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Abstract—Image deblurring in photon-limited conditions is
ubiquitous in a variety of low-light applications such as photog-
raphy, microscopy and astronomy. However, the presence of the
photon shot noise due to the low illumination and/or short exposure
makes the deblurring task substantially more challenging than the
conventional deblurring problems. In this paper, we present an
algorithm unrolling approach for the photon-limited deblurring
problem by unrolling a Plug-and-Play algorithm for a fixed number
of iterations. By introducing a three-operator splitting formation of
the Plug-and-Play framework, we obtain a series of differentiable
steps which allows the fixed iteration unrolled network to be trained
end-to-end. The proposed algorithm demonstrates significantly
better image recovery compared to existing state-of-the-art deblur-
ring approaches. We also present a new photon-limited deblurring
dataset for evaluating the performance of algorithms.

Index Terms—Photon limited, poisson deconvolution,

deblurring, plug-and-play, algorithm unrolling.

1. INTRODUCTION

MAGE deblurring is a classical restoration problem where
I the goal is to recover a clean image from an image corrupted
by a blur due to motion, camera shake, or defocus. In the simplest
setting assuming a spatially invariant blur, the forward image
degradation problem is

y=hxz+n, 1)

where & € RY is the clean image to be recovered from the
corrupted image y € RY, the vector h € R? denotes the blur
kernel, n € RY denotes the additive i.i.d Gaussian noise, and
“x” denotes the convolution operator. The deblurring problem
can be further classified as non-blind and blind. A non-blind
deblurring problem assumes that the blur kernel h is known
whereas a blind-deblurring problem do not make such an as-
sumption. In this paper, we focus on the non-blind case.

While non-blind deblurring methods are abundant [1], [2],
[3], [4], [5], [6], the majority are designed for well-illuminated
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scenes where the noise is i.i.d. Gaussian and the noise level is not
too high. However, as one pushes the photon level low enough
that the photon shot noise dominates, the deblurring task is no
longer as simple. As illustrated in Fig. 1, which is a real low-light
example we captured using a Canon T6i camera at a photon level
approximately 5 Ix, the observed image is not only dark but is
strongly contaminated by photon shot noise that is visible in the
histogram equalized image. To further elaborate on the operating
regime of the proposed method, we show in Fig. 2 a comparison
between this paper and other mainstream deblurring work. We
highlight the raw sensor capture shown in the bottom left of each
sub-figure and the tone-mapped image shown in the top right of
each sub-figure at different illumination levels.

We refer to the problem of interest as the photon limited
non-blind deblurring. Photon limited deblurring is a common
problem for a variety of applications such as microscopy [7] and
astronomy [8]. One should note that photon limited imaging is a
problem even if we use a perfect sensor with zero read noise and
100% quantum efficiency. The photon shot noise still exists due
to the stochasticity of the photon arrival process [9]. Therefore,
the solution presented in this paper is pan-sensor, meaning
that it can be applied to the standard CCD and CMOS image
sensors and the more advanced quanta image sensors (QIS)
[10], [11], [12].

A. Problem Formulation

Consider a monochromatic image = € R" normalized to
[0,1]. We write the blurred image as Hx where H € RV*N
represents the blur kernel h in the matrix form. In photon-limited
conditions, the observed image is given by

y = Poisson(a - Hx), 2)

where Poisson(+) denotes the Poisson process, and « is a scalar
to be discussed. The likelihood of the observed image y follows
the Poisson probability distribution:

CkH:B} ['y];e [aHx];

H R ®

_ J :

(y|z; ) =

where [-]; denotes the jth element of a vector. The scalar «
represents the photon level. It is a function of the sensor’s
properties (e.g. quantum efficiency), camera settings (exposure
time, aperture), and illumination level of the scene. For a given
illumination, the photon level « can be increased by increasing
the exposure time or the aperture. To give readers a better idea of
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(a) Raw camera image

Fig. 1.
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(c) Our reconstruction

Overview. The goal of this paper is to present a new algorithm that reconstructs images from blur at a photon-limited condition.

Mainstream Deblurri

Fig. 2.

Comparison of photon-limited scenes (Left) with relatively well illuminated scenes (Right). Raw images and their tone mapped versions taken in different

illuminations and blurred by defocus are shown in the figure. As illumination of the scene decreases, the photon shot noise becomes more dominant, making the
deblurring problem substantially more difficult - as shown in Fig. 3. In this paper, we address the problem of non-blind deblurring in a photon-limited setting i.e.
when the number of photons captured by the sensor is low leading to corruption of images by the photon shot noise.

TABLE I
LIGHTING CONDITION AND ILLUMINATION LEVEL

Lighting condition Tlumination (lux)

Sunset 400
Dimly-lit Street 20-50
Moonlight 1

a = 5 (This paper) 1

the photon level o, we give a rough estimate of the photon flux
(measured in terms of lux level) in Table I under a few typical
imaging scenarios. !

