Market Mechanism-Based User-in-the-Loop
Scalable Power Oversubscription for HPC Systems

Md Rajib Hossen
The University of Texas at Arlington
mdrajib.hossen @mavs.uta.edu

Abstract—Significant power consumption is one of the major
challenges for current and future high-performance computing
(HPC) systems. All the while, HPC systems generally remain
power underutilized, making them a great candidate for applying
power oversubscription to reclaim unused capacity. However, an
oversubscribed HPC system may occasionally get overloaded. In
this paper, we propose MPR (Market-based Power Reduction), a
scalable market-based approach where users actively participate
in reducing the HPC system’s power consumption to mitigate
overloads. In MPR, HPC users bid to supply, in exchange
for incentives, the resource reduction required for handling
the overloads. Using several real-world trace-based simulations,
we extensively evaluate MPR and show that, by participating
in MPR, users always receive more rewards than the cost of
performance loss. At the same time, the HPC manager enjoys
orders of magnitude more resource gain than her incentive payoff
to the users. We also demonstrate the real-world effectiveness of
MPR on a prototype system.

I. INTRODUCTION

Motivation. Advances in high-performance computing
(HPC) systems have enabled scientists to perform large-scale
computations quickly and efficiently. However, with the in-
creasing computational requirement, HPC power consumption
has also increased tremendously. The top supercomputers
currently consume power in the megawatts range [39], [53].
Massive power consumption remains a central challenge as we
move towards exascale and zettascale computing [37], [33].

Addressing the significant power consumption of HPC
systems requires the adoption of energy-efficient techniques.
Power oversubscription is a useful scheme to increase utiliza-
tion by fitting the HPC system with more computing resources
than its capacity. Power oversubscription has been widely
adopted in hyperscale data centers of the likes of Google,
Facebook, and Microsoft [36], [49], [27], [20], [32], [55],
which oversubscribes by as much as 20% [36]. Meanwhile,
HPC systems are rife with oversubscription opportunities
as these typically suffer from even greater underutilization.
Approximately 30% of the power in mid-scale HPC systems
remain underutilized [42], while in large-scale HPC systems,
about 15 — 40% of the power is never utilized [45]. This
underutilization, however, is not due to a lack of demand
but due to the HPC’s highly specialized usage. To that end,
power oversubscription can reclaim unutilized power capacity
and allow HPC expansion without additional infrastructure
investment.

Limitations of existing approaches. Power oversubscrip-
tion comes with an unwanted pitfall of introducing the possi-
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bility of system overload (i.e., power consumption exceeding
capacity). Several recent studies propose ‘“power-aware job
scheduling” where the HPC job scheduler allocates resources
to keep the power consumption within the power budget while
also targeting various efficiency improvements, such as in-
creasing the overall system utilization, increasing throughput,
and reducing job runtime [45], [57], [41], [50], [51], [52], [29].
However, optimizing such job scheduling with a peak power
budget is a combinatorial bin-packing problem that is very
hard to solve efficiently [7]. Moreover, the resulting power
consumption from resource allocation varies depending on the
job’s characteristics. Not to mention, HPC jobs also go through
different phases that consume different amounts of power [41],
[51], [50]. Hence, power-aware scheduling faces the daunting
task of estimating the power consumption over the period
of each job’s execution while also tracking phases of these
jobs’ progressions. Furthermore, HPC managers trying to max-
imize the system’s performance (e.g., throughput) also need
to consider different jobs’ varying resource efficiency (e.g.,
work done per unit resource) during job scheduling. Hence,
while existing approaches can proactively avoid overloading
an oversubscribed HPC system, they also add a significant
burden on job scheduling. More importantly, prior works on
HPC oversubscription do not incorporate the HPC users whose
job performance is adversely affected (because of power
constraints) by oversubscription.

Our contribution. In stark contrast to proactive approaches,
we propose a “reactive” approach for managing oversubscribed
HPC systems. In our approach, the HPC manager allows the
system’s power to go beyond the power capacity, causing
infrastructure overload. And when such an overload occurs,
the HPC manager reduces the system’s power consumption
to mitigate it. The rationale for this reactive approach is
that first, the HPC manager can quickly and reliably cutback
the power utilizing existing power management techniques
such as dynamic voltage frequency scaling (DVFS) and hard-
ware power capping (e.g., Intel’s Running Average Power
Limit (RAPL) [16]). Such power capping techniques are also
available for modern heterogeneous computing architectures
with accelerators, such as the nvidia—smi tool for Nvidia
GPUs [43]. Second, we allow overloads by a relatively small
margin as the maximum overload depends on the level of
oversubscription (e.g., 20%). With such level of overloads,
protective circuit breakers operate in the “long-delay” zone and
take several tens of minutes before tripping [14], [47], [19].



Meanwhile, HPC data center cooling can also withstand these
short-lived (HPC manager reacts to mitigate the overload)
overloads due to thermal inertia [40]. In fact, reactively han-
dling power overload is the norm in the cloud data centers [20],
[56]. Therefore, we consider that reactively handling power
overloads is a safe approach for managing oversubscribed
HPC systems.

While reactively mitigating power overloads in HPC sys-
tems is a viable approach, the HPC manager still needs to
decide how to best exercise the power reduction. The power
reduction essentially translates into resource reduction (e.g.,
reduced CPU speed) for the active jobs executing in the
system. Hence, overload handling adversely affects the active
jobs’ performance, and the HPC manager needs to judiciously
apply power capping for a graceful power reduction with the
minimum performance impact. This, however, brings us back
to the challenges of job characteristics profiling of power-
aware scheduling and requires the HPC manager to know the
impact of resource reduction for every active job.

To avoid this burden on the HPC manager, we propose
a market-based approach where the HPC users themselves
determine the performance impact and actively participate in
making the resource reduction decision during an overload.
More specifically, we propose MPR (Market-based Power
Reduction), where the users supply, in exchange for in-
centives/rewards (e.g., free HPC core-hours) from the HPC
manager, the necessary resource reduction for handling the
overloads. The users use a parameterized supply function to
express how much resource they are willing to reduce at what
price (i.e., incentive per unit reduction). The HPC manager acts
as the market facilitator, and the market outcome determines
which job will reduce how much resources and what would be
the incentive for the resource reduction. We develop a static
market and an interactive market for MPR. The static market
offers rapid market decision, while the interactive market
guarantees socially optimum power reduction with minimum
performance degradation. We also develop strategies that the
user can adopt to participate in these markets.

