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Abstract
We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for Δℎ!Δ ′

"" !#,
where Δ ′

"" and Δℎ! are Macdonald eigenoperators and !# is an elementary symmetric function. We actually prove
a stronger identity of infinite series of GL$ characters expressed in terms of LLT series. This is achieved through
new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.
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1. Introduction
We prove the extended delta conjecture of Haglund, Remmel and Wilson [14] by adapting methods
from our work in [2] on a generalized shuffle theorem and proving new results about the action of the
elliptic Hall algebra on symmetric functions. As in [2], we reformulate the conjecture as the polynomial
truncation of an identity of infinite series of GL$ characters, expressed in terms of LLT series. We then
prove the stronger infinite series identity using a Cauchy identity for nonsymmetric Hall–Littlewood
polynomials.

The conjecture stemmed from studies of the diagonal coinvariant algebra DR# in two sets of n
variables, whose character as a doubly graded %# module has remarkable links with both classical
combinatorial enumeration and the theory of Macdonald polynomials. It was shown in [17] that this
character is neatly given by the formula Δ ′

"#−1!#, where !# is the n-th elementary symmetric function,
and for any symmetric function f, Δ ′

( is a certain eigenoperator on Macdonald polynomials whose
eigenvalues depend on f.

The shuffle theorem, conjectured in [13] and proven by Carlsson and Mellit in [4], gives a combina-
torial expression for Δ ′

"#−1!# in terms of Dyck paths—that is, lattice paths from (0, &) to (&, 0) that lie
weakly below the line segment connecting these two points.

An expanded investigation led Haglund, Remmel and Wilson [14] to the delta conjecture, a com-
binatorial prediction for Δ ′

"" !#, for all 0 ≤ ' < &. This led to a flurry of activity (e.g., [6, 11, 14,
15, 16, 21, 22, 23, 26, 28]), including a conjecture by Zabrocki [27] that Δ ′

"" !# captures the character
of the superdiagonal coinvariant ring SDR#, a deformation of DR# involving the addition of a set of
anticommuting variables.

The delta conjecture has been extended in two directions. One gives a compositional generalization,
recently proved by D’Adderio and Mellit [7]. The other involves a second eigenoperator Δℎ! , where ℎ%
is the l-th homogeneous symmetric function. The extended delta conjecture [14, Conjecture 7.4] is, for
) ≥ 0 and 1 ≤ ' ≤ &,

Δℎ!Δ
′
""−1!# = 〈*#−)〉

∑
*∈D#+!

+∈L#+!,! (*)

+dinv(+) ,area(*)-wt+ (+)
∏

, : -$ (*)=-$−1 (*)+1

(
1 + * ,−-$ (*)

)
, (1)

in which . is a Dyck path and P is a certain type of labelling of . (see §2 for full definitions). D’Adderio,
Iraci and Wyngaerd proved the Schröder case and the , = 0 specialization of the conjecture [5, 6]; Qiu
and Wilson [21] reformulated the conjecture and established the + = 0 specialization as well.

Let us briefly outline the steps by which we prove equation (1).
Feigin–Tsymbaliuk [8] and Schiffmann–Vasserot [25] constructed an action of the elliptic Hall

algebra E of Burban and Schiffmann [3] on the algebra of symmetric functions. The operators Δ ( and
Δ ′
( are part of the E action. In Theorem 4.4.1, we use this to reformulate the left-hand side of equation

(1) as the polynomial part of an explicit infinite series of virtual GL$ characters with coefficients in
Q(+, ,). The proof of Theorem 4.4.1 relies on a symmetry (Proposition 4.3.3) between distinguished
elements of E introduced by Negut [19] and their transposes.

In Theorem 5.1.1, we also reformulate the right-hand side of equation (1) as the polynomial part
of an infinite series, in this case expressed in terms of the LLT series introduced by Grojnowski and
Haiman in [12]. This given, we ultimately arrive at Theorem 6.3.6—an identity of infinite series of GL$
characters which implies the extended delta conjecture by taking the polynomial part on each side.
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Although the extended delta conjecture and the compositional delta conjecture both imply the delta
conjecture, they generalize it in different directions, and our methods are quite different from those of
D’Adderio and Mellit. It would be interesting to know whether a common generalization is possible.

2. The extended delta conjecture
The extended delta conjecture equates a ‘symmetric function side,’ involving the action of a Macdonald
operator on an elementary symmetric function, with a ‘combinatorial side.’ We begin by recalling the
definitions of these two quantities.

2.1. Symmetric function side
Integer partitions are written . = (.1 ≥ · · · ≥ .%), sometimes with trailing zeroes allowed. We set
|. | = .1 + · · · + .% and let ℓ(.) be the number of nonzero parts. We identify a partition . with its French
style Ferrers shape, the set of lattice squares (or boxes) with northeast corner in the set

{(0, 1) | 1 ≤ 1 ≤ ℓ(.), 1 ≤ 0 ≤ . . }. (2)

The shape generator of . is the polynomial

2* (+, ,) =
∑

(,, .)∈*
+,−1 , .−1. (3)

Let Λ = Λk (3) be the algebra of symmetric functions in an infinite alphabet of variables
3 = -1, -2, . . ., with coefficients in the field k = Q(+, ,). We follow the notation of Macdonald [18] for
the graded bases of Λ. Basis elements are indexed by a partition . and have homogeneous degree |. |.
Examples include the elementary symmetric functions !* = !*1 · · · !*" , complete homogeneous sym-
metric functions ℎ* = ℎ*1 · · · ℎ*" , power-sums 4* = 4*1 · · · 4*" , monomial symmetric functions 5*
and Schur functions 6*.

As is conventional, 7 : Λ → Λ denotes the k-algebra involution defined by 76* = 6*∗ , where
.∗ denotes the transpose of ., and 〈−,−〉 denotes the symmetric bilinear inner product such that
〈6*, 6/〉 = 8*,/.

The basis of modified Macdonald polynomials, 9̃/ (3; +, ,), is defined [9] from the integral form
Macdonald polynomials :/ (3; +, ,) of [18] using the device of plethystic evaluation. For an expression
A in terms of indeterminates, such as a polynomial, rational function or formal series, 4) [;] is defined
to be the result of substituting <) for every indeterminate a occurring in A. We define = [;] for any
= ∈ Λ by substituting 4) [;] for 4) in the expression for f as a polynomial in the power-sums 4) so
that = ↦→ = [;] is a homomorphism. The variables +, , from our ground field k count as indeterminates.
The modified Macdonald polynomials are defined by

9̃/ (3; +, ,) = ,#(/) :/

[
3

1 − ,−1 ; +, ,−1
]
, (4)

where

&(>) =
∑
,

(0 − 1)>, . (5)

For any symmetric function = ∈ Λ, let = [2] denote the eigenoperator on the basis {9̃/} of Λ such that

= [2] 9̃/ = = [2/ (+, ,)] 9̃/ . (6)
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Figure 1. A path . and partial labelling A ∈ L11,2 (.), with area(.) = 10, dinv(A) = 15, -wt+ (+) =
-2

1-2-2
3-

2
4-5-6 and -wt(+) = -2
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The left-hand side of equation (1) is expressed in the notation of [14], where Δ ( = = [2] and
Δ ′
( = = [2 − 1]. Hence, the symmetric function side of the extended delta conjecture is

ℎ% [2]!)−1 [2 − 1]!# . (7)

2.2. The combinatorial side
The right-hand side of the extended delta conjecture (1) is a combinatorial generating function that
counts labelled lattice paths.

Definition 2.2.1. A Dyck path is a south-east lattice path lying weakly below the line segment connecting
the points (0, $) and ($ , 0). The set of such paths is denoted D0 . The staircase path 8 is the Dyck path
alternating between south and east steps.

Each . ∈ D0 has area(.) = |8/. | defined to be the number of lattice squares lying above . and
below 8. Let @, (.) be the area contribution from squares in the i-th row, numbered from north to south;
in other words, @, is the distance from the i-th south step of . to the i-th south step of 8. Note that

@1(.) = 0, @, (.) ≤ @,−1(.) + 1 for 0 > 1, and
0∑
,=1

@, (.) = |8/. | . (8)

Definition 2.2.2. A labelling A = (A1, . . . , A0 ) ∈ N0 attaches a label in N = {0, 1, . . .} to each south
step of . ∈ D0 so that the labels increase from north to south along vertical runs of south steps, as
shown in Figure 1. The set of labellings is denoted by L0 (.), or simply L(.). Given 0 ≤ ) < $ , a
partial labelling of . ∈ D0 is a labelling where 0 occurs exactly l times and never on the run at - = 0.
We denote the set of these partial labellings by L0 ,% (.).

Each labelling A ∈ L(.) is assigned a statistic dinv(A), defined to be the number of pairs (0 < 1)
such that either {

@, (.) = @ . (.) and A, < A . or
@, (.) = @ . (.) + 1 and A, > A . .

(9)
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The weight of a labelling P is defined so zero labels do not contribute by

-wt+ (+) =
∏

,∈ [0 ] : +$≠0
-+$ . (10)

This is equivalent to letting -0 = 1 in -wt(+) :=
∏
,∈ [0 ] -+$ .

The above defines the right-hand side of (1), with 〈*#−)〉 denoting the coefficient of *#−) .

Remark 2.2.3. In [14], a Dyck path is a northeast lattice path lying weakly above the line segment
connecting (0, 0) and ($ , $), and labellings increase from south to north along vertical runs. After
reflecting the picture about a horizontal line, our conventions on paths, labellings and the definition of
dinv(A) match those in [14]. Separately, [13] uses the same conventions that we do for Dyck paths but
defines labellings to increase from south to north and defines dinv(A) with the inequalities in equation
(9) reversed. However, since the sum

∑
+∈L(*)

+dinv(+)-wt(+) (11)

is a symmetric function [13], it is unchanged if we reverse the ordering on labels; after which, the
conventions in [13] agree with those used here.

We prefer another slight modification based on the following lemma which was mentioned in [14]
without details.

Lemma 2.2.4. For any Dyck path . ∈ D0 , we have
∏

1<,≤0
-$ (*)=-$−1 (*)+1

(1 + * ,−-$ (*) ) =
∏

1<,≤0
1$ (*)=1$−1 (*)+1

(1 + * ,−1$ (*) ) , (12)

where ?, (.) = @, (.∗) is the contribution to |8/. | from boxes in the i-th column, numbered from right to
left.

Proof. The condition @, (.) = @,−1(.) + 1 means that . has consecutive south steps in rows 0 − 1 and i
with no intervening east step. Similarly, ?, (.) = ?,−1(.) + 1 if and only if . has consecutive east steps
in columns 0 − 1 and i (numbered right to left). Consider the word formed by listing the steps in . in the
south-east direction from (0, $) to ($ , 0), as shown here for the example in Figure 1.