Under such a severe lighting condition, state-of-the-art algo-
rithms have a hard time working. In Fig. 3 we use the deep
Wiener deblurring network [1] to deblur the image. When the

ITo estimate the photon level « from the photon flux level, we set the
scene illumination to 1 Ix (measured using a light meter) and measure the
corresponding photons-per-pixel from the image sensor data captured using a
Canon EOS Rebel T6i.

illumination is strong, the method performs well. But when the
illumination is weak, the algorithm performs poorly. We remark
that this observation is common for many mainstream deblurring
algorithms.

B. Contributions and Scope

Photon-limited non-blind deblurring is a special case of the
Poisson linear inverse problem. We limit the scope to deblurring
so that we can demonstrate the algorithm using real low-light
data.

Existing photon-limited deblurring methods are mostly de-
terministic [13], [14], [15]. To overcome the limitation of these
methods, in this paper we present a deep-learning solution. We
make two contributions:

1) We propose an unrolled plug-and-play (PnP [16], [17])

algorithm for solving the non-blind deblurring problem
in photon-limited conditions. Unlike existing work such
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Fig. 3. Limitation of existing image deblurring algorithms when applied to
low-light images. In this example we use the pre-trained neural network [1] to
recover a well-illuminated scene and a poorly-illuminated scene. The method
fails because of the noise, even though the deblurring in a well-illuminated scene
is satisfactory.

as [18] which uses an inner optimization to solve the
Poisson proximal map, we use a three-operator splitting
technique to turn all the sub-routines differentiable. This
allows us to train the unrolled network end-to-end (which
is previously not possible), and hence makes us the first
unrolled network for Poisson deblurring.

2) We overcome the difficulty of collecting real photon-
limited motion blur kernels and images for algorithm
evaluation. A dataset containing 30 low-light images and
the corresponding blur kernels are produced. We make this
dataset publicly available.

II. RELATED WORK
A. Poisson Deconvolution

Poisson deconvolution has been studied for decades because
of its important applications [ 19]. One of the earliest and the most
cited works is perhaps the Richardson-Lucy (RL) algorithm [14],
[15]. The method assumes a known blur kernel and derives an
iterative scheme which converges to the maximum-likelihood
estimate (MLE) of the deconvolution problem. The RL algo-
rithm was applied to problems such as emission tomography [20]
and confocal microscopy [21], [22]. However, since the prior is
not used, the quality of reconstruction is limited.

Another class of iterative methods is based on maximum-
a-posteriori (MAP) estimation by using a signal prior. For
example, PIDAL-TV [23] solves a MAP cost function with
the total-variation (TV) regularization using an augmented La-
grangian framework. Similarly, the sparse Poisson intensity re-
construction algorithm (SPIRAL) [24] looks for sparse solutions
in an orthonormal basis, whereas [25] solves a MAP cost func-
tion with multiscale prior using the expectation-maximization
algorithm.

Shrinkage based approaches such as PURE-LET [13] as-
sume the deconvolution output to be a linear combination of

elementary functions and minimize the expected mean squared
error under a joint Poisson-Gaussian noise model. This boils
down to solving a linear system of equations and has been also
used to solve denoising, deblurring processes under Gaussian
noise assumptions [26], [27].

Denoising under Poisson noise conditions can be viewed as
a special case of the deblurring problem. One of the widely
used techniques for Poisson denoising is the variance stabilizing
transforms (VST) which applies the Anscombe transform [28]
to stabilize the spatially varying noise variance. A standard de-
noising method is then used, followed by the inverse Anscombe
transform. In [29], it was shown that an optimal inverse transform
can outperform other standard Poisson denoising methods such
as [30], [31]. The method in [32] provides an iterative version
of the denoising via VST scheme by treating last iteration’s
denoised image as scaled Poisson data.

B. Plug-and-Play

The Plug-and-play (PnP) framework was first introduced
in [16] as a general purpose method to solve inverse problems by
leveraging an off-the-shelf denoiser. Since then, the framework
has been applied to different problems like bright field electron
tomography [33] and magnetic resonance imaging (MRI) [34].
Using the same principle but with the half-quadratic splitting
scheme, [35] demonstrated the use of a single denoiser for differ-
ent image restoration tasks such as super-resolution, deblurring,
and inpainting. Variations of PnP have also been used for Poisson
deblurring [18], [36] and non-linear inverse problems [37].
A stochastic version of the scheme (PnP stochastic proximal
gradient method) has been proposed for inverse problems with
prohibitively large datasets [38]. Using the consensus equilib-
rium (CE) framework [39], the scheme can be extended to fuse
multiple signal and sensor models.

The convergence of the Plug-and-Play scheme has been stud-
ied in detail. For example, [17] provided a variation of the
scheme which was provably convergent under the assumptions
of a bounded denoiser and its performance was analysed under
assumptions of a graph filter denoiser in [40]. [41] showed that if
a denoiser satisfies certain Lipshitz conditions, the correspond-
ing Plug-and-Play scheme can be shown to converge. Further-
more, the authors proposed real-spectral normalization as a way
to impose the conditions on deep-learning based denoisers.

A closely related method which provides a framework to
solve inverse problems using denoisers is REgularization by
Denoising (RED) [42], [43]. The framework poses the cost
function for an inverse problem as sum of a data term and
image-adaptive Laplacian regularization term. This allows the
resulting iterative process to be written as a series of denoising
steps. In [44], it was mentioned that for RED to be valid the
denoiser needs to have a symmetric Hessian.

