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Abstract. Image restoration algorithms for atmospheric turbulence are
known to be much more challenging to design than traditional ones such
as blur or noise because the distortion caused by the turbulence is an
entanglement of spatially varying blur, geometric distortion, and sen-
sor noise. Existing CNN-based restoration methods built upon convolu-
tional kernels with static weights are insufficient to handle the spatially
dynamical atmospheric turbulence effect. To address this problem, in
this paper, we propose a physics-inspired transformer model for imag-
ing through atmospheric turbulence. The proposed network utilizes the
power of transformer blocks to jointly extract a dynamical turbulence
distortion map and restore a turbulence-free image. In addition, recog-
nizing the lack of a comprehensive dataset, we collect and present two
new real-world turbulence datasets that allow for evaluation with both
classical objective metrics (e.g., PSNR and SSIM) and a new task-driven
metric using text recognition accuracy. The code and datasets are avail-
able at github.com/VITA-Group/TurbNet.
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1 Introduction

In long-range imaging systems, atmospheric turbulence is one of the main sources
of distortions that causes geometric displacements of the pixels and blurs. If un-
processed, the distorted images can have significant impacts on all downstream
computer vision tasks such as detection, tracking, and biometric applications.
The atmospheric turbulence effects are substantially harder to model and miti-
gate compared to the commonly seen image degradations such as deconvolution,
as the turbulence is an entanglement of pixel displacement, blur, and noise.
As a result, a dedicated image restoration pipeline is an essential element for
long-range computer vision problems.

Image processing algorithms for mitigating the atmospheric turbulence effect
have been studied for decades [1, 21, 12, 14, 40, 36, 10, 20, 23, 18]. However, many
of them have limitations that prohibit them from being launched to practical
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systems: 1) Many of the existing algorithms [1, 21, 12, 40, 1, 10] are based on the
principle of lucky imaging that requires multiple input frames. These methods
often have a strong assumption that both the camera and the moving objects are
static, which can easily become invalid in many real applications. 2) The conven-
tional algorithms are often computationally expensive, making them unsuitable
for processing large-scale datasets to meet the need of the latest computer vi-
sion systems. 3) Existing deep learning solutions [36, 23, 14] are not utilizing the
physics of the turbulence. Many of them are also tailored to recovering faces
instead of generic scenes. The generalization is therefore a question. 4) The al-
gorithms may not be properly evaluated due to the absence of a widely accepted
real large-scale benchmarking dataset.

To articulate the aforementioned challenges, in this paper we make three
contributions:

1. We present a comprehensive benchmark evaluation of deep-learning based
image restoration algorithms through atmospheric turbulence. We tune a
sophisticated physics-grounded simulator to generate a large-scale dataset,
covering a broad variety of atmospheric turbulence effects. The highly real-
istic and diverse dataset leads to exposing shortages of current turbulence
mitigation algorithms.

2. Realizing the existing algorithms’ limitations, we introduce a novel physics-
inspired turbulence restoration model, termed TurbNet. Built on a trans-
former backbone, TurbNet features a modularized design that targets mod-
eling the spatial adaptivity and long-range dynamics of turbulence effects,
plus a self-supervised consistency loss.

3. We present a variety of evaluation regimes and collect two large-scale real-
world turbulence testing datasets, one using the heat chamber for classical
objective evaluation (e.g., PSNR and SSIM), and one using real long-range
camera for optical text recognition as a semantic “proxy” task. Both of the
new testing sets will be released.