S S S E S E E S S E E E S E S E S S E S E E

Treating south and east steps as left and right parentheses, each south step pairs with an east step to its
right, and we have @, (.) = ? . (.) if the i-th south step (numbered left to right) pairs with the j-th east
step (numbered right to left). Furthermore, the leftmost member of each double south step pairs with
the rightmost member of a double east step, as indicated in the word displayed above.

Since each index 0 − 1 such that @, (.) = @,−1(.) + 1 pairs with an index 1 − 1 such that ? . (.) =
? .−1 (.) + 1, we have

∏
1<,≤0

-$ (*)=-$−1 (*)+1

(1 + * ,−-$−1 (*)−1) =
∏

1< .≤0
1 % (*)=1 %−1 (*)+1

(1 + * ,−1 %−1 (*)−1) . (13)

Now, equation (12) follows. !
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Setting $ = & + ) and 5 = ' + ), the right-hand side of equation (1), or the combinatorial side of
the extended delta conjecture, is equal to

〈*0−$〉
∑
*∈D&

+∈L& ,! (*)

, |2/* | +dinv(+) -wt+ (+)
∏

1<,≤0
1$ (*)=1$−1 (*)+1

(1 + * ,−1$ (*) ) . (14)

3. Background on the Schiffmann algebra E
From work of Feigin and Tsymbaliuk [8] and Schiffmann and Vasserot [25], we know that the operators
= [2] in equation (7) form part of an action of the elliptic Hall algebra E of Burban and Schiffmann
[3, 24], or Schiffmann algebra for short, on the algebra of symmetric functions. In [2], we used this
action to express the symmetric function side of a generalized shuffle theorem as the polynomial part
of an explicit infinite series of GL% characters. Here, we derive a similar expression (Theorem 4.4.1) for
the symmetric function side (7) of the extended delta conjecture.

For this purpose, we need a deeper study of the Schiffmann algebra than we did in [2], where a
fragment of the theory was enough. We start with a largely self-contained description of E and its action
on Λ, although we occasionally refer to [2] for the restatements of results from [3, 24, 25] in our notation
and for some proofs. A precise translation between our notation and that of [3, 24, 25] can be found
in [2, eq. (25)]. In the presentation of E and its action on Λ, we freely use plethystic substitution, defined
in §2.1. Indeed, the ability to do so is a principal reason why we prefer the notation used here to that in
the foundational papers on the Schiffmann algebra.

3.1. Description of E
Let k = Q(+, ,), as in §2. The Schiffmann algebra E is generated by a central Laurent polynomial
subalgebra B = k[?±1

1 , ?±1
2 ] and a family of subalgebras Λ3 (3$,#) isomorphic to the algebra of

symmetric functions Λ3 (3) over F, one for each pair of coprime integers (5, &). These are subject to
defining relations spelled out below.

For any algebra A containing a copy of Λ, there is an adjoint action of Λ on A arising from the Hopf
algebra structure of Λ. Using two formal alphabets X and Y to distinguish between the tensor factors
in Λ ⊗ Λ ! Λ(3)Λ(C ), the coproduct and antipode for the Hopf algebra structure are given by the
plethystic substitutions

Δ = = = [3 + C ], %( = ) = = [−3] . (15)

The adjoint action of = ∈ Λ on D ∈ ; is then given by

(Ad = ) D =
∑
,

=, D E, , where = [3 − C ] =
∑
,

=, (3)E, (C ) (16)

since the formula on the right is another way to write (1 ⊗ %)Δ = =
∑
, =, ⊗ E, . More explicitly, we have

(Ad 4#) D = [4#, D] and (Ad ℎ#) D =
∑
.+)=#

(−1))ℎ . D !) . (17)

The last formula can be expressed for all n at once as a generating function identity

(AdΩ[*3]) D = Ω[*3] D Ω[−*3], (18)

where

Ω(3) =
∞∑
#=0

ℎ# (3). (19)
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We fix notation for the quantities

F = (1 − +) (1 − ,), F̂ = (1 − (+ ,)−1)F , (20)

which play a role in the presentation of E and will be referred to again later.

3.1.1. Basic structure and symmetries
The algebra E is Z2 graded with the central subalgebra F in degree (0, 0) and = (3$,#) in degree
(G5, G&) for = (3) of degree d in Λ(3).

The universal central extension +SL2 (Z) → SL2(Z) acts on the set of tuples

{(5, &, H) ∈ (Z2 \ 0) × R | H is a value of arg(5 + 0&)}, (21)

lifting the SL2(Z) action on pairs (5, &), with the central subgroup Z generated by the ‘rotation by 2I’
map (5, &, H) ↦→ (5, &, H + 2I). The group +SL2(Z) acts on E by k-algebra automorphisms, compatibly
with the action of SL2 (Z) on the grading group Z2. Before giving the defining relations of E , we specify
how +SL2 (Z) acts on the generators.

For each pair of coprime integers (5, &), we introduce a family of alphabets 3$,#
4 , one for each value

H of arg(5 + 0&), related by

3$,#
4+25 = ?$1 ?#23

$,#
4 . (22)

We make the convention that 3$,# without a subscript means 3$,#
4 with H ∈ (−I, I]. For comparison,

the implied convention in [2] is H ∈ [−I, I). The subalgebra Λ3 (3$,#) = Λ3 (3$,#
4 ) only depends on

(5, &) and so does not depend on the choice of branch for the angle H. When we refer to a subalgebra
Λk (3$,#), which does depend on the branch, the convention H ∈ (−I, I] applies.

The +SL2(Z) action is now given by J · = (3$,#
4 ) = = (3$′,#′

4′ ) for = (3) ∈ Λk (3), where J ∈ +SL2(Z)
acts on the indexing data in equation (21) by J · (5, &, H) = (5′, &′, H ′). Note that, if 5, & are coprime,
then so are 5′, &′. The action on F factors through the action of SL2 (Z) on the group algebra k ·Z2 ! B.

For instance, the ‘rotation by 2I’ element J ∈ +SL2(Z) fixes F and has J · = (3$,#
4 ) = = (3$,#

4+25) =
= [?$1 ?#23

$,#
4 ]. Thus, J coincides with multiplication by ?-1?

6
2 in degree (@ , 6) and automatically preserves

all relations that respect the Z2 grading.
We now turn to the defining relations of E . Apart from the relations implicit in B = k[?±1

1 , ?±1
2 ]

being central and each Λ3 (3$,#) being isomorphic to Λ3 (3), these fall into three families: Heisenberg
relations, internal action relations and axis-crossing relations.

3.1.2. Heisenberg relations
Each pair of subalgebras Λ3 (3$,#) and Λ3 (3−$,−#) in degrees along opposite rays in Z2 satisfy
Heisenberg relations

[4) (3−$,−#
4 ), 4% (3$,#

4+5)] = 8) ,% ' 4) [(?$1 ?#2 − 1)/F̂], (23)

where F̂ is given by equation (20). As an exercise, the reader can check, using equation (22), that the
relations in equation (23) are consistent with swapping the roles of Λ3 (3$,#) and Λ3 (3−$,−#).

3.1.3. Internal action relations
The internal action relations describe the adjoint action of each Λ3 (3$,#) on E . For simplicity, we
write these relations and also the axis-crossing relations below, with Λ3 (31,0) distinguished. The full
set of relations is understood to be given by closing the stated relations under the +SL2(Z) action.

�����	�������������������������������������������������

������������������������

https://doi.org/10.1017/fmp.2023.3


8 J. Blasiak et al.

Bearing in mind that 3$,# means 3$,#
4 with H ∈ (−I, I], the relations for the internal action of

Λ3 (31,0) are:

(Ad = (31,0)) 41 (3$,1) = (7 = ) [*]
,,,*) ↦→ 41 (3$+) ,1)

(Ad = (31,0)) 41 (3$,−1) = (7 = ) [−*]
,,,*) ↦→ 41 (3$+) ,−1).

(24)

3.1.4. Axis-crossing relations
Again distinguishing Λ3 (31,0) and taking angles on the branch H ∈ (−I, I], the final set of relations is
the closure under the +SL2(Z) action of

[41 (37,−1), 41 (38,1)] = − !8+7 [−F̂31,0]
F̂

for < + K > 0. (25)

More generally, rotating this relation by I determines [41 (37,−1), 41 (38,1)] for < + K < 0, and the
Heisenberg relations determine it when < + K = 0. Combining these gives

[41 (37,−1), 41(38,1)] = − 1
F̂




!8+7 [−F̂31,0] < + K > 0
1 − ?−71 ?2 < + K = 0
−?−71 ?2!−(8+7) [−F̂3−1,0] < + K < 0 .

(26)

3.1.5. Further remarks
Define upper and lower half subalgebras E∗,>0, E∗,<0 ⊆ E to be generated by the Λ3 (3$,#) with & > 0
or & < 0, respectively. Using the +SL2 (Z) image of the relations in equation (25), one can express any
!) [−F̂3$,#] for & > 0 in terms of iterated commutators of the elements 41 (38,1). This shows that
{41 (38,1) | < ∈ Z} generates E∗,>0 as an F-algebra. Similarly, {41 (38,−1) | < ∈ Z} generates E∗,<0.

The internal action relations give the adjoint action ofΛ3 (31,0) on the space spanned by {41 (38,±1) |
< ∈ Z}. Using the formula (Ad = ) (D1D2) =

∑((Ad =(1) )D1) ((Ad =(2) )D2), where Δ = =
∑

=(1) ⊗ =(2) in
Sweedler notation, this determines the adjoint action of Λ3 (31,0) on E∗,>0 and E∗,<0. The Heisenberg
relations give the adjoint action of Λ3 (31,0) on Λ3 (3−1,0), while Λ3 (31,0) acts trivially on itself, with
(Ad = ) E = = [1] E.

Together, these determine the adjoint action of Λ3 (31,0) on the whole algebra E . By symmetry, the
same holds for the adjoint action of any Λ3 (3$,#).

3.1.6. Anti-involution
One can check from the defining relations above that E has a further symmetry given by an involutory
antiautomorphism (product reversing automorphism)

Φ : E → E
Φ(E(?1, ?2)) = E(?−1

2 , ?−1
1 ), Φ( = (3$,#

4 )) = = (3#,$5/2−4 ).
(27)

Note that Φ is compatible with reflecting degrees in Z2 about the line - = L. Together with +SL2(Z),
it generates a +GL2(Z) action on E for which J ∈ +GL2 (Z) is an anti-automorphism if +GL2 (Z) →
GL2(Z)

det→ {±1} sends J to −1.

