The functions σs and σa are the
scattering coefficient and absorption coefficient respectively. In addition, we assume the
following assumption is valid.

Assumption 1 There exist positive constants σmin and σmax such that

0 < σmin ≤ σs(x) ≤ σmax and 0 ≤ σa(x) ≤ σmax .

Throughout the paper, we also make the following assumption on the scattering opera-
tor L, which will play an essential role in obtaining a stability estimate for our new PINN
loss function.
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Assumption 2 The scattering operator L satisfies

1)
〈Lf 〉 := 1

|Sd−1|
∫

Sd−1 Lf dv = 0 for any f (v) ∈ L2(Sd−1);
2) the null space of L isN (L) = {f = 〈

f
〉};

3) L is non-positive self-adjoint in L2(Sd−1), and moreover,
〈
f Lf 〉 ≤ −c

〈
f 2

〉
for every

f ∈ N⊥(L) and some constant c > 0;
4) L admits a pseudo-inverse fromN⊥(L) toN⊥(L).
5) There exists CK > 0 such that ‖Lf ‖L2(�) ≤ CK‖f ‖L2(�).

Under Assumptions 1 and 2, it is well-known that RTE (1.1) is well-posedness as shown
in the theorem below. To state the theorem, let us first define the function space X by
setting

X := {f ∈ L2(�) |v · ∇xf ∈ L2(�)}.

Theorem 1 Suppose that Assumptions 1 and 2 hold. There exists a unique solution f to
(1.1) such that f ∈ X and

‖f ‖L2(�) + ‖v · ∇xf ‖L2(�) ≤ C(‖φ‖L2(�I ) + ‖G‖L2(�x)),

where the constant C depends on σa, σs, � and ε.

Proof Thanks to [6, Theorem 1.1], problem (1.1) has a unique solution in L2(�). More-
over,

‖f ‖L2(�) ≤ C(‖φ‖L2(�I ) + ‖G‖L2(�x)).

Notice that the stability bound in [6, Theorem 1.1] is slightly stronger than the one stated
above since the L2-bound there is weighted against �(x, v), which is the length of line
segment through x in direction v completely contained in �x . The gradient bound on
‖v · ∇xf ‖ follows directly by taking L2-norm on both sides of (1.1) and the estimate above.

��

In the diffusive regime (ε � 1), problem (1.1) is well approximated by the elliptic
equation:

〈

v · ∇xL−1
(
1
σs
v · ∇xρ0

)〉

= −σaρ0 + G , ρ0
∣
∣
∂�

= ξ (x) ,

where ξ is obtained through the boundary layer analysis [1]. In many applied problems,
themagnitude of ε can vary significantly across different regions; in this case it is desirable
to have a solver that can deal with both kinetic (ε ∼ O(1)) and diffusion (ε � 1) regimes.
Methods that fulfill this task fall into two categories, the domain-decomposition method
[7,23] and the asymptotic preserving method [3,14,15,21,24,31,35,36]. The former one
solves different equations in different regimes and constructs an interface condition to
connect them, whereas the latter seeks a unified solver that works in both regimes and
therefore avoids the complication in identifying the interface location and designing inter-
face condition. For time dependent RTE, there has been a vast literature on developing
asymptotic preserving methods [14], with the focus on resolving the stability issue by way
of an implicit-explicit time discretization.
For stationary problems, on the other hand, specific challenge arises due to the presence

of boundary layer. In general, generic numericalmethodmay induce anumerical boundary
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Fig. 1 Comparison of results solving (3.3) with ε = 10−3. Left is obtained with vanilla loss and right is with
loss from macro-micro decomposition

condition in the zero ε limit that does not match the theoretical boundary condition, and
then introduces errors not only on theboundary but also inside the computational domain.
To this end, several efforts have been made to incorporate part of the boundary layer
information into the scheme. For instance, Klar [17] constructed a boundary condition
for the diffusion equation by approximating a Milne problem. Han, Tang and Ying [8]
developed a tailored finite volume scheme that is uniform accurate up to boundary by
freezing the coefficient in each cell and use special solutions to the constant coefficient
equation as local basis functions. Lemou and Mehats [20] proposed a new macro-micro
decomposition by choosing the macro part such that its incoming velocity moments
coincide with that of the distribution function, and therefore directly injected the exact
boundary condition into themacro-micro system.When the collisionkernelK is isotropic,
boundary layer can also be resolved by the Chandrasekhar H-function [14,29,40]. For
general collision kernel, Li, Lu and Sun [23] have proposed a half space solver, which then
leads to an interface condition to connect different regimes.
The primary goal in this paper is to develop a neural network method that is uniformly

stable and accurate for solving (1.1) in both the kinetic (ε ∼ 1) and the diffusive regimes
(ε � 1). It is important to emphasize that the vanilla PINN is not able to resolve the
solution when ε � 1. In fact, one can construct examples where the neural network
solution differs much from the exact solution whereas the vanilla PINN loss is small; see
Sect. 3.1 for such an example. To overcome the instability issue, we propose a new loss
function to train the neural network using the idea of macro-micro decomposition that
underlies many asymptotic preserving methods. We shall show later that under some
assumptions the new loss satisfies a uniform stability estimate. As a illustration, let us
compare in Fig. 1 the errors of solutions computed using two loss functions for the toy
example in Sect. 3.1 (see Eq. (3.3)). One sees that if the vanila PINN loss is used the relative
L2-error remains O(1) even when the (empirical) PINN loss already decreases to below
10−7. Whereas our new PINN loss yields that the relative L2-error decreases along with
the decreasing empirical loss.
Another issue—the boundary layer arises when the boundary data φ is variant in the v-

direction. Its presence can significantly slow down the training of neural networks. To deal
with this issue, we construct a boundary layer corrector thatmitigates the sharp transition
in the solution and therefore eases the training process significantly. In comparison with
the recent work in the same vein [19,26], our contributions are highlighted as follows:
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• We design a new least-square-type loss function based on the idea of macro-micro
decomposition of (1.1) and prove that the new loss satisfies a stability estimate that is
uniform with respect to small Knudsen number.

• When boundary layer is present in (1.1), we modify the macro-micro decomposition
by incorporating a boundary layer corrector that can capture the sharp transition of
the solution near the boundary.

• We demonstrate the accuracy and robustness of the proposed methodologies in a
wide range of numerical experiments.

Parallel to our work here, we would like to mention a recent manuscript [13] that
considers the time dependent case; it shares similar ideas of macro-micro decomposition,
but with many details differently.
The rest of the paper is organized as follows. In the Sect. 2, we recall a formal derivation

of the diffusion limit of (1.1) and summarize the half space problem for boundary layer in
multiple dimensions. In Sect. 3, we first discuss the pitfalls of the vanilla PINN loss and
then introduce new loss functions based on the macro-micro decomposition (with and
without boundary layer corrector). Theoretical stability estimates of the new loss function
are proved in Sect. 4. Finally, we illustrate the accuracy and efficiency of our method by
presenting several numerical examples in Sect. 5.

2 The diffusion approximation for the radiative transfer equation
In this section, we collect some preliminary information regarding the diffusion approxi-
mation of the radiative transfer equation, both inside the domain and near the boundary.
In particular, we have the following theorem.

