Cobalt-Mediated Oxidative DNA Damage and Its Prevention by Polyphenol Antioxidants

Carlos Angelé-Martínez, Joseph Murray, Paul A. Stewart, Jennifer Haines, Andrea A. E. Gaertner, and Julia L. Brumaghim*

Department of Chemistry, Clemson University, Clemson, SC 29634-0973, USA brumagh@clemson.edu

Abstract

Although cobalt is a required nutrient, it is toxic due to its ability to generate reactive oxygen species (ROS) and damage DNA. ROS generation by Co²⁺ often has been compared to that of Fe²⁺ or Cu⁺, disregarding the reduction potential differences among these metal ions. In plasmid DNA damage studies, a maximum of 15% DNA damage is observed with Co²⁺/H₂O₂ treatment (up to 50 µM and 400 µM, respectively) significantly lower than the 90% damage observed for Fe²⁺/H₂O₂ or Cu⁺/H₂O₂ treatment. However, when ascorbate is added to the Co²⁺/H₂O₂ system, a synergistic effect results in 90% DNA damage. DNA damage by Fe²⁺/H₂O₂ can be prevented by polyphenol antioxidants, but polyphenols both prevent and promote DNA damage by Cu⁺/H₂O₂. When tested for cobalt-mediated DNA damage affects, eight of ten polyphenols (epicatechin gallate, epigallocatechin gallate, propyl gallate, gallic acid, methyl-3,4,5trihydroxybenzoate, methyl-4,5-dihydroxybenzoate, protocatechuic acid, and epicatechin) prevent cobalt-mediated DNA damage with IC₅₀ values of 1.3 to 27 µM and two (epigallocatechin and vanillic acid) prevent little to no DNA damage. EPR studies demonstrate cobalt-mediated formation of 'OH, O₂', and 'OOH, but not ¹O₂ in the presence of H₂O₂ and ascorbate. Epigallocatechin gallate and methyl-4,5-dihydroxybenzoate significantly reduce ROS generated by Co²⁺/H₂O₂/ascorbate, consistent with their prevention of cobalt-mediated DNA damage. Thus, while cobalt, iron, and copper are all d-block metal ions, cobalt ROS generation and its prevention is significantly different from that of iron and copper.

Keywords

cobalt, DNA damage, polyphenol, reactive oxygen species, hydrogen peroxide, ascorbate

1. Introduction

With the discovery of ferroptosis as a metal-controlled mechanism for cell death, the biological effects of oxidative damage in health and in disease development have been increasingly investigated. Oxidative damage by iron, copper, and chromium is extensively studied [1-7], but cobalt-mediated damage remains less understood [1,8-10]. Cobalt is an essential trace element found in vitamin B₁₂, but it can also be toxic [1,11-13]. Increased cobalt levels are found in patients with orthopedic [10,14] and orthodontic [15] appliances, and the potential for toxicity in those who consume an excess of the recommended daily allowance for vitamin B₁₂ in supplements is a significant health concern [11,13].

Cobalt-mediated oxidative stress is an underlying cause of neuroinflammation [16], degeneration of neuronal cells [17,18], increased levels of β-amyloid in Alzheimer's disease [19], epilepsy [20], cancer [13], damage to liver-, kidney-, and lung- chromatin in rats [21], and reduction in kidney and liver function in mice [22]. Cobalt can cause DNA backbone cleavage [23] and base oxidation [24], and Co²⁺, Fe²⁺, and Cu⁺ bind to similar sites in DNA [25-28].

Among the mechanisms proposed for cobalt-mediated oxidative damage include reactive oxygen species (ROS) generation, analogous to that observed for iron and copper (Reactions 1 and 2) [1,23,29,30], despite the much lower oxidation potential for Co²⁺ oxidation compared to Fe²⁺ and Cu⁺ [31]. Since redox potentials greatly affect ROS generation [32], it is unlikely that Co²⁺ generates ROS similarly to Fe²⁺ and Cu⁺, but cobalt, iron-, and copper-mediated ROS generation and DNA damage have not been directly compared.

$$Co^{2+} + H_2O_2 \rightarrow Co^{3+} + {}^{\bullet}OH + HO^{-}$$
 [1]

$$Fe^{2+}/Cu^{+} + H_{2}O_{2} \rightarrow Fe^{3+}/Cu^{+} + {}^{\bullet}OH + HO^{-}$$
 [2]

Polyphenol antioxidants prevent Fe2+/H2O2-mediated DNA damage in vitro by binding

Fe²⁺ and autoxidizing it to Fe³⁺ [33,34]. In contrast, some polyphenols enhance copper-mediated DNA damage [35,36]. Because polyphenol effects on metal-mediated DNA damage differ depending on the metal ion, it is vital to test these potential antioxidants for their ability to prevent cobalt-specific DNA damage. In this work, we examine ROS generation and DNA damage caused by Co²⁺, H₂O₂, and/or ascorbate and evaluate the affects of polyphenol compounds on cobalt-mediated DNA damage. Elucidating ROS generation and DNA damage by Co²⁺ as well as the ability of polyphenol antioxidants to prevent this damage will advance understanding of cobalt toxicity and its potential treatments.

2. Materials and Methods

2.1. General details

Water was purified using a Barnstead NANOpure DIamond Life Science (UV/UF) water deionization system (Barnstead International). MES (Alfa Aesar), CoSO₄·7H₂O (Acros Organics), L-(+)-ascorbic acid (99+%, Alfa Aesar), Chelex 100 resin (Sigma-Aldrich), and disodium dihydrogen ethylenediaminetetraacetate (EDTA; TCI America) were all used as received. Microcentrifuge tubes were rinsed in 1 M HCl, triply rinsed in deionized H₂O, and dried prior to use. Buffered solutions were treated with Chelex resin (2 g per 80 mL buffer) for 24 h prior to use. CoSO₄ and ascorbate solutions were prepared prior to each experiment and used immediately.

2.2. Transfection, amplification, and purification of plasmid DNA

Plasmid DNA (pBSSK) was purified from *E. coli* strain DH1 using a PerfectPrep Spin kit (Fisher). The plasmid DNA was dialyzed at 4 °C against EDTA (1 mM) and NaCl (50 mM) for 24 h and then against NaCl (130 mM) for 24 h to remove metal ions. For all experiments, the

absorbance ratios for DNA solutions were $A_{250}/A_{260} \le 0.95$ and $A_{260}/A_{280} \ge 1.8$.

2.3. Gel electrophoresis assays

In a buffered solution of MES or MOPS (10 mM, pH 6.3 or 7, respectively), NaCl (130 mM), ethanol (10 mM, as a radical scavenger to mimic organic components) [37], Co^{2+} (1 – 100 μ M), and ascorbate (1.25 – 125 μ M) were combined and allowed to stand. After 5 min, plasmid DNA (pBSSK in NaCl 130 mM) was added to the solution so that the final concentration of DNA was 0.1 μM. After 5 minutes, H₂O₂ (400 μM) was added, resulting in a total reaction volume of 10 μL. This reaction mixture was allowed to stand for 60 min before EDTA (50 μM) and loading dye (0.5% xylene cyanol, 0.25% bromophenol blue, and 40% glycerol) were added. Samples were then loaded into a 1% agarose gel. Nicked (damaged) and supercoiled (undamaged) DNA were separated by gel electrophoresis in Tris-acetate-EDTA (TAE) buffer for 60 min at 140 V and 255 mA. Gels were stained for 5 min with ethidium bromide and imaged by UV light the bands. Intensities of the damaged and undamaged DNA gel bands were quantified using UVIproMW software (Jencons Scientific Inc.). Ethidium stains supercoiled DNA less efficiently than nicked DNA, so supercoiled DNA band intensities were multiplied by 1.24 prior to comparison [38,39]. Intensities of the nicked and supercoiled bands were normalized for each lane so that % nicked + % supercoiled = 100 %. Gel results for cobalt-mediated DNA damage are provided in the Electronic Supplementary Information in in Tables S1-S4 and Figures S1-S4.

To evaluate polyphenol effects on Co²⁺-mediated DNA damage, the same procedure was used, except that the indicated concentration of the polyphenol was also added with all the other components of the buffered solution 5 min prior to addition of the plasmid DNA. Gel results for cobalt-mediated DNA damage are provided in the Appendix A: Supplementary Data in Tables S5-

2.4. IC₅₀ value calculations

IC₅₀ values were calculated from fitting the average of % DNA damage inhibition of at least three trials with respect to the logarithm of polyphenol concentration with a sigmoidal dose-response curve (this gave very similar results to the mean of the IC₅₀ fits from each trial and is less sensitive to data noise). IC₅₀ value standard deviations were calculated from the standard deviations of the three trials' individual IC₅₀ values. A p value of < 0.05 was considered statistically significant. Graphs showing the relationships between the IC₅₀ value for Co²⁺/H₂O₂/ascorbic-acid-mediated DNA damage and polyphenol oxidation potential or p K_a of the most acidic hydrogen of the polyphenol are provided in Figure S15.