C. Algorithm Unrolling

The difficulty of running PnP and RED is that they need to
iteratively use a deep network denoiser. An alternative way to
implement the algorithm was proposed by Gregor and LeCun
in 2010 [45] to unroll an iterative algorithm and train it in a
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supervised manner. For example, one can unroll the iterative
shrinkage threshold algorithm (ISTA) for the purpose of ap-
proximating sparse codes of an image. The idea of unrolled
networks has been employed in various image restoration tasks
such as super-resolution [46], deblurring [47], [48], compressive
sensing [49], and haze removal [50]. For a more extensive review
of algorithm unrolling, we refer the reader to [51]. More recently,
there are new attempts to relax the fixed iteration structure
of unrolling by analyzing the equilibrium of the underlying
operators [52].

As stated in [51], unrolling iterative algorithms provide
multiple advantages compared to generic deep learning archi-
tectures. For example, the unrolled networks provide greater
interpretability and are often parameter efficient compared to
their counterparts such as the U-Net [53]. Since the networks are
unrolled version of iterative algorithms, they are less susceptible
to problem of overfitting.

III. METHOD

A. Algorithm Unrolling

The proposed solution for the Poisson deblurring problem is
to unroll the iterative PnP algorithm. We start by deriving the
PnP steps. In the “unrolled” version of the iterative algorithm,
each iteration is treated as a computing block. Each computing
block has its own set of trainable parameters. The blocks are
concatenated in series with each other. The output at the end
of the last block is used as the target for a supervised loss to
fine-tune the trainable parameters.

Before describing the iterative algorithm we aim to unroll,
we briefly describe the underlying cost function. Most inverse
problem algorithm aim to determine the MAP estimate of the
underlying signal « by maximizing the log-posterior

z" = argmax [log p(y|x) + log p(z)] , 4)

where p(x) denotes the natural image prior. Plugging (3) in (4)
and taking the negative of the cost function, the maximization
becomes

z* = argmin [al” Hz — y” log (aHz) — logp(z)], (5)
where 1 represents the all-one vector. Note that the factorial term
log y! has been dropped since it is independent of a. The prior
p(x) has not been explicitly specified yet and this issue will be
addressed through the use of a denoiser in the next subsection.

B. Conventional PnP for Poisson Inverse Problems

Now we describe how the Plug-and-Play method can be
applied to the Poisson deblurring problem. We start with the
alternate direction of method of multipliers (ADMM) [54] for-
mulation — where we convert the unconstrained optimization
problem to a constrained optimization problem by performing
the variable splitting x = z

{z",2"} = argmin [~ log p(y|x) — log p(2)],

x,z

subject to x = z, (6)
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At the minimum of the above optimization problem, the con-
straint £* = 2" must be satisfied and hence the constrained
optimization solution is equivalent to the unconstrained solution
in (5).
The augmented Lagrangian associated with the constrained
problem in (6) is
{z*, 2", u"} = argmin [l Hx—y" log(aHx)

T,z
~logp(z) + Ll — =+ ul*~ £ ul?] , 7)

where u denotes the scaled Lagrange multiplier corresponding
to the constraint £ = z, and p denotes the penalty parameter.
The corresponding iterative updates are:

wk+1::mgmh1[aﬂTIIw——yTlmﬂaliw)+—g”w—‘iﬂp]’

Proximal operator for the negative log-likelihood

(8a)
k+1 _ . | B k2 b
21 = argmin [~ logp(z) + 2|z — 2], (8b)
z
Proximal operator for the negative-log-prior

with " & 2% — u* and 2" & 2* + wF. In the Plug-and-Play

framework [16], [17], the z update in (8b) is implemented by an
image denoiser.

The difficulty of solving the above problem is that the a-
update in (8a) does not have a closed form expression for the
Poisson likelihood. Thus (8a) needs to be solved using an inner-
loop optimization method such as L-BFGS [55]. Unrolling this
inner-loop optimization solver can be inefficient as it may not be
differentiable. Hence unrolling the PnP scheme for the Poisson
inverse problem using the existing framework is infeasible. To
be more specific, while the z-update in (8b) can be implemented
as a neural network and hence is differentiable, the same cannot
be said for x-update in (8a). As shown in Fig. 4, when (8a) is
solved using another iterative method such as L-BFGS (for e.g.
in [18]), it is not differentiable. As a result, training the unrolled
network via backpropagation is not possible unless (8a) can be
made differentiable.

C. Three-Operator Splitting for Poisson PnP

As explained in the previous subsection, the current frame-
work does not allow for algorithm unrolling. To circumvent
this issue, we use an alternate three-operator formulation of the
PnP-framework. Through this reformulation of Plug-and-Play,
we derive a series of iterative updates where each step can be
implemented as a single-step that is differentiable. The three-
operator splitting strategy we use here has been used in context
of Poisson deblurring in [23], [56] and [36] using a TV and
BM3D denoiser respectively.

In this scheme, instead of a two-operator splitting strategy
for conventional PnP in (6), we use three-operator splitting
to form the corresponding constrained optimization problem.
Specifically, in addition to splitting the variable as = z, we
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Fig. 4.