2 Related Works

Turbulence mitigation methods. The atmospheric turbulence mitigation
methods have been studied by the optics and vision community for decades. To
reconstruct a turbulence degraded image, conventional algorithms [1, 21, 12, 40,
10, 8, 34, 9] often adopt the multi-frame image reconstruction strategy. The key
idea is called “lucky imaging”, where the geometric distortion is first removed
using image registration or optical flow techniques. Sharper regions are then
extracted from the aligned frames to form a lucky frame. A final blind deconvo-
lution is usually needed to remove any residue blur. These methods are usually
very computationally expensive. The time required to reconstruct a 256×256 im-
age may range from a few seconds to tens of minutes. Despite the slow speed that
prohibits them from being applied in real-world applications, the performance
of conventional methods is often consistent across different image contents.
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Recent deep learning methods adopt more dynamic strategies. Li et al. [18]
propose to treat the distortion removal as an unsupervised training step. While
it can effectively remove the geometric distortions induced by atmospheric tur-
bulence, its computational cost is comparable to conventional methods, as it
needs to repeat the training step for each input image. There are also several
works that focus on specific types of images, such as face restoration [36, 23, 14].
They are usually based on a simplified assumption on atmospheric turbulence
where they assume the blur to be spatially invariant. Such assumption cannot
extend to general scene reconstruction, where the observed blur can be highly
spatially varying due to a wide field of view.

There also exists general image processing methods, such as [38, 37]. They
have demonstrated impressive performance on restoration tasks, including de-
noising, deblurring, dehazing, etc. However, whether they can be extended to
turbulence mitigation remains unclear as turbulence evolves more complicated
distortions.
Available datasets. Despite recent advances in turbulence mitigation algo-
rithms, there is a very limited amount of publicly available datasets for at-
mospheric turbulence. The most widely used testing data are two images, the
Chimney and Building sequences released in [10]. Besides, authors of [21, 1, 18]
have released their own testing dataset, each of which often consists of less than
20 images. These data are then seldom used outside the original publications.
Additionally, the scale of these datasets is not suitable for evaluating modern
learning-based methods.

Due to the nature of the problem, it is very difficult to obtain aligned clean
and corrupted image pairs. Existing algorithms are all trained with synthetic
data. The computationally least expensive synthesis technique is based on the
random pixel displacement + blur model [15, 13]. In the optics community, there
are techniques based on ray-tracing and wave-propagation [25, 27, 7]. A more
recent physics-based simulation technique based on the collapsed phase-over-
aperture model and the phase-to-space transform is proposed in [3, 22]. Our
data synthesis scheme is based on the P2S model provided by authors of [22].

3 Restoration Model

3.1 Problem Setting and Motivation

Consider a clean image I in the object plane that travels through the turbulence
to the image plane. Following the classical split-step wave-propagation equation,
the resulting image Ĩ is constructed through a sequence of operations in the
phase domain:

I → Fresnel → Kolmogorov → · · ·Fresnel → Kolmogorov → Ĩ, (1)

where “Fresnel” represents the wave propagation step by the Fresnel diffraction,
and “Kolmogorov” represents the phase distortion due to the Kolmogorov power
spectral density [11].
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Certainly, Eqn. 1 is implementable as a forward equation (ie for simulation)
but it is nearly impossible to be used for solving an inverse problem. To mitigate
this modeling difficulty, one computationally efficient approach is to approximate
the turbulence as a composition of two processes:

Ĩ =
(

H︸︷︷︸
blur

◦ G︸︷︷︸
geometric

)
(I) +N, (2)

where H is a convolution matrix representing the spatially varying blur, and G is
a mapping representing the geometric pixel displacement (known as the tilt). The
variable N denotes the additive noise / model residue in approximating Eqn. 1
with a simplified model. The operation “◦” means the functional composition.
That is, we first apply G to I and then apply H to the resulting image.

We emphasize that Eqn. 2 is only a mathematically convenient way to derive
an approximated solution for the inverse problem but not the true model. The
slackness falls into the fact that the pixel displacement in G across the field of
view are correlated, so do the blurs in H. The specific correlation can be referred
to the model construction in the phase space, for example [3]. In the literature,
Eqn. 2 the shortcoming of this model is recognized, although some successful
algorithms can still be derived [1, 40].

The simultaneous presence of H and G in Eqn. 2 makes the problem hard.
If there is only H, the problem is a simple deblurring. If there is only G, the
problem is a simple geometric unwrapping. Generic deep-learning models such
as [36, 23] adopt network architectures for classical restoration problems based
on conventional CNNs, which are developed for one type of distortion. Effective,
their models treat the problem as

Ĩ = T (I) +N, (3)

where T = G ◦ H is the overall turbulence operator. Without looking into how
T is constructed, existing methods directly train a generic restoration network
by feeding it with noisy-clean training pairs. Since there is no physics involved
in this generic procedure, the generalization is often poor.