Merits of our approach. (@) Our reactive approach frees
the HPC scheduler from requiring job-wise power estimation
and execution tracking. Instead, the HPC manager tracks
the system’s instantaneous total power consumption to detect
overload and uses MPR to reduce power consumption. (@)
MPR brings the user in the loop in managing an oversub-
scribed HPC system. In MPR, users can integrate their own
“perceived value” of performance (i.e., the same amount of
performance loss can be valued differently by different users)
in the resource reduction process - a user who values their
performance more can ask for a greater incentive for resource
reduction and vice versa. Such integration of user preference
is not available in any existing work on managing an oversub-
scribed HPC system. (@) MPR also offers a highly scalable
HPC management solution as the HPC manager no longer
needs to solve complicated scheduling problems with many
variables (e.g., each job’s resource allocation). Instead, she
only decides the market-clearing price that ensures the active
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Fig. 1. (a) HPC power architecture. Here, ATS = Automatic Transfer Switch,
UPS = Uninterrupted Power Supply, PDU = Power Distribution Unit. (b) CDF
of four real-world HPC cluster workloads [13].

jobs supply the target amount of resource/power reduction. (@)
Finally, by empowering users to influence the HPC system’s
power consumption through the market mechanism, we believe
MPR’s user-in-the-loop approach can go beyond handling
power oversubscription. For instance, users can also assist
in socially responsible HPC management, such as cutting
carbon emissions by doing less work with “dirty” power with
low/no renewable [61] and participating in demand response
to improve the grid’s stability [2].

Evaluation of MPR. We extensively evaluate MPR using
several real-world trace-based simulations using the perfor-
mance profiles of fourteen different HPC applications. We
demonstrate that MPR can effectively handle power overloads
while capturing the users’ willingness for resource reduction.
We show that, by participating in MPR, a user always gets
more incentive than its cost of performance loss, while the
HPC manager enjoys orders of magnitude more resource gain
than her incentive payoff to the users. Finally, to demonstrate
MPR’s effectiveness in real life, we run experiments on a
prototype HPC system and show that MPR can effectively
mitigate overloads due to oversubscription.

II. BACKGROUND

HPC power system. As illustrated in Fig. 1(a), HPC data
centers typically use a hierarchical power infrastructure [20],
[32]. The utility power is delivered to the data center through
an automatic transfer switch (ATS) that switches its power
source to the backup generator if the utility power fails. The
ATS feeds the UPS (uninterrupted power supply) which is
responsible for supplying power while the generator warms
up to takeover followed by a utility failure. The UPS typically
needs to supply power for two to three minutes. There could be
multiple UPSs working in parallel or active/redundant modes.
For large HPC systems (e.g., 10-MW systems), the power
infrastructure can be divided into multiple pieces, each with
dedicated UPSs. The UPS powers the cluster PDUs (power
distribution units) which supply power to the server racks.

Power oversubscription. In our context, oversubscription
is permanently adding more servers than the HPC power
infrastructure’s capacity allows. Each layer of the HPC power
infrastructure, from the server rack to the ATS/UPS, is subject
to capacity limits and can be oversubscribed. However, we



TABLE I
CAPACITY OVERSUBSCRIPTION IN GAIA [11].

Oversubscription 10% 15% 20% 25%

Extra Capacity (core-hours/month) 144K | 216K | 288K | 360K
Probability of Overload 2.5% 5% 9% 14%
Overload Time (hours/month) 17.8 355 68.62 101.3
Overloaded Capacity (core-hour/month) | 1.25K | 3.9K 8.9K 17.5K
Estimated Maximum Overload Payoff 115x% 55% 32x 20x

focus on UPS-level oversubscription while considering the
cluster PDUs and racks have adequate capacity. We choose
this as UPS is typically the dominant contributor in a data
center’s per kilowatt capital cost for its power system [1], [15].
Oversubscribing an existing HPC data center would mean that
we add additional server racks connected to an existing cluster
PDU with increased capacity or a new cluster PDU connected
to the existing UPS. Cluster PDUs typically have a modular
design, and we can increase their capacity by adding more
circuit breakers [4].

Opportunities and challenges of power oversubscription.
Oversubscription in the HPC data center is enabled by its
low average utilization [45]. Fig. 1(b) shows the CDFs of
the utilization of four real-world HPC clusters where we
see that ~5% capacity of Gaia [11], ~20% capacity of
Metacentrum [25], ~55% of RICC [28], and ~65% of
PIK [34] are rarely used. Even for the Gaia cluster with
relatively high utilization, oversubscription can be beneficial.

Table I shows a quantitative analysis of the benefits of dif-
ferent levels of oversubscription on Gaia cluster considering
the workload is scaled-up proportional to the extra capacity.
Here, the unit of one core-hour indicates the availability
of one HPC core for one hour. The extra capacity refers
to the additional core-hours we can add to the 2004-core
Gaia system. We have 144K extra core-hours every month
at 10% oversubscription, going up to 360K core-hours at
25% oversubscription. The probability of overload tells us
how often the total power consumption goes beyond the
infrastructure capacity, and overload time gives us the total
time the HPC system stays in an overloaded state each month.
To understand the impact of these overload periods, we then
calculate the total overloaded capacity, which indicates how
many core-hours are spent over the HPC capacity. In other
words, overloaded capacity tells us how many total core-hours
we need to cut back every month to avoid these overloads. It
also reveals the most intriguing observation from this analysis
that we add far more core-hours capacity each month (e.g.,
144K added vs. 1.25K cut at 10% oversubscription) than we
have to cut back to handle the overloads. Finally, we show
the maximum payoffs we can afford if we pay all the added
core-hours as payment to users for their core-hour cutbacks
during overloads. For instance, at 10% oversubscription, we
can pay up to 115x of a user’s core-hour reduction.

There are compelling benefits of oversubscription in HPC
data centers as the HPC manager can add a significant
additional capacity to the system. However, as shown in
Table I, an oversubscribed HPC data center may occasionally

get overloaded. While UPS circuit breakers can handle power
overloads for tens of minutes, sustained overloaded operation
will affect UPS’s longevity [46], [65]. More importantly, how-
ever, the HPC data center’s cooling system cannot withstand
overloads as long as UPSs [66]. Consequently, even when
adopting a reactive approach, an HPC manager’s goal is to
mitigate the overloads as soon as possible. In the next section,
we formalize the problem of handling these power overloads
into an optimization problem, identify the HPC manager’s
challenges, and propose our market-based solution.