Conventional two-operator splitting Plug-and-Play. Conventional Plug-and-Play applied to the Poisson deblurring problem using equations (8a) and

(8b). While (8b) is implemented as an image denoiser and hence differentiable, a-update i.e. (8a) is implemented as a convex optimization solver and hence not
differentiable. This makes the conventional PnP infeasible for fixed iteration unrolling and hence end-to-end training.

introduce a third variable v corresponding to blurred image H =
and hence the constraint Hx = v.

{z*, z", v} = argmin [fyT log (aw) + alTv + logp(z)] ,

x,z,v

subject tox =z, and Hx = v. 9

After forming the corresponding augmented Lagrangian, we
arrive at the following iterative updates:

" = argmin [&Hw —zg||* + &HHCL' - :51’||2} , (10a)
x 2 2
2P = argmin {— logp(z) + %Hz -z ||2} , (10b)
z
k+1 _ . T T P2 ~k 12
v = argmin |—y* log(av) + ol v + 5 [lv =277,
v
(10c)
R T (10d)
ub ™ = ub + Hah ! — okt (10e)
where TF & 2+l _ gk gk L gktl _ gk gk Cprgk 4ok,
and 2" & b 4 uk. S1m1lar to the PnP formulation described in

last subsection, the vectors w1, uo denote the scaled Lagrangian
multipliers for the constraints € — z = 0 and Hx — v = 0 re-
spectively. The scalars p;, pa denote the corresponding penalty
parameters.
Each of the subproblems defined in (10a, 10b, 10c) have a
closed form solution and are described below:
x-subproblem: (10a) is a least squares minimization prob-
lem, whose solution can be explicitly given as follows:
bt = (I + (po/p1)H H) ™' (:E(’j + (p2/p1) HT:E’f) :
(1)
Since H represents a convolutional operator, the operation
can be performed without any matrix inversions using Fourier
Transforms.
)] o (12

gkl = 1 -7:(~k) + (p2/p1)F (h) (z}
L+ (p2/p1)|F(h)|?

where F(-) represents the discrete Fourier transform of the
image or blur kernel implemented using the Fast Fourier Trans-
form after appropriate boundary padding. We refer to it as the
deblurring operator.

z-subproblem: (10b) is a proximal operator for the negative
log prior term. Using the insight provided in Plug-and-Play
scheme, (10b) can be viewed as a denoising operation

1= p (z’“) : (13)

where D(-) is any image denoiser. For end-to-end training, we
require D(-) to be differentiable and trainable — a property
satisfied by all convolutional neural network denoisers.

v-subproblem: (10c) is a convex optimization problem but
can be solved without an iterative procedure. Separating out each
component of the vector minimization and setting the gradient
equal to zero gives the following equation

[y,
[k,

(14)

+a+ p2 ([U’“H]i — [#L) =0,

fort = 1,2,..., N.Solving the resulting quadratic equation and
ignoring the negative solution gives the following update step

~k ~k 2
pP2v” —a + p2U” —a) +4pay
k+1

v = ,
2p2

(15)

Since the optimization problem in (10c) is a sum of the the
negative log-likelihood for Poisson noise and a quadratic penalty
term, we refer to this update as Poisson proximal operator.
The convergence of Algorithm 1 has been derived in [23]. It
was shown that as long as G = [H”, I]” has a full column
rank, the three-operator splitting scheme converges. Further-
more, assuming the denoiser D is continuously differentiable
and VD(-) is symmetric with eigenvalues in [0,1], convergence
results in [33] show that the corresponding negative-log prior,
—log(p(-)) is closed, proper and convex. Combined with
the result from [23], it can be shown that the three-operator PnP
scheme in Algorithm 1 converges.
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( Layer 1 Layer 2 )
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Deblurring CNN Denoiser
[:]/ . Closed-Form Expression . Trainable Parameters — |nput to Layer
©)Differentiable (X)) Non-Differentiable
Fig.5. Proposed unrolled Plug-and-Play for deblurring. For conventional PnP, the data sub-problem cannot be solved in a single step and instead requires convex

optimization solvers. This stops us from unrolling the iterative procedure and training it end-to-end via back-propagation. Through the three-operator splitting
formulation of the problem, each sub-module in an iteration is in closed form and more importantly, differentiable. This allows for end-to-end training which was
not possible in conventional PnP. The network below the input represents the hyperparameter network which predicts p; and p2 using the blur kernel and the

photon level.

Algorithm 1: Three-Operator Splitting for Poisson PnP.

1: Input: Blurred and Noisy Image y, kernel h, Photon
level a

2: Initialize x° using (16)

3: 20 20 v — yud « 0,ud <0

4:fork=1,2,..., K do

5: Update =* using Eq. (12)

6: Update z* using Eq. (13)

7.

8

9

0

1

Update v* using Eq. (15)

uf u’f‘l +xk — 2F
coub e ubl F Hab v

10: end for

11: return @

k

K

D. Unfolding the Three-Operator Splitting

With an end-to-end trainable iterative process, we can now
describe the unfolded iterative network. The Plug-and-Play up-
dates described in Algorithm 1 are now unfolded for K = 8
iterations and the entire differentiable pipeline is trained in a
supervised manner, as summarized in Fig. 5. We refer the result-
ing neural network architecture as Photon-Limited Deblurring
Network (PhD-Net).