Theorem 2 Suppose f solves (1.1). Then as ε → 0, f (x, v) converges to ρ0(v), which solves
〈

v · ∇xL−1
(
1
σs
v · ∇xρ0

)〉

= −σaρ0 + G , ρ0
∣
∣
∂�

= ζ (x) . (2.1)

Here ζ (x) at any point xb ∈ ∂x� is determined by

ζ (xb) = lim
z→∞ fBL(z, v; xb) ,

where fBL(z, v; xb) solves the half space problem:

(−v · nb)∂zfBL = L(fBL) , fBL(0, v) = φ(xb, v), v · nb < 0 . (2.2)

Proof Here we provide a formal derivation. Rigorous proof can be found in [1]. Away
from the boundary, consider the Hilbert expansion of f (x, v):

f (x, v) = f0(x, v) + εf1(x, v) + εf2(x, v) + · · ·
which inserting into (1.1) leads to the following equations with like powers:

O(1) : L(f0) = 0 , (2.3)

O(ε) : v · ∇xf0 = σsLf1 , (2.4)

O(ε2) : v · ∇xf1 = σsLf2 − σaf0 + G . (2.5)

First (2.3) implies f0(x, v) = 〈
f0

〉
:= ρ0(x). From (2.4), according to the property of L, since

v · ∇xρ0 ∈ N (L)⊥, we can write f1 = L−1
(

1
σs
v · ∇xρ0

)
. Then plugging this relation to
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(2.5) and taking average in v, one can show that ρ0 satisfies the elliptic equation in (2.1).
Consequently, we obtain that f converges to ρ0 as ε → 0, with ρ0 solving (2.1).
In general, the boundary condition for ρ0 is different from f due to the presence of

boundary layer. Therefore, we need to conduct the matched asymptotic boundary layer
analysis to obtain the correct boundary data for ρ0. Our derivation follows [2], see also
[16,17]. For a given point xb on the boundary, i.e., xb ∈ ∂�x, let nb be the outer normal
direction at xb, then we define locally a stretching variable z = z(x; xb) ∈ [0,∞) in a way
such that

σs(x)v · nbdz = −εv · ∇x , dz = d
dz

. (2.6)

For instance, when σs is independent of x, z = (xb−x)·nb
ε

; when d = 1, at the left boundary
x = xL, z = 1

ε

∫ x
xL σs(t)dt. It is obvious that when x = xb, z = 0; when x is away from xb,

z → ∞ as ε → 0. Then along z direction, (1.1) reads, in the leading order of ε,
⎧
⎨

⎩

(−v · nb)∂zf = L(f ) ,
f (0, v) = φ(xb, v), v · nb < 0 .

The well-posedness of the above problem can be found in [7]. In particular, if φ(xb, v) ∈
L2(S−

nb , |v · nb|dv), where S−
nb = {v ∈ Sd−1|v · nb < 0}, (2.2) has a unique solution in

L∞(R+; L2(S−
nb , |v · nb|dv)). In addition, denote its solution as fBL(z, v; xb), then it can be

shown that

fBL(z, v; xb) → f ∞
BL (xb) , as z → ∞ , (2.7)

where f ∞
BL (xb) is a function independent of v, which gives the condition for ρ0 at xb, i.e.,

ζ (xb) = f ∞
BL (xb). The same procedure can be carried out at each point on the boundary

∂�x and we therefore obtain the boundary condition ζ [φ] for ρ0. ��

Note that, when the collision kernel is isotropic, i.e., K (v, v′) = 1, there is an explicit
relationship between f ∞

BL (xb) and φ(xb, v), through the Chandrasekhar’s H-function, see
Sect. 2 (for dimension one) and Appendix B (for multi dimension) in [7].
Additionally, when the boundary condition is independent of v, that is, φ(x, v) = φ(x),

x ∈ ∂�x, then there is no boundary layer and hence ζ (x) = φ(x). This is seen from the
fact that fBL(z, v; xb) ≡ φ(xb) is a solution to (2.2).

3 Approximation by physics informed neural networks (PINNs)
We aim to approximate the solution of (1.1) with functions that are parameterized by
neural networks. Denote f nn(θ ; x, v) the neural network function where θ represents the
set of neural network parameters including weights and biases in the neurons. In the
framework of PINNs and other neural network-based approaches, one seeks the approxi-
mation f nn(θ ; x, v) by minimizing a loss function that is defined by the PDE problem. The
vanilla PINN (population) loss is defined as the sum of the L2-misfit of the PDE and that
of the boundary values:

E0(f ) =
∫

�

∣
∣
∣εv · ∇xf (x, v) − σs(x)Lf (x, v) + ε2σa(x)f − ε2G(x)

∣
∣
∣
2
dx dv

+
∫

�−
|f − φ|2dx dv. (3.1)
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Inpractice,weneed to approximate the integrations above and this leads to thedefinition
of the empirical PINN loss:

EN
0 (f ) =

Nr
x∑

i=1

Nr
v∑

j=1

∣
∣
∣εv · ∇xf (xri , vrj ) − σs(xri )Lf (xri , vrj ) + ε2σa(xri )f (xri , vrj )

− ε2G(xri )
∣
∣
∣
2
wq
ij +

Nb
x∑

m=1

Nb
v∑

n=1
|f (xbi , vbj ) − φ(xbi , vbj )|2wb

ij .

(3.2)

Here {xri }N
r
x

i=1, {vrj }N
r
v

j=1 and {wr
j }N

r
v

j=1, and {xbm}Nb
x

m=1, {vbn}N
b
v

n=1 and {wb
j }N

b
v

j=1 are the interior and
boundary quadrature points and weights, respectively. See concrete choices of quadrature
points andweights in Sect. 5. Then a neural network approximation f nn(θ ; x, v) is obtained
by solving the minimization problem:

min
θ

EN
0 (f nn(θ ; x, v)).

3.1 Pitfall of vanilla PINN with small ε

In this section, we would like to point out one pitfall of vanilla PINN loss (3.1) (or (3.2)) in
the case where the Knudsen number ε is small; this is illustrated in the following simple
example. Consider the one dimensional boundary value problem:

⎧
⎨

⎩

εv∂xf = 〈f 〉 − f − εv x ∈ [0, 1], v ∈ [−1, 1] ,

f (0, v > 0) = 1, f (1, v < 0) = 0 ,
(3.3)

whose analytic solution is given by f ∗(x, v) = 1 − x. Its vanilla PINN loss takes the form
Ev(f ) = ‖εv∂xf − 〈

f
〉 + f + εv‖2L2(�) + ‖f (0, ·) − 1‖2L2([0,1]) + ‖f (1, ·)‖2L2([−1,0]) . (3.4)

Then it is obvious that when ε � 1, any v-independent function f that satisfies the
boundary condition, such as f (x, v) = (1 − x)2, and (1 − x)3 leads to E(f ) = O(ε2).
However, for those f we have ‖f − f ∗‖L2(�) = O(1). This shows that the vanilla PINN
loss does not provide a good error indicator for the kinetic equation (1.1) when ε is small.
Consequently, training neural networks with the vanilla PINN loss can potentially lead
to inaccurate estimation of the solution; see Fig. 2. Here we use a fully connected neural
network with 4 hidden layers and 50 neurons within each hidden layer. In computing
(3.2), the parameters are chosen as Nb

v = 60, Nr
x = 80 and Nr

v = 60. In fact, when ε = 1,
as shown in Fig. 2, PINN is able to give an accurate approximation to the analytic solution.
However, when ε = 10−3, we observed in Fig. 2 that even the empirical loss decreases to
as small as 10−8, the prediction is far away from the analytic solution. This observation
motivates us to consider the macro-micro decomposition technique, which has become
a standard numerical technique in solving multiscale problems.

3.2 PINN based onmacro-micro decomposition

In order to resolve the issue mentioned in the last section, we propose a new loss function
based on a macro-micro decomposition. Write

f = ρ(x) + εg(x, v), with ρ = 〈
f
〉
,

〈
g
〉 = 0 , (3.5)

then (1.1) can be decomposed into
⎧
⎪⎪⎨

⎪⎪⎩

〈v · ∇xg
〉 = −σaρ + G,

v · ∇x(ρ + εg) − ε
〈v · ∇xg

〉 = σsLg − ε2σag,

ρ + εg
∣
∣
�− = φ .