2.5. Electron paramagnetic resonance spectroscopy measurements

EPR spectra were measured on a Bruker EMX spectrometer using a quartz flat cell at room temperature using 2,2-diphenyl-1-picrylhydrazyl (DPPH) as a standard (g = 2.0036 [40]) centered at 3500 with a sweep width of 100 G. The modulation amplitude was between 0.50 and 1.00 G, time and conversion constants were 81.92s, and microwave power and frequency were 20.02 mW and 9.752 GHz; respectively. Samples (500 μ L) were freshly prepared and measured in less than 5 min at room temperature in a MES buffered solution (10 mM, pH 6.3) containing Fe²⁺ or Co²⁺ (300 μ M), ascorbate (375 μ M), polyphenol (300, 600, or 900 μ M), and the 5,5-dimethyl-1-pyrroline-*N*-oxide (DMPO, 30 mM) spin trap as indicated. H₂O₂ (22.5 mM) was added last to initiate the reaction. EPR spectra were processed using Bruker Xepr software, and spectra are provided in Figures S16-S23.

2.6. UV-visible spectroscopy studies

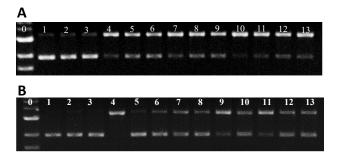
Samples were measured at room temperature in an acid-washed quartz cuvette and on an Agilent 8453 spectrophotometer. Co²⁺ (2.5 μM), ascorbate (3.75 μM) where indicated, and the polyphenols at different concentrations (2.5, 5.0, 7.5, 10.0, and 12.5 μM) were combined in a buffered solution (MES, 2.5 mM, pH 6.3) in a total volume of 3.0 mL. The solutions were allowed to stand for 5 min prior to data collection. The absorbance of the component's mixture is also presented as the difference between the mixture and each individual component absorbance, prior subtraction of the blank absorbance. UV-vis data are provided in Figures S24-S47

2.7. Mass spectrometry studies

MALDI mass spectrometry experiments were performed using a Bruker Microflex MALDI-TOF mass spectrometer with a *trans*-2[3-(4-tert-butylphenyl)-2-methyl-2-propenyldiene (250.3 *m/z*) matrix. Co²⁺/polyphenol solutions (1:1) were prepared by combining aqueous solutions of CoSO₄ (100 μL, 100 μM), polyphenol (100 μL, 100 μM), and ascorbate (100 μL, 125 μM) as indicated. For the higher-ratio Co²⁺/polyphenol samples, the cobalt concentration remained the same (100 μM) and polyphenol concentrations were increased (up to 500 μM). All mass spectroscopy data are provided in Table S15 and Figures S48-S57.

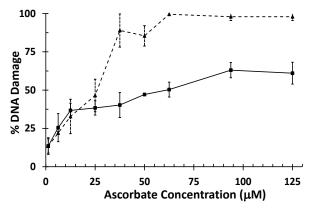
3. Results and Discussion

3.1. Cobalt-mediated DNA damage studies


The cobalt recommended dietary allowance (RDA) is 10-20 µg for a 70 kg adult [41], but up to 0.4-2.1 mg/day can be consumed without harmful effects [42-44]. Although typical cobalt blood concentrations are in the nanomolar range [1], blood concentrations of cobalt in the range of 1-100 µM have been reported in patients with prosthetic hip-associated cobalt toxicity [45].

Given these high cobalt concentrations and the associated toxicity, it is important to investigate cobalt-generated ROS and the DNA damage it can cause.

To evaluate cobalt-mediated DNA damage that contributes to its toxicity, the ability of Co²⁺ to cause single-strand DNA breaks under oxidative stress conditions was evaluated using a plasmid DNA damage assay. In contrast to cellular assays, these *in vitro* DNA damage assays allow a direct comparison between DNA damage and ROS generation that enables mechanistic evaluation of Co²⁺ toxicity. These DNA damage results also can be directly related to cell death [46,47]. Conditions are carefully chosen to cause only one backbone nick per plasmid, and gel electrophoresis is used to separate the undamaged (supercoiled) from damaged (nicked) plasmid DNA.


Using this DNA damage assay, we tested the ability of Co^{2+} and H_2O_2 alone as has been proposed by analogy to Fe^{2+} (Reactions 1 and 2). At a constant H_2O_2 concentration (400 μ M, pH 6.3), Co^{2+} addition (1-50 μ M) resulted in no significant DNA damage (Table S1). In contrast, combining Fe^{2+} (2 μ M) and H_2O_2 (50 μ M) results in 97% DNA damage under the same conditions (Table S1). From these results, it is clear that Fe^{2+} and Co^{2+} do not damage DNA via the same hydroxyl-radical-generating mechanism.

Because ascorbate is also present in blood with a typical range of 3-120 μ M [48,49], and can generate ROS under certain conditions, we also examined its effect on cobalt-mediated DNA damage. Combining Co²⁺ (100 μ M) and ascorbate (1.25 μ M) alone does not result in significant DNA damage (lane 3, Figure 1A). However, when Co²⁺ is combined with both H₂O₂ (400 μ M) and ascorbate (1.25 equivalents) at varying concentrations, significant DNA damage is observed, with \geq 90% DNA damage at high Co²⁺ concentrations (40-100 μ M, lanes 10-13). This amount of damage is similar to DNA damage caused by Cu²⁺ (6 μ M), ascorbate (7.5 μ M), and H₂O₂ (50

Figure 1. A) Gel electrophoresis image of DNA damage upon treatment with Co^{2+} (1-100 μM), ascorbate (1.25–125 μM) and H_2O_2 (400 μM) at pH 6.3 (MES buffer). Lane 0: 1 kb molecular weight ladder; 1: plasmid DNA (p); 2: p + H_2O_2 (400 μM); 3: p + Co^{2+} (100 μM) + ascorbate (125 μM); 4: p + Cu^{2+} (6 μM), ascorbate (7.5 μM), and H_2O_2 (50 μM); lanes 5-13: increasing concentrations of Co^{2+} (1, 5, 10, 20, 30, 40, 50, 75, and 100 μM, respectively) with 1.25 equivalents of ascorbate per Co^{2+} (1.25–125 μM), and H_2O_2 (400 μM). B) Gel electrophoresis image upon DNA treatment with only ascorbate and H_2O_2 ; lanes were treated as in (A) without Co^{2+} . In both gel images, the top band is from damaged (nicked) DNA and the bottom band is undamaged (supercoiled) DNA.

 μ M) in the positive control (lane 4). As in the Cu²⁺ system, all three components are necessary to damage DNA damage, since DNA damage by ascorbate and H₂O₂ is significantly lower at all concentrations (Figure 1B) than for the Co²⁺/H₂O₂/ascorbate system. At ascorbate concentrations \leq 25 μM, DNA damage is similar with or without Co²⁺, but as the ascorbate concentration increases from 38 to 125 μM, DNA damage is approximately 40% higher when Co²⁺ is present (Figure 2), reaching a maximum independent of ascorbate concentration. Thus, Co²⁺, ascorbate, and H₂O₂ act synergistically to cause greater DNA damage than with ascorbate and H₂O₂ alone, or with Co²⁺ and either ascorbate or hydrogen peroxide.

Figure 2. Graph of percentage DNA damage with respect to ascorbate concentration after DNA treatment with A) Co^{2+} (1–100 μ M), ascorbate (1.25-125 μ M; 1.25 equiv per Co^{2+}) and H_2O_2 (400 μ M) for 60 min (triangles) and B) treatment with H_2O_2 and ascorbate only (squares).

Co²⁺-mediated DNA damage is also pH-dependent, since a pH lower than 6.1 results in \geq 15% DNA damage upon H₂O₂ treatment alone (data not shown). This effect has been previously observed: DNA fragmentation and apoptosis in neuroblastoma (SK-N-BE(2)) and melanoma (mel B) cells was observed upon treatment with ascorbate (1 mM) and H₂O₂ (2.5 mM) alone at pH 6 after 2-4 h [50]. H₂O₂ and ascorbate also cause DNA strand breaks from 'OH, O₂', and ¹O₂ [51], confirming the prooxidant potential of ascorbate.

Maximum DNA damage for this Co^{2+} system was determined to occur at pH 6.3; under similar conditions at pH 7, DNA damage by $Co^{2+}/H_2O_2/ascorbate$ reaches a maximum of 60% damage at Co^{2+} concentrations of \geq 50 μ M; Figure S4). A similar $Co^{2+}/H_2O_2/ascorbate$ system also has been investigated for dye oxidation [52], indicating that in the presence of H_2O_2 and ascorbate, Co^{2+} generates damaging ROS.