III. HANDLING POWER OVERLOADS IN HPC
A. Problem Formulation

Let us consider that at any given time ¢, there are M (¢)
jobs running in the HPC system resulting in a total power
consumption of P(t) = Z%g D (t,7m), where py, (¢, rm)
is the power consumption attributed to job m running with
resource 7,,,. Note that, instead of traditional approaches of
server-wise power modeling (e.g., [50]), here we do job-wise
power modeling. The job-wise power model facilitates our
market-based design where HPC users (who submit the jobs)
play an integral role and are oblivious to how many servers
are executing their jobs. Also, such a job-wise power model
can be easily extracted by the HPC manager by attributing
server power to jobs according to the job’s resource share (i.e.,
number of cores) on that server. In addition, we are considering
a unified aggregate power and capacity model for the HPC data
center. However, as described in Section II, large HPC data
centers can have multiple parallel power infrastructures, each
connected to a dedicated UPS. Nonetheless, our model can
be seamlessly extended to these data centers by considering
individual infrastructure capacity C; and aggregate power
consumption P;(t) for the data center’s i-th parallel power
infrastructure.

With HPC data center power capacity of C, a power
overload occurs when P(t) > C, and the HPC manager needs
to intervene to handle this overload by reducing the power con-
sumption by P(t) — C. The power reduction target, P(t) —C,
needs to be met by reducing the power consumption of the
running jobs. Reducing power consumption is accomplished
through the reduction of resource allocation. For example,
a CPU core slowed down to 90% of its regular frequency
can be interpreted as allocation of “0.9 cores”. Resource
reduction to handle power overload leads to performance
degradation of the affected jobs. Hence, an HPC manager’s
goal is to minimize the overall performance degradation while
still achieving the target power reduction. We formalize this
as the following optimization problem OPT (OPTimum power
overload handling)

M(#)
OPT : minimize » L (6m) (1)
m m=1
M (t)
subject to Y~ P(8,n) > P(t) — C, 2)
m=1
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Fig. 2. MPR’s supply function, dm (q) = Am — b%. For a job m, dm (q)
is the supply of resource reduction at price g, Ay, is the maximum resource
reduction, and b, is the bid.

where 0, is the resource reduction for job m and L., (4,,) and
P(d,,) are the performance degradation and power reduction,
respectively, due to resource reduction d,,,. Here, the optimiza-
tion objective (1) is a scalar measure of overall performance
impact due to the overload, and the constraint (2) specifies the
power reduction requirement to mitigate the power overload.

Challenges. A major challenge for an HPC manager in
solving OPT is to accurately determine the performance
impact £, (d,,) for each running job when an overload occurs.
However, the user who submits the job can best estimate
the potential impact of the resource reduction, both in terms
of performance degradation and its perceived impact. On
the other hand, determining power reduction for resource
reduction, P(d,,), is straightforward with established models
for any adopted power capping technique [41].

In this work, we decouple determining the jobs’ perfor-
mance impact due to resource reduction from the HPC man-
ager and engage the HPC users in the power reduction deci-
sion. We enable users to express their affinity for contributing
towards meeting the goal of power reduction during overloads.

B. MPR: Market-Based Power Reduction

We propose a supply function bidding-based market mech-
anism, MPR, where the HPC users participate in the power
overload handling by agreeing to “supply”, in exchange for
incentives, the required power reduction through resource
reduction of their jobs. At their own discretion, the users
determine the level of participation in MPR.

Supply function. In our market design, HPC users use a
predetermined form of supply function to indicate how much
resource they can reduce at what level of incentive. For a job
m, its user provides the parameters A,, and b,, to form the
following parameterized supply function

+
[Am - bm] : 3)

where A,, indicates the maximum resource reduction from job
m, by, is the bidding parameter that determines job m’s affinity
of resource reduction, and g is the incentive/reward per unit
resource reduction (e.g., one core of CPU resource reduction
for one hour). g can be interpreted as the “unit price” of the
market’s product which in our case is the resource reduction.
[-]T indicates that d,,(by,,) is non-negative, meaning that in

our market, no job is asked to increase its resource. A similar
form of supply function has also been utilized in prior work on
electricity markets [21], [58]. The supply function in Eqn. (3)
indicates how much resource can be reduced for job m if
the HPC manager offers an incentive of ¢ for each unit of
resource reduction. Fig. 2 illustrates MPR’s supply function
for different bids that results in different amounts of resource
reduction for the same gq.

Rationale for the choice of our supply function. While
the form of our supply function in Eqn. (3) is widely used,
there are other supply functions, for instance, a linear supply
function [31], that can be used for the supply function bidding
mechanism. However, our choice is motivated by the fact that
Eqn. (3) captures the diminishing return on resource reduction,
i.e., as we ask for more supply of resource reduction (d,,,), we
need to pay more incentive per unit reduction (g). We see
similar behavior in HPC applications (Fig. 7(b)), where as we
increase the resource reduction, the performance degradation
increases super-linearly. In addition, our supply function in
Eqn. (3) is also backed by theoretical performance guarantees
under reasonable assumptions [21], [6], [22].

Power reduction during overload. When an overload oc-
curs, the HPC manager invokes the market to reduce the power
consumption of the running jobs. Acting as the facilitator of
the market, the HPC manager needs to set the market “clearing
price” ¢'(t), which is used as the basis to determine how
much resource reduction each running job needs to supply
(i.e., 0m(q'(t)) for job m) towards meeting the total power
reduction goal. Setting the market clearing price ¢'(¢) can
be formalized as the following optimization problem MCIr
(Market Clearing)

M

MClIr : mml;mzemzz1 q - 0m(q) 4)
M

subject to Z P(dm(q)) = P(t) — C. (5)

m=1

MCIr’s objective in (4) is to minimize the cost of handling
the overload by minimizing the total incentive payoff to the
running jobs. The key distinction between OPT and MCIr is
that the HPC manager in MCIr no longer needs to determine
the performance impact L., (6,,) to set the resource reductions
of the active jobs.

Soliciting bids and exercising the market. As part of
the implementation of MPR, we introduce two approaches
towards how the bids (i.e., A,, and b,,) are collected from
the users and how the market clearing price ¢'(t) is set.

A static market: In the first approach, the bidding param-
eters A,, and b, are supplied to the HPC manager during
job submission. The HPC manager invokes a market instance
when there is an overload and uses the already-received bids
of all active jobs. The HPC manager sets the market clearing
price by plugging the bids into MCIr. Since the bids remain
unchanged during the market execution, we call this approach
MPR-STAT (MPR with static bidding).