(3.6)
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Fig. 2 Computation of (3.3) with vanilla loss (3.4). The top row is for ε = 1 and bottom row is for ε = 0.001.
Left column is the predicted f (x, v) from neural network, middle column is the analytic solution, and the right
column is the error versus iterations with Adam optimizer

Instead of (3.1), we propose the following loss function:
E(f ) := E(ρ, g)

= ‖ 〈v · ∇xg
〉 + σaρ−G‖2L2(�) + ‖ 〈

g
〉 ‖2L2(�) + ‖ρ + εg − φ‖2L2(�−)

+ ‖v · ∇x(ρ + εg) − ε
〈v · ∇xg

〉−σsLg + ε2σag−εG‖2L2(�) .

(3.7)

Now let us revisit the example (3.3). Applying the decomposition (3.6) leads to
⎧
⎪⎪⎨

⎪⎪⎩

〈v∂xg〉 = 0 ,

v∂x(ρ + εg) = −g − v ,

ρ(0) + εg(0, v > 0) = 1, ρ(1) + εg(1, v < 0) = 0 ,

(3.8)

which gives the following loss function
E(f ) = ‖ 〈

v∂xg
〉 ‖2L2(�) + ‖v∂x(ρ + εg) + g + v‖2L2(�)

+
∫ 1

0
(ρ(0) + εg(0, v) − 1)2dv +

∫ 0

−1
(ρ(1) + εg(1, v))2dv.

(3.9)

Note that we have eliminated the term ‖ 〈
g
〉 ‖2L2(�) as

〈
g
〉 = 0 is guaranteed by the second

equation in (3.8). With the new loss function (3.9), we get a good approximation to the
analytic solution for ε = 10−3, see Fig. 3.

3.3 Boundary layer corrector

The example (3.3) we have mentioned thus far is with homogeneous in v boundary con-
dition, and the PINN loss (3.7) works just fine. However, when boundary value φ depends
on v, the boundary layer will arise, which brings in additional challenge as one needs to
approximate a fast varying function.
We illustrate this difficulty through an example. Consider

⎧
⎨

⎩

εv∂xf = 〈f 〉 − f ,

f (0, v > 0) = 5 sin(v), f (1, v < 0) = 0
(3.10)
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Fig. 3 Computation of (3.3) with new loss (3.9) for ε = 10−3. The left figure is the predicted f (x, v) from neural
network, the middle is the analytic solution, and the right is the error versus iterations with Adam optimizer

Fig. 4 Reference solution of (3.10) computed by a finite difference method with nonuniform mesh

with ε = 10−3. Its macro-micro decomposition has the form
⎧
⎪⎪⎨

⎪⎪⎩

〈v∂xg〉 = 0 ,

v∂x(ρ + εg) = −g ,

ρ(0) + εg(0, v > 0) = 5 sin(v), ρ(1) + εg(1, v < 0) = 0 .

(3.11)

On the left boundary at x = 0, one sees that, ρ(0) takes a value independent of v, and
leaves εg(0, v > 0) of O(1) magnitude, and therefore g(0, v > 0) is of O(1/ε) magnitude.
However, inside the domain, g is of orderO(1) according to the second equation in (3.11),
thus a sharp transition on g at the left boundary is expected (Fig. 4).
To see how such a sharp transition affects the neural network approximation, we now

apply the loss function (3.7) to (3.11) to get

E(f ) = ‖ 〈
v∂xg

〉 ‖2L2(�) + ‖v∂x(ρ + εg) + g‖2L2(�)

+ Bw,0

∫ 1

0
(ρ(0) + εg(0, v) − 5 sin(v))2dv + Bw,1

∫ 0

−1
(ρ(1) + εg(1, v))2dv ,

(3.12)

and collect the results in Fig. 5 with Bw,0 = Bw,1 = 1. As displayed, the empirical loss
remains large even after 50,000 iterations, and the f prediction is still far off the reference
solution, which is plotted in Fig. 4 with finite difference method on a non-uniform mesh.
Wenoticed that, the dominated loss that hinders the convergence is the boundary loss in

(3.12), due to the presence of boundary layer, which is intrinsically harder to approximate.
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Fig. 5 Computation of (3.10) with (3.12) and Bw,0 = Bw,1 = 1 for ε = 10−3. Here we use a fully connected
neural network with 4 hidden layers and 50 neurons within each hidden layer, and Nb

v = 60, Nr
x = 80 and

Nr
v = 60 in computing the empirical loss. The left is the empirical loss versus iteration, and right is the

prediction of f (x, v)

Fig. 6 Computation of (3.10) with ε = 10−3, using neural network approximation with 4 hidden layers and
50 neurons within each hidden layer. Left: using the loss function (3.12) with Bw,0 = 103 and Bw,1 = 1. And
Nb
v = 60, Nr

x = 80 and Nr
v = 60 in computing the empirical loss. Right: using the loss function (3.12) with

Bw,0 = Bw,1 = 1. And Nb
v = 60, Nr

x1 = 150 in (0, ε), Nr
x2 = 50 in (ε, 1) and Nr

v = 60 in computing the empirical
loss

Therefore, we tried to put more emphasize on the boundary term by increasing the
weight Bw,0 from 1 to 1/ε = 103, but the result is unfortunately barely improved, see the
left plot of Fig. 6. A more sophisticated dynamics re-weighting [37,38] might improve
the performance, but adjusting the weight appropriately seems to be very artificial and
nontrivial. Another typical way of dealing with functions with sharp transition is to use
non-uniform mesh and put more points near the fast transition region. This technique
works well for grid based method, but not for our case. In fact, we have tried to assign 150
uniform points inside the boundary layer [0, ε] (from the reference solution, we observe
that the thickness of the boundary layer is ε in this example) and 50 points in the rest of
the domain (ε, 1], but the result is still unsatisfactory, see the right plot of Fig. 6.
Therefore, we propose a new decomposition that includes a boundary layer corrector.

In particular, we decompose f as

f (x, v) = ρ̃(x) + εg(x, v) + �(x, v) , with
〈
g
〉 = 0, ρ̃(x) = 〈

f (x, v) − �(x, v)〉 .
Compared to (3.5), the main difference lies in the boundary layer corrector �(x, v), which
is obtained by solving the half space problem.More precisely, consider a change of variable



Lu et al. Res Math Sci (2022) 9:45 Page 11 of 29 45


ε :


ε(x) : x ∈ �x ⊂ R
d �→ (z, xb), z ∈ [0,∞), xb ∈ ∂�x ,

where z is chosen according to (2.6), and thus
ε depends on ε. For instance, when ε → 0
and x /∈ ∂�x, z = ∞. Let fBL(z, xb, v) be the solution to (2.2), then �(x, v) is obtained by

�(x, v) = fBL(
ε(x), v) − fBL(
ε=0(x), v) .

Consequently, � carries over the sharp transition part of f , and leaves the remaining ρ̃

and g smooth and easily approximated by neural networks. In particular, ρ̃ and g solve
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈v · ∇xg
〉 + 1

ε
〈v · ∇x�〉 = −σa(ρ̃ + 〈�〉) + G,

v · ∇x(ρ̃ + � + εg) − ε
〈v · ∇xg

〉 − 〈v · ∇x�〉
= σsLg + σs

ε
L� − ε2σag − εσa(� − 〈�〉),

ρ̃ + � + εg
∣
∣
�− = φ .

(3.13)

In practice, 
ε has an explicit form for domains with special geometry. Below we list
special cases both in 1D and 2D domain.