3.2. Polyphenol prevention of cobalt-mediated DNA damage

The ability of polyphenol compounds to prevent cobalt-mediated DNA damage was evaluated using DNA damage assays with Co^{2+} (40 μ M), ascorbate (50 μ M), and H_2O_2 (400 μ M), since these conditions result in ~90% DNA damage. By adding increasing polyphenol concentrations (Figure 3), their cobalt-mediated DNA damage prevention was quantified and compared. These polyphenol compounds were selected because their ability to prevent (or enhance) iron- and copper-mediated DNA damage have been reported under similar conditions [33,36,53].

As the concentration of the polyphenol EGCG increases, the amount of DNA damage decreases (Figure 4A, lanes 5-15). The percentage of DNA damage inhibition with respect to EGCG concentration was plotted and fit with a sigmoidal dose-response curve (Figure 4B),

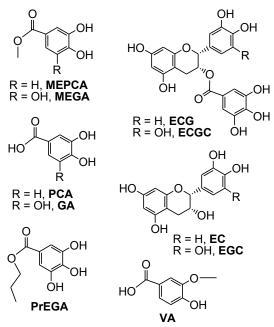
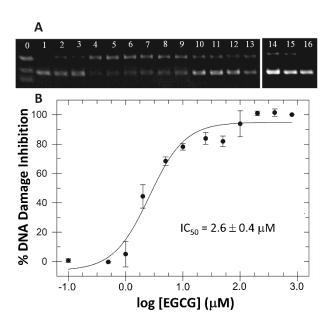



Figure 3. Structures of polyphenol compounds examined for prevention of Co²⁺-mediated DNA damage.

Figure 4. A) Gel electrophoresis image of DNA treated with epigallocatechin gallate (EGCG, 0.5 - 800 μM) in the presence of $Co^{2+}(40 \,\mu\text{M})$, ascorbate (50 μM), and H_2O_2 (400 μM) at pH 6.3 (MES buffer, 10 mM) for 60 min. Lane 0: 1 kb molecular weight ladder; 1: plasmid DNA (p), 2: p + H_2O_2 (400 μM); 3: p + ECG (800 μM); 4: p + Co^{2+} (40 μM), ascorbate (50 μM), and H_2O_2 (400 μM); lanes 5-15: lane 4 with increasing concentrations of EGCG (0.5, 1, 2, 5, 10, 25, 50, 100, 200, 400, and 800 μM, respectively). The top band is from damaged (nicked) DNA and the bottom band is undamaged (supercoiled) DNA. B) Graph of the percentage of DNA damage inhibition with respect to EGCG concentration from which the IC₅₀ value was determined.

establishing a concentration to inhibit 50% of DNA damage (IC₅₀ value) of $2.6 \pm 0.4 \,\mu\text{M}$ for EGCG. Similar cobalt-mediated DNA damage assays were performed on the remaining nine polyphenol compounds (Figure 3). Of the ten tested polyphenols, eight (EGCG, ECG, PREGA, GA, MEGA, MEPCA, PCA, and EC) prevent significant amounts of DNA damage, with IC₅₀ values from 1.3 to 27 μ M (Table 1). In contrast, EGC prevents only ~20% DNA damage at concentrations above 50 μ M, and vanillic acid (VA) shows no significant ability to prevent cobalt-mediated DNA damage under these conditions. Blood polyphenol levels range from 1-10 μ M [53], so the IC₅₀ values for many of the tested polyphenols are within biological polyphenol concentrations.

In every case, gallol-containing polyphenols (ECG, EGCG, PREGA, GA, and MEGA) more effectively prevent DNA damage than analogous catechol-containing polyphenols (MEPCA, PCA, EC, and EGC). No correlation is observed between polyphenol oxidation potential [33] and DNA damage prevention ability ($R^2 = 0.15$; Figure S15A); instead, a weak correlation ($R^2 = 0.67$; Figure S15B) is observed between the IC₅₀ value and the first phenolic p K_a [53]. Since gallols have lower p K_a values for deprotonation of the first phenolic hydrogen

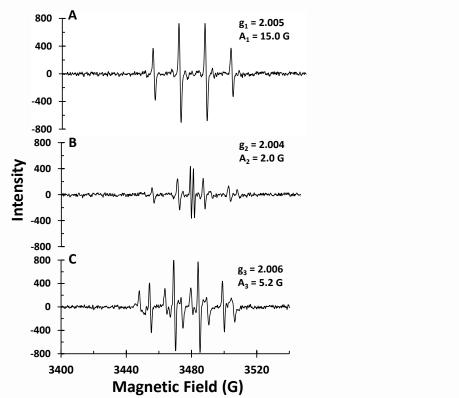
Table 1. IC₅₀ values for polyphenol prevention of Co²⁺-, Fe²⁺-, and Cu⁺ mediated DNA damage.

Polyphenol	IC ₅₀ with Co ²⁺ (μM)	IC50 with Fe ²⁺ (µM) ^a	IC ₅₀ with Cu ²⁺ (μM) ^b
ECG	1.3 ± 0.3	2.3	$53.04 \pm 0.02^{\circ}$
EGCG	2.6 ± 0.4	1.1	225.9 ± 0.1
PREGA	2.6 ± 0.4	5.1	125.90 ± 0.02^{c}
GA	4.1 ± 0.1	14.0	16% damage prevention at $500~\mu\text{M}^c$
MEGA	6 ± 1	4.0	$102.3\pm0.1^{\circ}$
MEPCA	9 ± 1	15.6	8.24 ± 0.3
PCA	15 ± 2	34.4	~482
EC	27 ± 3	59.1	Prooxidant $(0.2 - 500 \mu M)$
EGC	$\sim 20\%$ inhibition at $\geq 50~\mu M$	9.8	Prooxidant $(0.02 - 1000 \mu M)$
VA	No activity	140	No activity

 $^{^{}a}$ Fe²⁺ (2 μM) with H₂O₂ (50 μM) for 30 min; standard deviations are \pm 1 μM [33]; b Cu²⁺ (6 μM) with ascorbate (7.5 μM) and H₂O₂ (50 μM) for 30 min [36]; c polyphenol exhibits prooxidant activity at low concentrations.

atoms than catechols (~7.9 and ~8.5, respectively) [33], gallols are more deprotonated and capable ofbinding Co²⁺ at pH 6.3. This is supported by the fact that VA, which has a methylated catechol group that inhibits metal binding, prevents no cobalt-mediated DNA damage. These DNA damage results suggest that cobalt binding, rather than direct ROS scavenging, may be a primary mechanism for polyphenol prevention of cobalt-mediated DNA damage, similar to results observed for iron [33].

3.3. Reactive oxygen species identification by EPR spectroscopy


The combination of Co²⁺, ascorbate, and H₂O₂ generates DNA-damaging ROS, likely hydroxyl radical (*OH), superoxide (O₂*-), singlet oxygen (¹O₂), and/or ascorbyl radical. Ascorbic acid (AscH₂) can generate O₂*- by reduction of dioxygen, and its reaction with H₂O₂, forms *OH and ascorbyl radical (AscH*, Reaction 3) [54]. Hydroxyl radical also can be generated from Co²⁺-catalyzed O₂*- decomposition in theHaber Weiss process (Reaction 4) [55].

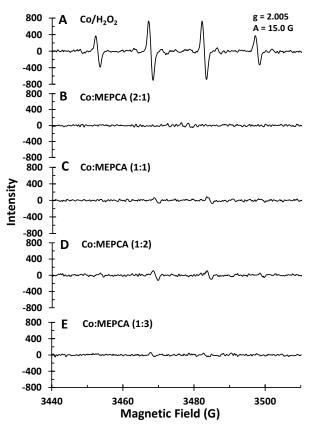
AscH₂ + H₂O₂
$$\rightarrow$$
 AscH[•] + H₂O + HO[•] [3]
O₂•- + H₂O₂ \rightarrow O₂ + HO[•] + OH⁻ [4]

To examine cobalt-generated ROS with short lifetimes, 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) was used as a spin trap for EPR spectroscopy experiments. DMPO adducts of *OH (a 1:2:2:1 quartet [56]) and O₂*- (a 1:1:1:1 quartet [56]) have different EPR signals, so that these radical species can be easily differentiated. The 1:1 doublet resonance for ascorbyl radical has a long enough lifetime to be directly detected [57,58]. ¹O₂ generation was investigated using 2,2,6,6-tetramethyl-piperidine (TEMP) as a spin trap; its ¹O₂ adduct, 2,2,5,5-tertramethyl-1-pyrroline-*N*-oxide (TEMPO), is a 1:1:1 triplet resonance [59,60].