Initialization: To initialize the variable 2°, we use the Wiener
filtering step (not to be confused with [1]) :

wo_l}—1{ F(h)F(y) }
a [z’

1/a+|F(h)
where the constant factor 1/« in the denominator represents the
inverse of the signal-to-noise ratio of the blurred measurements.

(16)

Note that this step can be derived as an ¢, regularized solution
of the deconvolution problem as well.

Hyperparameters: The parameters used in updates (10a),
(10c) — p1, p2 are changed for each iteration and determined in
one-shot by the blurring kernel h and photon level « as they con-
trol the degradation of the image. The kernel h is used as input
to 4 convolutional layers, flattened to a vector of length 1024.
Along the with the photon level «, the flattened vector is used
as an input to a 3-layer fully connected network which output
two set of vectors i.e. {pl,p?,...,pI} and {pd, p3,..., pX}.
We refer the readers to the supplementary document for further
architectural details.

Note that there is no ground-truth assumed for parameters
p1, p2 as the hyperparameter network described above is trained
simultaneously as rest of the parameters of the network.

Denoiser: For the denoiser used in (13), we use the archi-
tecture provided in [46] which introduces skip connections in a
U-Net architecture known as ResUNet. Like a standard U-Net,
there are four downsampling operations followed by 4 upsam-
pling operations with skip connections between the upsampling
and downsampling operators. The denoiser weights are shared
across the unrolling iterations instead of different set of weights
for each iteration. For further details of the architecture we refer
the readers to [46] or the supplementary document. Note that in
our implementation of the architecture, we do not concatenate
the denoiser input 2" with a noise level.

IV. EXPERIMENTS

A. Training

We train the network described in section III using ¢;-loss
function. We use images from the Flickr2K [57] dataset to train
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the network. The dataset contains a total of 2650 images of which
we partition using a 80/20 split for training and validation. All
images are converted to gray-scale, scaled to a size of 256 x 256,
and are blurred using motion kernels generated from [58] and
Gaussian blur kernels. Due to memory limits of GPU, random
patches of size 128 x 128 were cropped and used as inputs for
the network during training.

For training, a combination of 60 motion kernels generated
from [58] and 10 isotropic gaussian blur kernels with o varying
from [0.1,2.5] were used. All the kernels were pre-generated
prior to training and were randomly selected during training.
Entries of the blur kernel are non-negative and sum to 1. Photon
Shot noise is synthetically added to the blurred image according
to (2). The photon level « is uniformly sampled from the range
[1,60].

The inputs to the network consist of the blurred and corrupted
image y, the normalized blur kernel h, and the photon noise
level . The output from the network is the reconstructed image
x where K denotes the number of iterations for which the
scheme is unrolled for. We set the the number of iterations in
our implementation to K = 8. Using the ¢;-loss function, we
train the network with Adam optimizer [60] using a learning rate
1 x 10~* and batch size of 5 for 100 epochs. All the parameters
of the network are initialized using Xavier initialization [61]
and is implemented in Pytorch 1.7.0. For training, we use an
NVIDIA Titan Xp GP102 GPU and it takes approximately 20
hours for training to complete.

B. Choice of Deblurring Methods for Comparison

Before describing the results of quantitative evaluation, we
briefly discuss the other deblurring approaches we compare our
method with. The methods, namely RGDN [2], DWDN [1],
DPIR [35], and PURE-LET [13], were chosen because they
give state-of-the-art results on the deblurring problem and be-
cause they represent different contemporary approaches to solv-
ing the non-blind deconvolution problem.

RGDN (Recurring Gradient Descent Network) is an unrolled
optimization method. More specifically, the authors take the
deconvolution cost function ||y — k  x||*> + Q(x) and provide
a gradient descent iterative scheme for it. The second term in
the cost functions represents image prior and the corresponding
gradient term V() is estimated using a convolutional neural
network and the network, after being unrolled for fixed itera-
tions, is trained end-to-end.

Deep-Weiner Deconvolution (DWDN) can be viewed as a
hybrid deconvolution/denoising method. As a U-Net denoiser
converts an image into a smaller feature space and then re-
constructs the image using a decoder, DWDN first extracts
features, performs Weiner deconvolution in that feature space,
and then followed by decoding to a clean image. Through this
architecture choice, they are able to perform denoising through
the encoder-decoder structure but also deblur the image using
Weiner deconvolution.

DPIR (Deep Plug-and-Play Image Restortation) uses a
pre-trained denoiser in a half-quadratic splitting scheme and

represents a state-of-the-art method which can be used for gen-
eral purpose linear inverse problems like super-resolution and
deblurring. Like our approach, it also boils down to a iterative
series of denoising and deblurring steps.

PURE-LET (Poisson Unbiased Risk Estimate - Linear
Expansion of Thresholds) proposes the solutions as a linear
combination of basis function whose weights are determined
by minimizing the unbiased estimate of the mean squared loss
under given noise conditions. While not a deep-learning method,
it performs surprisingly competitively and can incorporate both
Poisson shot noise and Gaussian read noise explicitly.