3.2. Action of E on !

We write = • for the operator of multiplication by a function f to better distinguish between operator
expressions such as (7 = )• and 7 · = •. For f a symmetric function, = ⊥ denotes the 〈−,−〉 adjoint of = •.

�����	�������������������������������������������������

������������������������

https://doi.org/10.1017/fmp.2023.3


Forum of Mathematics, Pi 9

Here and again later on, we use an overbar to indicate inverting the variables in any expression; for
example,

F = (1 − +−1) (1 − ,−1). (28)

We extend the notation in equation (6) accordingly, setting

= [2] 9̃/ = = [2/ (+−1, ,−1)] 9̃/ . (29)

Proposition 3.2.1 [2, Prop 3.3.1]. There is an action of E on Λ characterized uniquely by the following
properties.

(i) The central parameters ?1, ?2 act as scalars

?1 ↦→ 1, ?2 ↦→ (+ ,)−1. (30)

(ii) The subalgebras Λk(3±1,0) act as

= (31,0) ↦→ (7 = ) [2 − 1/F], = (3−1,0) ↦→ (7 = ) [1/F − 2] . (31)

(iii) The subalgebras Λk(30,±1) act as

= (30,1) ↦→ = [−3/F]•, = (30,−1) ↦→ = (3)⊥. (32)

We will make particular use of operators representing the action on Λ of elements 41 (38,1) and
41 (31,8) in E . For the first, we need the operator ∇, defined in [1] as an eigenoperator on the modified
Macdonald basis by

∇9̃/ = ,#(/)+#(/
∗) 9̃/, (33)

where &(>) is given by equation (5) and >∗ denotes the transpose partition.
For the second, we introduce the doubly infinite generating series

" (*) = 7Ω[*−13]•(7Ω[−*F3])⊥ , (34)

where Ω(3) is given by equation (19).

Definition 3.2.2. For < ∈ Z, we define operators on Λ = Λk(3):

#8 = ∇8!1(3)• ∇−8, (35)

"8 = 〈*−8〉" (*). (36)

The operators "8 are the same as in [2] and differ by a sign (−1)8 from those in [1, 10].

Proposition 3.2.3. In the action of E on Λ given by Proposition 3.2.1:

(i) The element 41 [−F31,8] = −F41 (31,8) ∈ E acts as the operator "8;
(ii) The element 41 [−F38,1] = −F41 (38,1) ∈ E acts as the operator #8.

Proof. Part (i) is proven in [2, Prop 3.3.4].
By equation (32), 41 [−F30,1] acts on Λ as multiplication by 41 [3] = !1(3). It was shown in

[2, Lemma 3.4.1] that the action of E on Λ satisfies the symmetry ∇ = (3$,#)∇−1 = = (3$+#,#). More
generally, this implies ∇8 = (3$,#)∇−8 = = (3$+8#,#) for every integer a. Hence, 41 [−F38,1] acts as
∇841 [−F30,1]∇−8 = ∇8!1(3)• ∇−8. !
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3.3. GL! characters and the shuffle algebra
As usual, the weight lattice of GL% is Z% , with Weyl group M = %% permuting the coordinates. A weight
. is dominant if .1 ≥ · · · ≥ .% . A polynomial weight is a dominant weight . such that .% ≥ 0. In other
words, polynomial weights of GL% are integer partitions of length at most l.

As in [2], §2.3, we identify the algebra of virtual GL% characters over k with the algebra of symmetric
Laurent polynomials k[-±1

1 , . . . , -±1
% ]9! . If . is a polynomial weight, the irreducible character N* is equal

to the Schur function 6*(-1, . . . , -%). Given a virtual GL% character = (-) = = (-1, . . . , -%) =
∑
* ?*N*,

the partial sum over polynomial weights . is a symmetric polynomial in l variables, which we denote
by = (-)pol (this is different from the polynomial terms of = (-) considered as a Laurent polynomial). We
use the same notation for infinite formal sums = (-) of irreducible GL% characters, in which case = (-)pol
is a symmetric formal power series.

The Weyl symmetrization operator for GL% is

!(O(-1, . . . , -%)) =
∑
: ∈9!

P

(
O(-)∏

,< . (1 − - ./-,)

)
. (37)

For dominant weights ., the Weyl character formula can be written N* = !(-*). More generally, if
O(-) = O(-1, . . . , -%) is a Laurent polynomial over any field k, then !(O(-)) is a virtual GL% character
over k.

The Hall–Littlewood symmetrization operator is defined by

H%
; (O(-)) = !

(
O(-)∏

,< . (1 − + -,/- . )

)
. (38)

If O(-) = O(-1, . . . , -%) is a rational function over a field k containing Q(+), then H%
; (O(-)) is a

symmetric rational function over k. If O(-) is a Laurent polynomial, we can also regard H%
; (O(-)) as an

infinite formal sum of GL% characters with coefficients in k, by interpreting the factors 1/(1 − + -,/- . )
as geometric series 1 + + -,/- . + (+ -,/- . )2 + · · · . We always understand H%

; (O(-)) in this sense when
taking the polynomial part H%

; (O(-))pol.
We also use the two-parameter symmetrization operator

H%
;,< (O(-)) = H%

;

(
O(-)

∏
,< .

(1 − + , -,/- . )
(1 − , -,/- . )

)
= !

(
O(-)∏,< . (1 − + , -,/- . )∏

,< .

(
(1 − + -,/- . ) (1 − , -,/- . )

)
)
. (39)

Again, if O(-) is a rational function over k = Q(+, ,), then H%
;,< (O(-)) is a symmetric rational function

over k, while if O(-) is a Laurent polynomial, or more generally a Laurent polynomial times a rational
function which has a power series expansion in the -,/- . for 0 < 1 , we can also interpret H%

;,< (O(-)) as
an infinite formal sum of GL% characters, similarly to equation (38). This series interpretation always
applies when taking H%

;,< (O(-))pol.
Fixing k = Q(+, ,) once again, let Q = Q (k[*±1]) be the tensor algebra on the Laurent polynomial

ring in one variable, that is, the noncommutative polynomial algebra with generators corresponding to
the basis elements *8 of k[*±1] as a vector space. Identifying Q$ = Q$ (k[*±1]) with k[*±1

1 , . . . , *±1
$ ],

the product in T is given by ‘concatenation’,

= · E = = (*1, . . . , *) )E(*)+1, . . . , *)+%), for = ∈ Q ) , E ∈ Q % . (40)

The Feigin–Tsymbaliuk shuffle algebra [8] is the quotient % = Q/R, where I is the graded two-sided
ideal whose degree l component R % ⊆ Q % is the kernel of the symmetrization operator H%

;,< in variables
*1, . . . , *% , as explained further in [2, §3.5].
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Let E+ ⊆ E be the subalgebra generated by the Λk(3$,#) for 5 > 0. We leave out the central
subalgebra F since the relations of E+ (as we will see in a moment) do not depend on the central
parameters.

The image of E+ under the antiautomorphism Φ in §3.1.6 is the subalgebra Φ(E+) generated by
the Λk (3$,#) for & > 0. Note that our convention H ∈ (−I, I] when the subscript is omitted yields
Φ( = (3$,#)) = = (3#,$) for Λk (3$,#) ⊆ E+ since the branch cut is in the third quadrant.

Schiffmann and Vasserot [25] proved the following result. See [2, §3.5] for more details on the
translation of their theorem into our notation.

Proposition 3.3.1 [25, Theorem 10.1]. There is an algebra isomorphism S : % → E+ and an anti-
isomorphism Sop = Φ ◦ S : % → Φ(E+), given on the generators by S(*8) = 41 [−F31,8] and
Sop (*8) = 41 [−F38,1].

To be clear, on monomials in m variables, representing elements of tensor degree m in S, the maps
in Proposition 3.3.1 are given by

S(*81
1 · · · *8'$ ) = 41 [−F31,81 ] · · · 41 [−F31,8' ] (41)

Sop (*81
1 · · · *8'$ ) = 41 [−F38' ,1] · · · 41 [−F381 ,1] . (42)

Later, we will need the following formula for the action of S(O(*)) on Λ(3).

Proposition 3.3.2 [2, Proposition 3.5.2]. Let O(*) = O(*1, . . . , *%) be a Laurent polynomial representing
an element of tensor degree l in S, and let D = S(O(*)) ∈ E+ be its image under the map in equation (41).
With E acting on Λ as in Proposition 3.2.1, we have

7(D · 1) (-1, . . . , -%) = H%
;,< (O(-))pol. (43)

4. Schiffmann algebra reformulation of the symmetric function side
4.1. Distinguished elements "b and #a

Negut [19] defined a family of distinguished elements "b ∈ E+, indexed by b ∈ Z% , which in the
case ) = 1 reduce to the elements in Proposition 3.2.3(i). Here, a remarkable symmetry between these
elements and their images #a under the anti-involution Φ will play a crucial role. After defining the
Negut elements, we derive this symmetry in Proposition 4.3.3 with the help of a commutator formula
of Negut [20].

Definition 4.1.1 (see also [2, §3.6]). Given b = (K1, . . . , K%) ∈ Z% , set

O(*) =
*71

1 · · · *7!%∏%−1
,=1 (1 − + , *,/*,+1)

, (44)

and let T(*) = T(*1, . . . , *%) be a Laurent polynomial satisfying H%
;,< (T(*)) = H%

;,< (O(*)). Such a T(*)
exists by [19, Proposition 6.1] and represents a well-defined element of the shuffle algebra S. The Negut
element "b and the transposed Negut element #a, where a = (K% , . . . , K1) is the reversed sequence of
indices, are defined by

"b = "71 ,...,7! = S(T(*)) ∈ E+ (45)

#a = #7! ,...,71 = Φ("b) = Sop (T(*)) ∈ Φ(E+). (46)

We should point out that, strictly speaking, the Negut elements in the case ) = 1 are defined to
be elements "8 = 41 [−F31,8] and #8 = 41 [−F38,1] of E , while in Definition 3.2.2, we used the
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notation "8 and #8 for operators on Λ. However, by Proposition 3.2.3, these Negut elements act as the
operators with the same name, so no confusion should ensue.

Later, we will use the following product formulas, which are immediate from Definition 4.1.1.

"71 ,...,7! "7!+1 ,...,7# = "71 ,...,7# − + , "71 ,...,7!+1,7!+1−1,...,7# , (47)

#8# ,...,8!+1 #8! ,...,81 = #8# ,...,81 − + , #8# ,...,8!+1−1,8!+1,...,81 . (48)

As noted in §3.1.5, the internal action relations determine the action of Λk (30,1) on Φ(E+). Using
the anti-isomorphism between Φ(E+) and the shuffle algebra, we can make this more explicit.