The EPR spectrum of Co²⁺/H₂O₂ shows the characteristic 1:2:2:1 quartet for the DMPO-OH adduct (Figure 5A), but it is ~25-fold lower in intensity than that resulting from Fe²⁺/H₂O₂ (Figure S16), consistent with the very low amount of DNA damage seen for Co²⁺/H₂O₂ compared to Fe²⁺/H₂O₂ conditions. Addition of ascorbate to Co²⁺/H₂O₂ in the same ratio as in the DNA damage assays has two effects on the ROS generated: 1) the intensity of the DMPO-OH quartet is reduced two-fold, and 2) a new resonance from ascorbyl radical (AscH*) is observed (Figure 5B). Ascorbyl radical is also generated by Co²⁺/ascorbate alone (Figure S17A), but no DMPO-OH resonance is observed without H₂O₂ addition.

The EPR spectrum of ascorbate and H₂O₂ without Co²⁺ does not show ascorbyl radical resonances, but instead shows a DMPO-OH resonance (Figure 5C) with additional overlapping

Figure 5. EPR spectra of A) Co^{2+} (300 μM) and H_2O_2 (22.5 mM); B) Co^{2+} (300 μM), ascorbate (375 μM), and H_2O_2 (22.5 mM); B) Co^{2+} (300 μM), ascorbate (375 μM), and H_2O_2 (22.5 mM). Room temperature spectra were acquired in buffered aqueous solution at pH 6.3 (MES, 10 mM) with DMPO (30 mM) as a spin trap les than 5 min after sample preparation. Values A_1 and g_1 ; A_2 , and g_2 ; and A_3 and g_3 correspond to the DMPO-OH adduct, ascorbyl radical, and DMPO-OOH adduct, respectively. Experimental conditions: time constant 81.92 ms, conversion time 81.92 ms, modulation amplitude 1.00 G, microwave power 20.02, and magnetic field 3500 ± 100 G.


resonances similar to those reported by Finkelstein, *et al.* [61] for the DMPO-hydroperoxide (DMPO-OOH) adduct. This DMPO-OOH adduct forms when superoxide reacts with DMPO, and it subsequently decomposes to yield DMPO-OH. EPR studies with TEMP did not show resonances consistent with ¹O₂ formation, but confirmed non-DNA-damaging O₂• generation upon observation of a TEMP-OOH resonance similar to DMPO-OOH (Figure S17B). These EPR signals resolved into the well-defined 1:1:1:1 quartet typical of the TEMP-superoxide adduct when a higher concentration of Co²⁺ (3 mM) was added (Figure S17C).

Hydroxyl radical generation by Co^{2+} (Reaction 1) is much less thermodynamically favorable than the analogous reaction with iron (Reaction 2), since the $Co^{2+/3+}$ oxidation potential (-1.84 V) is significantly lower than that for $Fe^{2+/3+}$ (-0.77 V) [31]. This barrier is reflected in the DNA damage results, where only 2 μ M of Fe^{2+} causes > 90 % DNA damage in the presence of H_2O_2 (50 μ M) [53], whereas even with 50 μ M Co^{2+} and a higher H_2O_2 concentration (400 μ M), no significant DNA damage occurs. Our EPR results comparing 'OH generation by Co^{2+}/H_2O_2 and Fe^{2+}/H_2O_2 corroborate these DNA damage results.

Several mechanisms have been proposed to explain hydroxyl radical generation by Co^{2+}/H_2O_2 despite this thermodynamic barrier. Berg, *et al.* [62] suggested a more complex mechanism for 'OH generation that requires three equivalents of H_2O_2 to form a Co^{2+} -peroxo complex that decomposes into 'OH [63], as well as 1O_2 and 'OH generation by a cobalt-dioxygen complex [64]. Under our conditions, we see no evidence of 1O_2 formation in the Co^{2+}/H_2O_2 /ascorbate system, but the ascorbyl radical is formed, which may contribute to the increase in DNA damage observed for Co^{2+}/H_2O_2 /ascorbate compared to Co^{2+}/H_2O_2 conditions.

The effect of polyphenol addition on ROS formation was also examined using EPR spectroscopy. Adding MEPCA as a representative catechol-containing polyphenol compound that

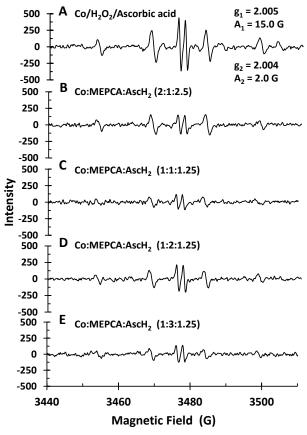

prevents Co²⁺-mediated DNA damage to a Co²⁺/H₂O₂ solution results in a sharp drop in the intensity of the DMPO-OH adduct resonance to almost unobservable levels, even at a Co²⁺:MEPCA ratio of 2:1 (Figure 6). Adding EGCG as a representative gallol-containing polyphenol under the same conditions also significantly reduces the DMPO-OH resonance. At a Co²⁺:EGCG ratio of 2:1, the intensity of the DMPO-OH adduct decreases two-fold compared to its intensity without EGCG. The DMPO-OH resonance intensity decreases as the Co²⁺:EGCG ratio decreases, until it is almost unobservable at Co²⁺:EGCG ratios of 1:2 and 1:3 (Figure S18). The ability of MEPCA and EGCG to reduce hydroxyl radical generation to almost unobservable levels is consistent with their ability to prevent cobalt-mediated DNA damage at low concentrations.

Figure 6. A) EPR spectrum of $Co^{2+}(300~\mu\text{M})$ with H_2O_2 (22.5 mM). EPR spectra with H_2O_2 (22.5 mM) and Co^{2+} :MEPCA ratios of B) 2:1 (600 and 300 μM , respectively), C) 1:1 (both 300 μM), D) 1:2 (300 and 600 μM , respectively), and E) 1:3 (300 and 900 μM , respectively). All samples were in aqueous solution at pH 6.3 (MES, 10 mM) at room temperature.

When added to a solution of Co²⁺ and H₂O₂, EGC has little effect on the DMPO-OH signal intensity (Figure S19) and adding VA results in only a slight decrease in the DMPO-OH adduct resonance intensity (Figure S20). The inability of EGC and VA to suppress 'OH generation even at the highest polyphenol concentrations correlates with their inability to prevent significant cobalt-mediated DNA damage.

When ascorbate is combined with Co²⁺ and H₂O₂, in the same ratios used for the DNA damage assays, resonances for DMPO-OH and AscH^{*} are observed (Figure 7A). Upon MEPCA addition, both the DMPO-OH and AscH^{*} resonance intensities significantly decrease with little change in signal intensity beyond a 2:1 Co²⁺:MEPCA ratio (Figure 7B-E). VA also shows EPR

Figure 7. A) EPR spectrum of $Co^{2+}(300 \, \mu\text{M})$ with H_2O_2 . (22.5 mM) and ascorbate (Asc H_2 , 375 μM). EPR spectra with H_2O_2 (22.5 mM), ascorbate (375 μM), and Co^{2+} :MEPCA ratios of B) 2:1 (600 and 300 μM, respectively), C) 1:1 (both 300 μM), D) 1:2 (300 and 600 μM, respectively), and E) 1:3 (300 and 900 μM, respectively). All samples were in aqueous solution at pH 6.3 (MES, 10 mM) at room temperature. Values g_1 , A_1 and g_2 , A_2 correspond to DMPO-OH and ascorbyl radical signals, respectively.

results similar to those observed for MEPCA (Figure S21). In contrast, when EGC or EGCG is added to the Co²⁺/H₂O₂/ascorbate system, the intensities of DMPO-OH and AscH* resonances do not change over all Co²⁺:polyphenol ratios (Figures S22 and S23). Although polyphenols inhibit radical formation in the Co²⁺/H₂O₂ system similarly to their ability to prevent cobalt-mediated DNA damage (Table 1), this same trend is not observed for the Co²⁺/H₂O₂/ascorbate system. This unexpected effect could be due to the higher concentrations of reagents required for the EPR studies compared to the DNA damage assays that alter mechanisms of radical generation and/or Co²⁺-polyphenol interactions in the presence of ascorbate. Formation of radical species by Co²⁺/H₂O₂/ascorbate is complex, and further studies are necessary to determine the reactions that control ROS generation under these conditions.