Contrary to previous methods, in this paper, we propose to jointly estimate
the physical degradation model T of turbulence along with reconstruction of
clean image from the degraded input Ĩ. Such formulation explicitly forces our
model to focus on learning a generic turbulence degradation operator indepen-
dent of image contents, along with the reconstruction operation to generate clean
output. Moreover, our network training is assisted by high-quality, large-scale,
and physics-motivated synthetic training data to better learn the key character-
istics of the atmospheric turbulence effect. The detailed model architecture will
be presented in the following subsection.

3.2 Model Architecture

Turbulence and limitation of CNNs: CNNs have been de facto choice by most
of the previous image restoration algorithms, yet they are limited by two pri-
mary issues: 1) The convolutional filters cannot adapt to image content during
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Fig. 1. Architecture of the proposed method. (a) The overall architecture con-
sists: (i) a transformer to pull the spatially dynamical features from the scene; (ii)
instead of directly constructing the image, we introduce a physics-inspired model to
estimate the turbulence while reconstructing the image. (b) The structure of the resid-
ual encoder/decoder transformer block. (c) The details of each transformer layer.

inference due to their static weights. 2) The local receptive fields cannot model
the long-range pixel dependencies. A key characteristic of the atmospheric tur-
bulence effect is the “lucky effect” [6], meaning that image regions or frames

with less degradation will randomly occur due to the distortions being spatially
varying. Previous restoration methods treat turbulence restoration as a regres-
sion problem using CNNs but ignore the fact that turbulence is highly location
adaptive and should not be represented as static fixed kernel applied to all loca-
tions. It is not difficult to see that applying static weight convolutions to regions
with drastically different distortions will lead to sub-optimal performance.

The self-attention mechanism proposed in recent work [30, 31, 5] can be a
powerful alternative, as it can capture context-dependent global interactions by
aggregating information across image regions. Leveraging the capability of multi-
head self-attention, we propose the TurbNet , a transformer-based end-to-end
network for restoring turbulence degraded images. Transformer-based architec-
ture allows the creation of input-adaptive and location-adaptive filtering effect
using key, query, and weight, where key and query decide content-adaptivity
while weight brings location-adaptivity. Our design, as shown in Figure 1, is
composed of several key building blocks:

Transformer Backbone: Our proposed network consists of a transformer-
based backbone that has the flexibility of constructing an input-adaptive and
location-adaptive unique kernel to model spatially- and instance-varying tur-
bulence effect. Inspired by the success of [26, 32, 37] in various common image
restoration tasks (e.g., denoising, deblurring, etc.), TurbNet adopts a U-shape
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encoder-decoder architecture due to its hierarchical multi-scale representation
while remaining computationally efficient. As shown in Figure 1 (b), the resid-
ual connection across the encoder-decoder provides an identity-based connection
facilitating aggregation of different layers of features. Our backbone consists of
three modules: input projection, deep encoder and decoder module. Input project
module uses convolution layers to extract low frequency information and induces
dose of convolutional inductive bias in early stage and improves representation
learning ability of transformer blocks [33]. Deep encoder and decoder modules
are mainly composed of a sequential cascade of Multi-head channel attention
(MHCA) based transformer layers. Compared to prevalent CNN-based turbu-
lence mitigation models, this design allows content-based interactions between
image content and attention weights, which can be interpreted as spatially vary-
ing convolution [4].

The primary challenge of applying conventional transformer blocks for image
restoration task comes from the quadratic growth of key-query dot product in-
teractions, i.e., O(W 2H2), for images with W ×H pixels. To alleviate this issue,
we adopt the idea of applying self-attention across channels instead of spatial di-
mension [37], and compute cross-covarience across channels generating attention
map. Given query (Q), key (K), and value (V), we reshape Q and K such that
their dot-product generates a transposed-attention map A ∈ R

C×C , instead of
conventional RHW×HW [5]. Overall, the MHCA can be summarized as:

X′ = Wp Attention(Q,K,V) +X (4)

Attention(Q,K,V) = V · softmax

{
K ·Q

α

}
(5)

where X′ and X are input and output feature maps, W
(·)
p is the 1 × 1 point-wise

convolution, and α is a learnable scaling parameter to control the magnitude of
(K ·Q) before applying softmax.