Lemma 4.1.2. Let O(*) = O(*1, . . . , *#) be a Laurent polynomial representing an element of tensor
degree n in S. Then

(Ad = (31,0)) Sop (O(*)) = Sop ((7 = ) (*1, . . . , *#) · O(*)
)
. (49)

As a particular consequence, we have

(Ad = (31,0))#8# ,...,81 = Sop

(
(7 = ) (*1, . . . , *#) · *81

1 · · · *8##∏#−1
,=1 (1 − + , *,/*,+1)

)
. (50)

Proof. This follows immediately from the rule in §3.1.5 for Ad = acting on a product. !

4.2. Commutator identity
We use a formula for the commutator of elements "8 and "b and a similar identity for #8 and #b. This
commutation relation was proved geometrically by Negut in [20], but to keep things self-contained, we
provide an elementary algebraic proof. It is convenient to express the formula using the notation

7∑
,=8

# =, =




∑7
,=8 =, for < ≤ K + 1

−∑8−1
,=7+1 =, for < ≥ K + 1.

(51)

As a mnemonic device, note that both cases can be interpreted as
∑∞
,=8 =, −

∑∞
,=7+1 =, .

Proposition 4.2.1 [20, Proposition 4.7]. For any < ∈ Z and b = (K1, . . . , K%) ∈ Z% , we have

["8,"71 ,72 ,...,7! ] = −F
%∑
,=1

7$∑
)=8+1

#"71 ,...,7$−1 ,) ,8+7$−) ,7$+1 ,...,7! (52)

[#7! ,...,72 ,71 , #8] = −F
%∑
,=1

7$∑
)=8+1

##7! ,...,7$+1 ,8+7$−) ,) ,7$−1 ,...,71 . (53)

We will need the following lemma for the proof. The notation Ω(3) is defined in equation (19). Since
plethystic substitution into Ω(3) is characterized by

Ω[<1 + <2 + · · · − K1 − K2 − · · · ] =
∏
, (1 − K,)∏
, (1 − <,)

, (54)

we have

Ω[F*] = (1 − + *) (1 − , *)
(1 − *) (1 − + , *) and Ω[−F*] = (1 − *) (1 − + , *)

(1 − + *) (1 − , *) . (55)
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Lemma 4.2.2. For any = (*) = = (*1, . . . , *$) antisymmetric in *, and *,+1, we have

H$
;,<

(
Ω[F *,/*,+1] = (*)

)
= 0 . (56)

Proof. The definition of H$
;,< and equation (55) imply that

H$
;,<

(
Ω[F *,/*,+1] = (*)

)
=

∑
: ∈9'

P
7888
9
= (*)

∏
.≠)

1
1 − * ./*)

∏
.<)

( . ,))≠(,,,+1)

Ω[−F * ./*) ]
:;;;
<
, (57)

which vanishes since = (*) is antisymmetric in *, and *,+1. !

Proof of Proposition 4.2.1. Identity (53) for [#7! ,...,71 , #8] follows from equation (52) by applying the
antihomomorphism Φ, so we only prove equation (52), which can be written

"8 "b − "b "8 + F
%∑
,=1

7$∑
)=8+1

#"71 ,...,7$−1 ,) ,8+7$−) ,7$+1 ,...,7! = 0. (58)

Using Definition 4.1.1 and the isomorphism S : % → E+, we can prove equation (58) by showing that
a rational function representing the left-hand side is in the kernel of the symmetrization operator H%+1

;,< .
For this, we can work directly with the rational functions O(*) in equation (44); there is no need to
replace them explicitly with Laurent polynomials having the same symmetrization.

Let O(*) be the function in equation (44) for "b, and set

O( *̂,) = O(*1, . . . , *,−1, *,+1, . . . , *%+1) =
*71

1 · · · *7$−1
,−1 *7$,+1 · · · *

7!
%+1

(1 − + , *,−1/*,+1)
∏

1≤ .≤%
.≠,,,−1

(1 − + , * ./* .+1)
. (59)

To prove equation (58), we want to show

H%+1
;,<

(
*81 O( *̂1) − O( ˆ*%+1)*8%+1 + F

%∑
,=1

7$∑
)=8+1

#*71
1 · · · *7$−1

,−1 *), *
8+7$−)
,+1 *7$+1

,+2 · · · *7!%+1∏%
.=1 (1 − + , * ./* .+1)

)
= 0 . (60)

Since *8, O( *̂,) − O( *̂,+1)*8,+1 is antisymmetric in *, and *,+1, Lemma 4.2.2 implies

%∑
,=1

H%+1
;,<

(
Ω[F *,/*,+1] (*8, O( *̂,) − O( *̂,+1)*8,+1)

)
= 0. (61)

The first formula in equation (55) is algebraically the same as

Ω[F *] = 1 − F

(1 − *−1) (1 − + , *) .

After substituting this into equation (61), the linearity of H%+1
;,< gives

H%+1
;,<

( %∑
,=1

(
*8, O( *̂,) − O( ˆ*,+1)*8,+1 − F

*8, O( *̂,) − O( ˆ*,+1)*8,+1
(1 − *,+1/*,) (1 − + , *,/*,+1)

))
= 0. (62)
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The terms *8, O( *̂,) − O( ˆ*,+1)*8,+1 telescope, reducing this to

H%+1
;,<

(
*81 O( *̂1) − O( ˆ*%+1)*8%+1 − F

%∑
,=1

*8, O( *̂,) − O( ˆ*,+1)*8,+1
(1 − *,+1/*,) (1 − + , *,/*,+1)

)
= 0. (63)

If we use the convention *0 = 0 and *%+2 = ∞, collecting terms in *8, O( *̂,) and some further algebra
manipulations give

%∑
,=1

*8, O( *̂,) − O( ˆ*,+1)*8,+1
(1 − =$+1

=$
) (1 − + , =$=$+1

) =
%+1∑
,=1

[
1

(1 − =$+1
=$

) (1 − + , =$=$+1
) −

1
(1 − =$

=$−1
) (1 − + , =$−1

=$
)

]
*8, O( *̂,)

=
%+1∑
,=1

*8, O( *̂,) (1 − + , =$−1
=$+1

)
(1 − + , =$−1

=$
) (1 − + , =$=$+1

)
( 1
1 − =$+1

=$

− 1
1 − =$

=$−1

)

=
%+1∑
,=1

*8, O( *̂,) (1 − + , =$−1
=$+1

)
(1 − + , =$−1

=$
) (1 − + , =$=$+1

) −
*8,+1O( ˆ*,+1) (1 − + , =$=$+2

)
(1 − + , =$=$+1

) (1 − + , =$+1
=$+2

)
1 − =$+1

=$

.

Expanding the definition (59) of O( *̂,) for each i yields

*8, O( *̂,) (1 − + , *,−1/*,+1)
(1 − + , *,−1/*,) (1 − + , *,/*,+1)

=
*71

1 · · · *7$−1
,−1 *8, *

7$
,+1 · · · *

7!
%+1∏%

.=1 (1 − + , * ./* .+1)

so that

%∑
,=1

*8, O( *̂,) − O( ˆ*,+1)*8,+1
(1 − *,+1/*,) (1 − + , *,/*,+1)

=

∑%
,=1 *

71
1 · · · *7$−1

,−1 ·
*8, *

7$
,+1 − *7$, *8,+1

1 − *,+1/*,
· *7$+1
,+2 · · · *7!%+1∏%

.=1 (1 − + , * ./* .+1)

=
−∑%

,=1 *
71
1 · · · *7$−1

,−1 ·
( 7$∑
)=8+1

#*), *
8+7$−)
,+1

)
· *7$+1
,+2 · · · *7!%+1∏%

.=1 (1 − + , * ./* .+1)
.

Identity (60) follows by substituting this back into equation (63). !

4.3. Symmetry identity for "b and #a

Next, we will prove an identity between certain instances of the Negut elements "b ∈ E+ and transposed
Negut elements #a ∈ Φ(E+). Before stating the identity, we need to describe how the indices a and b
will correspond.

Definition 4.3.1. A south-east lattice path U from (0, &) to (5, 0), for positive integers5, &, is admissible
if it starts with a south step and ends with an east step; that is, U has a step from (0, &) to (0, & − 1) and
one from (5−1, 0) to (5, 0). Define b(U) = (K1, . . . , K$) by taking K, = (vertical run of U at - = 0−1)
for 0 = 1, . . . ,5 and a(U) = (<#, . . . , <1) with < . = (horizontal run of U at L = 1 − 1) for 1 = 1, . . . , &.
Set "> = "b(>) and #> = #a(>) .

Note that, if U∗ is the transpose of an admissible path U with b(U) = (K1, . . . , K$) and a(U) =
(<#, . . . , <1), as above, then a(U∗) = (K$, . . . , K1) and b(U∗) = (<1, . . . , <#), and #> = Φ(">∗).
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Example 4.3.2. Paths U and U∗ below are both admissible. Path U is from (0, 8) to (4, 0) with b(U) =
(2, 1, 3, 2) and a(U) = (0, 1, 1, 0, 0, 1, 0, 1), whereas U∗ is from (0, 4) to (8, 0) and has a(U∗) = (2, 3, 1, 2)
and b(U∗) = (1, 0, 1, 0, 0, 1, 1, 0).

U

U∗

Proposition 4.3.3. For every admissible path U, we have "> = #> .

Proof. Let U be an admissible path U from (0, &) to (5, 0), where 5, & are positive integers.
We first establish the case when & = 1. In this case, #> = #$ = 41 [−F3$,1] and "> = "10'−1 .

If 5 = 1, these are #1 = "1 = 41 [−F31,1]. In general, equation (24) implies #$ = 41 [−F3$,1] =
(Ad 41 (31,0))$−141 [−F31,1] = (Ad 41 (31,0))$−1"1, while equation (17) and the commutator iden-
tity (52) imply (Ad 41 (31,0))"10" = [41 (31,0), "10" ] = −(1/F) ["0,"10" ] = "10"+1 , and therefore
(Ad 41 (31,0))$−1"1 = "10'−1 .

Using the involution Φ, we can deduce the 5 = 1 case from the & = 1 case:

"> = "# = Φ(##) = Φ("1,0#−1 ) = #0#−1 ,1 = #> . (64)

For 5, & > 1, we proceed by induction, assuming that the result holds for paths from (0, &′) to (5′, 0)
when 5′ ≤ 5 and &′ ≤ & and (5′, &′) ≠ (5, &).