3.4. Determination of Co^{2+} -polyphenol and Co^{2+} -ascorbate interactions

DNA damage prevention by polyphenols may result from Co²⁺-polyphenol interactions rather than polyphenol ROS scavenging, and coordination of Co²⁺ to catechol and gallol compounds has been observed using UV-visible spectroscopy. Mono- and bis-catechol Co²⁺ species have characteristic UV-vis spectra [65], and Co²⁺ binding by gallic acid results in three absorption bands at 300, 389, and 675 nm [66]. Formation constants of Co²⁺-pyrocatechol complexes were determined using spectrophotometric titrations at 276 nm with millimolar concentrations of Co²⁺ (1 mM) and pyrocatechol (1-3 mM) [67], significantly higher than those in our DNA damage assays. We used similar methods to investigate Co²⁺-polyphenol binding in the presence of ascorbate. For these studies, only the low molecular weight polyphenols with single catechol and gallol groups were examined to avoid potentially complex stoichiometries resulting

from metal binding to multiple phenolic sites on the same polyphenol. Co^{2+} (as $CoSO_4$) has no absorbance at wavelengths greater than 230 nm, whereas ascorbate has an absorption band at 265 nm (Figure S24). Polyphenol spectra show one absorption maximum for PREGA (273 nm) and GA (259 nm), two maxima for MEGA (266 and 294 nm), and two maxima at 250 and 290 nm for MEPCA, PCA, and VA (Figures S25-S36), corresponding to polyphenol $\pi \rightarrow \pi^*$ electronic transitions [65,68].

When PREGA, GA, MEGA, MEPCA, PCA, or VA are added to Co²⁺ alone or Co²⁺/ascorbate solutions in Co²⁺:polyphenol ratios of 1:1 to 1:5, no prominent bands are observed other than individual polyphenol or ascorbate absorptions. Difference spectra calculated by subtracting out the absorbances of the individual Co²⁺, ascorbate if present, and polyphenol components at the various Co²⁺:polyphenol ratios (1-5 equiv) showed no additional bands that could be unambiguously attributed to formation of cobalt-polyphenol complexes (Figures S24-S47). In addition, the ascorbate absorbance obscures the most intense Co²⁺-polyphenol complex absorption bands (270-300 nm), the most likely to be observed. Thus, we shifted to MALDI mass spectrometry to better detect polyphenol/ascorbate-Co²⁺ complexes.

Using mass spectrometry with the low-molecular weight polyphenols, aqueous solutions of Co²⁺ (33 μM) and the polyphenols (1 to 5 equiv, 33-167 μM) were combined with and without ascorbate (1.25 equiv, 42 μM). Co²⁺ binding was observed for all the tested polyphenols, in 1:2 Co:polyphenol stoichiometries for GA, MEGA, MEPCA, and PREGA and 1:3 stoichiometries for PCA, PREGA, and VA. Upon addition of ascorbate to these Co²⁺/polyphenol solutions, molecular ion peaks for cobalt-polyphenol-ascorbate complexes are observed for MEPCA (in 1:3:1 Co:polyphenol:ascorbate stoichiometry), PCA (in 1:1:1 Co:polyphenol:ascorbate stoichiometry), and PREGA (in 1:2:2 and 1:3:1 Co:polyphenol:ascorbate stoichiometries; Table S15 and Figures

S48-S57). With ascorbate present, only Co²⁺/polyphenol/ascorbate complexes are observed for the catechols MEPCA and PCA, whereas mass spectra with the gallol PREGA show formation of both the Co²⁺/polyphenol and the Co²⁺/polyphenol/ascorbate complexes.

 Co^{2+} -polyphenol complexes readily form, with stability constants of $10^{7.5}$ to 10^{14} for bidentate CoL binding of catechol derivatives, $10^{5.3}$ to 10^{16} for CoL_2 complexes, and $10^{3.1}$ to $10^{4.3}$ for octahedral CoL_3 complexes [69-71]. This is consistent with our mass spectrometry results, where Co^{2+} formed 1:2 or 1:3 complexes with all the polyphenols. Although stability constants for Co^{2+} -gallol complexes are not reported, gallols have lower pK_a s and therefore higher formation constants compared to analogous catechols, making gallols stronger metal-binding ligands at biological pH [53]. Stability constants for Co^{2+} -ascorbate binding range from $10^{5.6}$ to 10^8 , depending upon ionic strength [72,73]. These similarities between Co^{2+} -ascorbate and -catechol stability constants agree with our mass spectrometry results, indicating that ascorbate competes with some polyphenols for Co^{2+} coordination under these conditions. This competition for cobalt binding is more prevalent for catechols than gallols and may be responsible for the greater efficacy of gallols compared to catechols in preventing Co^{2+} -mediated DNA damage.

3.5. Comparisons of cobalt-mediated DNA damage and polyphenol prevention

Cobalt-mediated DNA damage occurs in the presence of ascorbate and hydrogen peroxide in a synergistic manner within the range of Co²⁺ concentrations reported for in patients with prosthetic hip-associated cobalt toxicity (1-100 μM) [45]. In addition to our work, cobalt-mediated guanine base oxidation has been reported with Co²⁺ (up to 250 μM) and H₂O₂ (up to 2 mM) at pH 7.4 for 4 h [74], and DNA fragmentation occurs with Co²⁺ (50 μM) and H₂O₂ (2.5 mM) after 1 h [29]. Nackerdien, *et al.* [24] also observed significant DNA base oxidation upon treatment with

 Co^{2+} (25 µM) and H_2O_2 (2.8 mM) for 1 h that did not change upon ascorbate addition (100 µM) [24]. Other investigations have reported DNA damage by Co^{2+} bound to chelating diethylene triamine pentaacetic acid (DTPA) [64,75] or ethylene diamine tetraacetic acid (EDTA) [24] ligands or have investigated the DNA-damaging ability of synthetic Co^{2+} -complexes [76-81]. The various conditions and endpoints for DNA damage used in these studies of cobalt-mediated DNA damage make comparing their results and potential biological relevance difficult, especially since the Co^{2+} and/or the H_2O_2 concentrations are significantly higher than the conditions described in this work (40 µM Co^{2+} , 400 µM H_2O_2 , and 50 µM ascorbate). None of these prior investigations into cobalt-mediated DNA damage have closely examined a Co^{2+}/H_2O_2 /ascorbate system or observed cobalt-related synergy in DNA damaging behavior.

Very few studies have examined the effects of polyphenol antioxidants on cobalt-mediated oxidative stress or DNA damage. In one, EGCG treated cells (50-200 μM for 60 min) (PC-12) challenged with CoCl₂ (150 μM) showed lower ROS levels and apoptosis [82]. Lower cellular ROS generation after Co²⁺ treatment was also observed upon treatment with GA (50 μM), MEGA (50 μM) and EGCG (100 μM), but only EGCG increased cell viability compared to cells treated with Co²⁺ (300 μM) and H₂O₂ (400 μM) for 24 h [83]. Similar results were observed in rat cortical neurons (E18-E19) pre-incubated with salidroside, a phenolic compound derived from glucose [84]. In addition, polyphenol-Co²⁺ binding to GA, catechin, and to a lesser degree, EGCG and tannic acid, was proposed as a mechanism for the reduction of ROS generated by Co²⁺-H₂O₂-Se(IV) [85]. In an interesting report by Babich, *et al.* [86], EGCG and ECG treatment leads to higher H₂O₂ concentrations and cytotoxicity in human gingival epithelial–like S-G cells, but this toxicity is inhibited by Co²⁺ addition. Although Co²⁺-polyphenol interactions were not directly

examined, the observed reduction in cytotoxicity may be the result of Co^{2+} -polyphenol chelation that prevented polyphenol reduction of H_2O_2 to form ${}^{\bullet}OH$.

The antioxidant activity of polyphenols is attributed primarily to two mechanisms: metal chelation [36,53,87] and radical scavenging [87-89]. In our studies, polyphenol compounds prevent cobalt-mediated DNA damage, and gallol-containing polyphenols are more effective than catechol-containing polyphenols. Metal-mediated DNA damage prevention by polyphenols is highly dependent on the metal ion generating the damaging ROS (Table 1), and polyphenol-metal interactions play a significant role in this behavior. Although the trend of gallols being more effective than catechols holds true across cobalt-, iron-, and copper-mediated DNA damage prevention studies, striking individual differences in polyphenol efficacy are observed with different metal ions (Table 1). For example, EGC prevents Fe²⁺-mediated DNA damage with an IC₅₀ value of 9.8 μM [33], but prevents little Co²⁺-mediated DNA damage, and *increases* Cu²⁺-mediated DNA damage [36]. Generally, trends for polyphenol prevention of Co²⁺- and Fe²⁺-mediated DNA damage are more similar than those for Cu²⁺-mediated DNA damage.