Image Reconstruction Block: To further enhance deep features generated
by the transformer backbone, TurbNet uses the reconstruction block. The pri-
mary job of the reconstruction block is to take deep features corresponding to
turbulence degraded input image Ĩ by the transformer backbone, further enrich
it at high spatial resolution by encoding information from spatially neighboring
pixel positions. Next, the enriched features pass through an output projection
module with 3 × 3 convolution layers to project it back low dimension feature
map corresponding to the reconstructed clean image J. The design of the re-
construction block is very similar to the encoder block having MHCA, with an
introduction of Locally-Enhanced Feed Forward Network (LoFFN) [32].

Precisely, the work of Reconstruction module can be summarized as:

F
Ĩ︸︷︷︸

Deep Features of degraded

Input Image Ĩ

→ Reconstruction Module → J
Ĩ︸︷︷︸

Reconstructed Clean
Output Image

(6)
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Fig. 2. Locally-Enhanced Feed Forward Network (LoFFN) used in the image recon-
struction block and the turbulence degradation block.

Turbulence Degradation Block: In TurbNet, the turbulence degradation
module learns the physical turbulence degradation operator T from the input
synthetic training data. The primary job of turbulence degradation module is
to take clean reconstructed image J

Ĩ
corresponding to degraded input image Ĩ,

apply the learned degradation operator T , to construct back the re-degraded

input image ĨT . This formulation enriches the training set by incorporating
additional latent degradation images (̃IT ), in addition to synthesized degraded

images (̃I), during the training process. Additionally, this module facilitates self-
supervised learning without the availability of ground truth. The architecture of
this module is the same as Image Reconstruction Block with LoFFN.

Precisely, the work of Degradation Block can be summarized as:

J
Ĩ︸︷︷︸

Reconstructed Clean
Output Image

→ Degradation Operator T (·) → ĨT︸︷︷︸
Re-degraded
Output Image

(7)

Loss Function: TurbNet optimization requires the joint optimization of recon-
struction operation and the turbulance degradation operation. Given the syn-
thetic training pair of degraded input Ĩ, and corresponding ground truth image
I, we formulate following two losses:

L0︸︷︷︸
Supervised Reconstruction Loss

= ||J
Ĩ
− I||1 (8)

L1︸︷︷︸
Self-supervised Reconstruction Loss

= ||̃IT − Ĩ||1 (9)

where, L0 is responsible for constructing a clean image J
Ĩ
given the degraded

input image Ĩ, L1 helps to ensure degradation operator T can reconstruct the
original the original input Ĩ from the reconstructed clean image J

Ĩ
.

Eventually, the overall loss L to train TurbNet can be summarized as:

L = α× L0 + (1− α)× L1 (10)
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Overall Pipeline As shown in Figure 1(a), TurbNet utilizes a U-shape architec-
ture built upon transformer blocks to extract deep image features. As suggested
in [33], an initial convolution-based input projection is used to project the input
image to higher dimensional feature space, which can lead to more stable opti-
mization and better results. After obtaining the feature maps, TurbNet jointly
learns the turbulence degradation operator (T ) along with the reconstructed
image (J

Ĩ
), in contrary to general image restoration methods [32, 19, 2, 37] that

directly reconstruct the clean image. This design facilitates spatial adaptivity
and long-range dynamics of turbulence effects, plus a self-supervised consistency
loss.

