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Figure 1. Five vehicles being tracked simultaneously with use of multi-object tracking algorithm associating CAN data.

Abstract

Millions of vehicles are on the road with RADAR sensors
in use for adaptive cruise control (ACC), and RADAR sen-
sors are not tracking all of the objects in the field of view.
This work shows a work-in-progress tool to improve track-
ing from RADAR and controller area network (CAN) which
should be vitally useful for safety of transportation systems
and automated vehicle development. The CAN data provides
object detections, but there is a lingering data association
problem. The contribution of this work in progress is the
solution to the data association problem by posing the data
association as a minimum cost network flow problem, and
doing it at low cost with an eye toward scalable CPS research.
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1 Introduction

The contribution of this work-in-progress is effective multi-
object tracking (MOT) of vehicles on the highway using
sparse radar data from the CAN, the on-board data network,
on a stock SAE level 1 vehicle. The CAN data reports detec-
tions of an object’s position and relative velocity, but does
not track objects in the field of view.This significantly de-
grades the utility of the sensor data for applications which
would otherwise benefit from more contextual information
about the environment in which the vehicle is operating.
Additionally, these vehicles are already deployed in large
numbers, so it is worthwhile to improve this data by solving
the data association problem. Our preliminary work solves
the MOT problem using a minimum cost flow (MCF) algo-
rithm. Using a RAV4 platform, a raspberry pi, and a CAN
data logger, we demonstrate a proof of concept in solving

the MOT problem while incurring negligible cost; this en-
ables support to scalable CPS research on the stock vehicle
platform using data already being transmitted on the vehicle.

2 Related Work

The work [5] showed a way to frame the inter-frame data
association problem as an MCF problem. It is a maximum-a-
posteriori problem formulation which is solved by casting
it onto a network flow and solving the MCF problem. The
st-flow is acyclic and composed of arc-disjoint st-paths, i.e.
each trajectory is non-overlapping.

Related to this work and [5] are [2—4] which use similar
MCF networks to do MOT. In those applications, the detec-
tions are created from image object detections provided from a
bench-marking source. This work proposes the use of a
different and more sparse data source — CAN data.

3 Preliminaries

The MCF problem is defined as follows. Let B be a weakly
connected finite digraph such that |@(®)| = B, |8(@)] = B.
Each arc (B, @)@ §) has a flow capacity Bg z> 0, and a unit
cost of flow Bz g Each vertex in () has net zero flow, with
the exception of the supply vertex, B and demand vertex, Bl.
The net flow @, moves out from the supply vertex, and to the
demand vertex which has net flow -& [1].

The digraph B is formed with source B and sink @ con-
nected to each vertex i.e. radar observation. Flow is initial-
ized at 0; adding flow to an arc corresponds to either starting,
associating successive detections, or ending a trajectory. The
capacity of arcs are constrained to a maximum flow of 1. This
is important because it precludes overlap in st-paths in the
flow network, which means st-paths must be arc-disjoint.
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Figure 2. Example of digraph B constructed from only 4
data points. Each detection from radar is considered discrete,
not batched into "frames’. Costs are only calculated for recent
detections, a run-time parameter.

Figure 3. Radar data points (red) taken directly from the
CAN bus and plotted in corresponding dashcam image.

Data Range | 1s 5s 30s 60s 300s
Run Time | 0.23s | 1.48s | 10.39s | 43.69 s | 184.33s
Table 1. Run time to find vehicle trajectories with MOT
algorithm with parameters from Figure 1. Includes graph

creation from input data and running SSP.

4 Data Association

Costs are defined as: 0 for arcs leaving from the source & or
entering the sink @, for detections themselves (where
is the rate of false positives for the sensor), and the dis-
tance between detections as a function of sensor measured
xy-distance and velocity difference, See Figure 2 for an
example of B. Note that arcs with the cost of detections are
hidden inside the numbered detection vertices.

Therefore, by solving for the MCF using successive short-
est paths (SSP), the optimal data association is found given
the costs. Each minimum cost path augmenting the st-flow
corresponds to an individual vehicle’s trajectory.

5 Results and Future Work

Data used to test the MCF MOT were CAN data collected
from a drive on the freeway from a stock SAE level 1 vehicle
as shown in Figurel. Preliminary manual analysis from a 30
second segment of dashcam video shows that there are 16
vehicles identified in video, and 16 vehicle tracklets, a sub-
set of a vehicle trajectory, created from the MOT algorithm.
However, four of the CAN-derived tracklets are redundantly

tracking a vehicle already tracked. When plotting the track-
lets in image space we see that no vehicles are tracked two
lanes to the left/right; this is due to limitations with the field
of view of the RADAR sensor. When considering only vehi-
cles in the lanes to the right, left, and straight ahead there
are 12 tracklets (excluding 4 redundant) and 11 vehicles visi-
ble from dashcam footage. This discrepancy is explained by
the total occlusion of a vehicle within the initial 5 seconds
and its reappearance within the last 5 seconds, making it
challenging to stitch these tracklets together.

In future work we will consider occlusion, and cases such
as distinguishing between 18-wheelers and two independent
vehicles. Ground truth data is hard to find for this work
because of the novelty of the data source. NuScenes provides
some radar data but it is not from CAN. Note that we have no
control or provided explanation of how data from the vehicle
sensors may have been pre-processed before our access on
the CAN bus. We plan to create a form of ground truth by
taking established and characterized 3D object detection
and tracking methods from concurrent dashcam footage to
allow for evaluation of key metrics such as average multi-
object tracking accuracy. We also plan to implement this
tracker in ROS for real-time use, using an approach akin to
[4]. Tracking of local object locations at scale has plenty of
feature potential: ego vehicle lane tracking, characterization
of local trafic flow (aggressiveness, density), training data
for automated vehicle controllers on this platform.
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