An interactive market: In the second approach, the bidding
parameters A,,, and b, for job m are iteratively updated by the
users after the HPC manager invokes the market following an
overload. First, the HPC manager declares an initial clearing
price ¢{(¢). Upon receiving the clearing price, users with jobs
running in the system send their bids. The HPC manager plugs
the bids into MCIr and determines the new clearing price. The
HPC manager sends the updated clearing price to the users,
who in turn send back their updated bids. This back-and-forth
communication continues until the clearing price converges to
a stable value. The convergence of clearing price (i.e., Nash
equilibrium) is guaranteed if the users take the price set by the
HPC manager in each iteration and behave rationally by max-
imizing their net market gain (Eqn. (7)) [6], [22], [21]. Since
the clearing price is determined based on interactions between
the HPC manager and the users, we call this approach MPR-
INT (interactive MPR). We defer the qualitative comparison
of these two approaches to Section III-D.

C. User Bidding in MPR

A key step for enabling MPR’s performance-oblivious
power reduction by the HPC manager is collecting bids from
the users/jobs. Our market mechanism is designed to proxy
the performance impact £, (,,) using the supply function in
Eqn. (3). Hence, the bidding parameters need to be decided
based on the performance impact from the job’s resource (and
hence power) reduction. Here, we describe how an HPC user
devices its bids based on its performance impact.

Cost of performance loss. We define C,,(d,,,) as the user-
perceived cost of performance degradation from d,,, resource
reduction. The notion of cost enables HPC users to integrate
their own relative importance of different jobs in their bidding.
While the HPC users can decide how they want to quantify
the cost at their own discretion, in this work, we consider
the additional work (i.e., increase in execution time or “extra
execution”) needed to finish the job as the cost of performance
loss. Considering £(z) to be the job runtime with a core
reduction of x, we can generalize the cost impact of resource
reduction as

Cm((sm) = am([fm((sm) - Em(o))a (6)

where v > 1 is a coefficient that a user can tune to reflect its
perceived cost of the additional execution. @ = 1 indicates that
the HPC user does not add any surcharge on the actual per-
formance impact. Alternative to this linear cost and popularly
used in system research for performance cost is a “quadratic
cost” function, i.e., Cy, (6m) = (L (6m)— L1 (0))2, where
the cost of performance grows quadratically with increasing
performance loss.

As a concrete example, Fig. 3(a) shows the performance of
XSBench application [54] with different levels of resource
allocation. Here, a core allocation of “1” indicates the core
is running at 100% speed. Next, in Fig. 3(b), we show the
extra execution needed when the core allocation is reduced.
In Fig. 3(c), we show the cost associated with different levels
of resource reduction using Eqn. (6) and o = 1.
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Devising the reference cost for bidding. Our supply func-
tion is based on the unit price of supply, i.e., payment for per
unit resource reduction, and hence to utilize the performance
data for bidding we convert the cost of resource reduction into
cost per unit resource reduction as C,(0:m) = Cp(dm)/0m.-
Using this equation, the reference lines in Figs. 4(a) and 4(b)
are derived from the cost of performance shown in Fig. 3(c).
For any amount of resource reduction (in the y-axis), from the
reference lines in Fig. 4, we can find a user’s actual cost of
per unit resource reduction (in the x-axis). In our context of
bidding for supply, we can interpret this cost reference curve
as the upper limit on resource reduction without a loss (i.e.,
the cost is greater than the incentive).

Bidding strategy. An HPC user’s net gain from market
participation is the payment it gets for resource reduction mi-
nus the corresponding performance degradation cost it incurs.
Hence, with the market clearing price ¢/, we can write the
m-th user’s net gain as

Market payoff ~ Cost of resource reduction

TN T
gm =4q '5m(q)_ Cm((sm(q )) (7)

The bidding strategy for a user depends on what kind of market
is implemented. For MPR-STAT market, the users need to
decide their bidding parameters, b,,,, without any knowledge of
the market clearing price, ¢’. Note that the bidding parameter
A,, depends on the HPC application’s behavior, and the user
does not tune this parameter during bidding. For instance,
in XSBench we have A,, = 0.7. In MPR-STAT, a user
cannot maximize its net gain G,,. Nonetheless, we propose
a cooperative bidding strategy where the bids are devised to
achieve a non-negative net gain over the entire price range.
More specifically, in this bidding strategy, a user sets its
bidding parameters to keep its bidding curve §,,(q) always
below its reference cost with the highest supply of resource
reduction. We deem this a “cooperative” bidding strategy as
the HPC users offer their best resource reduction for handling
the power emergency. Fig. 4(a) illustrates the cooperative bid
for XSBench application. To better understand this bidding
strategy for MPR-STAT, we also show a “conservative” bid,
where the HPC user is less willing to reduce power and bids
for lower resource reduction than its reference. We also show
a “deficient” bid, where the HPC user’s bid may result in a
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negative gain for certain clearing prices (for 0.2 < ¢’ < 0.8
in Fig. 4(a)).

On the other hand, for MPR-INT market, the clearing price
¢’ is iteratively updated. During each iteration, a user can plug
in the clearing price into Eqn. 7, and can find the value of
b, that maximizes its net gain G,,. In this bidding strategy,
the user can maximize its market incentive. We illustrate this
bidding strategy in Fig. 4(b) for three different clearing prices.

The bidding strategy presented here relies on the estima-
tion of performance impact due to resource reduction. This
performance estimation for HPC jobs, however, is non-trivial
and introduces additional hurdles on the user’s part. We
offer a qualitative discussion of such challenges of MPR in
Section III-F.

D. Properties of Our Market Design

MPR-STAT vs MPR-INT. The fundamental difference
between MPR-STAT and MPR-INT is the market agility, i.e.,
how quickly the HPC manager can determine the clearing
price. While exercising the market in MPR-STAT, the HPC
manager has all the information it needs (i.e., the bids and the
reduction goal) to handle the overload and, therefore, can very
quickly determine how much resource to cut back from each
job. Meanwhile, in MPR-INT, multiple rounds of back-and-
forth communication between the HPC manager and the users
are needed to reach a consensus on the clearing price.

MPR-INT, however, offers theoretical guarantees on the op-
timality of the overall performance cost [21], [6], and performs
as well as OPT. In MPR-STAT, on the other hand, the users
devise their bids without any knowledge of the clearing price.
Hence, unlike MPR-INT, they cannot guarantee that the power
reduction is achieved with the minimum performance impact
on the running jobs. MPR-STAT can still capture the relative
performance impact of different users’ jobs and consistently
achieve better cost performance than performance-oblivious
power overload handling strategies.