Synthetic-to-Real Generalization: With a pre-trained TurbNet model M(·)
using the synthetic data, TurbNet design allows an effective way of generalizing
M(·) on unseen real data (if required) with the help of degradation operator T (·)
in a self-supervised way. Starting from model M(·), we create a generalization
dataset by incorporating unlabelled real data with the synthetic data to fine-tune
M(·). For input images with no ground truth, M(·) is optimized using Equation
(9), while for input images from labeled synthetic data M(·) is optimized using
Equation (8, and 9). Note that we incorporate synthetic data into the fine-tuning
process to mitigate the issue of catastrophic forgetting during generalization.

4 Large-Scale Training and Testing Datasets

4.1 Training Data: Synthetic Data Generating Scheme

Training a deep neural network requires data, but the real clean-noisy pair of
turbulence is nearly impossible to collect. A more feasible approach here is to
leverage a powerful turbulence simulator to synthesize the turbulence effects.

Turbulence simulation in the context of deep learning has been reported
in [36, 23, 14]. Their model generates the geometric distortions by repeatedly
smoothing a set of random spikes, and the blur is assumed to be spatially invari-
ant Gaussian [13]. We argue that for the face images studied in [36, 23, 14], the
narrow field of view makes their simplified model valid. However, for more com-
plex scenarios, such a simplified model will fail to capture two key phenomena
that could cause the training of the network to fail: (1) The instantaneous distor-
tion of the turbulence can vary significantly from one observation to another even
if the turbulence parameters are fixed. See Figure 3(a) for an illustration from a
real data. (2) Within the same image, the distortions are spatially varying. See
Figure 3(b).

In order to capture these phenomena, we adopt an advanced simulator [22] to
synthesize a large-scale training dataset for atmospheric turbulence. The clean
data used by the simulator is the Places dataset [39]. A total of 50,000 images
are generated, and the turbulence parameters are configured to cover a wide
range of conditions. The details of the simulation can be found in the supple-
mentary material. We remark that this is the first attempt in the literature to
systematically generate such a comprehensive and large-scale training dataset.



Single Frame Turbulence Mitigation 9

Fig. 3. Key turbulence effects requiring attention while designing synthetic dataset.

4.2 Testing Data: Heat Chamber and Text Datasets

Our real benchmarking dataset consists of two parts: the Heat Chamber Dataset

and the Turbulent Text Dataset. Although this paper focuses on single frame
restoration, both our benchmarking datasets contain 100 static turbulence de-
graded frames for each scene. We believe that by doing so, researchers in the
field working on multi-frame reconstruction can also benefit from our dataset.
Both datasets will be made publicly available.

Heat Chamber Dataset. The Heat Chamber Dataset is collected by heat-
ing the air along the imaging path to artificially create a stronger turbulence ef-
fect. The setup for collecting the heat chamber dataset is shown in 4. Turbulence-
free ground truth images can be obtained by shutting down the heat source. The
images are displayed on a screen placed 20 meters away from the camera.

Fig. 4. The setup of heat chamber data collection. We evenly placed three heat cham-
bers along the imaging path. Our dataset captures better spatially varying effect.

We remark that while similar datasets have been collected in [10, 1], our data
has a clear improvement: we use a long path and more evenly distributed heat
so that the turbulence effect is closer to the true long-range effect. The captured
images have a better anisoplanatic (spatially varying) effect such that an almost
distortion-free frame is less likely to occur compared with the dataset in [10, 1].
In addition, our dataset is much large in scale. It contains 2400 different images,
which allows for a better evaluation of the learning-based model. Sample images
of the Heat Chamber Dataset can be found in Figure 5.

Turbulence Text Dataset. Due to the nature of the problem, it is ex-
tremely difficult, if not impossible, to capture ground truth clean images in
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Fig. 5. Sample turbulence degraded images (top) and corresponding ground truth (bot-
tom) from our Heat Chamber Dataset. The D/r0 is estimated to be around 3.

truly long-range settings. Therefore, we adopt the idea of using the performance
of high-level vision task as an evaluation metric for image restoration [17, 16].
Specifically, we calculate the detection ratio and longest common subsequence
on the output of an OCR algorithm [29, 28] as the evaluation metrics. The terms
will be defined in section 5.4.

