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Abstract—Image deblurring in photon-limited conditions is
ubiquitous in a variety of low-light applications such as photog-
raphy, microscopy and astronomy. However, the presence of the
photon shot noise due to the low illumination and/or short exposure
makes the deblurring task substantially more challenging than the
conventional deblurring problems. In this paper, we present an
algorithm unrolling approach for the photon-limited deblurring
problem by unrolling a Plug-and-Play algorithm for a fixed number
of iterations. By introducing a three-operator splitting formation of
the Plug-and-Play framework, we obtain a series of differentiable
steps which allows the fixed iteration unrolled network to be trained
end-to-end. The proposed algorithm demonstrates significantly
better image recovery compared to existing state-of-the-art deblur-
ring approaches. We also present a new photon-limited deblurring
dataset for evaluating the performance of algorithms.

Index Terms—Photon limited, poisson deconvolution,
deblurring, plug-and-play, algorithm unrolling.

I. INTRODUCTION

I
MAGE deblurring is a classical restoration problem where

the goal is to recover a clean image from an image corrupted

by a blur due to motion, camera shake, or defocus. In the simplest

setting assuming a spatially invariant blur, the forward image

degradation problem is

y = h ∗ x+ η, (1)

where x ∈ R
N is the clean image to be recovered from the

corrupted image y ∈ R
N , the vector h ∈ Rd denotes the blur

kernel, η ∈ R
N denotes the additive i.i.d Gaussian noise, and

“∗” denotes the convolution operator. The deblurring problem

can be further classified as non-blind and blind. A non-blind

deblurring problem assumes that the blur kernel h is known

whereas a blind-deblurring problem do not make such an as-

sumption. In this paper, we focus on the non-blind case.

While non-blind deblurring methods are abundant [1], [2],

[3], [4], [5], [6], the majority are designed for well-illuminated
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scenes where the noise is i.i.d. Gaussian and the noise level is not

too high. However, as one pushes the photon level low enough

that the photon shot noise dominates, the deblurring task is no

longer as simple. As illustrated in Fig. 1, which is a real low-light

example we captured using a Canon T6i camera at a photon level

approximately 5 lx, the observed image is not only dark but is

strongly contaminated by photon shot noise that is visible in the

histogram equalized image. To further elaborate on the operating

regime of the proposed method, we show in Fig. 2 a comparison

between this paper and other mainstream deblurring work. We

highlight the raw sensor capture shown in the bottom left of each

sub-figure and the tone-mapped image shown in the top right of

each sub-figure at different illumination levels.

We refer to the problem of interest as the photon limited

non-blind deblurring. Photon limited deblurring is a common

problem for a variety of applications such as microscopy [7] and

astronomy [8]. One should note that photon limited imaging is a

problem even if we use a perfect sensor with zero read noise and

100% quantum efficiency. The photon shot noise still exists due

to the stochasticity of the photon arrival process [9]. Therefore,

the solution presented in this paper is pan-sensor, meaning

that it can be applied to the standard CCD and CMOS image

sensors and the more advanced quanta image sensors (QIS)

[10], [11], [12].

A. Problem Formulation

Consider a monochromatic image x ∈ R
N normalized to

[0,1]. We write the blurred image as Hx where H ∈ RN×N

represents the blur kernelh in the matrix form. In photon-limited

conditions, the observed image is given by

y = Poisson(α ·Hx), (2)

where Poisson(·) denotes the Poisson process, and α is a scalar

to be discussed. The likelihood of the observed image y follows

the Poisson probability distribution:

p(y|x;α) =

N∏

j=1

[αHx]
[y]j
j e−[αHx]j

[y]j !
, (3)

where [·]j denotes the jth element of a vector. The scalar α
represents the photon level. It is a function of the sensor’s

properties (e.g. quantum efficiency), camera settings (exposure

time, aperture), and illumination level of the scene. For a given

illumination, the photon level α can be increased by increasing

the exposure time or the aperture. To give readers a better idea of
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Fig. 1. Overview. The goal of this paper is to present a new algorithm that reconstructs images from blur at a photon-limited condition.

Fig. 2. Comparison of photon-limited scenes (Left) with relatively well illuminated scenes (Right). Raw images and their tone mapped versions taken in different
illuminations and blurred by defocus are shown in the figure. As illumination of the scene decreases, the photon shot noise becomes more dominant, making the
deblurring problem substantially more difficult - as shown in Fig. 3. In this paper, we address the problem of non-blind deblurring in a photon-limited setting i.e.
when the number of photons captured by the sensor is low leading to corruption of images by the photon shot noise.