Since polyphenol prevention of Co^{2+} -mediated DNA damage does not correlate with oxidation potential ($R^2 = 0.15$; Figure S15A), direct ROS scavenging is not the primary mode of antioxidant activity. In contrast, polyphenol activity is slightly correlated to the pK_a of the first phenolic hydrogen ($R^2 = 0.67$; Figure S15B), as would be expected for a metal-binding mechanism, since polyphenol deprotonation is required for metal coordination. This correlation is not as robust for Co^{2+} as observed for polyphenol prevention of Fe^{2+} -mediated DNA damage ($R^2 = 0.91$) [53], where polyphenol- Fe^{2+} binding and subsequent autoxidation of Fe^{2+} to Fe^{3+} prevents hydroxyl radical formation (Reaction 2 [90]). Because Co^{2+} oxidation to Co^{3+} is less thermodynamically favored compared to $Fe^{2+/3+}$ oxidation and because Co^{2+} can participate in

decomposition (Reaction 5 [91]) and generation of ROS (Reaction 4), it is unsurprising that its role in DNA damage and polyphenol prevention of this damage is complex.

$$H_2O_2 \rightarrow H_2O + O_2$$
 [5]

Ascorbate acts synergistically with Co²⁺ and H₂O₂ to generate ROS that cause DNA damage and interferes with Co²⁺-catechol complex formation to hinder catechol prevention of cobalt-mediated DNA damage. Cobalt-generated oxidative damage and toxicity represents a human health concern, and our results suggest that the mechanisms underlying cobalt-mediated DNA damage and its prevention by polyphenols are complex. Nonetheless, many polyphenol compounds readily prevent Co²⁺-mediated DNA damage at biological concentrations, representing a starting point to develop therapies for cobalt toxicity.

4. Conclusions

Excess Co²⁺ can result in toxicity, due to its ability to form ROS and cause oxidative damage. Although Co²⁺ toxicity has been attributed to *OH generation by Co²⁺, analogous to the one-electron reduction of H₂O₂ by Fe²⁺, our results indicate that Co²⁺-mediated DNA damage is caused by more complex mechanisms that involve O₂*- and *OH, but not ¹O₂, generation. Ascorbate plays an important role in this system: while a limited amount of *OH is generated by Co²⁺ and H₂O₂ at high concentrations, this *OH formation is not facile at lower Co²⁺ and H₂O₂ concentrations and results in insignificant DNA damage. Addition of ascorbate to the Co²⁺/H₂O₂ system increases DNA damage in a synergistic manner.

Most polyphenol compounds reduce DNA damage by $Co^{2+}/H_2O_2/ascorbate$. Trends in polyphenol prevention of metal-mediated DNA damage are cobalt-dependent, suggesting that Co^{2+} -polyphenol binding plays a role in the observed antioxidant effects. Mass spectrometry

studies indicated that only Co²⁺-polyphenol complexes form without ascorbate addition, but that ascorbate competes with primarily catechol-containing polyphenols for Co²⁺ binding. Additional experiments to further explore the effect of Co²⁺-polyphenol interactions on ROS generation and DNA damage prevention are required to fully understand this complex system, but this work establishes polyphenols as potential treatments for cobalt toxicity.

Abbreviations

AscH₂ ascorbic acid

DMPO 5,5-dimethyl-1-pyrroline-*N*-oxide

DNA deoxyribonucleic acid

DPPH 2,2-diphenyl-1-picrylhydrazyl

DTPA diethylene triamine pentaacetic acid

EC (-)-epicatechin

EC₅₀ 50% effective concentration

ECG (-)-epicatechin-3-gallate

EDTA ethylenediaminetetraacetic acid

EGC (-)-epigallocatechin

EGCG (-)-epigallocatechin-3-gallate

EPR electron paramagnetic resonance

GA gallic acid

IC₅₀ 50% inhibitory concentration

MALDI-MS matrix-assisted desorption ionization mass spectrometry

MEGA methyl-3,4,5-trihydroxybenzoate

MEPCA methyl-3,4-diihydroxybenzoate

MES 2-(*N*-morpholino)ethanesulfonic acid

MOPS 3-(*N*-morpholino)propanesulfonic acid

PCA protocatechuic acid

PREGA *n*-propyl gallate

ROS reactive oxygen species

TEMP 2,2,6,6-tetramethyl-piperidine

TEMPO 2,2,5,5-tertramethyl-1-pyrroline-*N*-oxide

UV-vis ultraviolet-visible

VA vanillic acid

Competing Interests Statement

There are no competing interests to declare.

Acknowledgements

We thank National Science Foundation grants CHE 1213912 and 1807709 for support.

C.A.M. thanks the Department of Science of the Government of Costa Rica for a graduate fellowship.

Appendix A: Supplementary Data

Supplementary data including DNA gel data and EC₅₀/IC₅₀ graphs, electron paramagnetic resonance (EPR) spectra, UV-vis spectra, and mass spectrometry data for this article can be found online at https://

References

[1] C. Angelé-Martínez, C. Goodman, J.L. Brumaghim, Metal-mediated DNA damage and cell death: Mechanisms, detection methods, and cellular consequences, Metallomics 6 (2014) 1358-1381.

- [2] M. Junaid, M.Z. Hashmi, R.N. Malik, D.-S. Pei, Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review, Environ. Sci. Pollut. Res. 23 (2016) 20151-20167.
- [3] M. Balali-Mood, K. Naseri, Z. Tahergorabi, M.R. Khazdair, M. Sadeghi, Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic, Front. Pharmacol. 12 (2021) 643972.
- [4] A.P. Lan, J. Chen, Z.F. Chai, Y. Hu, The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms, BioMetals 29 (2016) 665-678.
- [5] H.W. Ejaz, W. Wang, M. Lang, Copper toxicity links to pathogenesis of Alzheimer's disease and therapeutics approaches, Int. J. Mol. Sci. 21 (2020) 7660.
- [6] L.M. Gaetke, H.S. Chow-Johnson, C.K. Chow, Copper: Toxicological relevance and mechanisms Arch. Toxicol. 88 (2014) 1929-1938.
- [7] H. Nakamura, K. Takada, Reactive oxygen species in cancer: Current findings and future directions, Cancer Sci. 112 (2021) 3945-3952.
- [8] K. Sule, J. Umbsaar, E.J. Prenner, Mechanisms of Co, Ni, and Mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes, Biochim Biophys. Acta 1862 (2020) 183250.
- [9] D. Lison, S. van den Brule, G. Van Maele-Fabry, Cobalt and its compounds: Update on genotoxic and carcinogenic activities, Crit. Rev. Toxicol. 48 (2018) 522-539.
- [10] B.A. Mosier, L. Maynard, N.G. Sotereanos, J.J. Sewecke, Progressive cardiomyopathy in a patient with elevated cobalt ion levels and bilateral metal-on-metal hip arthroplasties, Am. J. Orthoped. 45 (2016) E132-E135.
- [11] D. Beyersmann, A. Hartwig, The genetic toxicology of cobalt, Toxicol. Appl. Pharmacol. 115 (1992) 137-145.

- [12] J.G. Hengstler, U. Bolm-Audorff, A. Faldum, K. Janssen, M. Reifenrath, W. Gotte, D. Jung, O. Mayer-Popken, J. Fuchs, S. Gebhard, H.G. Bienfait, K. Schlink, C. Dietrich, D. Faust, B. Epe, F. Oesch, Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected, Carcinogenesis 24 (2003) 63-73.
- [13] D. Lison, M. De Boeck, V. Verougstraete, M. Kirsch-Volders, Update on the genotoxicity and carcinogenicity of cobalt compounds, Occup. Environ. Med. 58 (2001) 619-625.
- [14] S. Catalani, R. Leone, M.C. Rizzetti, A. Padovani, P. Apostoli, The role of albumin in human toxicology of cobalt: Contribution form a clinical case, ISRN Hematology 2011 (2011) 1-6.
- [15] F. Faccioni, P. Franceschetti, M. Cerpelloni, M.E. Fracasso, *In vivo* study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells, Am. J. Orthod. Dentofacial Orthop. 124 (2003) 687-694.
- [16] L. Calderon-Garciduenas, A. Serrano-Sierra, R. Torres-Jardon, H. Zhu, Y. Yuan, D. Smith, R. Delgado-Chavez, J.V. Cross, H. Medina-Cortina, M. Kavanaugh, T.R. Guilarte, The impact of environmental metals in young urbanites' brains, Exp. Toxicol. Pathol. 65 (2013) 503-511.
- [17] G. Wang, T.K. Hazra, S. Mitra, H.M. Lee, E.W. Englander, Mitochondrial DNA damage and a hypoxic response are induced by CoCl₂ in rat neuronal PC12 cells, Nucleic Acids Res. 28 (2000) 2135-2140.
- [18] D.A. Geier, M.R. Geier, An autism cohort study of cobalt levels following vitamin B12 injections, Toxicol. Environ. Chem. 92 (2010) 1025-1037.
- [19] G. Olivieri, C. Hess, E. Savaskan, C. Ly, F. Meier, G. Baysang, M. Brockhaus, F. Muller-Spahn, Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion, J. Pineal Res. 31 (2001) 320-325.
- [20] M.G. Cesa-Bianchi, M. Mancia, R. Mutani, Experimental epilepsy induced by cobalt powder in lower brain-stem and thalamic structures, Electroencephalogr. Clin. Neurophysiol. 22 (1967) 525-536.