For a given 5, &, there are finitely many admissible paths U, and thus a finite-dimensional space V
of linear combinations

∑
> ?>"> involving these paths. Let V ′ ⊆ V denote the subspace consisting of

linear combinations which form the left-hand side of a valid instance of the identity∑
>

?>"> =
∑
>

?>#> . (65)

Note that V ′ = V if and only if "> = #> for all the paths U in question.
We will use the induction hypothesis to construct enough instances of equation (65) to reduce each

"> modulo V ′ to a scalar multiple of ">0 , where U0 is the path with a south run from (0, &) to (0, 0)
followed by an east run to (5, 0). We will then prove one more instance of equation (65) for which the
left-hand side reduces to a nonzero scalar multiple of ">0 , showing that V ′ = V .

Suppose now that U ≠ U0. Then U contains an east step from (51 − 1, &2) to (51, &2) and a south
step from (51, &2) to (51, &2 − 1) for some 51 + 52 = 5 and &1 + &2 = &. In particular, U = T · W for
shorter admissible paths T and W, where T · W is defined to be the lattice path obtained by placing T and
W end to end; thus, T · W traces a copy of T from (0, &1 + &2) to (51, &2) and then traces a copy of W from
(51, &2) to (51 + 52, 0).

Define U′ = T ·′ W to be the admissible path obtained from T · W by replacing the east-south corner
at (51, &2) with a south-east corner at (51 − 1, &2 − 1); U′ contains a south step from (51 − 1, &2) to
(51 − 1, &2 − 1) and an east step from (51 − 1, &2 − 1) to (51, &2 − 1).

The product formulas (47) and (48) imply that the elements corresponding to the paths constructed
in this way satisfy

"?"@ = "? ·@ − + , "? ·′@ and #?#@ = #? ·@ − + , #? ·′@ . (66)
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By induction, "? = #? and "@ = #@ , so equation (66) implies "> − + , ">′ = #> − + , #>′ . In other
words, in terms of the space V ′ defined above, we have "> ≡ + , ">′ (mod V ′). Using this repeatedly,
we obtain "> ≡ (+ ,)ℎ (>)">0 (mod V ′) for every path U, where ℎ(U) is the area enclosed by the path U
and the x and y axes.

To complete the proof it suffices to establish one more identity of the form (65), for which the
congruences "> ≡ (+ ,)ℎ (>)">0 (mod V ′) reduce the left-hand side to a nonzero scalar multiple of ">0 .

We can assume by induction that "#,0'−2 = #0#−1 ,$−1 since this case has the same n and a smaller m.
Taking the commutator with 41 (31,0) on both sides gives

− 1
F

["0, "#,0'−2 ] = [41 (31,0), "#,0'−2 ] = (Ad 41 (31,0))#0#−1 ,$−1. (67)

Using equation (52) on the left-hand side and equation (50) on the right-hand side gives

#−1∑
)=0

" (#−) ,) ,0'−2) =
#−1∑
)=0

# (0#−1 ,$−1)+A#−" . (68)

Now, for 1 ≤ ' ≤ & − 1, we have " (#−) ,) ,0'−2) = "> and # (0#−1 ,$−1)+A#−" = #> for an admissible path
with ℎ(U) = ' , as displayed below.

# − )

)

$ − 1

This shows that equation (68) is an instance of equation (65). The previous congruences reduce the
left-hand side of (68) to (1 + + , + · · · + (+ ,)#−1)">0 . Since the coefficient is nonzero, we have now
established a set of instances of equation (65) whose left-hand sides span V. !

Corollary 4.3.4. For any indices <1, . . . , <% , we have

#8! ,...,82 ,81 · 1 = #8! ,...,82 ,0 · 1. (69)

Proof. To rephrase, we are to show that #8! ,...,82 ,81 ·1 does not depend on <1. The symmetry = (3$,#) ↦→
= (3$+-#,#) ofΦ(E+) sends #8! ,...,81 to #8!+- ,...,81+- . By [2, Lemma 3.4.1], the action of E onΛ satisfies
∇- = (3$,#)∇−- = = (3$+-#,#), and since ∇(1) = 1, this gives ∇-#8! ,...,82 ,81 · 1 = #8!+- ,...,82+- ,81+- · 1.
Hence, we can reduce to the case that <, > 0 for all i.

By [2, Lemma 3.6.2], we have that "71 ,...,7# ,0,...,0 · 1 is independent of the number of trailing zeroes.
In the case that K, ≥ 0 for all i and K1 > 0, this and Proposition 4.3.3 imply that #8! ,...,81 ·1 is independent
of <1, provided that <, ≥ 0 for all i and <1 > 0. However, we already saw that this suffices. !

4.4. Shuffling the symmetric function side of the extended delta conjecture
We can now give the promised reformulation of (7).
Theorem 4.4.1. For 0 ≤ ) < 5 ≤ $ , we have

(
7(ℎ% [2]!$−%−1 [2 − 1]!0−%)

)
(-1, . . . , -$) = H$

;,< (O(-))pol , (70)
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where

O(-) = -1 · · · -$∏
, (1 − + , -,/-,+1)

ℎ0−$(-1, . . . , -$)!% (-2, . . . , -$), (71)

and !% (-2, . . . , -$) = !% (-−1
2 , . . . , -−1

$ ) by our convention on the use of the overbar.

Proof. For any symmetric function f set E(3) = (7 = ) [3 + 1/F]; then equation (31) gives an identity
in Λ for every D ∈ E

= [2] D · 1 = E(31,0) D · 1 =
∑

((Ad E(1) (31,0)) D) E(2) (31,0) · 1, (72)

where E[3 + C ] =
∑
E(1) (3)E(2) (C ) in Sweedler notation and we used the general formula E D =∑((Ad E(1) )D)E(2) . Since E[3 + C ] = (7 = ) [3 + C + 1/F], and ℎ[2] · 1 = ℎ[0] · 1 for any ℎ(3), the

right-hand side of equation (72) is equal to
∑

((Ad (7 = )(1) (31,0)) D) (7 = )(2) [31,0 + 1/F] · 1

=
∑

((Ad (7 = )(1) (31,0)) D) (7 = )(2) [0] · 1 = ((Ad (7 = ) (31,0)) D) · 1. (73)

Let & = $ − ). Taking D = #8# ,...,81 and using equation (50), this gives

= [2]#8# ,...,81 · 1 = = (*#, . . . , *1)
,,, *-## · · · *-1

1 ↦→ #8#+-# ,...,82+-2 ,81+-1 · 1. (74)

By Corollary 4.3.4, the right-hand side is a function of = (*#, . . . , *2, 1) since the substitution for the
monomial *r does not depend on the exponent @1. Expressing = (*#, . . . , *2, 1) as = [*# + · · · + *2 + 1]
and then substituting = [3 − 1] for = (3) yields

= [2 − 1]#8# ,...,81 · 1 = = [*# + · · · + *2]
,,, *-## · · · *-2

2 ↦→ #8#+-# ,...,82+-2 ,81 · 1. (75)

By [19, Proposition 6.7], #0# = Φ("0# ) = Φ(!# [−F31,0]) = !# [−F30,1] (see also [2,
Proposition 3.6.1]).

Using equation (75), we therefore obtain

!)−1 [2 − 1]!# = !)−1 [*# + · · · + *2]
,,, *-## · · · *-2

2 ↦→ #-# ,...,-2 ,0 · 1

=
∑

|B |=)−1
#A( ,0 · 1 =

∑
|B |=)−1

#A( ,1 · 1 , (76)

where the sum is over subsets R ⊆ [& − 1] and XB =
∑
,∈B X, . The terms in the last sum are just #a(?) · 1

for paths T from (0, &) to (' , 0) with single east steps on any ' − 1 chosen lines L = 1 for 1 ∈ [& − 1],
and a final east step at L = 0. Denote the set of these admissible paths by P) ,#. For instance, with & = 8
and ' = 4, the path U in Example 4.3.2 corresponds to #> = #0,1,1,0,0,1,0,1.

By equation (74), applying ℎ% [2] to equation (76) gives

ℎ% [2]!)−1 [2 − 1]!# =
∑
?∈P",#

∑
r∈N#

|r |=%

#r+a(?) · 1 . (77)

This last expression is the sum of #> · 1 over admissible paths U from (0, &) to (' + ), 0), together with
a choice of ' − 1 indices 1 ∈ [& − 1] for which U has at least one east step on the line L = 1 . We can
consider these indices as distinguishing ' − 1 east-south corners in U. However, we can also distinguish
these corners by their x coordinates, that is, by a set of ' −1 indices 0 ∈ [' + )−1] for which U has at least
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one south step on the line - = 0. Setting 5 = ' + ) and using Proposition 4.3.3, this yields the identity

ℎ% [2]!$−%−1 [2 − 1]!# =
∑

s∈N': |s |=#−)
B ⊆ [2,$], |B |=%

"s+(1')−A( · 1 . (78)

Now, since ∑
s∈N': |s |=#−)
B ⊆ [2,$], |B |=%

-s+(1')−A( = -1 -2 · · · -$ℎ#−) (-1, . . . , -$)!% (-2, . . . , -$) , (79)

the definition of "b and Proposition 3.3.2 imply that

7

( ∑
s∈N': |s |=#−)
B ⊆ [2,$], |B |=%

"s+(1')−A( · 1
)
(-1, . . . , -$) = H$

;,< (O(-))pol (80)

with O(-) given by equation (71). !

Remark 4.4.2. For any b ∈ Z$, [2, Corollary 3.7.2] gives that the Schur expansion of 7("b ·1) involves
only 6* (3) with ℓ(.) ≤ 5. Hence, although Theorem 4.4.1 is a statement in m variables, it determines
7(ℎ% [2]!$−%−1 [2 − 1]!0−%) by equation (78).

5. Reformulation of the combinatorial side
5.1. Statement of the reformulation
We reformulate (14) by explicitly extracting the coefficient of *0−$. The most natural form of the
resulting expression involves a generating function $&/' for q-weighted tableaux rather than partially
labelled paths. For now, we work only with the tableau description of $&/', but in §6.2, we will see that
$&/' is a truncation of an LLT series introduced by Grojnowski and Haiman in [12].

The q-weight in our reformulation involves two auxiliary statistics: for W, Y ∈ N$, define

G (W, Y) =
∑

1≤ .<- ≤$

,,[W . , W . + Y. ] ∩ [W- , W- + Y- − 1]
,, , (81)

with [<, K] = {<, . . . , K} and [K] = [1, K], and for a vector W of length n and R ⊆ [&], define

ℎB (W) = |{(@ < 6) : @ ∈ R, 6 ∉ R, W6 = W- + 1}| , (82)

where (@ < 6) denotes a pair of positions (@ , 6) in W with 1 ≤ @ < 6 ≤ &.
Our reformulation of (14) is stated in the following theorem, proven at the end of this section.