TABLE I
LIGHTING CONDITION AND ILLUMINATION LEVEL

the photon level α, we give a rough estimate of the photon flux

(measured in terms of lux level) in Table I under a few typical

imaging scenarios.1

Under such a severe lighting condition, state-of-the-art algo-

rithms have a hard time working. In Fig. 3 we use the deep

Wiener deblurring network [1] to deblur the image. When the

1To estimate the photon level α from the photon flux level, we set the
scene illumination to 1 lx (measured using a light meter) and measure the
corresponding photons-per-pixel from the image sensor data captured using a
Canon EOS Rebel T6i.

illumination is strong, the method performs well. But when the

illumination is weak, the algorithm performs poorly. We remark

that this observation is common for many mainstream deblurring

algorithms.

B. Contributions and Scope

Photon-limited non-blind deblurring is a special case of the

Poisson linear inverse problem. We limit the scope to deblurring

so that we can demonstrate the algorithm using real low-light

data.

Existing photon-limited deblurring methods are mostly de-

terministic [13], [14], [15]. To overcome the limitation of these

methods, in this paper we present a deep-learning solution. We

make two contributions:

1) We propose an unrolled plug-and-play (PnP [16], [17])

algorithm for solving the non-blind deblurring problem

in photon-limited conditions. Unlike existing work such
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Fig. 3. Limitation of existing image deblurring algorithms when applied to
low-light images. In this example we use the pre-trained neural network [1] to
recover a well-illuminated scene and a poorly-illuminated scene. The method
fails because of the noise, even though the deblurring in a well-illuminated scene
is satisfactory.

as [18] which uses an inner optimization to solve the

Poisson proximal map, we use a three-operator splitting

technique to turn all the sub-routines differentiable. This

allows us to train the unrolled network end-to-end (which

is previously not possible), and hence makes us the first

unrolled network for Poisson deblurring.

2) We overcome the difficulty of collecting real photon-

limited motion blur kernels and images for algorithm

evaluation. A dataset containing 30 low-light images and

the corresponding blur kernels are produced. We make this

dataset publicly available.

II. RELATED WORK

A. Poisson Deconvolution

Poisson deconvolution has been studied for decades because

of its important applications [19]. One of the earliest and the most

cited works is perhaps the Richardson-Lucy (RL) algorithm [14],

[15]. The method assumes a known blur kernel and derives an

iterative scheme which converges to the maximum-likelihood

estimate (MLE) of the deconvolution problem. The RL algo-

rithm was applied to problems such as emission tomography [20]

and confocal microscopy [21], [22]. However, since the prior is

not used, the quality of reconstruction is limited.

Another class of iterative methods is based on maximum-

a-posteriori (MAP) estimation by using a signal prior. For

example, PIDAL-TV [23] solves a MAP cost function with

the total-variation (TV) regularization using an augmented La-

grangian framework. Similarly, the sparse Poisson intensity re-

construction algorithm (SPIRAL) [24] looks for sparse solutions

in an orthonormal basis, whereas [25] solves a MAP cost func-

tion with multiscale prior using the expectation-maximization

algorithm.

Shrinkage based approaches such as PURE-LET [13] as-

sume the deconvolution output to be a linear combination of

elementary functions and minimize the expected mean squared

error under a joint Poisson-Gaussian noise model. This boils

down to solving a linear system of equations and has been also

used to solve denoising, deblurring processes under Gaussian

noise assumptions [26], [27].

Denoising under Poisson noise conditions can be viewed as

a special case of the deblurring problem. One of the widely

used techniques for Poisson denoising is the variance stabilizing

transforms (VST) which applies the Anscombe transform [28]

to stabilize the spatially varying noise variance. A standard de-

noising method is then used, followed by the inverse Anscombe

transform. In [29], it was shown that an optimal inverse transform

can outperform other standard Poisson denoising methods such

as [30], [31]. The method in [32] provides an iterative version

of the denoising via VST scheme by treating last iteration’s

denoised image as scaled Poisson data.

B. Plug-and-Play

The Plug-and-play (PnP) framework was first introduced

in [16] as a general purpose method to solve inverse problems by

leveraging an off-the-shelf denoiser. Since then, the framework

has been applied to different problems like bright field electron

tomography [33] and magnetic resonance imaging (MRI) [34].

Using the same principle but with the half-quadratic splitting

scheme, [35] demonstrated the use of a single denoiser for differ-

ent image restoration tasks such as super-resolution, deblurring,

and inpainting. Variations of PnP have also been used for Poisson

deblurring [18], [36] and non-linear inverse problems [37].

A stochastic version of the scheme (PnP stochastic proximal

gradient method) has been proposed for inverse problems with

prohibitively large datasets [38]. Using the consensus equilib-

rium (CE) framework [39], the scheme can be extended to fuse

multiple signal and sensor models.

The convergence of the Plug-and-Play scheme has been stud-

ied in detail. For example, [17] provided a variation of the

scheme which was provably convergent under the assumptions

of a bounded denoiser and its performance was analysed under

assumptions of a graph filter denoiser in [40]. [41] showed that if

a denoiser satisfies certain Lipshitz conditions, the correspond-

ing Plug-and-Play scheme can be shown to converge. Further-

more, the authors proposed real-spectral normalization as a way

to impose the conditions on deep-learning based denoisers.