There are several advantages of using text recognition: 1) The degradation
induced by atmospheric turbulence, the geometric distortion and the loss of res-
olution, can be directly reflected by the text patterns. Both types of degradation
need to be removed for the OCR algorithms to perform well. 2) The OCR is
a mature application. The selected algorithms should be able to recognize the
text patterns as long as the turbulence is removed. Other factors such as the
domain gap between the training and testing data will not affect the evaluation
procedure as much as other high-level vision tasks. 3) An important factor to
consider when designing the dataset is whether the difficulty of the task is ap-
propriate. The dataset should neither be too difficult such that the recognition
rate cannot be improved by the restoration algorithms nor too easy making all
algorithms perform similarly. We can easily adjust the font size and contrast of
text patterns to obtain a proper difficulty level.

The Turbulence Text Dataset consists of 100 scenes, where each scene con-
tains 5 text sequences. Each scene has 100 static frames. It can be assumed that
there is no camera and object motion within the scene, and the observed blur
is caused by atmospheric turbulence. The text patterns come in three different
scales, which adds variety to the dataset. We also provide labels to crop the
individual text patterns from the images. Sample images from the dataset are
shown in Figure 6.

5 Experiment Results

Implementation Details: TurbNet uses a 4-staged symmetric encoder-decoder
architecture, where stage 1, 2, 3, and 4 consist of 4, 6, 6, and 8 MHCA-based
transformer layers respectively. Our Reconstruction block and Turbulence Degra-
dation block consist of 4 MHCA-transformer layers enhanced with LoFFN. Turb-
Net is trained using 50, 000 synthetic dataset generated using a physics-based
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Fig. 6. Data collection site of the Turbulence Text Dataset. The distance between the
camera and the target is 300 meters. The D/r0 is estimated to be in range of 2.5 to
4 (varies due to the temperature change during the collection process). The collected
text patterns are in 3 different scales.

Table 1. Performance comparison of state-of-art restoration baselines with respect to
TurbNet on synthetic and Heat Chamber dataset.

TDRN[35] MTRNN[24] MPRNet[38] Uformer[32] Restormer[37] TurbNet

Synthetic Dataset

PSNR 21.35 21.95 21.78 22.03 22.29 22.76
SSIM 0.6228 0.6384 0.6410 0.6686 0.6719 0.6842

HeatChamber Dataset

PSNR 18.42 18.12 18.68 19.12 19.01 19.76
SSIM 0.6424 0.6379 0.6577 0.6840 0.6857 0.6934

stimulator [22] and MIT Places dataset [39] while synthetic evaluation results are
generated on 5, 000 synthetic images. Due to resource constraint, our synthetic
training uses a batch size of 8 with Adam optimizer. We start our training with
learning rate of 1e− 4, and use the cosine annealing scheduler to gradually de-
crease the learning rate over the span of 50 epcohs. During training, to modulate
between the loss Equation 8 and 9, we have use α to be 0.9. All the baselines
method used in our evaluation has been trained with exactly same settings and
same dataset using their official GitHub implementation for fair comparison.
Additional implementation details are provided in supplementary materials.

5.1 Synthetic and Heat Chamber Dataset Results

We first conduct an experiment on a synthetic testing dataset generated with the
same distribution as testing data. In Figure 7, we show a qualitative comparison
between our restored images with ground truth. It can be seen that our results
are accurately reconstructed with the assist from estimated turbulence map.

We then compare our results qualitatively with the existing algorithms on
both synthetic and Heat Chamber dataset. A Visual comparison on the synthetic
dataset can be found in Figure 8. It can be observed that the transformer-based
methods generally perform better than the CNN-based methods due to their
ability to adapt dynamically to the distortions. The proposed method achieves
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authentic reconstruction due to its ability to explicitly model the atmospheric
turbulence distortion. Table 1 presents the quantitative evaluation of TurbNet
wrt. other baselines. TurbNet achieves the best results in both PSNR and SSIM.
Note that Uformer[32], and Restomer[37] (designed for classical restoration prob-
lems like deblurring, deraining, etc.) uses transformer-based encoder decoder
architecture, but their performance is significantly low than TurbNet, which
validates the importance of our decoupled (reconstruction and degradation esti-
mation) design.