Theorem 5.1.1. For 0 ≤ ) < 5 ≤ $ , we have

〈*0−$〉
∑
*∈D&

+∈L& ,! (*)

, |2/* |
∏

1<,≤0
1$ (*)=1$−1 (*)+1

(1 + * ,−1$ (*) ) +dinv(+)-wt+ (+)

=
∑

C ⊆ [$−1]
|C |=%

∑
D, (0,a)∈N'

|D |=0−$

, |a |+E ( (0,a) ,D)+ℎ) (a)$ ( (0,a)+(1')+D)/( (a,0)+A) ) (3; +) , (83)

where $&/' is given by Definition 5.2.1 below.
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5.2. Definition of $"/#

For Z, [ ∈ Z% such that Z . ≤ [ . for all j, define [/Z to be the tuple of single row skew shapes ([ . )/(Z . )
such that the x coordinates of the right edges of boxes a in the j-th row are the integers Z . + 1, . . . , [ . .
The boxes just outside the j-th row, adjacent to the left and right ends of the row, then have x coordinates
Z . and [ . + 1. We consider these two boxes to be adjacent to the ends of an empty row, with Z . = [ . ,
as well.

Given a tuple of skew row shapes [/Z, three boxes (\, ],P) form a P0-triple when box v is in row r
of [/Z, boxes u and w are in or adjacent to a row j with 1 > @ and the x-coordinates 0F , 0G , 0: of these
boxes satisfy 0F = 0G and 0: = 0G + 1. These triples are a special case of ^-triples defined for any ^ ∈ %%
in [2]. We denote the number of P0-triples in [/Z by ℎ:0 ([/Z). The reader can verify that

ℎ:0 ([/Z) =
∑
-< .

,,[Z- + 1, [- ] ∩ [Z . , [ . ]
,, . (84)

For a totally ordered alphabet A, a row strict tableau of shape [/Z is a map % : [/Z → A that is
strictly increasing on each row. The set of these maps is denoted by RST([/Z,A). For convenience,
given Z, [ ∈ Z% with some Z . > [ . , we set RST([/Z,A) = ∅.

A P0-triple (\, ],P) is an increasing P0-triple in S if %(\) < %(]) < %(P), with the convention that
%(\) = −∞ if u is adjacent to the left end of a row of [/Z and %(P) = ∞ if w is adjacent to the right
end of a row. Let ℎ:0 (%) be the number of increasing P0-triples in S.

For % ∈ RST([/Z,N), define

-wt+ (9) =
∏

F∈&/', 9 (F)≠0
-9 (F) and -wt(9) =

∏
F∈&/'

-9 (F) . (85)

Definition 5.2.1. For Z, [ ∈ N$, define

$&/' = $&/' (3; +) =
∑

9∈RST(&/',Z>0)
+ℎ*0 (9)-wt(9) . (86)

Note that, if Z . > [ . for any j, then $&/' = 0 by our convention that RST([/Z,A) = ∅.

Remark 5.2.2. It is shown in [2, Proposition 4.5.2] and its proof that, for Z, [ ∈ N$, 7$&/' is a
symmetric function whose Schur expansion involves only 6* where ℓ(.) ≤ 5.

5.3. Transforming the combinatorial side
To prove equation (83), we first associate each Dyck path with a tuple of row shapes recording vertical
runs.

Definition 5.3.1. The LLT data associated to a path . ∈ D0 are

[ = (1, ?2 (.) + 1, . . . , ?0 (.) + 1) and Z = (?2 (.), . . . , ?0 (.), 0) ,

where ?, (.) counts lattice squares between . and the line segment connecting (0, $) to ($ , 0) in
column i, numbered from right to left, as in Lemma 2.2.4.

Figure 2 shows the LLT data [, Z associated to the path . in Figure 1. Note that [, (resp. Z,) is the
furthest (resp. closest) distance from the diagonal to the path . on the line - = $ − 0 so that [, − Z, is
the number of south steps of . on that line.

This association allows us to relate q-weighted sums over partial labellings to the $&/'.
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% =

−∞ ∞1 3 4
−∞ ∞0
−∞ ∞

−∞ ∞3 5
−∞ ∞

−∞ ∞
−∞ ∞2
−∞ ∞1
−∞ ∞0 6

−∞ ∞4
−∞ ∞

Figure 2. For [ = (12211123233), Z = (11000121220), there are ℎ:0 ([/Z) = 29 P0-triples in [/Z.
The row strict tableau S of shape [/Z has ℎ:0 (%) = 15 increasing P0-triples, -wt+ (9) = -2

1-2-2
3-

2
4-5-6,

and -wt(9) = -2
0-

2
1-2-2

3-
2
4-5-6.

Lemma 5.3.2. For . ∈ D0 and its associated LLT data Z, [, we have
∑

+∈L& ,! (*)
+dinv(+)-wt+ (+) =

∑
B ⊆ [0−1]

|B |=%

+ℎ( (')$&/('+A( ) (3; +) . (87)

Proof. There is a natural weight-preserving bijection mapping A ∈ L0 (.) to % ∈ RST([/Z,N), where
the labels of column - = 0 of P, read north to south, are placed into row $ − 0 of [/Z, west to east. See
Figures 1 and 2. Moreover, dinv(A) = ℎ:0 (%). To see this, let Â be the same labelling as P but with the
ordering on letters taken to be 0 > 1 > 2 · · · . It is proven in [2, Proposition 6.1.1] that dinv1(Â) = ℎ:0 (%),
where dinv1(Â) was introduced in [13] and matches dinv(A) as discussed in Remark 2.2.3. The bijection
restricts to a bijection from L0 ,% (.) to the subset of tableaux % ∈ RST([/Z,N) with exactly l 0’s, none
in row N. This gives

∑
+∈L& ,! (*)

+dinv(+)-wt+ (+) =
∑

B ⊆ [0−1]
|B |=%

∑
9∈RST(&/',N)

0 in rows ,∈B

+ℎ*0 (9)-wt+ (9) . (88)

The claim then follows from Definition 5.2.1 and the following Lemma. !

Lemma 5.3.3. For Z, [ ∈ N0 and % ∈ RST([/Z,N), let R ⊆ [$] be the rows of S containing a zero
and let T be the tableau in RST([/(Z + XB ),Z>0) obtained by deleting all zeros from S. Then

ℎ:0 (Q) = ℎ:0 (%) − ℎB (Z) , (89)

where ℎB (Z) is defined in equation (82).

Proof. Consider an increasing P0-triple (\, ],P) of S; the entries satisfy %(\) < %(]) < %(P), v lies
in some row r and both u and w lie in a row 1 > @ . When @ ∉ R, either 1 ∉ R so that (\, ],P) is an
increasing P0-triple of T with the same entries as S, or 1 ∈ R and %(\) = 0 changes to Q (\) = −∞ where
still (\, ],P) is an increasing P0-triple of T. However, if @ ∈ R, %(]) = 0 changes to Q (]) = −∞ and
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thus (\, ],P) is not an increasing P0-triple of T. Note the increasing condition implies that this happens
only when 1 ∉ R and Z- = Z . − 1 since %(\) < 0 < %(P). Thus (89) follows. !

Definition 5.3.4. Given a = (<1, . . . , <$−1) ∈ N$−1 and Y = (Y1, . . . , Y$) ∈ N$, we define two
sequences [aD and ZaD of length |Y | + 5 as follows.

The sequence [aD is the concatenation of sequences (1, 2, . . . , Y1+1) and (<,−1+1, <,−1+2, . . . , <,−1+
Y, + 1) for 0 = 2, . . . ,5. The sequence ZaD is the same as [aD except in the positions corresponding to
the ends of the concatenated subsequences. In these positions, we change the entries Y1 + 1, <1 + Y2 +
1, . . . , <$−1+Y$+1 in [aD to <1, <2, . . . , <$−1, 0. Equivalently, ZaD is the same as the sequence obtained
by subtracting 1 from all entries of [aD and shifting one place to the left, deleting the first entry and
adding a zero at the end.

Example 5.3.5. For a = (130012) and Y = (2311022),

(0, a) + (1$) + Y = ( 3 5 5 2 1 4 5)
[aD = (1 2 3 2 3 4 5 4 5 1 2 1 2 3 4 3 4 5)
ZaD = (1 2 1 2 3 4 3 4 0 1 0 1 2 3 2 3 4 0)

(a, 0) = ( 1 3 0 0 1 2 0)
. (90)

The wider spaces show the division into blocks of size Y, + 1. The last entry of ZaD in each block is <, ,
and the next block in ZaD and [aD starts with <, + 1.

Lemma 5.3.6. For 0 ≤ ) < 5 ≤ $ ,

〈*0−$〉
∑
*∈D&

+∈L& ,! (*)

, |2/* |
∏

1<,≤0
1$ (*)=1$−1 (*)+1

(1 + * ,−1$ (*) ) +dinv(+)-wt+ (+)

=
∑

B ⊆ [0−1]
|B |=%

∑
D, (0,a) ∈N'

|D |=0−$

, |a |+ℎ( ('a+ )$&a+/('a++A( ) (3; +) . (91)

Proof. Use Lemma 5.3.2 to rewrite the left-hand side of equation (91) as

〈*0−$〉
∑
*∈D&

, |2/* |
∏

1<,≤0
1$ (*)=1$−1 (*)+1

(1 + * ,−1$ (*) )
∑

B ⊆ [0−1]
|B |=%

+ℎ( (')$&/('+A( ) , (92)

where [ = (10 ) + (0, ?2 (.), . . . , ?0 (.)), Z = (?2 (.), . . . , ?0 (.), 0) are the LLT data for .. Note that a
tuple c = (?1, ?2, . . . , ?0 ) ∈ N0 is the sequence of column heights ?, (.) of a path . ∈ D0 if and only
if ?6 ≤ ?6−1 + 1 for all 6 > 1 and ?1 = 0; in this case, |8/. | = |c|. Replace D0 in equation (92) by these
tuples, and expand the product to obtain

〈*0−$〉
∑

H⊆ [0 ]\{1}

∑
1$≤1$−1+1 ∀,
1$=1$−1+1 ∀,∈H

, |c |−
∑

$∈, 1$ * |H |
∑

B ⊆ [0−1]
|B |=%

+ℎ( (') $&/('+A( )

=
∑

{1}⊆C ⊆ [0 ]
|C |=$

∑
1 %=1 %−1+1 ∀ .∉C

,
∑

%∈) 1 %
∑

B ⊆ [0−1]
|B |=%

+ℎ( (') $&/('+A( ) , (93)

where the equality comes from reindexing with : = [$] \ ; and noting that we can drop the condition
? . ≤ ? .−1 + 1 ∀ 1 ∈ : because $&/('+A( ) = 0 if any (Z + XB ) . ≥ Z . > [ . .