3.3.1 �(x, v) in 1D

Consider (1.1) in one dimensional domain with x ∈ [0, 1] and v ∈ [−1, 1]:
⎧
⎨

⎩

εv∂xf = σs(x)L(f ) − ε2σa(x)f + ε2G(x) ,

f (0, v > 0) = φL(v) , f (1, v < 0) = 0.
(3.14)

Without loss of generality, we only let boundary layer appears on the left, as the one
on the right shall be treated in exactly the same way. Define the stretch variable z =
1
ε

∫ x
0 σs(s)ds ∈ [0,∞) and let fBL(z, v) solves

⎧
⎨

⎩

v∂zfBL(z, v) = L(fBL),
fBL(0, v) = φL(v), v ∈ (0, 1].

(3.15)

Then � is obtained via

�(x, v) = fBL
(
1
ε

∫ x

0
σs(s)ds, v

)

− f ∞
BL , (3.16)

where f ∞
BL = limx→∞ fBL(x, v).

In practice, we cannot solve (3.15) on an infinite domain. Instead, according to the
Lemma 2.1 in [7], fBL(x, v) converges to the f ∞

BL exponentially fast, it’s sufficient to pick a
large enough number Z and enforce (3.15) on [0, Z] × [−1, 1]. Additionally, we impose
the following condition

〈
vfBL(z, ·)

〉 = 0 , z ∈ [0, Z] . (3.17)

Indeed, taking average of (3.15), one gets ∂z
〈
vfBL

〉 = 0, which implies that
〈
vfBL

〉
is a

constant. Noting from (2.7), f ∞
BL is independent of v, hence

〈
vfBL(∞, v)

〉 = 0. Therefore
(3.17) generally holds. In sum, we utilize the following loss function to obtain the solution
to (3.15):

E(fBL) = ‖v∂zfBL(z, v) − L(fBL)‖2L2(�) + ‖ 〈
vfBL

〉 ‖2L2(�z) + ‖f (0, v) − φL(v)‖2L2(�−) ,

where � := [0, Z] × [−1, 1] and �− = (0, 1].
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Note that since f ∞
BL is a constant and fBL solves (3.15), � obtained from (3.16) should

satisfy

εv∂x� = σs(x)L(�) ,
and therefore the (ρ̃, g) system (3.13) simplifies to

⎧
⎪⎪⎨

⎪⎪⎩

〈v · ∇xg
〉 = −σa(ρ̃ + 〈�〉) + G,

v · ∇x(ρ̃ + εg) − ε
〈v · ∇xg

〉 = σsLg − ε2σag − εσa(� − 〈�〉),
ρ̃ + � + εg

∣
∣
�− = φ .

(3.18)

3.3.2 �(x, v) in 2D square domain

As a second example, we consider a two dimensional square domain with x = (x, y) ∈
[−1, 1]2, v = (cosα, sin α), α ∈ [0, 2π ]. We assume that only the boundary x = −1 has a
boundary layer and choose σs(x) = 1, then the boundary value problem reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εv · ∇xf = L(f ) − ε2σa(x)f + ε2G(x) ,
f (−1, y,α) = φL(y,α), α ∈ [0,π/2] ∪ [3π/2, 2π ] ,

f (1, y,α) = 0, α ∈ [π/2, 3π/2] ,

f (x,−1,α) = 0, α ∈ [0,π ] ,

f (x, 1,α) = 0, α ∈ [π , 2π ] ,

where L(f ) = 〈
f
〉 − f with

〈
f
〉 = 1

2π
∫ 2π
0 f dα. In this case, we define the stretch variable z

as

z = x + 1
ε

,

and solve fBL(z, y,α) from
⎧
⎨

⎩

cosα∂zfBL = L(fBL) ,
fBL(0, y,α) = φL(y,α), cosα > 0.

(3.19)

Then the boundary layer corrector can be obtained as

�(x, y,α) = fBL(
x + 1

ε
, y,α) − f ∞

BL (y) ,

where f ∞
BL (y) = limx→∞ fBL(x, y,α).

As in the previous case, we do not solve (3.19) on infinite domain. Instead, we impose
the zero flux condition

〈
cosαfBL(z, y,α)

〉 = 1
2π

∫ 2π

0
cosαfBL(z, y,α)dα = 0 .

To implement, we place Ny grid points on y and denote them by yj, j = 1, · · · , Ny. Then
for each fixed yj , we use the following loss function to obtain fBL(z, yj ,α):

E(fBL(·, yj , ·)) =‖ cosα∂zfBL(·, yj , ·) − L(fBL(·, yj , ·))‖2L2(�)

+ ‖ 〈
cosαfBL(·, yj ,α)

〉 ‖2L2(�z) + ‖fBL(0, yj , ·) − φL(yj, ·)‖2L2(�−) ,

where� := �z × [0, 2π ] = [0, Z]× [0, 2π ] and�− = [0,π/2]∪ [3π/2, 2π ]. Consequently,
since ε cosα∂x� = L(�), (3.13) in 2D is simplified to

⎧
⎪⎪⎨

⎪⎪⎩

〈v · ∇xg
〉 + 1

ε

〈
sin α∂y�

〉 = −σa(ρ̃ + 〈�〉) + G,

v · ∇x(ρ̃ + εg) + sin α∂y� = Lg − εσa(ρ̃ + εg + �) + εG,

ρ̃ + � + εg
∣
∣
�− = φ .



Lu et al. Res Math Sci (2022) 9:45 Page 13 of 29 45

3.4 Algorithm

In this section, we include implementation details of our algorithm. For expository sim-
plicity, we will describe it for one dimensional case, i.e., (3.14). The generalization to two
dimensions is straightforward.
The first step is to obtain a neural network approximation f nnBL (θ ; z, v) to the half space

problem (3.15). To this end, we first generate the training set. For residual loss, given a
sufficiently large numberZ, assignNr

z uniform grid points on z ∈ [0, Z), i.e. zri = (i−1)�z
with �z = Z/Nr

z . Since the physical dimension of v is at most two, to numerically eval-
uate the integration we choose Nr

v Gaussian quadrature points, which requires relatively
smaller number of points and provide better accuracy than the uniform grid points and
the randomly sample points. Denoted theGaussian quadrature points as {vrj }N

r
v

j=1, with cor-

responding weights {wr
j }N

r
v

j=1. For boundary loss function, we randomly sampleNb
v velocity

points and denote them as {vbj }N
b
v

j=1. Then the empirical loss function becomes

EN
BL(f

nn
BL (θ )) =

Nr
z∑

i=1

Nr
v∑

j=1
(∂zf nnBL (θ ; z

r
i , v

r
j ) − Lf nnBL (θ ; z

r
i , v

r
j ))

2wr
j �z

+
Nr
z∑

i=1
(
Nr
v∑

j=1
wr
j v

r
j f

nn
BL (θ ; z

r
i , v

r
j ))

2�z + 1
Nb

Nb
v∑

j=1
(f nnBL (θ ; 0, v

b
j ) − φL(vbj ))

2 .

Here the second term on the right hand side corresponds to the condition (3.17). Mini-
mizing over θ of EN

BL(f
nn
BL (θ )), one gets

θ∗ = arg min
θ

EN
BL(f

nn
BL (θ )) , (3.20)

and thus obtains f nnBL (θ∗; z, v). Here we summarize the procedure of training the neural
network in Algorithm 1.
Algorithm 1: Algorithm for (3.20)

1 Input: Training set {zri }N
r
z

i=1, {vrj }N
r
v

j=1, {wr
j }N

r
v

j=1, {vbj }N
b
v

j=1; neural network parameters:
number of hidden layer nl , number of neurons in each layer nr and activation
function; two max iteration numbers Imax1, Imax2.