A closely related method which provides a framework to

solve inverse problems using denoisers is REgularization by

Denoising (RED) [42], [43]. The framework poses the cost

function for an inverse problem as sum of a data term and

image-adaptive Laplacian regularization term. This allows the

resulting iterative process to be written as a series of denoising

steps. In [44], it was mentioned that for RED to be valid the

denoiser needs to have a symmetric Hessian.

C. Algorithm Unrolling

The difficulty of running PnP and RED is that they need to

iteratively use a deep network denoiser. An alternative way to

implement the algorithm was proposed by Gregor and LeCun

in 2010 [45] to unroll an iterative algorithm and train it in a
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supervised manner. For example, one can unroll the iterative

shrinkage threshold algorithm (ISTA) for the purpose of ap-

proximating sparse codes of an image. The idea of unrolled

networks has been employed in various image restoration tasks

such as super-resolution [46], deblurring [47], [48], compressive

sensing [49], and haze removal [50]. For a more extensive review

of algorithm unrolling, we refer the reader to [51]. More recently,

there are new attempts to relax the fixed iteration structure

of unrolling by analyzing the equilibrium of the underlying

operators [52].

As stated in [51], unrolling iterative algorithms provide

multiple advantages compared to generic deep learning archi-

tectures. For example, the unrolled networks provide greater

interpretability and are often parameter efficient compared to

their counterparts such as the U-Net [53]. Since the networks are

unrolled version of iterative algorithms, they are less susceptible

to problem of overfitting.

III. METHOD

A. Algorithm Unrolling

The proposed solution for the Poisson deblurring problem is

to unroll the iterative PnP algorithm. We start by deriving the

PnP steps. In the “unrolled” version of the iterative algorithm,

each iteration is treated as a computing block. Each computing

block has its own set of trainable parameters. The blocks are

concatenated in series with each other. The output at the end

of the last block is used as the target for a supervised loss to

fine-tune the trainable parameters.

Before describing the iterative algorithm we aim to unroll,

we briefly describe the underlying cost function. Most inverse

problem algorithm aim to determine the MAP estimate of the

underlying signal x by maximizing the log-posterior

x∗ = argmax
x

[log p(y|x) + log p(x)] , (4)

where p(x) denotes the natural image prior. Plugging (3) in (4)

and taking the negative of the cost function, the maximization

becomes

x∗ = argmin
x

[
α1THx− yT log (αHx)− log p(x)

]
, (5)

where1 represents the all-one vector. Note that the factorial term

log y! has been dropped since it is independent of x. The prior

p(x) has not been explicitly specified yet and this issue will be

addressed through the use of a denoiser in the next subsection.

B. Conventional PnP for Poisson Inverse Problems

Now we describe how the Plug-and-Play method can be

applied to the Poisson deblurring problem. We start with the

alternate direction of method of multipliers (ADMM) [54] for-

mulation – where we convert the unconstrained optimization

problem to a constrained optimization problem by performing

the variable splitting x = z

{x∗, z∗} = argmin
x,z

[− log p(y|x)− log p(z)] ,

subject to x = z, (6)

At the minimum of the above optimization problem, the con-

straint x∗ = z∗ must be satisfied and hence the constrained

optimization solution is equivalent to the unconstrained solution

in (5).

The augmented Lagrangian associated with the constrained

problem in (6) is

{x∗, z∗,u∗}= argmin
x,z

[
α1THx−yT log(αHx)

− log p(z) +
ρ

2
‖x− z + u‖2−

ρ

2
‖u‖2

]
, (7)

where u denotes the scaled Lagrange multiplier corresponding

to the constraint x = z, and ρ denotes the penalty parameter.

The corresponding iterative updates are:

xk+1 = argmin
x

[
α1THx− yT log(αHx) +

ρ

2
‖x− x̃

k‖2
]

︸ ︷︷ ︸
Proximal operator for the negative log-likelihood

,

(8a)

zk+1 = argmin
z

[
− log p(z) +

ρ

2
‖z − z̃

k‖2
]

︸ ︷︷ ︸
Proximal operator for the negative-log-prior

, (8b)

uk+1 = uk +
(
xk+1 − zk+1

)
, (8c)

with x̃
k def
= zk − uk and z̃

k def
= xk + uk. In the Plug-and-Play

framework [16], [17], the z update in (8b) is implemented by an

image denoiser.

The difficulty of solving the above problem is that the x-

update in (8a) does not have a closed form expression for the

Poisson likelihood. Thus (8a) needs to be solved using an inner-

loop optimization method such as L-BFGS [55]. Unrolling this

inner-loop optimization solver can be inefficient as it may not be

differentiable. Hence unrolling the PnP scheme for the Poisson

inverse problem using the existing framework is infeasible. To

be more specific, while the z-update in (8b) can be implemented

as a neural network and hence is differentiable, the same cannot

be said for x-update in (8a). As shown in Fig. 4, when (8a) is

solved using another iterative method such as L-BFGS (for e.g.

in [18]), it is not differentiable. As a result, training the unrolled

network via backpropagation is not possible unless (8a) can be

made differentiable.

