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Pseudomonas syringae pathovars
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Pseudomonas syringae is one of the best studied plant pathogens. P. syringae pathovars exhibit unique host specificities
by infecting different kinds of plants, causing huge economic losses. Studies on the molecular interactions between P.
syringae pathovars and plants have made huge contributions towards our understanding of the plant immune
system and microbial pathogenicity. Flagellin, lipopolysaccharide (LPS), extracellular polysaccharides (EPS) and EF-Tu
from P. syringae are recognized by their receptors/coreceptors FLS2-BAK1, LORE, and EFR-BAK1, respectively, to ac-
tivate immunity triggered by pathogen-associated molecular patterns (PAMPs). P. syringae relies on cell-wall-degrading
enzymes secreted through the type Il secretion system (T2SS), type Il effectors delivered into plant cells by the type Il
secretion system (T3SS), and toxins, such as coronatine, to cause diseases. Plants have developed resistance (R)
proteins to recognize some of these effectors or avirulence proteins, inducing the hypersensitive response. Ice-nucle-
ation-active (INA) proteins from P. syringae, which can initiate ice formation, have been used to produce artificial snow.

TAXONOMY AND CLASSIFICATION:
KINGDOM: Bacteria

PHYLUM: Proteobacteria

CLASS: Gammaproteobacteria
ORDER: Pseudomonadales
FAMILY: Pseudomonadaceae
GENUS: Pseudomonas

SPECIES: Pseudomonas syringae
Gram-negative, yellow, fluorescent

P. syringae pv. maculicola
ES4326
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KEY FACTS:

P. syringae was first isolated from the
lilac tree (Syringa vulgaris). Due to its
production of the siderophore pyoverdin
on King’s B medium, P. syringae has a
yellow fluorescent appearance.

The complete genome sequence of the
first P. syringae, Pseudomonas syringae
pv. tomato (Pst) DC3000, was published
in 2003. The genome size of Pst DC3000,
which has a circular chromosome and
two plasmids, is about 6.5 Mb.

Type lIl effectors (T3Es or Hops) that are
delivered into host plant cells by the
T3SS are required for P. syringae to
cause diseases. The two major functions
of T3Es are suppression of plant innate
immunity and creation of an aqueous
apoplastic space for pathogen growth.
HopM1 and AvrE, two major T3Es in the
Conserved Effector Locus (CEL) of the
pathogenicity island, have been
identified as the major causes for the
water-soaking symptom during the
infection.

The first nucleotide-binding site-leucine-
rich repeat (NB-LRR) receptor or R
protein RPS2 was identified in the plant
arabidopsis (Arabidopsis thaliana). RPS2
detects the cleavage of RIN4 by the T3E or
avirulence (avr) protein AvrRpt2 from

P. syringae, triggering effector-triggered
immunity (ETI) through indirect recognition.
The hypersensitive response (HR), a rapid
localized programmed cell death, is a
hallmark of ETI.

Several phytotoxins, including coronatine,
syringolin A, syringomycin, syringopeptin,
phaseolotoxin, and tabtoxin, have been
found in different P. syringae strains. The
best characterized P. syringae toxin is
coronatine, which mimics the active form
of plant hormone jasmonic acid,
jasmonoyl-isoleucine (JA-lle). Coronatine
antagonizes the function of salicylic acid in
inducing stomata closure, triggering the
reopening of stomata to allow pathogen
invasion.
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Many strains of P. syringae, but not Pst
DC3000, harbor ice-nucleation (INA)
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genes, which encode INA proteins.
Once INA proteins translocate to the
surface of the bacteria they can function
as nuclei for ice formation. Therefore, the
INA proteins have been used to make
artificial snow. Conversely, P. syringae
INA minus (INA") mutants have been
released into fields to protect crops from
frost damage. It has been postulated
that P. syringae plays a role in the earth’s
water cycle because it is frequently found
in precipitates and in the center of
hailstones.

DISEASE FACTS:

To date, over 50 pathovars of P. syringae
have been discovered. P. syringae can
cause diseases in many economically
important crops, resulting in billions of
dollars loss annually. For example,
bacterial canker disease, caused by

P. syringae pv. actinidiae, poses serious
threats to the kiwifruit industry, leading to
huge economic losses.

Pst DC3000 not only infects the
economically important crop tomato, it
also causes disease in the model plant
A. thaliana. Both Pst DC3000 and

P. syringae pv. maculicola (Psm) strain
ES4326 are frequently used to study the
molecular interactions between

P. syringae and A. thaliana. Many
milestone discoveries in molecular plant—
pathogen interactions were made using
the P. syringae— A. thaliana
pathosystem.

Besides Pst DC3000 and Psm 4326,
P. syringae pv. syringae (Pss) B728a,
which causes brown spot disease on
bean, serves as a model to study
epiphytic fitness, while P. syringae pv.
phaseolicola (Psp) 1448A, which is a
causal agent of halo blight on bean, has
been involved in the study of avr genes
and non-host resistance.
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