2 Output: θ∗
3 Initialize neural network;
4 Set k1 = 0, k2 = 0
5 while k1 < Imax1 and EN

BL(θ
k1 ) < δ1 do

6 Update θk1 by applying Adam to problem (3.20), k1 = k1 + 1 ;
7 end
8 Let θk2=0 = ζ k1 ;
9 while k2 < Imax2 and ∇θEN

BL(θ
k2 ) < δ2 do

10 Update θk2 by applying LBFGS to problem (3.20), k2 = k2 + 1 ;
11 end
12 θ∗ = θk2

After this, we denote f ∞
BL ≈ f nnBL (θ ;Z, 0) as it is homogeneous in v and extend the function

value of f nnBL (θ∗; z, v) as

f nnBL (θ∗; z, v) =
{
f nnBL (θ∗; z, v) , 0 ≤ z ≤ Z ,

f ∞
BL , z > Z ,
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and compute the boundary layer corrector as follows:

�(x, v) = f nnBL (θ∗;
x
ε
, v) − f ∞

BL .

To proceed, we solve the following macro-micro system, which is tailored from (3.18)
to adapt the specific boundary condition here

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈v∂xg〉 = −σaρ̃ − σa 〈�〉 + G,

v∂x(ρ̃ + εg) = σsL(g) − εσa(ρ̃ + εg + �) + εG,

ρ̃(0) + εg(0, v > 0) + �(0, v > 0) = φL(v),

ρ̃(1) + εg(1, v < 0) + �(1, v < 0) = 0.

As before, we first generate the training set, which consists of uniform grids in x and
Gaussian quadrature point in v for residual loss, and random sample points in v for
boundary loss. Once the empirical loss function is formed, applying the same optimization
procedure, we obtain the predicted solution ρ̃nn and gnn.

4 Theoretical analysis
We hereby provide a theoretical justification of our neural network formulation. In par-
ticular, we intend to show that the L2 error of the predicted solution by neural network
is uniformly bounded by the loss function. Let us first state a theorem that justifies the
well-posedness of the (ρ, g)-system (3.6).

Theorem 3 Let Assumptions 1 and 2 hold. Then the system (3.6) has a unique solution
(ρ, g) ∈ X × X with

〈
g
〉 = 0.

Proof The existence of (ρ, g) ∈ X ×X follows from Theorem 1. Indeed, let f ∈ X be the
unique solution of (1.1). Then by construction, the pair (ρ, g) := (

〈
f
〉
, f − 〈

f
〉
) ∈ X × X

solves (3.6)with
〈
g
〉 = 0.Moreover, the uniqueness follows by tracking the proof of Lemma

1 (see the bound (4.7)). ��

Next we proceed to show that our new (population) loss function E(f ) defined in (3.7)
satisfies a stability estimate, namely the L2-error between the neural networks solution
f and the exact solution f ∗ can be bounded above by E(f ). Let (ρ∗, g∗) ∈ X × X be the
solution to the macro-micro system (3.6) and f ∗ = ρ∗ + εg∗ be the exact solution to (1.1).
Let (ρ, g) ∈ X × X be a neural network approximation to (ρ∗, g∗) and let f = ρ + εg .
The the main theoretical result is as follows.

Theorem 4 Let (ρ, g) ∈ X ×X . Then there exists a constant Cε > 0 such that limε↓0 Cε <

∞ and that

‖f − f ∗‖2L2(�) ≤ Cε

ε
E(f ) , (4.1)

where E(f ) is defined in (3.7). If in addition φ = φ(x) ∈ H
1
2 (∂�x) and ρ ∈ H1(�x), then

‖f − f ∗‖2L2(�) ≤ CεE(f ), (4.2)

where again Cε satisfies that limε↓0 Cε < ∞.

Remark 1 The estimate (4.2) of Theorem 4 shows that if the boundary data φ ∈ H
1
2 (∂�x)

and the approximate solution ρ ∈ H1(�x), then the L2-error between f and f ∗ can be
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bounded by the loss E(f ) uniformly in the regime where ε is small. It is worth to comment
on the role of the above stability estimate in the numerical analysis of neural network
methods for solving PDEs. In fact, from a practical perspective, an approximate solution
is parameterized by neural networks f Nθ and is obtained by minimizing the empirical
loss EN (f nn) (instead of E(f nn)) with respect to the neural network parameters θ . Thanks
to the well-established generalization theory of statistical learning [33], the difference
between the population loss E(f Nθ ) and the empirical loss EN (f Nθ ) (also known as the
generalization gap) can bemade arbitrarily small as both the number of quadrature points
and the complexity of the neural network increase to infinity. As a result, the population
loss E(f Nθ ), and equivalently the L2-error ‖f −f ∗‖L2(�) (thanks to Theorem4), can bemade
small through minimizing the empirical loss EN (f Nθ ) via training. In another word, the
stability bounds enable us to transfer the bound on trainable loss function to the solution.
In the present paper, we only focus on the stability estimate and leave the complete
generalization error analysis to the interested readers; such generalization analysis for
neural networks has been carried out in the context of PDEs, see e.g. [27,28,30].

Proof of Theorem 4 Let us define ρ̃ = ρ − ρ∗, g̃ = g − g∗ and f̃ = f − f ∗. Then it is easy
to verify that (ρ̃, g̃) solves the boundary value problems

〈v · ∇x g̃
〉 + σaρ̃ =: r1 in �,

v · ∇x(ρ̃ + εg̃) − ε
〈v · ∇x g̃

〉 − σsLg̃ + ε2σag̃ =: r2 in �,

ρ̃ + εg̃ =: r3 on �− .

Then f̃ satisfies that

εv · ∇x f̃ = σs(x)Lf̃ (x, v) − ε2σaf̃ + ε2r1(x) + εr2(x, v) on �,

f̃ = r3 on �−.

Observe that by definition 〈r2〉 = ε2σa〈g〉. Then an application of Lemma 1 with η = r2−
〈r2〉 and ξ = r1+ε−1〈r2〉 = r1+εσa

〈
g
〉
, the estimate (4.1) follows from (4.4). Furthermore,

if φ = φ(x) ∈ H
1
2 (∂�x) and ρ ∈ H1(�), then on �− one has f (x) = ρ(x)− φ(x)+ εg(x, x)

with ρ(x) − φ(x) ∈ H
1
2 (∂�x). Therefore applying the estimate (4.5) of Lemma 1 leads to

(4.2). ��

Lemma 1 Let f ∈ H1(�) solve the problem

εv · ∇xf (x, v) = σsLf (x, v) − ε2σaf + ε2ξ (x) + εη(x, v) on �,

f (x, v) = ζ (x, v) on �−,
(4.3)

where ξ ∈ L2(�x), η ∈ L2(�) with 〈η〉 = 0 and ζ ∈ L2(�−). Then there exists a constant
Cε > 0 depending on ε, σa, σs, CK such that limε↓0 Cε < ∞ and that

‖f ‖2L2(�) ≤ Cε(‖ξ‖2L2(�x) + ‖η‖2L2(�) + ε−1‖ζ‖2L2(�−)) . (4.4)

If in addition ζ = ζ1(x) + εζ2(x, v) where ζ1 ∈ H
1
2 (∂�x) and ζ2 ∈ L2(�−), then

‖f ‖2L2(�) ≤ Cε(‖ξ‖2L2(�x) + ‖η‖2L2(�) + ‖ζ1‖2
H

1
2 (∂�x)

+ ε‖ζ2‖2L2(�−)) . (4.5)

In particular, the stability constants in (4.5) are uniformly bounded in ε as ε ↓ 0.
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Proof Let us first prove the estimate (4.4). Multiplying (4.3) with f and the integrating on
� leads to

ε

∫

∂�

(v, 0) · nf 2ds −
∫

�

σsLff dx dv + ε2
∫

�

σaf 2dx dv = ε2
∫

�

ξ f dx dv

+ε

∫

�

ηf dx dv. (4.6)

Notice from the definition of �− that

(v, 0) · n =
⎧
⎨

⎩

−|(v, 0) · n| on �−,
|(v, 0) · n| on �+.