C. Three-Operator Splitting for Poisson PnP

As explained in the previous subsection, the current frame-

work does not allow for algorithm unrolling. To circumvent

this issue, we use an alternate three-operator formulation of the

PnP-framework. Through this reformulation of Plug-and-Play,

we derive a series of iterative updates where each step can be

implemented as a single-step that is differentiable. The three-

operator splitting strategy we use here has been used in context

of Poisson deblurring in [23], [56] and [36] using a TV and

BM3D denoiser respectively.

In this scheme, instead of a two-operator splitting strategy

for conventional PnP in (6), we use three-operator splitting

to form the corresponding constrained optimization problem.

Specifically, in addition to splitting the variable as x = z, we
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Fig. 4. Conventional two-operator splitting Plug-and-Play. Conventional Plug-and-Play applied to the Poisson deblurring problem using equations (8a) and
(8b). While (8b) is implemented as an image denoiser and hence differentiable, x-update i.e. (8a) is implemented as a convex optimization solver and hence not
differentiable. This makes the conventional PnP infeasible for fixed iteration unrolling and hence end-to-end training.

introduce a third variable v corresponding to blurred image Hx

and hence the constraint Hx = v.

{x∗, z∗,v∗} = argmin
x,z,v

[
−yT log (αv) + α1Tv + log p(z)

]
,

subject to x = z, and Hx = v. (9)

After forming the corresponding augmented Lagrangian, we

arrive at the following iterative updates:

xk+1 = argmin
x

[ρ1
2
‖x− x̃

k
0‖

2 +
ρ2
2
‖Hx− x̃

k
1‖

2
]
, (10a)

zk+1 = argmin
z

[
− log p(z) +

ρ1
2
‖z − z̃

k
1‖

2
]
, (10b)

vk+1 = argmin
v

[
−yT log(αv) + α1Tv +

ρ2
2
‖v − ṽ

k‖2
]
,

(10c)

uk+1
1 = uk

1 + xk+1 − zk+1, (10d)

uk+1
2 = uk

2 +Hxk+1 − vk+1, (10e)

where x̃
k
0

def
= zk+1 − uk

1 , x̃k
1

def
= vk+1 − uk

2 , vk def
= Hxk + uk

2 ,

and z̃
k def
= xk + uk

1 . Similar to the PnP formulation described in

last subsection, the vectors u1,u2 denote the scaled Lagrangian

multipliers for the constraints x− z = 0 and Hx− v = 0 re-

spectively. The scalars ρ1, ρ2 denote the corresponding penalty

parameters.

Each of the subproblems defined in (10a, 10b, 10c) have a

closed form solution and are described below:

x-subproblem: (10a) is a least squares minimization prob-

lem, whose solution can be explicitly given as follows:

xk+1 =
(
I + (ρ2/ρ1)H

TH
)−1

(
x̃
k
0 + (ρ2/ρ1)H

T x̃
k
1

)
.

(11)

Since H represents a convolutional operator, the operation

can be performed without any matrix inversions using Fourier

Transforms.

xk+1 = F−1

[
F(x̃k

0) + (ρ2/ρ1)F(h)F(x̃k
1)

1 + (ρ2/ρ1)|F(h)|2

]
, (12)

where F(·) represents the discrete Fourier transform of the

image or blur kernel implemented using the Fast Fourier Trans-

form after appropriate boundary padding. We refer to it as the

deblurring operator.

z-subproblem: (10b) is a proximal operator for the negative

log prior term. Using the insight provided in Plug-and-Play

scheme, (10b) can be viewed as a denoising operation

zk+1 = D
(
z̃
k
)
, (13)

where D(·) is any image denoiser. For end-to-end training, we

require D(·) to be differentiable and trainable – a property

satisfied by all convolutional neural network denoisers.

v-subproblem: (10c) is a convex optimization problem but

can be solved without an iterative procedure. Separating out each

component of the vector minimization and setting the gradient

equal to zero gives the following equation

−
[y]i

[vk+1]i
+ α+ ρ2

([
vk+1

]
i
−
[
ṽ
k
]
i

)
= 0, (14)

for i = 1, 2, . . . , N . Solving the resulting quadratic equation and

ignoring the negative solution gives the following update step

vk+1 =

(
ρ2ṽ

k − α
)
+

√(
ρ2ṽ

k − α
)2

+ 4ρ2y

2ρ2
, (15)

Since the optimization problem in (10c) is a sum of the the

negative log-likelihood for Poisson noise and a quadratic penalty

term, we refer to this update as Poisson proximal operator.