- [21] K.S. Kasprzak, T.H. Zastawny, S.L. North, C.W. Riggs, B.A. Diwan, J.M. Rice, M. Dizdaroglu, Oxidative DNA base damage in renal, hepatic, and pulmonary chromatin of rats after intraperitoneal injection of cobalt(II) acetate, Chem. Res. Toxicol. 7 (1994) 329-335.
- [22] A.S. Naura, R. Sharma, Toxic effects of hexaammine cobalt(III) chloride on liver and kidney in mice: Implication of oxidative stress, Drug Chem. Toxicol. 32 (2009) 293-299.
- [23] E. Patel, C. Lynch, V. Ruff, M. Reynolds, Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells, Toxicol. Appl. Pharmacol. 258 (2012) 367-375.
- [24] Z. Nackerdien, K.S. Kasprzak, G. Rao, B. Halliwell, M. Dizdaroglu, Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin, Cancer Res. 51 (1991) 5837-5842.
- [25] P. Rai, T.D. Cole, D.E. Wemmer, S. Linn, Localization of Fe^{2+} at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe^{2+} and H_2O_2 , J. Mol. Biol. 312 (2001) 1089-1101.
- [26] P. Rai, D.E. Wemmer, S. Linn, Preferential binding and structural distortion by Fe²⁺ at RGGG-containing DNA sequences correlates with enhanced oxidative cleavage at such sequences, Nucleic Acids Res. 33 (2005) 497-510.
- [27] Y.G. Gao, M. Sriram, A.H. Wang, Crystallographic studies of metal ion-DNA interactions: Different binding modes of cobalt(II), copper(II) and barium(II) to N7 of guanines in Z-DNA and a drug-DNA complex, Nucleic Acids Res. 21 (1993) 4093-4101.
- [28] A. Okamoto, K. Kanatani, T. Taiji, I. Saito, ¹⁵N NMR study on site-selective binding of metal ions to guanine runs in DNA: A good correlation with HOMO distribution, J. Am. Chem. Soc. 125 (2003) 1172-1173.
- [29] S. Kawanishi, S. Inoue, K. Yamamoto, Hydroxyl radical and singlet oxygen production and DNA damage induced by carcinogenic metal compounds and hydrogen peroxide, Biol. Trace Elem. Res. 21 (1989) 367-372.

- [30] M. Merkofer, R. Kissner, R.C. Hider, U.T. Brunk, W.H. Koppenol, Fenton chemistry and iron chelation under physiologically relevant conditions: Electrochemistry and kinetics, Chem. Res. Toxicol. 19 (2006) 1263-1269.
- [31] Chemistry LibreTexts, P1: Standard Reduction Potentials by Element, https://chem.libretexts.org/Ancillary_Materials/Reference/Reference_Tables/Electrochemistry_T ables/P1%3A Standard Reduction Potentials by Element. 2021 (18 June 2022).
- [32] J.L. Pierre, M. Fontecave, Iron and activated oxygen species in biology: The basic chemistry, BioMetals 12 (1999) 195-199.
- [33] N.R. Perron, J.N. Hodges, M. Jenkins, J.L. Brumaghim, Predicting how polyphenol antioxidants prevent DNA damage by binding to iron, Inorg. Chem. 47 (2008) 6153-6161.
- [34] N.R. Perron, H.C. Wang, S.N. Deguire, M. Jenkins, M. Lawson, J.L. Brumaghim, Kinetics of iron oxidation upon polyphenol binding, Dalton Trans. 39 (2010) 9982-9987.
- [35] C.R. Garcia, C. Angele-Martinez, J.A. Wilkes, H.C. Wang, E.E. Battin, J.L. Brumaghim, Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: Metal binding as a general antioxidant mechanism, Dalton Trans. 41 (2012) 6458-6467.
- [36] N.R. Perron, C.R. Garcia, J.R. Pinzon, M.N. Chaur, J.L. Brumaghim, Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage, J. Inorg. Biochem. 105 (2011) 745-753.
- [37] E.S. Henle, Z. Han, N. Tang, P. Rai, Y. Luo, S. Linn, Sequence-specific DNA cleavage by Fe²⁺-mediated fenton reactions has possible biological implications, J. Biol. Chem. 274 (1999) 962-971.
- [38] R.P. Hertzberg, P.B. Dervan, Cleavage of double helical DNA by methidium-propyl-EDTA-iron(II), J. Am. Chem. Soc. 104 (1982) 313-315.
- [39] R.S. Lloyd, C.W. Haidle, D.L. Robberson, Bleomycin-specific fragmentation of double-stranded DNA, Biochemistry 17 (1978) 1890-1896.

- [40] R.G. Mani, J.H. Smet, K. von Klitzing, V. Narayanamurti, W.B. Johnson, V. Umansky, Demonstration of a 1/4-cycle phase shift in the radiation-induced oscillatory magnetoresistance in GaAs/AlGaAs devices, Phys. Rev. Lett. 92 (2004) 146801-146805.
- [41] D.J. Paustenbach, B.E. Tvermoes, K.M. Unice, B.L. Finley, B.D. Kerger, A review of the health hazards posed by cobalt, Crit. Rev. Toxicol. 43 (2013) 316-362.
- [42] B.L. Finley, A.D. Monnot, D.J. Paustenbach, S.H. Gaffney, Derivation of a chronic oral reference dose for cobalt, Regul. Toxicol. Pharmacol. 64 (2012) 491-503.
- [43] B.E. Tvermoes, B.L. Finley, K.M. Unice, J.M.P. Otani, D. J., D.A. Galbraith, Cobalt whole blood concentrations in healthy adult male volunteers following two-weeks of ingesting a cobalt supplement, Food Chem. Toxicol. 53 (2013) 432-439.
- [44] K.M. Unice, A.D. Monnot, S.H.T. Gaffney, B. E., K.A. Thuett, D.J. Paustenbach, B.L. Finley, Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model Food Chem. Toxicol. 50 (2012) 2456-2461.
- [45] J.R.W. Crutsen, M.C. Koper, J. Jelsma, M. Heymans, I.C. Heyligers, B. Grimm, N.M.C. Mathijsse, M.G.M. Schotanus, Prosthetic hip-associated cobalt toxicity: A systematic review of case series and case reports, EFORT Open Rev. 7 (2022) 188–199.
- [46] K. Keyer, A.S. Gort, J.A. Imlay, Superoxide and the production of oxidative DNA damage, J. Bacteriol. 177 (1995) 6782-6790.
- [47] M.S. Luijsterburg, H. van Attikum, Chromatin and the DNA damage response: The cancer connection, Mol. Oncol. 5 (2011) 349-367.
- [48] A.F. Hagel, H. Albrecht, W. Dauth, W. Hagel, F.G. Vitali, I., H.W. Schultis, P.C. Konturek, J. Stein, M.F. Neurath, M. Raithel, Plasma concentrations of ascorbic acid in a cross section of the German population, J. Int. Med. Res. 46 (2018) 168–174.
- [49] N. Travica, K. Ried, A. Sali, I. Hudson, A. Scholey, A. Pipingas, Plasma vitamin C concentrations and cognitive function: A cross-sectional study, Front. Aging Neurosci. 11 (2019.

- [50] V. De Laurenzi, G. Melino, I. Savini, M. Annicchiarico-Petruzzelli, A. Finazzi-Agro, L. Avigliano, Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines, Eur. J. Cancer 31 (1995) 463-466.
- [51] A.R. Morgan, R.L. Cone, M.E. Terr, The mechanism of DNA strand breakage by vitamin C and superoxide and the protective roles of catalase and superoxide dismutase, Nucl. Acids Res. 3 (1976) 1139-1150.
- [52] P. Verma, P. Baldrian, F. Nerud, Decolorization of structurally different synthetic dyes using cobalt(II)/ascorbic acid/hydrogen peroxide system, Chemosphere 50 (2003) 975-979.
- [53] N.R. Perron, J.L. Brumaghim, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding, Cell Biochem. Biophys. 53 (2009) 75-100.
- [54] J.P. Lowry, R.D. O'Neill, Homogeneous mechanism of ascorbic acid interference in hydrogen peroxide detection at enzyme-modified electrodes, Anal. Chem. 64 (1992) 453-456.
- [55] J.P. Kehrer, The Haber-Weiss reaction and mechanisms of toxicity, Toxicology 149 (2000) 43-50.
- [56] F.A. Villamena, J.L. Zweier, Detection of reactive oxygen and nitrogen species by EPR spin trapping, Antioxid. Redox Signal. 6 (2004) 619-629.
- [57] A. Mouithys-Mickalad, C. Deby, G. Deby-Dupont, M. Lamy, An electron spin resonance (ESR) study on the mechanism of ascorbyl radical production by metal-binding proteins, BioMetals 11 (1998) 81-88.
- [58] J.J. Warren, J.M. Mayer, Surprisingly long-lived ascorbyl radicals in acetonitrile: Concerted proton-electron transfer reactions and thermochemistry, J. Am. Chem. Soc. 130 (2008) 7546-7547.
- [59] Alia, P. Mohanty, J. Matysik, Effect of proline on the production of singlet oxygen, Amino Acids 21 (2001) 195-200.

