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Abstract—Finite element method (FEM) is flexible in 

modeling complex geometries and material compositions 
and accurate in numerical simulations of a wide range of 
electromagnetic problems. However, it suffers from the 
poor convergence when solved iteratively. In this paper, 
an eigen decomposition method is proposed by removing 
the null-space of the FEM matrix to speed up the iterative 
convergence of the FEM solution. The scattering analysis 
of a large resonant cavity is performed to demonstrate the 
efficiency of the proposed method.  

I. INTRODUCTION 
Finite element method (FEM) is one of the most widely used 
numerical methods for various electromagnetic applications 
[1], such as the scattering analysis, antenna design, and 
microwave circuit evaluation. Based on an unstructured mesh 
of the geometry and a numerical discretization of the vector 
wave equation, FEM is able to model structures with arbitrary 
shapes and electromagnetic problems with complicated 
material compositions. In FEM, the vector wave equation is 
converted into a matrix equation, where the FEM matrix is 
sparse and symmetric. To solve such a matrix equation, both 
direct and iterative methods can be applied. When the matrix 
dimension is very large, iterative methods are usually 
preferred due to their lower computational complexities. 
However, the condition of the FEM matrix obtained by 
discretizing the wave equation is very poor, leading to an 
extremely slow iterative convergence. As a result, an efficient 
preconditioner is usually required to achieve a rapid 
convergence. Unfortunately, the application of 
preconditioners encounters two major issues. First, the 
preconditioners can be very expensive to construct and apply, 
and their performance varies from case to case. Second, there 
is no effective preconditioner for electromagnetic problems 
with physical resonance.  

In this paper, an algorithm based on an eigen decomposition 
method is proposed to speed up the convergence of the 
iterative solution of the FEM matrix equation. Based on an 
efficient partial solution of an associated eigenvalue problem 
(EVP), the smallest eigenvalues and their eigenvectors are 
removed from the subspace in which the numerical solution 
is sought, leading to a better effective condition of the system 

and a faster iterative convergence. An example concerning 
the scattering from a large resonant cavity is presented to 
demonstrate the performance of the proposed method.  

II. EIGEN DECOMPOSITION METHOD 
The standard finite element discretization of the vector wave 
equation results in the following matrix equation [1] 
 [ ]{ } { }K E b=  (1) 
where the FEM matrix [K] is an N-by-N sparse symmetric 
matrix, {E} and {b} are N-by-1 vectors containing the 
unknown coefficients and right-hand side (RHS) excitations, 
respectively. When solved iteratively, (1) encounters a very 
slow convergence due to the bad conditioning of the FEM 
matrix. Mathematically speaking, the FEM matrix has zero or 
next-to-zero eigenvalues, especially for physically resonant 
problems. The corresponding eigenvectors span a null-space 
that cannot be efficiently described by an iterative solver. The 
presence of the null-space makes the FEM matrix either 
singular or near singular, which is extremely difficult to 
converge in an iterative solution. In this work, such a null-
space is explicitly removed from the solution subspace of the 
FEM matrix, resulting in an eigen decomposition method that 
leads to a fast iterative convergence, even in problems with 
internal resonance.  

To this end, define the following EVP associated with (1) 
 [ ][ ] [ ][ ]K U U= Λ  (2) 
where matrix [K] is obtained from the finite element 
discretization of the electromagnetic problem, which is the 
same as that in (1), [U] stands for the matrix of eigenvectors, 
and [Λ] stands for diagonal eigenvalue matrix. Since [K] is 
symmetric, [ ]U can be orthonormalized such that the 
solution can be expressed as 
 1 1 T{ } [ ] { } [ ][ ] [ ] { }.E K b U U b− −= = Λ  (3) 
However, the direct solution of (2) for all the eigenvalues and 
eigenvectors is very expensive and thus, impractical. 
Fortunately, an efficient partial solution of (2) based on an 
oblique projection method [2] is possible. This permits a 
decomposition of (1) into two problems based on the moduli 
of the eigenvalues. First, the first M ( )M N  smallest 
eigenvalues [ΛM] and their associated eigenvectors [UM] are 



calculated by partially solving (2). These eigenvectors span 
the null-space of the FEM matrix. The RHS vector {b} can 
then be expressed as the summation of {bM} spanned by the 
null-space and the remaining part {bR} 
 T{ } { } { } [ ][ ] { } { }.M R M M Rb b b U U b b= + = +  (4) 
With (4), the matrix solution can be reformulated as  

 

1

1 T 1

1 T

1

{ } [ ] ({ } { })
[ ][ ] [ ] { } [ ] { }

{ }{ } { } { }

M R

M M M R
M

i i i R
i

E K b b
U U b K b

u u b Eλ

−

− −

−

=

= +

= Λ +

= +∑

 (5) 

where the first term can be constructed directly from the 
partial solution of the EVP (2) and the second term {ER} can 
be solved iteratively with a much faster convergence since it 
contains no components in the null-space anymore.  

III. NUMERICAL EXAMPLE 
In this section, electromagnetic scattering from a large 
perfectly electric conducting (PEC) cavity is simulated to 
demonstrate the computational performance of the proposed 
method. Considered here is a two-dimensional PEC 
cylindrical cavity with an inner radius of 3.1 m, a thickness 
of 0.4 m, and a 10-degree aperture. This structure is so chosen 
that once the incident plane wave enters the cavity, the 

electromagnetic energy will be trapped inside, and as a result, 
a strong physical internal resonance is induced. The 
simulation domain is chosen to be a 15.5-m-by-15.5-m square 
region surrounded by a perfectly matched layer (PML) with 
a thickness of 0.5 m in each direction. Upon discretization 
with 0.05 m equilateral triangular elements, the PML is 
meshed into 12 layers in each direction and the total number 
of unknowns in the entire simulation domain is 113,115. A 
302,010,910-Hz transverse magnetically (TM) polarized 
wave illuminates the cavity from the lower left direction at a 
30-degree angle. The frequency is carefully chosen to excite 
the physical internal resonance inside the cavity.  

This problem is solved iteratively using the generalized 
minimal residual (GMRES) solver [3]. The distribution of the 
total electric field is shown in Fig. 1. It can be seen from Fig. 
1(a) that the field inside the cavity follows very nicely the 
TM3,8 mode distribution with a maximum intensity of 550 
V/m, which is much stronger than the maximum intensity of 
the field outside the cavity that is about 2.5 V/m [Fig. 1(b)]. 
This clearly demonstrates the internal resonance where most 
of the energy gets trapped inside the cavity. Figure 2 presents 
the convergence histories of the GMRES iterative solutions 
with and without the eigen decomposition method. 
Apparently, without the removal of the null-space, the solver 
cannot converge after 100,000 iterations that takes more than 
1,400 minutes. By removing 864 smallest eigenvalues out of 
the total of 113,115 eigenvalues, the iterative solver 
converges in 3,100 iterations, with a total solution time 
(including the partial solution of the EVP) of 33 minutes.  
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Figure 1.  Total electric field distribution with the range of the color 
bar set as (a) [0, 550]E∈  V/m and (b) [0, 2.5]E∈  V/m.  

 
Figure 2.  Iterative convergence history of the FEM solution. 
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