The convergence of Algorithm 1 has been derived in [23]. It

was shown that as long as G = [HT , I]T has a full column

rank, the three-operator splitting scheme converges. Further-

more, assuming the denoiser D is continuously differentiable

and ∇D(·) is symmetric with eigenvalues in [0,1], convergence

results in [33] show that the corresponding negative-log prior,

i.e., − log(p(·)) is closed, proper and convex. Combined with

the result from [23], it can be shown that the three-operator PnP

scheme in Algorithm 1 converges.
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Fig. 5. Proposed unrolled Plug-and-Play for deblurring. For conventional PnP, the data sub-problem cannot be solved in a single step and instead requires convex
optimization solvers. This stops us from unrolling the iterative procedure and training it end-to-end via back-propagation. Through the three-operator splitting
formulation of the problem, each sub-module in an iteration is in closed form and more importantly, differentiable. This allows for end-to-end training which was
not possible in conventional PnP. The network below the input represents the hyperparameter network which predicts ρ1 and ρ2 using the blur kernel and the
photon level.

Algorithm 1: Three-Operator Splitting for Poisson PnP.

1: Input: Blurred and Noisy Image y, kernel h, Photon

level α
2: Initialize x0 using (16)

3: z0 ← x0, v0 ← y u0
1 ← 0, u0

2 ← 0
4: for k = 1, 2, . . . ,K do

5: Update xk using Eq. (12)

6: Update zk using Eq. (13)

7: Update vk using Eq. (15)

8: uk
1 ← uk−1

1 + xk − zk

9: uk
2 ← uk−1

2 +Hxk − vk

10: end for

11: return xK

D. Unfolding the Three-Operator Splitting

With an end-to-end trainable iterative process, we can now

describe the unfolded iterative network. The Plug-and-Play up-

dates described in Algorithm 1 are now unfolded for K = 8
iterations and the entire differentiable pipeline is trained in a

supervised manner, as summarized in Fig. 5. We refer the result-

ing neural network architecture as Photon-Limited Deblurring

Network (PhD-Net).

Initialization: To initialize the variablex0, we use the Wiener

filtering step (not to be confused with [1]) :

x0 =
1

α
F−1

{
F(h)F(y)

1/α+ |F(h)|2

}
, (16)

where the constant factor 1/α in the denominator represents the

inverse of the signal-to-noise ratio of the blurred measurements.

Note that this step can be derived as an �2 regularized solution

of the deconvolution problem as well.

Hyperparameters: The parameters used in updates (10a),

(10c) – ρ1, ρ2 are changed for each iteration and determined in

one-shot by the blurring kernelh and photon levelα as they con-

trol the degradation of the image. The kernel h is used as input

to 4 convolutional layers, flattened to a vector of length 1024.

Along the with the photon level α, the flattened vector is used

as an input to a 3-layer fully connected network which output

two set of vectors i.e. {ρ11, ρ
2
1, . . ., ρ

K
1 } and {ρ12, ρ

2
2, . . ., ρ

K
2 }.

We refer the readers to the supplementary document for further

architectural details.

Note that there is no ground-truth assumed for parameters

ρ1, ρ2 as the hyperparameter network described above is trained

simultaneously as rest of the parameters of the network.

Denoiser: For the denoiser used in (13), we use the archi-

tecture provided in [46] which introduces skip connections in a

U-Net architecture known as ResUNet. Like a standard U-Net,

there are four downsampling operations followed by 4 upsam-

pling operations with skip connections between the upsampling

and downsampling operators. The denoiser weights are shared

across the unrolling iterations instead of different set of weights

for each iteration. For further details of the architecture we refer

the readers to [46] or the supplementary document. Note that in

our implementation of the architecture, we do not concatenate

the denoiser input z̃
k

with a noise level.

IV. EXPERIMENTS

A. Training

We train the network described in section III using �1-loss

function. We use images from the Flickr2K [57] dataset to train

Authorized licensed use limited to: Purdue University. Downloaded on May 02,2023 at 19:34:42 UTC from IEEE Xplore.  Restrictions apply. 



SANGHVI et al.: PHOTON LIMITED NON-BLIND DEBLURRING USING ALGORITHM UNROLLING 857

the network. The dataset contains a total of 2650 images of which

we partition using a 80/20 split for training and validation. All

images are converted to gray-scale, scaled to a size of 256 × 256,

and are blurred using motion kernels generated from [58] and

Gaussian blur kernels. Due to memory limits of GPU, random

patches of size 128× 128 were cropped and used as inputs for

the network during training.

For training, a combination of 60 motion kernels generated

from [58] and 10 isotropic gaussian blur kernels with σ varying

from [0.1, 2.5] were used. All the kernels were pre-generated

prior to training and were randomly selected during training.