MPR-STAT, due to its agility, is suitable where fast reaction
time to power overload is warranted. Meanwhile, MPR-INT
can offer the best cost performance, where the HPC system
can sustain the power overload long enough for the market to
clear. Here, to ensure the safe handling of power emergencies,
the HPC manager can set a fixed timeout (e.g., 30 seconds) for
MPR-INT’s iterations and take the last price as the clearing
price. MPR-INT also requires autonomous software agents

who send bids without manual user/human involvement. Such
bidding agent implementation is relatively straightforward as
they require lightweight computation to find the optimum bid
for Eqn. (7). Also, to better accommodate MPR-INT, the HPC
manager can invoke the market early by predicting power
overloads and estimating the power/resource reduction goals.

Scalability. The HPC manager uses MPR’s market when
a power emergency is detected that needs to be mitigated
by power reduction. To set the market clearing price and
determine job-wise resource reduction in MPR-STAT, the
HPC manager needs to solve MCIr only once using the bids of
the active jobs. Moreover, since MCIr has only one optimiza-
tion variable ¢ and the objective function is monotonically
increasing in ¢, it can be solved by finding the minimum,
¢ = ming{q| >0") P(6m(q)) = P(t) — C} using a bi-
section search. MPR-STAT can scale very well with a growing
number of active jobs. In our evaluation, we find that MPR-
STAT can find the clearing price in less than a second for
even 30,000 active jobs (Fig. 10(a)). In contrast, OPT has
M optimization variables (i.e., number of jobs running in
the HPC) with exponentially growing problem size (e.g., 40+
minutes to solve a problem of 30,000 jobs).

MPR-INT, on the other hand, is by nature slower as it needs
iterative communication between the HPC manager and the
users. However, the time required for MPR-INT mainly comes
from the communication overhead as MPR-INT also solves
the lightweight MCIr only once every communication round.
Meanwhile, to determine their bids, the users need to solve
even a simpler problem of maximizing G,, in Eqn. 7 without
any constraints. More importantly, the users devise their bids
by themselves in a distributed fashion. Hence, the growing
number of users only adds more parallel work while the HPC
manager’s task (to solve MCIr) in every communication round
grows similar to MPR-STAT. The main scalability concern for
MPR-INT is how many communication rounds are needed
for the clearing price to converge. Because of our predefined
form of the supply function, the convergence is guaranteed
with the user’s cost monotonically increasing with resource
reduction [6], [22], [21]. In our evaluation, we find that the
number of iterations needed for clearing the market for MPR-
INT remains almost unchanged even when we increase the
jobs from 10 to 30,000 (Fig. 10(b)).

E. Implementation of MPR

Detecting power emergency. MPR uses the HPC clus-
ter’s real-time power monitoring to identify when the power
consumption exceeds the capacity and there is an overload.
MPR then determines the amount of power that needs to be
reduced to return the power at or below the capacity. To avoid
declaring a power emergency for transient power spikes, the
HPC manager may set a minimum duration of overload (e.g.,
10 seconds).

Setting the market clearing price. The solicitation of bids
and market clearing is done following the adopted version of
MPR. The HPC manager plugs in the market clearing price
q' and every user’s bids (in case of MPR-INT, the bids in the
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final iteration) in the supply function (Eqn. 3) to determine
the user’s corresponding resource reduction.

Executing resource/power reduction. The HPC manager
reduces each job’s resource allocation utilizing existing tech-
niques such as slowing down the processor using DVES [24],
[38]. During a power emergency, MPR also temporarily halts
starting any new HPC job execution.

Resuming normal operation. MPR resumes normal HPC
operation when it determines that lifting the power reduction
will no longer violate the capacity. Hence, MPR lifts the
power emergency when the power consumption falls below
the capacity by at least the amount of power reduction. Here,
the HPC manager can add a cool-down timer (e.g., 60 seconds)
to avoid lifting a power emergency followed by a momentary
power dip only to declare an emergency again. The cool-down
timer also ensures a minimum time frame for payout to the
HPC users participating in the market.

Resource control mechanism. While MPR can be im-
plemented with various resource reduction techniques, such
as power capping and node/core scaling, we advocate using
DVFS on CPU/GPU cores as it is ubiquitously available with
rapid and scalable execution. Moreover, DVFS has a more
predictable impact on job execution time as it only slows down
the execution (Fig. 16(b)). Hence, confining MPR’s resource
control knobs to DVFS (or a similar technique) also alleviates
the hurdles of performance modeling.

F. Challenges in MPR

Performance prediction for bidding. In MPR, the HPC
users devise their bids based on the estimation of the perfor-
mance impact of resource reduction. Hence, an integral part
of MPR is performance prediction which remains challeng-
ing [41]. This paper mainly focuses on the user-in-the-loop
handling of HPC oversubscription and treats HPC performance
modeling as an orthogonal task. Nevertheless, we would like
to emphasize that MPR is not dependent upon rigorous and
extensive performance modeling. In MPR, HPC users express
their performance impact through a predefined form of supply
function (Eqn. (3)), which is already an approximation of
actual performance impact (Fig. 4), allowing margin-of-error
in performance prediction. Moreover, HPC users, at their dis-
cretion, can intentionally raise their bids b,, (e.g., conservative
bid in Fig. 4(a)) to add even more room for estimation error to
account for uncertainties of the operating environment, such

as interference between different jobs. We evaluate the impact
of model error on MPR in Section V-D.

Market participation. Naturally, MPR’s user-in-the-loop
design requires HPC users’ willingness to actively participate
in the market to supply the resource reductions necessary
to handle the overloads. While the market participation re-
quires additional user efforts (i.e., bidding), as opposed to
prior studies on managing oversubscribed HPC systems, MPR
compensates users for the inevitable performance impact of
oversubscription. Hence, we believe there is a strong incen-
tive for user participation in MPR. We study the impact
of user participation on MPR in Section V-D. Meanwhile,
to encourage user participation in MPR and ease up their
bidding process, the HPC manager can take a more active
role by accommodating discounted job execution to assist
performance modeling and hosting users’ bidding agents.

Market collusion. In theory, MPR’s design is susceptible
to market collusion where multiple HPC users coordinate and
artificially inflate the reward/price for their resource reduction.
However, market collusion requires coordination among many
users to have enough market power to influence the clearing
price. Hence, we believe the efforts outweigh the incentives
for market collusion in the HPC system.