- [60] C. Fufezan, A.W. Rutherford, A. Krieger-Liszkay, Singlet oxygen production in herbicide-treated photosystem II, FEBS Lett. 532 (2002) 407-410.
- [61] E. Finkelstein, G.M. Rosen, E.J. Rauckman, J. Paxton, Spin trapping of superoxide, Mol. Pharmacol. 16 (1979) 676-685.
- [62] A. Burg, I. Shusterman, H. Kornweitz, D. Meyerstein, Three H₂O₂ molecules are involved in the "Fenton-like" reaction between Co(H₂O)₆²⁺ and H₂O₂, Dalton Trans. 43 (2014) 9111-9115.
- [63] S. Leonard, P.M. Gannett, Y. Rojanasakul, D. Schwegler-Berry, V. Castranova, V. Vallyathan, X. Shi, Cobalt-mediated generation of reactive oxygen species and its possible mechanism, J. Inorg. Biochem. 70 (1998) 239-244.
- [64] S. Kawanishi, K. Yamamoto, S. Inoue, Site-specific DNA damage induced by sulfite in the presence of cobalt(II) ion. Role of sulfate radical, Biochem. Pharmacol. 38 (1989) 3491-3496.
- [65] M.J. Sever, J.J. Wilker, Visible absorption spectra of metal–catecholate and metal–tironate complexes, Dalton Trans. (2004) 1061-1072.
- [66] M.S. Masoud, S.S. Hagagg, A.E. Ali, N.M. Nasr, Synthesis and spectroscopic characterization of gallic acid and some of its azo complexes, J. Mol. Str. 1014 (2012) 17-25.
- [67] C.A. Tyson, A.E. Martell, Equilibria of metal ions with pyrocatechol and 3,5-di-*t*-butylpyrocatechol, J. Am. Chem. Soc. 90 (1968) 3379-3386.
- [68] M. Friedman, H.S. Jurgens, Effect of pH on the stability of plant phenolic compounds, J. Agric. Food Chem. 48 (2000) 2101-2110.
- [69] Y. Murakami, M. Tokunaga, Stability order in metal chelate compounds. III. 4-nitro and 4-chlorocatechol complexes, Bull. Chem. Soc. Jap. 37 (1964) 1562-1563.
- [70] A.E. Martell, C.A. Tyson, Equilibria of metal ions with pyrocatechol and 3,5-di-*t*-butylpyrocatechol, J. Am. Chem. Soc. 90 (1968) 3379-3386.
- [71] A.E. Martell, R.M. Smith, Critical Stability Constants, Plenum Press, New York City, 1977, p. 209.

- [72] S.T. Dengle, S.T. Gaikwad, A.S. Rajbhoj, Potentiometric study of vitamin C complexes with transition metal ions Co(II), Ni(II), Cu(II) & Zn(II), Chem. Sin. 3 (2012) 970-973.
- [73] K.P. Dubey, S. Parveen, Ascorbate-M(II) systems-equilibrium studies, Curr. Sci. 47 (1978) 415-416.
- [74] S. Ivancsitis, E. Diem, A. Pilger, H.W. Rüdiger, Induction of 8-hydroxy-2'-deoxyguanosine by cobalt(II) and hydrogen peroxide *in vitro*, J. Toxicol. Environ. Health A 65 (2002) 665-676.
- [75] K. Yamamoto, S. Inoue, A. Yamazaki, T. Yoshinaga, S. Kawanishi, Site-specific DNA damage induced by cobalt(II) ion and hydrogen peroxide: Role of singlet oxygen, Chem. Res. Toxicol. 2 (1989) 234-239.
- [76] S. Kane, H. Sasaki, S.M. Hecht, Guanosine-specific DNA damage by a Co(II)-bithiazole complex, J. Am. Chem. Soc. 117 (1995) 9107-9118.
- [77] V.A. Kawade, A.A. Kumbhar, A.S. Kumbhar, C. Nather, A. Erxleben, U.B. Sonawane, R.R. Joshi, Mixed ligand cobalt(II) picolinate complexes: Synthesis, characterization, DNA binding and photocleavage, Dalton Trans. 40 (2011) 639-650.
- [78] S. Ramakrishnan, E. Suresh, A. Riyasdeen, M.A. Akbarsha, M. Palaniandavar, Interaction of *rac*-[M(diimine)₃]²⁺ (M=Co, Ni) complexes with CT DNA: Role of 5,6-dmp ligand on DNA binding and cleavage and cytotoxicity, Dalton Trans. 40 (2011) 3245-3256.
- [79] S. Roy, S. Roy, S. Saha, R. Majumdar, R.R. Dighe, E.D. Jemmis, A.R. Chakravarty, Cobalt(II) complexes of terpyridine bases as photochemotherapeutic agents showing cellular uptake and photocytotoxicity in visible light, Dalton Trans. 40 (2011) 1233-1242.
- [80] T.F. Silva, L.M. Martins, M.F. Guedes da Silva, A.R. Fernandes, A. Silva, P.M. Borralho, S. Santos, C.M. Rodrigues, A.J. Pombeiro, Cobalt complexes bearing scorpionate ligands: Synthesis, characterization, cytotoxicity and DNA cleavage, Dalton Trans. 41 (2012) 12888-12897.

- [81] S. Yellappa, J. Seetharamappa, L.M. Rogers, R. Chitta, R.P. Singhal, F. D'Souza, Binding, electrochemical activation, and cleavage of DNA by cobalt(II) tetrakis-*N*-methylpyridyl porphyrin and its beta-pyrrole brominated derivative, Bioconjug. Chem. 17 (2006) 1418-1425.
- [82] J.Y. Jung, H.C. Mo, K.H. Yang, Y.J. Jeong, H.G. Yoo, N.K. Choi, W.M. Oh, H.K. Oh, S.H. Kim, J.H. Lee, H.J. Kim, W.J. Kim, Inhibition by epigallocatechin gallate of CoCl₂-induced apoptosis in rat PC12 cells, Life Sci. 80 (2007) 1355-1363.
- [83] J.A.G. Crispo, D.R. Ansell, M. Piche, J.K. Eibi, N. Khaper, G.M. Ross, T.C. Tai, Protective effects of polyphenolic compounds on oxidative stress-induced cytotoxicity in PC12 cells, Can. J. Physiol. Pharmacol. 88 (2010) 429-438.
- [84] S. Zhang, X. Chen, Y. Yang, X. Zhou, J. Liu, F. Ding, Neuroprotection against cobalt chloride-induced cell apoptosis of primary cultured cortical neurons by salidroside, Mol. Cell Biochem. 354 (2011) 161-170.
- [85] E. Koren, R. Kohen, I. Ginsburg, A cobalt-based tetrazolium salts reduction test to assay polyphenols, J. Agric. Food Chem. 57 (2009) 7644-7650.
- [86] H. Babich, A.G. Schuck, J.H. Weisburg, H.L. Zuckerbraun, Research strategies in the study of the pro-oxidant nature of polyphenol nutraceuticals, J. Toxicol. 2011 (2011) 467305.
- [87] H.C. Wang, J.L. Brumaghim, Polyphenol compounds as antioxidants for disease prevention: Reactive oxygen species scavenging, enzyme regulation, and metal chelation mechanisms in *E. coli* and human cells, in: S. Andreescu, M. Hepel (Eds.), Oxidative Stress: Diagnostics, Prevention, and Therapy, American Chemical Society, Washington D.C., 2011, pp. 99-175.
- [88] N.J. Miller, C. Castelluccio, L. Tijburg, C. Rice-Evans, The antioxidant properties of theaflavins and their gallate esters--radical scavengers or metal chelators?, FEBS Lett. 392 (1996) 40-44.
- [89] M.Y. Moridani, J. Pourahmad, H. Bui, A. Siraki, P.J. O'Brien, Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers, Free Radic. Biol. Med. 34 (2003) 243-253.

[90] N.R. Perron, H.C. Wang, S.N. Deguire, M. Jenkins, M. Lawson, J.L. Brumaghim, Kinetics of iron oxidation upon polyphenol binding, Dalton Trans. 39 (2010) 9982-9987.

[91] M.K. Eberhardt, C. Santos, M.A. Soto, Formation of hydroxyl radicals and Co³⁺ in the reaction of Co²⁺-EDTA with hydrogen peroxide. Catalytic effect of Fe³⁺, Biochim Biophys. Acta 1157 (1993) 102–106.