Entries of the blur kernel are non-negative and sum to 1. Photon

Shot noise is synthetically added to the blurred image according

to (2). The photon level α is uniformly sampled from the range

[1, 60].
The inputs to the network consist of the blurred and corrupted

image y, the normalized blur kernel h, and the photon noise

level α. The output from the network is the reconstructed image

xK where K denotes the number of iterations for which the

scheme is unrolled for. We set the the number of iterations in

our implementation to K = 8. Using the �1-loss function, we

train the network with Adam optimizer [60] using a learning rate

1× 10−4 and batch size of 5 for 100 epochs. All the parameters

of the network are initialized using Xavier initialization [61]

and is implemented in Pytorch 1.7.0. For training, we use an

NVIDIA Titan Xp GP102 GPU and it takes approximately 20

hours for training to complete.

B. Choice of Deblurring Methods for Comparison

Before describing the results of quantitative evaluation, we

briefly discuss the other deblurring approaches we compare our

method with. The methods, namely RGDN [2], DWDN [1],

DPIR [35], and PURE-LET [13], were chosen because they

give state-of-the-art results on the deblurring problem and be-

cause they represent different contemporary approaches to solv-

ing the non-blind deconvolution problem.

RGDN (Recurring Gradient Descent Network) is an unrolled

optimization method. More specifically, the authors take the

deconvolution cost function ||y − k ∗ x||2 +Ω(x) and provide

a gradient descent iterative scheme for it. The second term in

the cost functions represents image prior and the corresponding

gradient term ∇Ω(x) is estimated using a convolutional neural

network and the network, after being unrolled for fixed itera-

tions, is trained end-to-end.

Deep-Weiner Deconvolution (DWDN) can be viewed as a

hybrid deconvolution/denoising method. As a U-Net denoiser

converts an image into a smaller feature space and then re-

constructs the image using a decoder, DWDN first extracts

features, performs Weiner deconvolution in that feature space,

and then followed by decoding to a clean image. Through this

architecture choice, they are able to perform denoising through

the encoder-decoder structure but also deblur the image using

Weiner deconvolution.

DPIR (Deep Plug-and-Play Image Restortation) uses a

pre-trained denoiser in a half-quadratic splitting scheme and

represents a state-of-the-art method which can be used for gen-

eral purpose linear inverse problems like super-resolution and

deblurring. Like our approach, it also boils down to a iterative

series of denoising and deblurring steps.

PURE-LET (Poisson Unbiased Risk Estimate - Linear

Expansion of Thresholds) proposes the solutions as a linear

combination of basis function whose weights are determined

by minimizing the unbiased estimate of the mean squared loss

under given noise conditions. While not a deep-learning method,

it performs surprisingly competitively and can incorporate both

Poisson shot noise and Gaussian read noise explicitly.

Unrolled network have received a growing interest in the

signal and image processing community [51]. However, the

vast majority of the methods are based on the Gaussian like-

lihood [50], [62]. Since our problem is Poisson, comparing our

method against those Gaussian-based unrolled networks is a

mismatch. Replacing the Gaussian likelihood with a Poisson

likelihood would resolve this issue, but doing so would require

a redesign of the unrolled network which is exactly the purpose

of this paper. As such, the most relevant evaluation would be

a comparison between the various two-way splitting and the

three-way splitting strategies which will be shown in Section

IV.D. Other unrolled methods such as [47], [48] are designed

for blind deconvolution. The work we consider here is non-blind

deconvolution.

C. Quantitative Evaluation

The results are summarized in Fig. 6. We evaluate our method

using synthetically generated noisy blurred images on 100 im-

ages from the BSDS300 dataset [63], from now on referred to as

BSD100. We evaluate the performance on different photon levels

(α = 5, 10, 20, 40) representing various levels of degradation in

terms of signal-to-noise ratio. We test the methods for differ-

ent blur kernels - specifically 4 isotropic Gaussian kernels, 4

anisotropic Guassian kernels, and 4 motion kernels, as illustrated

in Fig. 7. Note that the top-left kernel’s width is very small - this

can be viewed as an identity operator and hence equivalent to

evaluating the method’s performance on denoising (as opposed

to deblurring).

As described in the previous subsection, we compare our

method with the following deblurring methods - RGDN, PURE-

LET, DWDN, and DPIR. Different features of the above-

mentioned deconvolution approaches have been summarized in

Table II for reader’s convenience. For the sake of a fair compari-

son, the end-to-end trainable methods RGDN and DWDN were

retrained using the same procedure as that of our method.

In addition to the BSD100 dataset, we also evaluated these

methods on the blurring dataset provided in Levin et al. [59].

This dataset contains a set of 32 blurred images generated by

blurring 4 different clean images by 8 different motion kernels.

We synthetically corrupt the blurred images with Poisson noise

at different illumination levels.

The results for these evaluations are provided in Table (III)

and Fig. 6. For qualitative comparison on grayscale and colour

reconstructions, one can refer to Fig. 8. On the BSDS100

dataset, our method outperforms the competing methods on
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Fig. 6. Quantitative evaluation. Comparison of PSNR and SSIM of the different methods on Levin et al. dataset [59]. The dataset consists of 32 blurred images
generated by blurring 4 images by 8 motion kernels and average PSNR/SSIM for all images and kernels plotted for different photon levels. The images were
corrupted by Poisson noise at photon levels α = 5, 10, 20, 40 and 60.