If we replace the sum over J by a sum over {Y ∈ N$ : |Y | = $ − 5} using : = {1, Y1 + 2, Y1 + Y2 +
3, . . . , Y1 + · · · + Y$−1 +5}, then, for fixed J (or fixed Y), the sum over c can be replaced by a sum over

c = (0, 1, 2, . . . , Y1, <1, <1 + 1, . . . , <1 + Y2, <2, . . . , <$−1 + Y$) (94)
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((0, a) + (1$) + Y)/(a, 0)

-

- − 1
.
.
.

.

[aD/ZaD

-↑

I

(- − 1)↑
.
.
.

.↑

Y-

Figure 3. Comparing the tuples of rows [aD/ZaD and ((0, a) + (1$) + Y)/(a, 0) for a ∈ N$−1 and
Y ∈ N$. Here, < . = 2, <-−1 = 0, <- = 3 and Y- = 5.

for a ranging over N$−1. Note that
∑
.∈C ? . = |a|. With this encoding of c, we have [/Z = [aD/ZaD

in the notation of Definition 5.3.4, and the quantity in equation (93) becomes the right-hand side of
equation (91). !

We make a final adjustment to the right-hand side of equation (91). This sum runs over tuples
[aD/(ZaD + XB ) with |Y | necessarily empty rows which can be removed at the cost of a q factor. We
introduce some notation depending on a given a ∈ N$−1, Y = (Y1, . . . , Y$) ∈ N$, and the associated
[aD/ZaD from Definition 5.3.4. First, we set 1↑ = 1 +∑

J≤ . YJ for 1 ∈ [5], so the entry of [aD in position
1↑ is < .−1 + Y. + 1, or Y1 + 1 if 1 = 1, and the entry of ZaD in the same position is < . or 0 if 1 = 5. For
a subset : ⊆ [5], we set :↑ = { 1↑ : 1 ∈ :}. In positions 0 ∉ [5]↑, the sequences [aD and ZaD agree,
so row i is empty in [aD/ZaD . The tuple of row shapes obtained by deleting these empty rows from
[aD/ZaD is ((0, a) + (1$) + Y)/(a, 0), where row 1 ∈ [5] corresponds to row 1↑ of [aD/ZaD ; note that
rows ( 1 − 1)↑ and 1↑ are separated by Y. empty rows. See Figure 3.

Lemma 5.3.7. For : ⊆ [5], a ∈ N$−1 and Y ∈ N$, let R = :↑. Then

$&a+/('a++A( ) = +E ( (0,a) ,D)−ℎ
′
) (a,D)$ ( (0,a)+(1')+D)/( (a,0)+A) ) , (95)

where ℎ′C (a, Y) =
,,{( 1 < @) : 1 ∈ :, @ ∈ [5], < . ∈ [<-−1, <-−1 + Y- − 1]}

,, with <0 = 0, and G ((0, a), Y)
is defined by equation (81).

Proof. Set <0 = 0. We can assume < . + (XC ) . ≤ < .−1 + Y. + 1 for all 1 ∈ [5] since otherwise both sides
of equation (95) vanish by Definition 5.2.1. Hence, each side is a q-generating function for row strict
tableaux on tuples of single row skew shapes; rows of [aD/(ZaD + XB ) on the left-hand side differ from
the right-hand side only by the removal of empty rows @ ∉ [5]↑. Thus, the two sides agree up to a factor
+E , where d counts P0-triples of [aD/(ZaD + XB ) involving one of these empty rows.

To evaluate d, consider such an empty row (K)/(K), coming from K ∈ {<-−1 + 1, . . . , <-−1 + Y- } for
some @ ∈ [5]. The adjacent boxes on the left and right of this empty row form a P0-triple, increasing in
every tableau, with one box in each nonempty lower row 1↑, of the form (< .−1 + Y. + 1)/(< . + (XC ) . ),
such that K ∈ [< . + (XC ) . + 1, < .−1 + Y. + 1]. Hence,

G =
∑

1≤ .<- ≤$

,,[< . + (XC ) . , < .−1 + Y. ] ∩ [<-−1, <-−1 + Y- − 1]
,,

=
∑

1≤ .<- ≤$

,,[< . , < .−1 + Y. ] ∩ [<-−1, <-−1 + Y- − 1]
,, − ∑

1≤ .<- ≤$
.∈C

,,{< . } ∩ [<-−1, <-−1 + Y- − 1]
,,.
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The sum after the minus sign is ℎ′C (a, Y). To prove that the remaining sum is G ((0, a), Y), first rewrite
it as ∑

1≤ .<- ≤$

(,,[< . ,∞) ∩ [<-−1, <-−1 + Y- − 1]
,, − ,,[< .−1 + Y. + 1,∞) ∩ [<-−1, <-−1 + Y- − 1]

,,) , (96)

using the fact that < . ≤ < .−1 + Y. + 1 by assumption. Next, observe that since <0 = 0 ≤ <-−1,
,,[<-−1,∞) ∩ [<-−1, <-−1 + Y- − 1]

,, = ,,[<0,∞) ∩ [<-−1, <-−1 + Y- − 1]
,,.

Adding
∑

1< .<-
,,[< .−1,∞) ∩ [<-−1, <-−1 + Y- − 1]

,, to both sides, it follows that
∑

1≤ .<-

,,[< . ,∞) ∩ [<-−1, <-−1 + Y- − 1]
,, = ∑

1≤ .<-

,,[< .−1,∞) ∩ [<-−1, <-−1 + Y- − 1]
,,.

Hence, formula (96) is unchanged upon replacing [< . ,∞) with [< .−1,∞) and is thus equal to
∑

1≤ .<- ≤$

,,[< .−1, < .−1 + Y. ] ∩ [<-−1, <-−1 + Y- − 1]
,, = G ((0, a), Y). !

Proof of Theorem 5.1.1. Consider a summand , |a |+ℎ( ('a+ )$&a+/('a++A( ) on the right-hand side of iden-
tity (91) for R ⊆ [$ − 1], a ∈ N$−1, Y ∈ N$. It vanishes unless R = :↑ for some : ⊆ [5 − 1] since
$&/('+A( ) = 0 when (Z + XB ), > [, for some index i. For R = :↑, we can use Lemma 5.3.7 to replace
this summand with , |a |+E ( (0,a) ,D)+ℎ( ('a+ )−ℎ′) (a,D)$ ( (0,a)+(1')+D)/( (a,0)+A) ) .

It now suffices to prove that, for Z = ZaD ,

ℎB (Z) = ℎ′C (a, Y) + ℎC (a) . (97)

We recall that $ = 5↑ and note that [$] \ R = ([$] \ [5]↑) 7 ( [5]↑ \ R) = ([$] \ [5]↑) 7 ( [5] \ :)↑.
Hence, ℎB (Z) =

,,{(- < L) : - ∈ R, L ∈ [$] \ R, ZI = ZJ + 1}
,, = |%1 | + |%2 | for

%1 = {(- < L) : - ∈ :↑, L ∈ [$] \ [5]↑, ZI = ZJ + 1} ,
%2 = {(- < L) : - ∈ :↑, L ∈ ([5] \ :)↑, ZI = ZJ + 1} .

Since Z$↑ = 0 implies (- < 5↑) ∉ %2 for all - < 5↑, we use that <F = ZF↑ for every \ ∈ [5 − 1] to see
that

ℎC (a) =
,,%2

,, = ,,{( 1 < @) : 1 ∈ :, @ ∈ [5 − 1] \ :, <- = < . + 1}
,, . (98)

Furthermore, {( 1 < @) : 1 ∈ :, @ ∈ [5], <-−1 + 1 ≤ < . + 1 ≤ <-−1 + Y- } and %1 are equinumerous, as we
can see by letting a pair ( 1 < @) in the first set correspond to the pair ( 1↑ < L) in %1, where y is the unique
row index in the range (@ − 1)↑ < L < @↑ such that ZI = Z .↑ + 1 = < . + 1, as illustrated in Figure 3. !

6. Stable unstraightened extended delta theorem
6.1. Overview
By Theorems 4.4.1 and 5.1.1, the extended delta conjecture is equivalent to

H$
;

(∏
,+1< .≤$(1 − + , -,/- . )∏
,< .≤$(1 − , -,/- . )

-1 · · · -$ℎ0−$(-1, . . . , -$)!% (-2, . . . , -$)
)

pol

=
∑

C ⊆ [$−1]
|C |=%

∑
(0,a) ,D∈N'

|D |=0−$

, |a |+E ( (0,a) ,D)+ℎ) (a)
(
7$&/'

)
(-1, . . . , -$; +) , (99)
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where [ = (0, a) + (1$) + Y, Z = (a, 0) + XC and
(
7$&/'

)
(-1, . . . , -$; +) is 7$&/' (3; +) evaluated in

m variables.
Although this is an identity in only m variables, it does amount to the extended delta conjecture by

Remarks 4.4.2 and 5.2.2: Both 7(ℎ% [2]!$−%−1 [2 − 1]!0−%) and 7$&/' (3; +) for the Z, [ arising in
equation (99) are linear combinations of Schur functions 6* with ℓ(.) ≤ 5.

By Proposition 6.2.2 (below, proven in [2]), the functions 7$&/' on the right-hand side of equation
(99) are the polynomial parts of the ‘LLT series’ introduced in [12], making each side of equation
(99) the polynomial part of an infinite series of GL$ characters. We then prove equation (99) as a
consequence of a stronger identity between these infinite series.

Hereafter, we use x to abbreviate the alphabet -1, . . . , -$.

6.2. LLT series
We will work with the (twisted) nonsymmetric Hall–Littlewood polynomials as in [2]. For a GL$ weight
. ∈ Z$ and ^ ∈ %$, the twisted nonsymmetric Hall–Littlewood polynomial #K* (-; +) is an element of
Z[+±1] [-±1

1 , . . . , -±1
$ ] defined using an action of the Hecke algebra on this ring; we refer the reader to

[2, §4.3] for the precise definition, citing properties as needed. We also have their variants

BK* (-; +) = #K:0
−* (-; +) , (100)

recalling that = (-1, . . . , -$; +) = = (-−1
1 , . . . , -−1

$ ; +−1).
For any weights Z, [ ∈ Z$ and a permutation ^ ∈ %$, the LLT series LK&/' (-; +) =

LK&/' (-1, . . . , -$; +) is defined in [2, §4.4] by

〈N*〉LK
−1

&/' (-; +−1) = 〈#K& 〉 N* · #K' . (101)

Alternatively, [2, Proposition 4.4.2] gives the following expression in terms of the Hall–Littlewood
symmetrization operator in equation (38):

LK&/' (-; +) = H$
; (P0 (BK

−1

& (-; +)#K−1
' (-; +))) , (102)

where P0 denotes the permutation of maximum length here and after. We will only need the LLT series
for ^ = P0 and ^ = 0G, although most of what follows can be generalized to any ^.