5.2 Turbulence Text Dataset Results

Evaluation Method: In order to evaluate the performance of TurbNet on our
real-world turbulence text dataset, we use publicly available OCR detection and
recognition algorithms [29, 28]. We propose the following two evaluation met-
rics - Average Word Detection Ratio (AWDR), and Average Detected Longest
Common Subsequence (AD− LCS) defined as follows:

AWDR =

∑N

Scene=1
Word Detectedscene

Word Countscene

N
, (11)

AD− LCS =

∑N

Scene=1

∑K

Word=1 LCS(DetectedString, TrueString)

N
, (12)

where LCS represents the Longest Common Subsequence, TrueString repre-
sents the ground truth sequence of characters corresponding to a word i in the
image, DetectedString represents a sequence of characters recognized by OCR
algorithms for word i, and N is the total number of scenes in the test dataset.

Table 2. Performance comparison of state-of-art restoration baselines with respect to
TurbNet on our Turbulence Text Dataset.

Raw Input TDRN[35] MTRNN[24] MPRNet[38] Restormer[37] TurbNet

AWDR 0.623 0.617 0.642 0.633 0.702 0.758
AD-LCS 5.076 5.011 5.609 5.374 6.226 7.314
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Fig. 7. Qualitative Performance comparison of TurbNet wrt. the ground truth.
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Fig. 8. Qualitative Performance comparison of TurbNet wrt. other SOTA methods.

Discussion: Figure 9 represents the performance of OCR on the real turbulence
impacted images and images restored by TurbNet. It is evident that our restora-
tion model significantly helps in improving the OCR performance by identifying
comparatively more words with higher confidence. Table 2 presents the perfor-
mance gain by TurbNet over the real turbulence degraded text images and their
restored version by various state-of-the-art methods. OCR algorithms achieve
massive improvements of +0.135 (AWDR) and +2.238 (AD-LCS) when used on
images restored by TurbNet compared to being used directly on real images from
our proposed test dataset.

5.3 Experimental Validity of the Proposed Model

We conduct two additional experiments to validate the proposed model. The first
experiment is an ablation study, where we demonstrate the impact of replacing
transformer as feature encoder with U-Net [26] and removing the turbulence
map estimation part. The result is reported in 3, where we observe a significant
performance drop in both cases. The second experiment is to prove the effec-
tiveness of the extracted turbulence map. We extract a turbulence map from a
simulated frame and apply the map back to the ground-truth image. We calcu-
late the PSNR of this re-corrupted image w.r.t. the original turbulence frame.
We tested on 10K turbulence frames and the average PSNR is 39.89 dB, which
is a strong evidence that our turbulence map can effectively extract the tur-
bulence information embedded in the distorted frames. A visualization of the
experiment can be found in Figure 10.

Table 3. Ablation on Heat Chamber Dataset

Model type PSNR SSIM

TurbNet [Ours] 19.76 0.6934
TurbNet - Turbulance Map 19.03 (↓) 0.6852 (↓)

TurbNet - Transformer 18.62 (↓) 0.6481 (↓)
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Fig. 9. OCR performance of our reconstruction algorithm for Turbulance Text Dataset

Fig. 10. Validation of our turbulence map. Left: groundtruth. Middle: original turbu-
lence frame. Right: groundtruth re-corrupted with the extracted turbulence map.

6 Conclusions

In this work, identifying the short-come of existing image restoration algorithms,
we propose a novel physics-inspired turbulence restoration model (TurbNet)
based on transformer architecture to model spatial adaptivity and long-term
dynamics of turbulence effect. We present a synthetic data generation scheme
for tuning a sophisticated physics-grounded simulator to generate a large-scale
dataset, covering a broad variety of atmospheric turbulence effects. Additionally,
we introduce two new large-scale testing datasets that allow for evaluation with
classical objective metrics and a new task-driven metric with optical text recog-
nition. Our comprehensive evaluation on realistic and diverse datasets leads to
exposing limitations of existing methods and the effectiveness of TurbNet.
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