Fig. 7. Kernels used for evaluation on BSD100 dataset.

TABLE II
DIFFERENT FEATURES OF METHODS USED IN THIS PAPER FOR POISSON

DEBLURRING. WE CLASSIFY THE METHODS BASED ON THREE CRITERIA -
ITERATIVE/NON-ITERATIVE, END-TO-END TRAINABILITY AND WHETHER THE

MODEL EXPLICITLY INCORPORATES THE FACT THAT THE IMAGES ARE

CORRUPTED BY POISSON SHOT NOISE

all blurring kernels and illumination levels. For the dataset by

Levin et al., we outperform the other methods except DPIR at

photon level α = 40. On both datasets, we observe that the gap

between conventional deblurring and our method decreases as

the illumination levels increase. This is because as the mean

of a Poisson random variable starts increasing, the probability

distribution function resembles that of a Gaussian. Therefore,

the conventional deblurring methods which are designed for

Gaussian noise show improved performance.

D. Comparison Between 2-Operator and 3-Operator Splitting

As explained in Section III-B, conventional Plug-and-Play

using two-operator splitting is not suitable for algorithm un-

rolling. The proposed three-operator splitting enables algorithm

unrolling because every iterative step is differentiable. It is this

end-to-end training that allows us to a better performance. In

this experiment, we perform an ablation study to quantify the

performance gain through different combinations of unrolling

and training.

In Fig. 9, we show the reconstruction performance of three

schemes on the BSD100 dataset: (a) conventional two-operator

splitting PnP using FFDNet denoiser as described in Section III-

B (b) an alternate three-operator splitting formulation using

FFDNet as described in Section III-C and (c) the proposed

unrolled version of the scheme described in Section III-C. The

results show that the two iterative schemes (a) and (b) perform

similarly. However, training the proposed algorithm unrolling

achieves a consistent performance gain of more than 1 dB across

all photon levels.

When implementing the conventional PnP in (a), we use

the approach from [18] and solve the x-update (8a) using a

L-BFGS solver [55]. Like the original implementation, we use

a surrogate cost function to approximate the near zero entries

with a quadratic approximation to avoid the singularities in

the original cost function. A pretrained DnCNN [64] for noise

level σ = 15/255 was used for the z-update (8b). For the three-

operator splitting scheme in (b), the same denoiser was used. To

ensure a fair comparison, in the proposed fixed iteration unrolled

network, we replace the ResUNet denoiser with a DnCNN and

train it using the method described in Section IV-A. Further

details about the experiment are provided in the supplementary

document.
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Fig. 8. Qualitative Evaluation on synthetic images. We compare the performance of the proposed method with competing methods on synthetic grayscale and
color images.
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TABLE III
COMPARISON OF PROPOSED METHOD WITH OTHER COMPETING APPROACHES ON BSD100 DATASET

Fig. 9. Ablation study to quantify significance of algorithm unrolling. We
evaluate the following three schemes on the BSD100 dataset (a) conventional
PnP (two-operator splitting) with a DnCNN denoiser. (b) alternate PnP (three-
operator splitting) with a DnCNN denoiser. (c) proposed fixed iteration unrolled
network using a DnCNN denoiser. The results of this experiment show that the
significant improvement is achieved due to the network unrolling.

E. Color Reconstruction

The focus of this paper is image deblurring. We acknowledge

that most image sensors today acquire color images using the

color filter arrays. However, adding the deblurring task with

demosaicking is substantially beyond the scope of this paper.

Even for demosaicking without any blur, the shot noise requires

customized design, e.g., [65]. Therefore, color images shown in

this paper were processed individually for each color channel

and then fused using an off-the-shelf demosaicking algorithm.

While this approach is sub-optimal, our real image experiments

show that the performance is acceptable.

V. REAL SENSOR DATA

Unlike conventional deblurring problems where datasets are

widely available, photon-limited deblurring data is not easy to

collect. In this section we report our efforts in collecting a new

dataset for evaluating low-light deblurring algorithms.

A. Photon-Limited Deblurring Dataset

We collect shot-noise corrupted and blurred images using a

digital single lens reflex (DSLR) camera. The DLSR is hand-

held to generate motion blur. A Dell 24-inch monitor, pointing

towards the region of interest, was used as a programmable

illumination source to control the photon level α. A light-meter

is placed in the scene to measure the photon flux level.

Image Capture: We use an Canon EOS Rebel T6i camera

to capture the images with exposure time of 30 ms and aperture

f/5.0. The ISO was set to the highest possible value of 12800 to

maximize the internal gain of the sensor and hence minimize the

quantization effects of the analog-to-digital convertor (ADC).
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Fig. 10. Experimental setup. For evaluation of the proposed method on real images, we collect noisy and blurred images using a DSLR as shown in the setup
shown above. To capture a single degraded image, we reduce the illumination to a level that shot noise becomes visible. We blur image using camera shake. For
the blur kernel, each scene contains a point source and the corresponding motion kernels can be visualized in Fig. 11.