Therefore we have from (4.6) that

ε

∫

�+
|(v, 0) · n|f 2ds−

∫

�

σsLff dx dv + ε2
∫

�

σaf 2dx dv

= ε

∫

�−
|(v, 0) · n|f 2ds+ε2

∫

�

ξ f dx dv + ε

∫

�

ηf dx dv.

Thanks to part (3) of Assumption (2), the positivity of σs and the non-negativity of σa we
have from above that

cσmin‖f − 〈
f
〉 ‖2L2(�) + ε2

∫

�

σaf 2dx dv ≤ ε

∫

�−
|(v, 0) · n|f 2ds + ε2

∫

�

ξ f dx dv

+ε

∫

�

ηf dx dv. (4.7)

Now let us write f (x, v) = ρ(x) + εg(x, v) with ρ = 〈
f
〉
and g = 1

ε
(f − 〈

f
〉
). Then (ρ, g)

satisfy
〈v · ∇xg

〉 = −σaρ + ξ on �,

v · ∇x(ρ + εg) − ε
〈v · ∇xg

〉 − σsLg = ε2σag + η on �,

ρ + εg = ζ on �−.

(4.8)

By the assumption that 〈η〉 = 0, one has
∫

�

ηf dx dv = ε

∫

�

ηgdx dv. (4.9)

It follows from (4.7), (4.9) and Young’s inequality that for α > 0,

cσmin‖g‖2L2(�) +
∫

�

σaf 2dx dv ≤ 1
ε

∫

�−
|(v, 0) · n|f 2ds

+
‖ξ‖2L2(�) + ‖η‖2L2(�)

4α
+ α‖f ‖2L2(�)

+α‖g‖2L2(�).

In particular, for any α ≤ cσmin
2 , we have

cσmin
2

‖g‖2L2(�) +
∫

�

σaf 2dx dv ≤ 1
ε

∫

�−
|(v, 0) · n|f 2ds

+
‖ξ‖2L2(�)+‖η‖2L2(�)

4α
+ α‖f ‖2L2(�).
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Now taking L2-norm on the second line of (4.8) and applying Lemma 2, one obtains that

‖f ‖2L2(�) ≤ CP

(

‖v · ∇xf ‖2L2(�) +
∫

�−
|(v, 0) · n|f 2ds

)

≤ CP
(
ε2‖ξ − σaρ‖2L2(�) + ‖ε2σag + η‖2L2(�) + ‖σsLg‖2L2(�) + ‖ζ‖2L2(�−)

)

≤ CP
(
2ε2‖ξ‖2L2(�) + 2ε2‖σaf ‖2L2(�) + 4ε4‖σag‖2L2(�) + 2‖η‖2L2(�)

+ σ 2
maxC2

K‖g‖2L2(�) + ‖ζ‖2L2(�−)

)

where in the second inequality we used the fact that (v, 0) · n ≤ 1 since |v| = 1, and in
the last inequality we have used part (5) of Assumption 2 and the fact that L 〈

g
〉 = 0.

Combining the last two inequality and using the fact that 0 ≤ σa ≤ σmax, we obtain that

‖f ‖2L2(�) ≤ CP
(
2ε2‖ξ‖2L2(�) +

(
2ε2σmax + 2σ 2

max(4ε4 + C2
K )

cσmin

)

×
(
ε−1‖ζ‖2L2(�−) +

‖ξ‖2L2(�) + ‖η‖2L2(�)
4α

+ α‖f ‖2L2(�)

)

+ 2‖η‖2L2(�) + ‖ζ‖2L2(�−)

)
.

Setting

α = α∗ :=
(
4ε2σmax + 4σ 2

max(4ε4 + C2
K )

cσmin

)−1 ∧ cσmin
2

in the above leads to

‖f ‖2L2(�) ≤ 2CP

(

2ε2 + 1
4α∗

(
2ε2σmax + 2σ 2

max(4ε4 + C2
K )

cσmin

)
)

‖ξ‖2L2(�)

+ 2CP

(

2 + 1
4α∗

(
2ε2σmax + 2σ 2

max(4ε4 + C2
K )

cσmin

)
)

‖η‖2L2(�)

+ 2CP

(

1 + 1
4α∗

(
2ε2σmax + 2σ 2

max(4ε4 + C2
K )

cσmin

)
ε−1

)

‖ζ‖2L2(�−).

This in particular implies (4.4).
Next we prove the improved estimate (4.5) when ζ = ζ1(x) + εζ2(x, v) where ζ1 ∈

H
1
2 (∂�x) and ζ2 ∈ L2(�−). In fact, let us first decompose the solution as f (x) = f1(x) +

f2(x, v), where f1 solves the Laplace problem
�f1 = 0 , on �x ,

f1 = ζ1(x) , on ∂�x ,
where by the standard regularity estimate ‖f1‖H1(�x) ≤ C1‖ζ1‖H 1

2 (∂�x)
for some C1 > 0,

and f2 = f − f1 solves

εv · ∇xf2(x, v) = σsLf2(x, v) − ε2σa(x)f2(x, v) − ε2σa(x)f1(x)
+ ε2ξ (x) + εη(x, v) − εv · ∇xf1(x) on �,

f2(x, v) = εζ2(x, v) on �−.

Applying the estimate (4.4) to the problem above and noticing that
〈v · ∇xf1(x)

〉 = 0, we
have

‖f2‖2L2(�) ≤ C2,ε(‖ξ‖2L2(�x) + ‖σaf1‖2L2(�x) + ‖η‖2L2(�)

+ ‖v · ∇xf1‖2L2(�) + ε‖ζ2‖2L2(�−))

≤ C̃2,ε(‖ξ‖2L2(�x) + ‖η‖2L2(�) + ‖ζ1‖2
H

1
2 (∂�x)

+ ε‖ζ2‖2L2(�−)). ��
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Let us recall the following directional Poincaré inequality from [29].

Lemma 2 (Directional Poincaré inequality) There exists a constant CP depending only on
� such that

‖f ‖2L2(�) ≤ CP

(

‖v · ∇xf ‖2L2(�) +
∫

�−
|(v, 0) · n|f 2ds

)

.

5 Numerical examples
In this section, we conduct extensive numerical experiments to verify the efficiency and
accuracy of our neural network formulation based on macro-micro-(boundary layer)
decomposition. For the structure of the neural network, we always use a fully connected
network with nl layers and nr number of neurons within each layer. In the following
examples, we use σ l(z) = tanh(z) as the activation function of the hidden layer. For
the activation function of the output layer, we use σ o

ρ (z) = ln(1 + ez), σ o
g (z) = z, and

σ o
fBL (z) = Ca/(1 + e−z) for the macro part ρ, micro part g and boundary layer fBL, respec-

tively. Here Ca is tuned according to the L∞ norm of the incoming boundary condition.
For instance, Ca = ‖φL(v)‖∞ in solving (3.15). When training the neural network, as
introduced in Algorithm 1, Imax1, δ1, Imax2, δ2 are the stopping parameters for Adam and
LBFGS step, respectively. In 1Dcase,we choose Imax1 = 1.2×104, δ1 = 0.005, Imax2 = 104,
δ2 = 10−6; in 2D case, we choose Imax1 = 2 × 104, δ1 = 0.01, Imax2 = 104, δ2 = 10−6.
Unless otherwise specified, the learning rate for Adam step is fixed to be 10−3.
Upon obtaining the neural network prediction f nn := ρnn(x) + εgnn(x, v) or f nn :=

ρ̃nn(x) + εgnn(x, v) + �nn(x, v), we calculate its L2 error to the reference solution as

error =
∑Nx

i=1
∑Nv

j=1(f
nn(xi, vj) − f ref (xj , vj))2wiwj

∑Nx
i=1

∑Nv
j=1(f ref (xj , vj))2wiwj

. (5.1)

Here {xi, wi} and {vj , wj} are the test set and corresponding weight we use to calculate the
reference solution, and therefore will be more refined than the training set. In particular,
we again use the Gaussian quadrature for v and uniform mesh in x without boundary
layer, or two sets of uniform mesh with boundary layer.