Malicious wusers. Unlike self-serving market colluding
users, malicious users want to steal private/secret data and
harmfully affect the HPC system. MPR does not add any
new attack surface regarding data security. However, allowing
users to take an active role in HPC overload handling, MPR
creates a new vulnerability. By tracking when the market is
invoked, a malicious user would know if the HPC system is
experiencing a power overload. The attacker can utilize this
information and launch “power attacks™ [30], [19], where the
attacker triggers power-intensive stage(s) of their active jobs
to intensify the overload by creating power spikes. However,
such power attacks cannot easily reach dangerous levels (e.g.,
HPC system/data center shutdown [19]) as the HPC manager
actively manages jobs’ resources (and hence power capping)
and can quickly thwart unwanted power spikes by “directly”
reducing the power of all users/jobs bypassing MPR.

Impact on the total cost of ownership (TCO). MPR
affects the HPC’s TCO in two ways - increase in HPC
utilization and reward payoff to HPC users. The infrastructure
utilization will increase due to oversubscription affecting the
cost of electricity in TCO. Meanwhile, MPR rewards the HPC
user for their market participation. The reward payoff will be
a MPR specific addition to existing TCO calculations.

1V. EVALUATION METHODOLOGY
A. Simulation Settings for HPC

Workload traces. We use real-world workload traces for
our evaluation. For our core results, we use the workload
traces from the Gaia cluster at the University of Luxemburg
[11]. The Gaia trace contains 51,987 jobs spanning a three-
month period from May 2014 to August 2014. This trace has
been widely used in the literature and referenced in a number
of studies throughout the years to generate useful workloads
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(e.g., [12], [3], [9]). Fig. 6 shows the core allocation of the
Gaia cluster with a peak core allocation of 2012.

Power consumption. We convert the core allocations to
power consumption using the widely used power model,
Power = Power,i.c + Utilization - Powergynamic  [18],
considering each core has a dynamic power of 125W and
static power of 25W, resulting in peak power of 301.8KW
for Gaia. Utilization is calculated as core allocation divided
by total available cores. Here, we consider that the power
consumption of different components, such as the uncore,
DRAM, and storage power, are incorporated in Powersiqtic
and Power gy, qmic. The per-core dynamic and static powers are
only estimations. Our simulation and analysis hold for other
power models as well.

Job simulation. We use Matlab to simulate the HPC job
execution by dividing the entire simulation period into one-
minute time slots. We get the start time, core allocation, and
runtime for each job from the workload traces. We keep a list
of active jobs with remaining runtimes. The list is updated
at each time slot by adding new jobs (if the system is not
overloaded) and discarding completed jobs. For every active
job, we also track their core speeds. At the end of a time slot,
the remaining runtimes of all active jobs are updated based on
their corresponding core speeds. To determine how much work
has been done for a given core speed, we use the performance
models described in Section IV-B. We use the power model
(Section IV-A) to convert the core allocation to HPC power
consumption and determine if there is an overload.

Oversubscription levels and power emergencies. For our
evaluation, we consider four levels of oversubscription thresh-
olds at 5%, 10%, 15%, and 20%. With 2% oversubscription,
overloading occurs if the power demand exceeds = of
its peak power consumption (e.g., 301.8 kW for Gaia). To
avoid immediate relapse to another overload, we set the power
reduction target using an additional 1% buffer as AP =
P(t)—0.99-C. We use a 10-minute cool-down period before
we consider resuming normal operation by giving back the
capped resources to the active jobs. After the 10-minute cool-
down, we resume normal operation if 0.99 - C' — P(t) > AP.

Benchmark algorithms. We evaluate MPR against two
benchmark algorithms - OPT and EQL. OPT finds the op-
timum resource allocation by solving the non-linear optimiza-
tion problem that minimizes the total cost of performance loss
of all active jobs. OPT acts as the performance upper limit for
handling the overloads. EQL, on the other hand, is oblivious to
the performance impact of resource change and equally slows
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benchmark applications.

down all cores in the system to reduce power.

B. Simulation Settings for Users

Performance models. We utilize existing literature to
model the performance impact of power capping [41]. We
collect the power vs. performance measurements for eight ap-
plications that include CoMD- a molecular dynamics simulation
application that studies dynamic properties of various materi-
als, XSBench- an application that stresses system through
memory capacity, miniFE- a proxy application for unstruc-
tured finite element solver, SWEFFT- an application for cos-
mology and astrophysics, SimpleMOC- a three-dimensional
reactor simulation application), miniMD- a parallel molecular
dynamics code from Mantevo mini-application suite, HPCCG-
a conjugate gradient proxy application, and RSBench- a
transport application for Monte Carlo neutron transport.

We convert the power capping values from [41] to core allo-
cations by normalizing no power capping (290W) to the core
allocation of “1”. Fig. 7(a) shows the performance changes for
resource allocation changes of our benchmark applications.
We see that different applications have different impacts on
their performances when their resource allocation is altered.
We see that some applications, such as SimpleMOC, SWFFT,
miniMD, and XSBench, are more sensitive to changes in
resource allocation than others. Here, we do not consider the
impact of inter-core/node communication, which is typically
much less compared to the impact of power capping [50], [51].

Next, in Fig. 7(b), we show the impact of the performance
change in terms of “extra execution” that these applications
need to finish the same job due to a change in their perfor-
mance. In this figure, both the resource reduction and extra
execution have the same unit of time - if we consider resource
reduction for one hour, then we need the corresponding
amount of extra execution cores for one hour as well.
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Gaia has a capacity of ~4.3million core hours over our simulation period.

Cost models. We consider the extra execution as the added
“cost” for the application when their resource is reduced. Then
we use the cost model (Section III-C) to derive the cost. To
model the cost of performance loss due to resource reduction,
we use a logarithmic curve fitting on our costs calculated based
on results from Fig. 7(b). Our logarithmic fitting is cost =
alog(b- x) — a, where x is the resource reduction, and a and
b are model parameters. Fig. 7(c) shows the cost of resource
reduction based on our logarithmic model.

Bidding references. Using the cost calculated in Fig. 7(c),
we derive the bidding references for our applications and show
them in Fig. 7(d). Here, the price of the bidding references is
the cost of unit resource reduction. Since we use cores as both
the unit of cost and the unit of resource reduction, our price
becomes unitless.

