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Abstract—Finite element method (FEM) is flexible in
modeling complex geometries and material compositions
and accurate in numerical simulations of a wide range of
electromagnetic problems. However, it suffers from the
poor convergence when solved iteratively. In this paper,
an eigen decomposition method is proposed by removing
the null-space of the FEM matrix to speed up the iterative
convergence of the FEM solution. The scattering analysis
of a large resonant cavity is performed to demonstrate the
efficiency of the proposed method.

I. INTRODUCTION

Finite element method (FEM) is one of the most widely used
numerical methods for various electromagnetic applications
[1], such as the scattering analysis, antenna design, and
microwave circuit evaluation. Based on an unstructured mesh
of the geometry and a numerical discretization of the vector
wave equation, FEM is able to model structures with arbitrary
shapes and electromagnetic problems with complicated
material compositions. In FEM, the vector wave equation is
converted into a matrix equation, where the FEM matrix is
sparse and symmetric. To solve such a matrix equation, both
direct and iterative methods can be applied. When the matrix
dimension is very large, iterative methods are usually
preferred due to their lower computational complexities.
However, the condition of the FEM matrix obtained by
discretizing the wave equation is very poor, leading to an
extremely slow iterative convergence. As a result, an efficient
preconditioner is usually required to achieve a rapid
convergence.  Unfortunately, the  application of
preconditioners encounters two major issues. First, the
preconditioners can be very expensive to construct and apply,
and their performance varies from case to case. Second, there
is no effective preconditioner for electromagnetic problems
with physical resonance.

In this paper, an algorithm based on an eigen decomposition
method is proposed to speed up the convergence of the
iterative solution of the FEM matrix equation. Based on an
efficient partial solution of an associated eigenvalue problem
(EVP), the smallest eigenvalues and their eigenvectors are
removed from the subspace in which the numerical solution
is sought, leading to a better effective condition of the system

and a faster iterative convergence. An example concerning
the scattering from a large resonant cavity is presented to
demonstrate the performance of the proposed method.

II. EIGEN DECOMPOSITION METHOD

The standard finite element discretization of the vector wave
equation results in the following matrix equation [1]

[KI{E} = {b} (1
where the FEM matrix [K] is an N-by-N sparse symmetric
matrix, {£} and {b} are N-by-1 vectors containing the
unknown coefficients and right-hand side (RHS) excitations,
respectively. When solved iteratively, (1) encounters a very
slow convergence due to the bad conditioning of the FEM
matrix. Mathematically speaking, the FEM matrix has zero or
next-to-zero eigenvalues, especially for physically resonant
problems. The corresponding eigenvectors span a null-space
that cannot be efficiently described by an iterative solver. The
presence of the null-space makes the FEM matrix either
singular or near singular, which is extremely difficult to
converge in an iterative solution. In this work, such a null-
space is explicitly removed from the solution subspace of the
FEM matrix, resulting in an eigen decomposition method that
leads to a fast iterative convergence, even in problems with
internal resonance.

To this end, define the following EVP associated with (1)
[KIIU]=[U][A] 2
where matrix [K] is obtained from the finite element
discretization of the electromagnetic problem, which is the
same as that in (1), [U] stands for the matrix of eigenvectors,
and [A] stands for diagonal eigenvalue matrix. Since [K] is
symmetric, [U] can be orthonormalized such that the
solution can be expressed as
{E}=[K] {b} =[UI[A] (U] {b}. 3)
However, the direct solution of (2) for all the eigenvalues and
eigenvectors is very expensive and thus, impractical.
Fortunately, an efficient partial solution of (2) based on an
oblique projection method [2] is possible. This permits a
decomposition of (1) into two problems based on the moduli
of the eigenvalues. First, the first M (M < N) smallest

eigenvalues [Au] and their associated eigenvectors [Uy] are
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Figure 1. Total electric field distribution with the range of the color
bar set as (a) £ <[0,550] V/mand (b) E [0,2.5] V/m.

calculated by partially solving (2). These eigenvectors span
the null-space of the FEM matrix. The RHS vector {b} can
then be expressed as the summation of {by} spanned by the
null-space and the remaining part {br}

by =1{b,} +1b,} =[U,1U, 1 b} +1{b,}. “)
With (4), the matrix solution can be reformulated as
{E} = [K]" (b, } + by })
=[U, A, T U, 1 By + KT by} (%)

- Zﬂ';l {”l} {”i}T {b} + {ER}

where the first term can be constructed directly from the
partial solution of the EVP (2) and the second term {Er} can
be solved iteratively with a much faster convergence since it
contains no components in the null-space anymore.

III. NUMERICAL EXAMPLE

In this section, electromagnetic scattering from a large
perfectly electric conducting (PEC) cavity is simulated to
demonstrate the computational performance of the proposed
method. Considered here is a two-dimensional PEC
cylindrical cavity with an inner radius of 3.1 m, a thickness
of 0.4 m, and a 10-degree aperture. This structure is so chosen
that once the incident plane wave enters the cavity, the
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Figure 2. Iterative convergence history of the FEM solution.

electromagnetic energy will be trapped inside, and as a result,
a strong physical internal resonance is induced. The
simulation domain is chosen to be a 15.5-m-by-15.5-m square
region surrounded by a perfectly matched layer (PML) with
a thickness of 0.5 m in each direction. Upon discretization
with 0.05 m equilateral triangular elements, the PML is
meshed into 12 layers in each direction and the total number
of unknowns in the entire simulation domain is 113,115. A
302,010,910-Hz transverse magnetically (TM) polarized
wave illuminates the cavity from the lower left direction at a
30-degree angle. The frequency is carefully chosen to excite
the physical internal resonance inside the cavity.

This problem is solved iteratively using the generalized
minimal residual (GMRES) solver [3]. The distribution of the
total electric field is shown in Fig. 1. It can be seen from Fig.
1(a) that the field inside the cavity follows very nicely the
TM3g mode distribution with a maximum intensity of 550
V/m, which is much stronger than the maximum intensity of
the field outside the cavity that is about 2.5 V/m [Fig. 1(b)].
This clearly demonstrates the internal resonance where most
of the energy gets trapped inside the cavity. Figure 2 presents
the convergence histories of the GMRES iterative solutions
with and without the eigen decomposition method.
Apparently, without the removal of the null-space, the solver
cannot converge after 100,000 iterations that takes more than
1,400 minutes. By removing 864 smallest eigenvalues out of
the total of 113,115 eigenvalues, the iterative solver
converges in 3,100 iterations, with a total solution time
(including the partial solution of the EVP) of 33 minutes.
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