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Abstract—Basis functions that describe both the amplitude
distribution and the traveling wave phase variation of the induced
surface current have been successfully applied over large patches.
Although such basis functions generate accurate results for
smooth and convex objects, they cannot describe accurately the
current distribution on objects with non-smooth and/or concave
surfaces. In this work, a nonuniform mesh refinement method
is developed based on a current pattern recognition technique
to describe standing wave distributions more accurately. The
simulation results on the nonuniform mesh grids achieve a much
better accuracy and a lower overall computational cost.

I. INTRODUCTION

The phase extracted (PE) basis functions have been devel-
oped to solve efficiently electromagnetic scattering problems
from electrically large complex objects [1]. By incorporating
a traveling wave phase factor in the definition, the PE basis
functions can be defined on patches as large as half a wave-
length, which reduce the number of unknowns and alleviate
the computational and memory requirements significantly.
Unfortunately, although the PE basis functions have been
applied successfully on the scattering analysis of smooth and
convex objects, they cannot describe accurately the current
singularity at geometrical edges, corners, or tips, or standing
wave patterns on non-smooth or concave surfaces such as
cavities. This difficulty can be partly alleviated by combining
low-order PE basis functions with high-order hierarchical basis
functions [2]. While such a combination can be regarded as
the p-refinement, another approach is the local A-refinement
where only the mesh elements associated with geometrical
discontinuities or standing wave patterns are refined to better
capture the local current variation.

In this paper, a set of rules are proposed based on geomet-
rical and physical features of the problem to identify elements
that need to be refined. It is shown that with the proposed
rules, the mesh refinement can be automated, which eliminates
the need of any human intervention. A numerical example
from an electrically large non-smooth object is presented to
demonstrate the performance of the method.

II. PATTERN-RECOGNITION-BASED MESH REFINEMENT

It has been proven in [1] that the induced surface current in a
scattering problem is dominated by traveling wave components
if the scatterer is smooth and convex. The phase variation of
the traveling wave is determined by the incident plane wave.
As a result, the plane wave phase factor can be introduced

to the traditional basis functions, such as the curvilinear
Rao-Wilton-Glisson (CRWG) basis functions [3], so that the
unknown surface current J can be expanded with the PE basis
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where a,,, j,, k™, and N stand for the unknown expansion
coefficients, the CRWG basis functions, the wave vector of
the incident plane wave, and the total number of unknowns,
respectively.

When solving scattering problems with smooth and convex
surfaces, the use of PE basis functions defined on triangular
patches up to half a wavelength (\/2) can generate numerical
solutions with a good accuracy [1], [2]. However, when the
scatterer has geometrical discontinuities or encounters strong
multiple reflections and mutual couplings between different
parts, the induced standing wave components can dominate
over the traveling wave components. To describe such standing
wave components properly, a denser mesh, for example, A/10,
can be used in standing wave regions. Unfortunately, without
an adequate physical understanding of the scattering and
coupling mechanism, it is difficult to determine the location
of the standing wave regions. As a result, it usually requires
human intervention to manually specify the regions that need
a denser geometrical discretization (referred to as the target
regions hereafter).

In this work, a two-step approach is proposed to automati-
cally identify the target regions. In the first step, a coarse mesh
is employed in the method of moments (MoM) solution of a
scattering problem using the PE basis functions. Due to the
use of a coarse mesh, the total number of unknowns is very
small and the solution can be performed very fast. Based on
such a solution, the standing wave ratio (SWR) of the surface
current can be estimated in triangular patch k as

SWR = max | (r) |/ min, [T (r) | @)

where N denotes triangle &k and its direct neighbors. A
large SWR indicates a stronger standing wave pattern, which
requires a finer mesh to resolve the induced current variation.
In addition, geometrical discontinuities usually induce strong
current reflections and edge singularities, and hence, need to be
resolved with a finer mesh. In sum, the following set of rules is
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Fig. 1. Geometrical discretizations and induced current distributions over the surface of a missile-like object using (a) CRWG basis functions defined on a
dense mesh with an average patch size of A/10; (b) PE basis functions defined on a coarse mesh with an average patch size of A/2.5; and (c) PE basis

functions defined on a nonuniform mesh.
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Fig. 2. The missile-like object with target regions identified and highlighted.
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Fig. 3. Bistatic RCS of the missile-like object. The result from CRWG basis
functions is used as the reference.
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proposed to identify the target regions in a mesh. Specifically,
when a patch

1) is associated with an open geometrical boundary;

2) is located at a geometrical discontinuity (e.g., edges,

corners, and tips); or

3) has a SWR higher than a preset threshold;
it is identified as a target region and needs to be refined.

In the second step, the scattering problem is solved again
using the refined, nonuniform mesh with PE basis functions.
Due to the presence of traveling wave regions, PE basis
functions are still required in this step to properly describe
the traveling wave components of the induced surface current.

III. NUMERICAL EXAMPLE

Electromagnetic scattering from a PEC missile-like object
is presented in this section. The total length of the target is
4.7 m with its electrical size being 23.5\ at the frequency of

Table 1. Comparison of Computational Data.

Basis Function No. of Memory Total CPU
(Mesh Size) Unknowns (Mb) Time (min.)

CRWG (A/10) 44,736 2072.11 99.5
PE (\/2.5) 2,817 61.07 2.2

PE (Nonuni.) 26,607 1309.87 57.4

1.5 GHz. Under the illumination of the incident plane wave
coming from the nose direction, the induced surface currents
are solved using the combined-field integral equation (CFIE).
Figure 1(a) presents the reference solution obtained by CRWG
basis functions defined on a dense mesh with an average patch
size of A/10. Figures 1(b) and (c) show the numerical solutions
from PE basis functions defined on a coarse mesh of A/2.5 and
a nonuniform mesh, respectively. It is clear that the solution
from the coarse mesh cannot resolve the strong induced current
on the wings and tail fins. By refining the mesh over the nose
and all four wings and tail fins, the current distribution on
the nonuniform mesh matches that of the reference solution
very well. Shown in Fig. 2 is the highlighted target regions
that are refined. These regions are automatically identified
using the rules described in the preceding section with the
SWR threshold chosen as 10. Apparently, the proposed method
identifies both geometrical discontinuities and strong mutual
coupling regions successfully. The bistatic radar cross section
(RCS) is shown in Fig. 3, from which it can be seen that the
nonuniform mesh results in a much more accurate solution
than the coarse mesh. Finally, the computational data are
reported in Tab. I. It is seen that the memory requirement
and the total CPU time of the two PE solutions (59.6 min.)
are significantly less than those of the CRWG solution.
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