Unrolled network have received a growing interest in the
signal and image processing community [51]. However, the
vast majority of the methods are based on the Gaussian like-
lihood [50], [62]. Since our problem is Poisson, comparing our
method against those Gaussian-based unrolled networks is a
mismatch. Replacing the Gaussian likelihood with a Poisson
likelihood would resolve this issue, but doing so would require
aredesign of the unrolled network which is exactly the purpose
of this paper. As such, the most relevant evaluation would be
a comparison between the various two-way splitting and the
three-way splitting strategies which will be shown in Section
IV.D. Other unrolled methods such as [47], [48] are designed
for blind deconvolution. The work we consider here is non-blind
deconvolution.

C. Quantitative Evaluation

The results are summarized in Fig. 6. We evaluate our method
using synthetically generated noisy blurred images on 100 im-
ages from the BSDS300 dataset [63], from now on referred to as
BSDI100. We evaluate the performance on different photon levels
(o = 5,10, 20, 40) representing various levels of degradation in
terms of signal-to-noise ratio. We test the methods for differ-
ent blur kernels - specifically 4 isotropic Gaussian kernels, 4
anisotropic Guassian kernels, and 4 motion kernels, as illustrated
in Fig. 7. Note that the top-left kernel’s width is very small - this
can be viewed as an identity operator and hence equivalent to
evaluating the method’s performance on denoising (as opposed
to deblurring).

As described in the previous subsection, we compare our
method with the following deblurring methods - RGDN, PURE-
LET, DWDN, and DPIR. Different features of the above-
mentioned deconvolution approaches have been summarized in
Table II for reader’s convenience. For the sake of a fair compari-
son, the end-to-end trainable methods RGDN and DWDN were
retrained using the same procedure as that of our method.

In addition to the BSD100 dataset, we also evaluated these
methods on the blurring dataset provided in Levin et al. [59].
This dataset contains a set of 32 blurred images generated by
blurring 4 different clean images by 8 different motion kernels.
We synthetically corrupt the blurred images with Poisson noise
at different illumination levels.

The results for these evaluations are provided in Table (III)
and Fig. 6. For qualitative comparison on grayscale and colour
reconstructions, one can refer to Fig. 8. On the BSDS100
dataset, our method outperforms the competing methods on
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Quantitative evaluation. Comparison of PSNR and SSIM of the different methods on Levin et al. dataset [59]. The dataset consists of 32 blurred images

generated by blurring 4 images by 8 motion kernels and average PSNR/SSIM for all images and kernels plotted for different photon levels. The images were

corrupted by Poisson noise at photon levels a = 5, 10, 20, 40 and 60.
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Fig. 7. Kernels used for evaluation on BSD100 dataset.

TABLE II
DIFFERENT FEATURES OF METHODS USED IN THIS PAPER FOR POISSON
DEBLURRING. WE CLASSIFY THE METHODS BASED ON THREE CRITERIA -
ITERATIVE/NON-ITERATIVE, END-TO-END TRAINABILITY AND WHETHER THE
MODEL EXPLICITLY INCORPORATES THE FACT THAT THE IMAGES ARE
CORRUPTED BY POISSON SHOT NOISE

. End-to-End Handles
Method Iterative? Trainable? Poisson Noise?
RGDN [2] v v X
PURE-LET [13] X X v
DWDN [1] X v X
DPIR [35] v X X
PhD-Net (Ours) v v v

all blurring kernels and illumination levels. For the dataset by
Levin et al., we outperform the other methods except DPIR at
photon level o = 40. On both datasets, we observe that the gap
between conventional deblurring and our method decreases as
the illumination levels increase. This is because as the mean

of a Poisson random variable starts increasing, the probability
distribution function resembles that of a Gaussian. Therefore,
the conventional deblurring methods which are designed for
Gaussian noise show improved performance.

D. Comparison Between 2-Operator and 3-Operator Splitting

As explained in Section III-B, conventional Plug-and-Play
using two-operator splitting is not suitable for algorithm un-
rolling. The proposed three-operator splitting enables algorithm
unrolling because every iterative step is differentiable. It is this
end-to-end training that allows us to a better performance. In
this experiment, we perform an ablation study to quantify the
performance gain through different combinations of unrolling
and training.

In Fig. 9, we show the reconstruction performance of three
schemes on the BSD100 dataset: (a) conventional two-operator
splitting PnP using FFDNet denoiser as described in Section III-
B (b) an alternate three-operator splitting formulation using
FFDNet as described in Section III-C and (c) the proposed
unrolled version of the scheme described in Section III-C. The
results show that the two iterative schemes (a) and (b) perform
similarly. However, training the proposed algorithm unrolling
achieves a consistent performance gain of more than 1 dB across
all photon levels.