Fig. 11. Real kernels generated by our optical experiment setup.

The same scene was captured using different illumination levels

and correspondingly different motion blur kernels. The raw

image files were used for image processing instead of the com-

pressed JPG files.

Generating Blur: To capture the blur kernel along with the

image, we place a point source in each scene (see bottom right

of middle image in Fig. 10). The point source is created by

placing an LED behind a black screen with a 30µm pinhole. The

strength of the point source is maximized to ensure the kernel is

not corrupted with shot noise without saturation of pixel values.

Some example kernels collected through this process can be

visualized in Fig. 11.

Photon Level: The illumination of the scenes varies between

1-5 Lux, as measured by the light-meter shown in Fig. 10. To

maximize the amount of photons captured, the aperture is kept

as large as possible. However shot noise is still present due to the

relatively short exposure time. The estimated average photons-

per-pixel (ppp) varied from 5-60.

Generating Ground Truths: For quantitative evaluation, we

also provide the ground truth for each noisy blurred image. For

each noisy image corrupted by motion and noise - we place

the camera on a tripod and capture 10 frames of the scene

under the same illumination and camera settings. The frames,

captured without any blur due to camera shake, are averaged to

Fig. 12. Proposed method on real data. For a qualitative comparison of other
deblurring approaches on these images, refer to Fig. 13.

reduce the shot noise as much as possible. These images serve as

ground truth when evaluating the performance of reconstruction

methods using PSNR/SSIM.

B. Reconstruction From Real Data

Pre-processing: To reconstruct the images using our network,

we first need to convert it into the format representing the number

of photons captured from the raw sensor values. The raw digital

data (yraw) from the. RAW file is presented using a 14-bit value.
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Fig. 13. Qualitative Comparison We look at zoomed in regions of the reconstructed images from Fig. 12 using competing methods. The average PSNR and SSIM
evaluated on the given patches is provided at the bottom. From visual inspection one can see that our method is able to recover finer details compared to other
methods. Note that in the first row, the DPIR output may look qualitatively similar to our result. This is because the former often tends to blur out images for a
“cleaner“ looking image as observed in the second row of zoomed in reconstructions.

To convert the 14-bit format to the number of photons, we use

the following linear transform

yi =
yi raw − b

G
, (17)

where b represents the zero-level offset of the camera which can

be obtained from the metadata of the image. RAW file and is

set equal to b = 2047. G represents the gain factor between the

digital output of the sensor and the actual electrons collected by

the sensor. This gain is calculated from the camera data available

at [66]. Specifically, we look at the read noise of the camera in

terms of digital numbers and electrons. The ratio of these two

data will give the gain G. For Canon EOS Rebel T6i, at ISO

12800, the gain is estimated to be G ≈ 71.

Our reconstruction results are shown in Fig. 12. We also

compare reconstructions using proposed method with other

contemporary deblurring methods (RGDN, PURE-LET, DPIR

and DWDN) in Fig. 13. Through a visual inspection, one can

conclude that our method is able to reconstruct finer details from

the noisy and blurred image while leaving behind fewer artifacts.

Quantitative Evaluation: For evaluation of metrics such

as PSNR and SSIM, we register the ground truth to the

TABLE IV
PSNR (IN DB) AND SSIM EVALUATED ON REAL DATASET OF 30 IMAGES

reconstruction using homography transformation to account for

the differences in camera positions. The average PSNR and

SSIM on the real datset for the proposed and competing meth-

ods are reported in Table IV. We outperform the second-best

competing methods, i.e. [1], by 0.6 dB in terms of PSNR and by

0.005 in terms of SSIM. As shown in Fig. 13, when evaluating

SSIM on a few patches containing text, the gap between our

method and [1] becomes much wider.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated the photon-limited deblurring

problem as a Poisson inverse problem. We presented an end-to-

end trainable solution using a algorithm unrolling technique.

We performed extensive numerical experiments to compare
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our approach with other existing state-of-the-art non-blind de-

blurring approaches and demonstrated how our method can be

applied to real sensor data. Even though the present solution is

focused on image deblurring, it can be easily extended to other

photon-limited inverse problems such as compressive sensing,

lensless imaging, and super-resolution.

The algorithm presented in this paper can be used to recon-

struct a single clean image from multiple blurred images. This

would allow us to take advantage of the temporal redundancy

which would be necessary to obtain a meaningful clean signal in

much challenging scenarios (e.g. photon level α ≤ 5). Another

interesting but challenging problem which can be attempted

using the framework is low-light blind deconvolution i.e. re-

covering the clean image and blur kernel simultaneously from

blurred images corrupted with photon shot noise.
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