Application profiles. We devise eight application profiles
using our performance models, cost models, and bidding ref-
erences. We uniformly randomly assign an application profile
to each HPC job we simulate. The application profile of a job
determines its performance impact due to core reduction and
its bids in market participation. We also scale up our per-core
model with the core allocations of the respective HPC job.

V. EVALUATION RESULTS
A. Impact of Oversubscription

Capacity overloads. Figs. 8(a) and 8(b) show how often
the system stays in the overloaded state as we increase the
oversubscription level. We see that at 5% oversubscription,
the system stays in the overloaded state less than 1% of the
time. However, as we increase the oversubscription level, the
overload percentage grows super linearly, indicating a dimin-
ishing return of oversubscription. All the algorithms perform
comparably to each other in terms of causing overloads.

Impact on jobs. In Fig. 8(c), we show the percentage of
jobs affected by the overloads. We consider a job has been
affected by overload if an overload event occurs when the
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Fig. 9. Comparison of benchmarks over 90-days simulation using Gaia trace.

job was in the active state, regardless of whether the job’s
resource was cut back or not to handle the overload. We
observe that increasing oversubscription affects more jobs.
Note that, despite a greater percentage of jobs being affected
during the oversubscription, the performance impact on the
jobs is not significant (Fig. 9(b)).

Resource reduction. Fig. 8(d) shows the total resource
reduction for different algorithms. Since the required resource
reduction is dictated by the overloads, all algorithms result in
similar amounts of resource reduction.

B. Benchmark Comparison

Performance cost. Fig. 9(a) shows the total cost of per-
formance loss due to resource reduction to handle overloads
at different oversubscription levels. The unit of cost is “core-
hours”, indicating how much extra computing is needed to
handle the slowdown caused by the overloads. Naturally,
the cost increases as we increase oversubscription. Here, we
see significant differences in algorithm performances, where
EQL suffers from significantly higher performance cost, while
MPR-INT achieves cost performance at nearly the same level
as OPT. MPR-STAT, however, incurs notably more cost
than OPT. EQL’s higher cost is due to its performance-
oblivious nature. As shown in Fig. 9(c), EQL reduces as much
resource from sensitive applications (e.g., SimpleMOC) as
other less-sensitive applications (e.g., RSBench) and incurs
high performance cost for the sensitive applications (Fig. 9(d)).
Both OPT and MPR-INT achieve a good balance in spreading
the resource reduction among the applications, reducing more
resources from less-sensitive applications, and vice versa.
MPR-STAT, on the other hand, reduces much more resources
from the less-sensitive applications (e.g., RSBench) and does
not reduce any resources from sensitive applications (e.g.,
SWEFT). This is because MPR-STAT uses static bidding from
users where users have to bid considering a wide range of
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prices and end up soliciting unnecessary conservative bids for
lower price ranges.

Application performance. Fig. 9(b) shows the average
increase in runtime (compared to the no oversubscription case)
of only the jobs affected by the overload. We see that there is
less than 1% increase in average runtime for any algorithm.
The performance impact is very small as the overload periods
are a small fraction of typical job’s total execution time.
Moreover, most overloads require less than 20% resource
reduction, for which, only sensitive jobs suffer a discernible
performance degradation (Fig. 7(b)).

We see that EQL performs worse than other algorithms,
and causes a greater increase in the execution time. We also
see that MPR-STAT performs better than OPT and MPR-
INT on many occasions. This is because MPR-STAT heavily
relies on the less-sensitive jobs for reaching the target resource
reduction. Nonetheless, the takeaway is that overload handling
does not significantly affect performance.

Scalability. Fig. 10 presents the solution times (i.e., time to
determine the resource reductions) of OPT, MPR-INT, MPR-
STAT, and EQL for varying numbers of active jobs on an
iMac computer with Intel Core i9 processor and 128GB of
memory. The solution time increases for all the benchmarks
as the number of active jobs increases (Fig. 10(a)). Note that,
MPR-STAT demonstrates very good performance compared to
OPT for varying numbers of active jobs. The EQL benchmark
achieves the same level of performance as that of MPR-STAT,
however, incurs a significantly higher cost of performance loss
compared to MPR-STAT (Fig. 9(a)). Note here that, EQL’s
increasing solution time is due to the “bookkeeping” (e.g., log
each job’s new CPU allocation) associated with an increasing
number of active jobs. MPR-INT, on the other hand, needs
additional communication time for each round of iterative
bidding. We present MPR-INT’s solution time considering that
each communication round adds 500 milliseconds. Neverthe-
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less, we see that MPR-INT can find the resource allocation in
less than 30 seconds even with 30,000 active jobs. Fig. 10(b)
shows the number of iterations needed for clearing the market
for MPR-INT algorithm. The iteration number remains almost
unchanged with the number of active jobs.

C. Market Performance

User’s reward. Fig. 11(a) shows the reward users receive
for their participation. The reward is calculated as a percentage
of the cost incurred due to performance degradation from
resource reduction. As evident from the figure, users always
receive more rewards (>100%) than their cost of performance
loss. Therefore, users will always enjoy a net benefit for
participating in MPR’s market for overload handling.

HPC system’s benefit. Fig. 11(b) shows the gain of the
HPC manager due to oversubscription and the reward earned
by the HPC users. We see that the HPC manager gains orders
of magnitude more core-hours than she had to pay to the users
as the incentive/reward. Also, note that while the HPC gain
increases with oversubscription, the user incentive grows at a
higher rate. It indicates that it is not beneficial for the HPC
manager to oversubscribe the system beyond a certain level.
Nevertheless, these results highlight the economic motivation
for both the HPC manager and HPC users to adopt MPR.

D. Sensitivity Study

User participation. If fewer users participate in MPR, for
a given power reduction target, each job needs to supply
more resource reduction incurring more performance costs,
while the HPC manager will need to pay more rewards.
Fig. 12 shows the impact of user participation on the overall
performance cost and reward for 15% oversubscription. We see
increasing performance cost with decreasing user participation
in Fig. 12(a). As shown in Fig. 12(b), the increase in users’
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Fig. 14. Performance comparison of MPR under different workload traces
demonstrating its effectiveness in various scenarios.

performance cost is offset by an increase in reward payment
from the HPC manager. However, note that, even at 50%
user participation, HPC gain remains two orders of magnitude
higher than the reward payment.

Error in the performance cost model. To understand
the impact of errors in the performance cost model, we
study the actual performance cost when there are random
estimation errors of up to 30% in Fig. 13(a). We see that
random estimation errors do not affect the overall performance
cost. We then study with a pessimistic setting where users
underestimate their true performance cost and show the results
in Fig. 13(b). We see that, while the cost increases with
underestimation, even at 30% underestimation, the reward is
two times the cost for MPR-INT and MPR-STAT.