When implementing the conventional PnP in (a), we use
the approach from [18] and solve the x-update (8a) using a
L-BFGS solver [55]. Like the original implementation, we use
a surrogate cost function to approximate the near zero entries
with a quadratic approximation to avoid the singularities in
the original cost function. A pretrained DnCNN [64] for noise
level o = 15/255 was used for the z-update (8b). For the three-
operator splitting scheme in (b), the same denoiser was used. To
ensure a fair comparison, in the proposed fixed iteration unrolled
network, we replace the ResUNet denoiser with a DnCNN and
train it using the method described in Section IV-A. Further
details about the experiment are provided in the supplementary
document.
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Fig. 8. Qualitative Evaluation on synthetic images. We compare the performance of the proposed method with competing methods on synthetic grayscale and
color images.
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TABLE III

COMPARISON OF PROPOSED METHOD WITH OTHER COMPETING APPROACHES ON BSD 100 DATASET

Photon Level Kernel RGDN [2] PURE-LET [13] DWDN [1] DPIR [35] PhD-Net (Ours)
Isotropic PSNR (dB) 21.77 22.78 22.50 22.33 23.46
Gaussian SSIM 0.440 0.502 0.493 0.431 0.531
_ Anisotropic ~ PSNR (dB) 21.62 22.22 22.19 21.92 22.70
a=5 Gaussian SSIM 0.427 0.463 0.464 0.409 0.491
Motion PSNR (dB) 21.14 21.49 21.54 21.35 22.12
oHo SSIM 0377 0.419 0.413 0.377 0.433
Isotropic PSNR (dB) 22.57 23.54 22.86 23.17 24.24
Gaussian SSIM 0.491 0.549 0.527 0.476 0.576
_ Anisotropic ~ PSNR (dB) 22.30 22.81 22.56 22.60 23.28
a=10 Gaussian SSIM 0.466 0.501 0.494 0.448 0.525
Motion PSNR (dB) 21.51 22.07 21.94 21.98 22.80
oHo SSIM 0.399 0.454 0.443 0411 0.475
Isotropic PSNR (dB) 23.11 24.27 23.16 23.98 24.96
Gaussian SSIM 0.528 0.594 0.558 0.522 0.621
_ Anisotropic ~ PSNR (dB) 22.78 23.34 22.86 23.20 23.83
a=20 Gaussian SSIM 0.494 0.536 0.522 0.485 0.557
Motion PSNR (dB) 21.82 22.70 22.27 22.65 23.47
oHo SSIM 0.418 0.494 0.475 0.448 0.515
Isotropic PSNR (dB) 23.47 25.00 23.35 24.76 25.68
Gaussian SSIM 0.555 0.638 0.582 0.569 0.663
- Anisotropic ~ PSNR (dB) 23.10 23.82 23.10 23.74 24.36
a=40 Gaussian SSIM 0.515 0.569 0.545 0.520 0.589
Motion PSNR (dB) 22.07 23.38 22.52 23.36 24.20
SSIM 0.436 0.538 0.502 0.488 0.564
P! demosaicking is substantially beyond the scope of this paper.
S I A R S N S P contl Even for demosaicking without any blur, the shot noise requires
P customized design, e.g., [65]. Therefore, color images shown in
24.0 o this paper were processed individually for each color channel
el and then fused using an off-the-shelf demosaicking algorithm.
5235 ) - While this approach is sub-optimal, our real image experiments
_-; 230 / mmzzpEEEE i show that the performance is acceptable.
« i ommzzEEEETT
Z / ’,:::"_
2251 « X,:;::/ V. REAL SENSOR DATA
22.0 ,/,/' Unlike conventional deblurring problems where datasets are
//// -=-- 2-operator splitting (no training) widely available, photon-limited deblurring data is not easy to
2157 % /== 3-operator splitting (no training) collect. In this section we report our efforts in collecting a new
210 «  —*- 3-operator splitting (trained end-to-end) dataset for evaluating low-light deblurring algorithms.
5 10 15 20 25 30 35 40
Photon Level A. Photon-Limited Deblurring Dataset
Flg 9. Ablation Stlldy to quantify signiﬁcance of algorithm unrolling. We We collect shot-noise Corrupted and blurred images using a

evaluate the following three schemes on the BSD100 dataset (a) conventional
PnP (two-operator splitting) with a DnCNN denoiser. (b) alternate PnP (three-
operator splitting) with a DnCNN denoiser. (¢) proposed fixed iteration unrolled
network using a DnCNN denoiser. The results of this experiment show that the
significant improvement is achieved due to the network unrolling.

E. Color Reconstruction

The focus of this paper is image deblurring. We acknowledge
that most image sensors today acquire color images using the
color filter arrays. However, adding the deblurring task with

digital single lens reflex (DSLR) camera. The DLSR is hand-
held to generate motion blur. A Dell 24-inch monitor, pointing
towards the region of interest, was used as a programmable
illumination source to control the photon level .. A light-meter
is placed in the scene to measure the photon flux level.

Image Capture: We use an Canon EOS Rebel T6i camera
to capture the images with exposure time of 30 ms and aperture
f/5.0. The ISO was set to the highest possible value of 12800 to
maximize the internal gain of the sensor and hence minimize the
quantization effects of the analog-to-digital convertor (ADC).
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(a) Experimental setup, well illuminated scene

Fig. 10.