5.1 RTEs without boundary layers

In this subsection we consider RTEs in one and two dimensions where the solutions do
not have boundary layers.

Example 1 1D problem with spatially homogeneous scattering:
⎧
⎨

⎩

εv∂xf = 〈f 〉 − f ,

f (0, v > 0) = 1, f (1, v < 0) = 0.

Using the loss function (3.7), we collect the results of ε = 1 and ε = 10−3 in Fig. 7. Here
we use nl = 4, nr = 50, Nr

x = 80, Nr
v = 60 and Nb

v = 60 for training. The reference
solution is obtained by finite difference method on test set with Nx = 200, Nv = 80. It is
evident that in both cases, the prediction obtained by the neural networks matches well
with the reference solution, which is provided by a finite difference solver. Additionally,
the relative L2 error (5.1) is well controlled by the loss function.
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Fig. 7 Example 1 with ε = 1 in top row and ε = 0.001 in bottom row. The left column is f (x, v) prediction,
the middle column is the reference f (x, v), the right column is the empirical loss and relative L2 error to
reference solution

Example 2 2D problem with x ∈ [−1, 1]2, v = (cosα, sin α):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εv · ∇xf = 1
2π

∫

|v|=1 f (x, v)dv′ − f + ε2G(x, v) ,
f (−1, y,α) = e1−y, α ∈ [0,π/2] ∪ [3π/2, 2π ] ,

f (1, y,α) = e−1−y, α ∈ [π/2, 3π/2] ,

f (x,−1,α) = e1−x, α ∈ [0,π ] ,

f (x, 1,α) = e−1−x, α ∈ [π , 2π ] ,

where G(x, y,α) = 1
ε
(− cosα − sin α)e−x−y. This problem has an analytic solution

f (x, y,α) = e−x−y . The numerical solutions for ε = 1 and ε = 10−3 are presented in
Fig. 8, where the reference solution is the above analytic form. In both cases, the numer-
ical parameters we use are: nl = 4, nr = 30, Nr

x = 40, Nr
y = 40, Nr

v = 40, Nb
v = 40,

Nb
x = 40, Nb

y = 40 and Nb
v = 40 for training.

Example 3 1D problem with spatially heterogeneous scattering:
⎧
⎨

⎩

v∂xf = σ (x)(〈f 〉 − f ),

f (0, v > 0) = 5, f (1, v < 0) = 0 ,

where σ is a smooth varying function σ (x) = 1 + b/e−a(x−0.5).

In practice, we rewrite the equation as

ε(x)v∂xf = 〈f 〉 − f , with ε(x) = 1 + e−a(x−0.5)

b + 1 + e−a(x−0.5) .
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Fig. 8 Example 2 with ε = 1 in top row and ε = 0.001 in bottom row. The left column is prediction of ρ(x, y).
The middle column is analytic ρ(x, y). Right column is empirical loss and relative L2 error

Accordingly, our macro-micro decomposition reads f (x, v) = ρ(x) + ε(x)g(x, v), where ρ

and g solve
⎧
⎪⎪⎨

⎪⎪⎩

〈
v∂x(ε(x)g)

〉 = 0 ,

v∂x(ρ + ε(x)g) + g = 0 ,

ρ(0) + ε(0)g(0, v > 0) = 5, ρ(1) + ε(1)g(1, v < 0) = 0.

Choosing a = 10 and b = 20, we plot the shape of σ (x) and gather the corresponding
numerical solutions inFig. 9.Here theneural network is constructedusingnl = 4,nr = 50,
Nr
x = 80, Nr

v = 60, Nb
v = 60; and trained with initial learning rate 0.001 for Adam and

decrease by a factor of 0.95 after every 2000 steps. The reference solution is obtained by a
finite difference method with Nx = 200 and Nv = 80. As expected, a good match to the
reference solution is observed, and a good control of relative L2 error is obtained.

Example 4 2D RTE with an-isotropic scattering:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εv · ∇xf = ∫

|v|=1 K (v, v′)f (x, v)dv′ − f, x ∈ [−1, 1]2, v = (cosα, sin α)

f (−1, y,α) = (1 − y2), α ∈ [0,π/2] ∪ [3π/2, 2π ]

f (1, y,α) = 0, α ∈ [π/2, 3π/2]

f (x,−1,α) = 0, α ∈ [0,π ]

f (x, 1,α) = 0, α ∈ [π , 2π ] ,

with Henyey-Greenstein scattering kernel:

K (v, v′) = 1 − h2

2π (1 + h2 − 2hv · v′)
, h ∈ (0, 1) .

The numerical solutions with ε = 1 and ε = 0.001 are presented in Fig. 10. Here the
neural network is constructed with nl = 4, nr = 30, Nr

x = 40, Nr
y = 40, Nr

v = 40,
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Fig. 9 Example 3 with a = 10 and b = 20. The top left is the plot of σ , top right is the empirical loss and
relative L2 error, bottom left is referenced f (x, v), and bottom right is the predicted f (x, v) by neural network

Fig. 10 Top and bottom are Example 4 with ε = 1 and ε = 0.001 respectively

Nb
v = 40, Nb

x = 40, Nb
y = 40 and Nb

v = 40; and the reference solution is obtained by a
finite difference method with Nx = 60, Ny = 60, Nv = 40.

5.2 1D RTE with boundary layer

Herewe consider a onedimensional examplewith velocity dependent boundary condition.
With a velocity-dependent boundary term, a boundary layer is present in the solution of
RTE when ε is small. To find such solution, we first solve the half space problem.
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Fig. 11 Example 5, here we use nl = 4, nr = 50, Nr
z = 400, Nr

v = 40 and Nb
v = 60. The left is fBL(x, v)

prediction, and the right is the comparison between (5.4) and the prediction by Neural network. The
numerical approximation of the limit constant f nnBL (10, 0) ≈ 3.1919 and the exact f∞BL ≈ 3.1889

Example 5 1D half space problem:
⎧
⎨

⎩

v∂zfBL(z, v) = 〈
fBL

〉 − fBL ,

fBL(0, v) = 5 sin(v).
(5.2)

For this problem, we know that its solution fBL(z, v) admits an analytical limit

f ∞
BL =

√
3
2

∫ 1

0
5 sin(v)H (v)vdv (5.3)

from the Chandrasekhar H-function, which satisfies
1

H (v)
=

∫ 1

0

H (w)
2(v + w)

wdw .

Additionally, the reflection boundary condition has the form

fBL(0, v < 0) = 1
2
H (v)

∫ 1

0
5 sin(w)

H (w)
w + v

wdw . (5.4)

In Fig. 11, we plot the numerical solution to (5.2), and compare its reflection boundary
with (5.4) with good agreement.