In addition to the above formulas, we have the following combinatorial expressions for the polynomial
truncations of LLT series as tableau generating functions with q weights that count triples. As usual, a
semistandard tableau on a tuple of skew row shapes T = [/Z is a map Q : T → [5] which is weakly
increasing on rows. Let SSYT(T) denote the set of these, and define -wt(L ) =

∏
7∈? -L (7) .

Proposition 6.2.1 [2, Remark 4.5.5 and Corollary 4.5.7]. If Z, ≤ [, for all i, then

L:0
&/' (-; +)pol =

∑
L ∈SSYT(&/')

+ℎ
′
*0 (L )-wt(L ) , (103)

where ℎ′:0 (Q) is the number of P0-triples (\, ],P) of [/Z such that Q (\) ≤ Q (]) ≤ Q (P).
Proposition 6.2.2 [2, Proposition 4.5.2]. For any Z, [ ∈ Z$,

L:0
&/' (-; +)pol =

(
7$&/'

)
(-; +) . (104)

6.3. Extended delta theorem
We now give several lemmas on nonsymmetric Hall–Littlewood polynomials, then conclude by using
the Cauchy formula for these polynomials to prove Theorem 6.3.6, below, yielding the stronger series
identity that implies equation (99).
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Lemma 6.3.1. For a ∈ N$−1 and P0 ∈ %$ and P̃0 ∈ %$−1 the permutations of maximum length, we
have

#:0
(a,0) (-1, . . . , -$; +) = # :̃0

a (-1, . . . , -$−1; +) (105)

B:0
(0,a) (-1, . . . , -$; +) = B :̃0

a (-2, . . . , -$; +) . (106)

Proof. By [2, Lemma 4.3.4], we have #:0
(a,0) (-1, . . . , -$; +) = # :̃0

a (-1, . . . , -$−1; +)# ,E(0) (-$; +) and
# ,E(0,−a) (-1, . . . , -$; +) = # ,E(0) (-1; +)# ,E−a(-2, . . . , -$; +). The claim then follows from the definition
BKa = #:0K

−a and noting that # ,E(0) (-$; +) = 1 = B,E(0) (-1; +). !

Inverting all variables and specializing ^ = P0 in [2, Lemma 4.5.1] yields the following lemma.

Lemma 6.3.2. For ) ≤ 5, a ∈ Z$, we have

!% (-) #:0
a (-; +) =

∑
B ⊆ [$]: |B |=%

+ℎ( (a)#:0
a+A( (-; +) , (107)

where ℎB (a) =
,,{(0 < 1) | < . = <, + 1, 0 ∈ R, 1 ∉ R}

,,, as defined in equation (82).

Lemma 6.3.3. For every . ∈ Z$ and ^ ∈ %$, we have

BK* (-; +) = P0#
:0K
:0*

(-; +−1). (108)

Proof. The desired identity follows from

P0#
K
* (-−1

1 , . . . , -−1
$ ; +) = #:0K:0

−:0*
(-; +) (109)

by applying P0 to both sides; substituting ^ ↦→ ^P0, . ↦→ −. and + ↦→ +−1 and using the definition
of BK* .

To prove equation (109), we use the characterization of #K* (-; +) by the recurrence [2, (77)] and initial
condition #K* = -* for . dominant. The change of variables -/ ↦→ -−:0 (/) replaces the Hecke algebra
operator Q, = Q6$ in the recurrence with Q:06$:0 , giving a modified recurrence satisfied by the left-hand
side of (109). It is straightforward to verify that the right-hand side of equation (109) satisfies the same
modified recurrence. Since both sides reduce to -−:0 (*) for . dominant, equation (109) holds. !

Lemma 6.3.4. Given Z, [ ∈ Z$ and a symmetric Laurent polynomial = (-1, . . . , -$), we have, for any
^ ∈ %$,

〈#:0K:0
:0&

(-; +−1)〉 = (-) · #:0K:0
:0' (-; +−1) = 〈BK−' (-; +)〉 = (-) · BK−& (-; +). (110)

Proof. In fact, we will show that

〈#:0K:0
:0&

(-; +−1)〉 = (-) · #:0K:0
:0' (-; +−1) = 〈BK−' (-; +)〉 P0 ( = (-)) · BK−& (-; +), (111)

even if we do not assume that = (-) is symmetric. By Lemma 6.3.3, the right-hand side of equation (111)
is equal to

〈#:0K
−:0' (-; +−1)〉 = (-) · #:0K

−:0&
(-; +−1). (112)

By [2, Proposition 4.3.2], the functions #K* (-; +) and #K:0
−* (-; +) are dual bases with respect to to the

inner product 〈−,−〉; defined there. Moreover, it is immediate from the construction of the inner product
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that multiplication by any = (-) is self-adjoint. This gives

〈 = (-)#:0K:0
:0' (-; +−1), #:0K

−:0&
(-; +−1)〉;−1 = 〈#:0K:0

:0' (-; +−1), = (-)#:0K
−:0&

(-; +−1)〉;−1 , (113)

in which the left-hand side is equal to the left-hand side of equation (111), and the right-hand side is
equal to equation (112). !

Lemma 6.3.5. For P0 the maximum length permutation in %$ and W ∈ N$, we have

ℎ% (-)B:0
@ (-; +) =

∑
D∈N'

|D |=%

+E (@,D)B:0
@+D (-; +) , (114)

recalling from equation (81) that G (W, Y) = ∑
.<-

,,[W . , W . + Y. ] ∩ [W- , W- + Y- − 1]
,,.

Proof. Set Z = −W − Y and [ = −W. By equation (101) and Lemma 6.3.4 (with ^ = P0), we have

〈ℎ% (-)〉 L:0
:0 (&/') (-; +)pol = 〈#:0

:0&
(-; +−1)〉ℎ% (-)#:0

:0' (-; +−1) = 〈B:0
−' (-; +)〉ℎ% (-)B:0

−& (-; +). (115)

By specializing all but one variable in equation (103) to zero, Proposition 6.2.1 implies that the coefficient
of ℎ% in L:0

:0 (&/') (-; +)pol is +ℎ
′
*0 (L ) for T the semistandard tableau of shape P0 ([/Z) filled with a single

letter, where ℎ′:0 (Q) is the number of P0-triples of P0 ([/Z) = P0 (−W/(−W− Y)). By equation (84), this
number is G (W, Y). !

Theorem 6.3.6. For 0 ≤ ) < 5 ≤ $ and P0 ∈ %$ the maximum length permutation, we have∏
,+1< .≤$(1 − +,-,/- . )∏
,< .≤$ (1 − ,-,/- . )

-1 · · · -$ℎ0−$(-1, . . . , -$)!% (-2, . . . , -$)

=
∑

(0,a) ,D∈N'

B ⊆ [$−1]
|D |=0−$, |B |=%

, |a |+E ( (0,a) ,D)+ℎ( (a) P0
(
B:0
(0,a)+D+(1') (-1, . . . , -$; +)#:0

(a,0)+A( (-1, . . . , -$; +)
)
.

Proof. Our starting point is the Cauchy formula [2, Theorem 5.1.1] for the twisted nonsymmetric Hall–
Littlewood polynomials associated to any ˜̂ ∈ %$−1:∏

,< .<$ (1 − + , -, L . )∏
,≤ .<$(1 − , -, L . )

=
∑

a∈N'−1

, |a | # K̃a (-1, . . . , -$−1; +−1) B K̃a (L1, . . . , L$−1; +) . (116)

Take ˜̂ = P̃0 the maximum length permutation in %$−1, replace -, by -−1
, and then let L . = - .+1 to get

∏
,+1< .≤$(1 − + , - ./-,)∏
,< .≤$(1 − , - ./-,)

=
∑

a∈N'−1

, |a |B :̃0
a (-2, . . . , -$; +)# :̃0

a (-1, . . . , -$−1; +) . (117)

By equation (106) and the definition of BK ,

(-1 · · · -$)B :̃0
a (-2, . . . , -$; +) = (-1 · · · -$)B:0

(0,a) (-1, . . . , -$; +) = B:0
(0,a)+(1') (-1, . . . , -$; +)

for P0 ∈ %$. Hence,∏
,+1< .≤$(1 − + , - ./-,)∏
,< .≤$(1 − , - ./-,)

(-1 · · · -$)

=
∑

a∈N'−1

, |a |B:0
(0,a)+(1') (-1, . . . , -$; +)# :̃0

a (-1, . . . , -$−1; +) .

�����	�������������������������������������������������

������������������������

https://doi.org/10.1017/fmp.2023.3


Forum of Mathematics, Pi 27

Multiplying by ℎ0−$(-1, . . . , -$) with the help of Lemma 6.3.5 yields
∏
,+1< .≤$(1 − + , - ./-,)∏
,< .≤$(1 − , - ./-,)

(-1 · · · -$)ℎ0−$(-1, . . . , -$)

=
∑

(0,a) ,D∈N'

|D |=0−$

, |a |+E ( (0,a) ,D)B:0
@+D (-1, . . . , -$; +)# :̃0

a (-1, . . . , -$−1; +) ,

where W = (1$) + (0, a) and we have used that G (W, Y) = G ((0, a), Y) by equation (81). Now, multiply
by !% (-1, . . . , -$−1) and apply equation (107) to get

∏
,+1< .≤$(1 − + , - ./-,)∏
,< .≤$(1 − , - ./-,)

(-1 · · · -$)!% (-1, . . . , -$−1)ℎ0−$ (-1, . . . , -$)

=
∑

(0,a) ,D ∈N'

|D |=0−$

∑
|B |=%

, |a |+E ( (0,a) ,D)+ℎ( (a)B:0
@+D (-1, . . . , -$; +)# :̃0

a+A( (-1, . . . , -$−1; +) , (118)

where R ⊆ [5 − 1]. The result then follows by using equation (105) on the right-hand side and applying
P0 ∈ %$ to both sides, noting that P0 (!% (-2, . . . , -$)) = !% (-1, . . . , -$−1). !

Proof of the extended delta conjecture. It suffices to prove the reformulation in equation (99); this fol-
lows by applying H$

; and equation (102) to the identity of Theorem 6.3.6, taking the polynomial part
and using Proposition 6.2.2. !
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