(b) Real capture

Experimental setup. For evaluation of the proposed method on real images, we collect noisy and blurred images using a DSLR as shown in the setup

shown above. To capture a single degraded image, we reduce the illumination to a level that shot noise becomes visible. We blur image using camera shake. For
the blur kernel, each scene contains a point source and the corresponding motion kernels can be visualized in Fig. 11.

Fig. 11. Real kernels generated by our optical experiment setup.

The same scene was captured using different illumination levels
and correspondingly different motion blur kernels. The raw
image files were used for image processing instead of the com-
pressed JPG files.

Generating Blur: To capture the blur kernel along with the
image, we place a point source in each scene (see bottom right
of middle image in Fig. 10). The point source is created by
placing an LED behind a black screen with a 304m pinhole. The
strength of the point source is maximized to ensure the kernel is
not corrupted with shot noise without saturation of pixel values.
Some example kernels collected through this process can be
visualized in Fig. 11.

Photon Level: The illumination of the scenes varies between
1-5 Lux, as measured by the light-meter shown in Fig. 10. To
maximize the amount of photons captured, the aperture is kept
as large as possible. However shot noise is still present due to the
relatively short exposure time. The estimated average photons-
per-pixel (ppp) varied from 5-60.

Generating Ground Truths: For quantitative evaluation, we
also provide the ground truth for each noisy blurred image. For
each noisy image corrupted by motion and noise - we place
the camera on a tripod and capture 10 frames of the scene
under the same illumination and camera settings. The frames,
captured without any blur due to camera shake, are averaged to

INTRODUCTION TO

(a) Real input

(b) Processed

Fig. 12.  Proposed method on real data. For a qualitative comparison of other
deblurring approaches on these images, refer to Fig. 13.

reduce the shot noise as much as possible. These images serve as
ground truth when evaluating the performance of reconstruction
methods using PSNR/SSIM.

B. Reconstruction From Real Data

Pre-processing: To reconstruct the images using our network,
we first need to convert it into the format representing the number
of photons captured from the raw sensor values. The raw digital
data (y,,,) from the. RAW file is presented using a 14-bit value.
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Qualitative Comparison We look at zoomed in regions of the reconstructed images from Fig. 12 using competing methods. The average PSNR and SSIM

evaluated on the given patches is provided at the bottom. From visual inspection one can see that our method is able to recover finer details compared to other
methods. Note that in the first row, the DPIR output may look qualitatively similar to our result. This is because the former often tends to blur out images for a
“cleaner* looking image as observed in the second row of zoomed in reconstructions.

To convert the 14-bit format to the number of photons, we use
the following linear transform

Y, = ylm#ba
where b represents the zero-level offset of the camera which can
be obtained from the metadata of the image. RAW file and is
set equal to b = 2047. G represents the gain factor between the
digital output of the sensor and the actual electrons collected by
the sensor. This gain is calculated from the camera data available
at [66]. Specifically, we look at the read noise of the camera in
terms of digital numbers and electrons. The ratio of these two
data will give the gain G. For Canon EOS Rebel T6i, at ISO
12800, the gain is estimated to be G ~ 71.

Our reconstruction results are shown in Fig. 12. We also
compare reconstructions using proposed method with other
contemporary deblurring methods (RGDN, PURE-LET, DPIR
and DWDN) in Fig. 13. Through a visual inspection, one can
conclude that our method is able to reconstruct finer details from
the noisy and blurred image while leaving behind fewer artifacts.

Quantitative Evaluation: For evaluation of metrics such
as PSNR and SSIM, we register the ground truth to the

a7

TABLE IV
PSNR (IN DB) AND SSIM EVALUATED ON REAL DATASET OF 30 IMAGES

Method ~ RGDN [2]  PURE-LET [13] DPIR [35] DWDN [1]  PhD-Net (Ours)
PSNR 19.80 20.88 22.09 22.85 23.48
SSIM 0.476 0.501 0.548 0.561 0.566

reconstruction using homography transformation to account for
the differences in camera positions. The average PSNR and
SSIM on the real datset for the proposed and competing meth-
ods are reported in Table IV. We outperform the second-best
competing methods, i.e. [1], by 0.6 dB in terms of PSNR and by
0.005 in terms of SSIM. As shown in Fig. 13, when evaluating
SSIM on a few patches containing text, the gap between our
method and [1] becomes much wider.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated the photon-limited deblurring
problem as a Poisson inverse problem. We presented an end-to-
end trainable solution using a algorithm unrolling technique.
We performed extensive numerical experiments to compare
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our approach with other existing state-of-the-art non-blind de-
blurring approaches and demonstrated how our method can be
applied to real sensor data. Even though the present solution is
focused on image deblurring, it can be easily extended to other
photon-limited inverse problems such as compressive sensing,
lensless imaging, and super-resolution.

The algorithm presented in this paper can be used to recon-
struct a single clean image from multiple blurred images. This
would allow us to take advantage of the temporal redundancy
which would be necessary to obtain a meaningful clean signal in
much challenging scenarios (e.g. photon level o < 5). Another
interesting but challenging problem which can be attempted
using the framework is low-light blind deconvolution i.e. re-
covering the clean image and blur kernel simultaneously from
blurred images corrupted with photon shot noise.
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