Example 6 We then proceed to solve the transport equation:
⎧
⎨

⎩

εv∂xf = 〈f 〉 − f ,

f (0, v > 0) = 5 sin v, f (1, v < 0) = 0.
(5.5)

When ε = 1, we obtain the neural network prediction by using themacro-micro decom-
position. The results are collected in Fig. 12, where the reference solution is obtained by
solving (5.5) with a finite difference method on a uniformmesh. On the other hand, when
ε = 10−3, we obtain the neural network prediction by the macro-micro-boundary layer
decomposition. For comparison, we construct two reference solution. One is obtained by
the same finite difference method but on a non-uniform mesh in x, with 150 points in
[0, ε) and 50 points in [ε, 1]. The other is obtained by solving the diffusion limit, whose
boundary condition is computed via theH-function (5.3). In this specific example, we have
f ∞
BL = 3.188, and therefore the limit density is ρ0(x) = 3.188(1 − x). The comparisons
with good agreement are displayed in Fig. 13.
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Fig. 12 Example 6 with ε = 1. we use nl = 4, nr = 50, Nr
x = 80, Nr

v = 60 and Nb
v = 60 for training. Compute

the reference solution by finite difference method on test set with Nx = 200, Nv = 80. The top left is f (x, v)
prediction, the top right is the reference f (x, v), bottom left is comparison of ρ(x) and bottom right is the
empirical loss and relative L2 error vs number of iterations

Fig. 13 Example 6 with ε = 10−3, we use nl = 4, nr = 50, Nr
x = 80, Nr

v = 60 and Nb
v = 60 for training. The

top left is f (x, v) prediction, top right is the reference f (x, v), bottom left is comparison of ρ(x) and bottom
right is the empirical loss and relative L2 error vs iteration number
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Fig. 14 Example 7. Left: plot of f∞BL (y). Middle and right are plots of fBL(0, y,α) for α ∈ [0, 2π ].The reference
solution are obtained from the formula (5.6) and (5.7)

5.3 RTE in two dimensions with boundary layer

As with Sect. 5.2, we first solve the half space problem and then the corresponding RTE.

Example 7 2D half space problem: for z ∈ [0,∞) and y ∈ [−1, 1]
⎧
⎨

⎩

cosα∂zfBL(z, y,α) = 〈
fBL

〉 − fBL ,
〈
fBL

〉 = 1
2π

∫ 2π
0 fBLdα ,

fBL(0, y,α) = (1 − y2)α, cosα < 0 .

Then it admits a limit (see formula (7.3) in [7]):

f ∞
BL (y) := lim

z→∞ fBL(z, y,α) = 1√
π

∫

�−
(1 − y2)α cosαH (α)dα , (5.6)

where H is the Chandrasekhar H-function that satisfies
1

H (α)
=

∫

�−

H (ξ )
cosα + cos ξ

cos ξdξ ,

and �− = [0,π/2] ∪ [3π/2, 2π ].
Additionally, we can get the reflection boundary condition at x = 0. Since the reflected

velocity ṽ at boundary is
ṽ = v − 2(v · nx)nx , v = (cosα, sin α) ,

and in our case nx = (−1, 0), we have ṽ = (− cosα, sin α). Then
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fBL(0, y,π − α)

= ∫

�− ξ (1 − y2) cos ξH (ξ )H (α)/(cosα + cos ξ )dξ , α ∈ [0,π/2] ,

fBL(0, y, 3π − α)

= ∫

�− ξ (1 − y2) cos ξH (ξ )H (α)/(cosα + cos ξ )dξ , α ∈ [3π/2, 2π ] .

(5.7)

In Fig. 14, we plot the numerical prediction from the neural network approximation with
parameters nl = 3, nr = 50, Nx = 200, Ny = 50 and Nv = 40, and compared it with the
reference solution (5.6) and (5.7).

Example 8 We then move on to solve the 2D transport equation, x ∈ [−1, 1]2, v =
(cosα, sin α), α ∈ [0, 2π ]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εv · ∇xf = 1
2π

∫

|v|=1 f (x, v)dv′ − f ,

f (−1, y,α) = (1 − y2)α, α ∈ [0,π/2] ∪ [3π/2, 2π ] ,

f (1, y,α) = 0, α ∈ [π/2, 3π/2] ,

f (x,−1,α) = 0, α ∈ [0,π ] ,

f (x, 1,α) = 0, α ∈ [π , 2π ].
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Fig. 15 Example 8 with ε = 1

Fig. 16 Example 8 with ε = 10−3

When ε = 1, we use the macro-micro decomposition based PINN, and when ε = 10−3,
we include a boundary layer corrector which is computed in Example 7. In both cases,
the numerical parameters are nl = 4, nr = 30, Nr

x = 40, Nr
y = 40, Nr

v = 40, Nb
v = 40,

Nb
x = 40, Nb

y = 40 and Nb
v = 40 for training. As a comparison, we use a finite difference

method with uniform gridNr
x = 60,Nr

y = 60,Nr
v = 60, for ε = 1. For ε = 10−3, we solve

the diffusion limit
⎧
⎪⎪⎨

⎪⎪⎩

�ρ = 0 ,

ρ(−1, y) = π (1 − y2),

ρ(1, y) = ρ(x,−1) = ρ(x, 1) = 0 .

Here the boundary condition ρ(−1, y) is obtained from (5.6). The numerical results are
presented in Figs. 15 and 16.

5.4 Nonlinear RTE

At last, we consider an example of nonlinear RTE in one dimension.

Example 9 For x ∈ [0, 1], v ∈ [−1, 1]
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εv∂xI(x, v) = σ (acT 4(x) − I(x, v)),

ε2∂xxT (x) = σ (acT 4(x) − 〈I(x, v)〉) ,
I(0, v > 0) = 1, I(1, v < 0) = 0 ,

T (0) = 1, T (1) = 0 ,

(5.8)
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Fig. 17 Example 9 with ε = 1. Top left: I(x, v) prediction. Top right: reference I(x, v). Bottom left is comparison
of T (x). Bottom: the empirical loss and relative L2 errors to reference solutions

where a, c and σ are three constants.

Formore details onnonlinear RTE, please refer to [25].When ε → 0, I andT will converge
to I0 and T0, which satisfy

⎧
⎨

⎩

ac
3σ ∂xxT 4

0 + ∂xxT0 = 0 ,

T0(0) = 1, T0(1) = 0.
(5.9)

To solve (5.8), we again conduct the macro-micro decomposition for I :

I = ρ(x) + εg(x, v), where ρ(x) = 〈I〉 , 〈
g
〉 = 0.

Then the corresponding decomposed system reads:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈v∂xg〉 = ∂xxT,

v∂x(ρ + εg) − ε∂xxT = −σ g,

ε2∂xxT = σacT 4 − σρ,

ρ(0) + εg(0, v > 0) = 1, ρ(1) + εg(1, v < 0) = 0,

T (0) = 1, T (1) = 0.

As a result, the loss function has the form:
E(I, g, T ) = ‖ 〈

v∂xg
〉−∂xxT‖2L2(�x) + ‖v∂x(ρ + εg)−ε∂xxT + σ g‖2L2(�)

+ (T (0) − 1)2 + T (1)2 + ‖ε2∂xxT−σacT 4 + σρ‖2L2(�x) +
∫ 1

0
(ρ(0)

+ εg(0, v)−1)2dv +
∫ 0

−1
(ρ(1) + εg(1, v))2dv.
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Fig. 18 Example 9 with ε = 10−3

We then train the neural network with nl = 4 and nr = 50, using Nr
x = 80, Nr

v = 60
and Nb

v = 60 to generate training set. When ε = 1, we compute the reference solution
by a finite difference method on a uniform grid with Nx = 200 and Nv = 80. When
ε = 10−3, we solve the limit system (5.9) instead to get the reference solution. The results
are collected in Figs. 17 and 18, respectively.

6 Conclusion
In this paper, we develop a numerical scheme based on PINNs for steady RTE with
diffusive scaling. As illustrated in Sect. 3.1, vanilla PINNs suffer from the instability issue
when ε is small, and our major contribution is to resolve this issue by proposing an novel
empirical loss function based on the micro macro decomposition. More importantly, a
rigorous uniform stability result is established. We prove that the L2-error of the PINNs
prediction can be bounded by the aforementioned new empirical loss function uniformly
in ε. When ε is small and an an-isotropic boundary condition is considered, a boundary
layer is expected and the neural network is hence hard to converge. We construct a
boundary layer corrector based on the solution of the associated half space problem,
which encodes the sharp transition information within the boundary layer and leaves the
rest part of solution smooth and thus can be easily approximated. Extensive numerical
results demonstrate the effectiveness of our novel numerical methods.
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