E. Evaluation Under Different Settings

Different workload traces. We collect three other work-
loads (PIK, RICC, and Metacentrum) for this study
from [13]. The traces are representative of different work-
load characteristics. The PIK trace is from a medium-scale
HPC cluster over a longer time duration (Fig. 14(a), RICC
trace is from a large-scale HPC cluster (Fig. 14(c)), and
Metacentrum trace is from a small-scale HPC cluster
(Fig. 14(e)). The PIK trace contains 742,964 jobs spanning
a three-year period from April 2009 to July 2012. The RICC
trace contains 447,794 jobs over a 5-month period from May
2010 to September 2010. The Metacentrum trace contains
103,656 jobs, which are collected from January 2009 to May
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Fig. 15. MPR under a heterogeneous system with GPUs.

2009. PIK trace, RICC trace, and Metacent rum traces have
peak CPU allocation of 6,963 cores, 20,4156 cores, and 528
cores, respectively.

Figs. 14(b), 14(d), and 14(f) show the cost of performance
loss for the workload PIK, RICC, and Metacentrum, re-
spectively. The performance cost increases with the increase in
oversubscription. MPR-INT achieves cost performance almost
the same as OPT for all traces. EQL suffers from much
higher performance cost compared to MPR-INT and OPT
while MPR-STAT also incurs higher costs than OPT.

Heterogeneous system with GPU. To evaluate MPR using
a heterogeneous HPC system, we collect six different HPC
applications” power and performance data on GPU nodes
from [5], [26]. The resource-performance relation of the six
applications is shown in Fig. 15(a). Jacobi and Tealeaf
are from [5] and runs on NVIDIA P40 GPUs. Meanwhile,
the GEMM and BT are from [26] running on NVIDIA GTX
1070 and RTX 2080 GPUs. We use Gaia trace for this
evaluation. We normalize each application’s maximum power
to “one core” allocation to maintain generality. For instance,
for Jacobi and GEMM, “one core” is when the power
consumption is 225W and 200W, respectively.

Fig. 15(b) shows the overall performance cost under dif-
ferent levels of oversubscription. The results are similar to
our prior evaluation using a homogeneous CPU-based system.
MPR-INT performs at the same level as OPT, while MPR-
STAT incurs additional costs. EQL, in this case, performs
much worse and cannot even provide a feasible resource
allocation at 20% oversubscription. As shown in Figs. 15(c)
and 15(d), this is because Jacobi and TealLeaf suffer
significantly more performance loss under EQL due to re-
source reduction, while the other algorithms do not ask for
much resource reduction from these two performance-sensitive
applications. These results highlight that performance oblivi-
ous approaches will suffer significantly when managing HPC
applications with a diverse resource-performance relation.
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Fig. 16. Impact of CPU speed change on dynamic power and execution time.

F. Prototype Experiment

We run MPR on a prototype HPC cluster consisting of two
Dell PowerEdge servers with a total of 40 Intel Xeon CPU
cores and 256GB of memory. We implement four applications
from our simulation study - CoMD, HPCCG, miniMD, and
XSBench. We run these applications each with 10 CPU cores.
We use acpi-cpufreq driver for Linux to control the CPU
frequency for resource/power reduction [62]. Fig. 16(a) shows
the dynamic power of the applications as we change the CPU
speed from 1GHz to 2.4GHz. Fig. 16(b) shows the correspond-
ing execution times normalized to each application’s execution
time at 2.4GHz. In both figures, we see that the impact of
CPU speed change is different for different applications. This
supports the need for MPR’s application/user-level control
approach.

Next, we run two 30-minute experiments - one without
MPR and one with MPR, where we create overload conditions
by setting the power capacity at 400W. As shown in Fig. 17(a),
MPR handles the overload by reducing the power by nearly
50W by slowing down the CPU speeds (i.e., reducing resource
allocation) of the applications. In Fig. 17(b), we see that
different applications reduce different amounts of resources
based on their performance impact and bids. We devise the
bids for these applications based on their performance impact
(Fig. 16(b)) and follow the steps outlined in Section III-C. Our
prototype experiment, albeit on a small scale, demonstrates the
effectiveness of using MPR in handling power overloads due
to HPC oversubscription.

VI. RELATED WORK

Power overprovisioning in the cloud and HPC systems.
Power oversubscription in hyper-scale/cloud data centers has
been actively studied to overcome infrastructure underuti-
lization and save capital investment (e.g., [49], [48], [64]).
However, power overprovisioning in HPC systems has been
relatively less explored but gaining traction in recent years.
Works on HPC overprovisioning focus on tackling the job
scheduling to satisfy the ensuing operational constraints [45],
[52], [44], [10]. Khemka et al. [23], [35] develops dynamic
resource management techniques to safely oversubscribe het-
erogeneous distributed systems. Xiong et al. [57] discuss the
interference problem that can be introduced when colocating
applications on oversubscribed nodes. The authors then pro-
pose an application framework to colocate HPC applications
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Fig. 17. Demonstration of MPR on our prototype HPC cluster.

by combining offline profiling, machine learning, and schedul-
ing. Sakamoto et al. [50] explores power-aware resource man-
agement techniques at scale in overprovisioned HPC systems.
In [51], authors develop a hardware overprovisioning system
that allocates extra nodes to the system. The proposed system
includes various strategies for dynamic allocation of power
capping, various node on-off techniques, and job scheduling
techniques. Patel et al. [41] presents a power management
framework to improve the system throughput of a hardware-
overprovisioned HPC system while ensuring fairness among
concurrently running jobs.

Mechanism design applications. Mechanism design is
widely-used in many real-life applications. Vickery Clarke
Grove (VCGQG) auction is a sealed-bid auction mechanism,
where bidders submit their bids of items with unknown
information about other bidders. The mechanism rewards users
for their true valuations of the items. VCG auction has been
widely used in different fields, including network communi-
cation [59], [17], crowdsourcing [8], [60], smart grid [63],
among others. Although VCG auction mechanism is efficient
and incentive compatible, the mechanism requires the users to
reveal their cost functions, which are private function. Supply
function bidding is a cost-efficient mechanism that ensures
optimality at a Nash equilibrium. Compared to other mecha-
nism models (e.g., VCG auction) supply function is simpler
and does not reveal the private cost function of the users.
Supply function has been applied in various applications, such
as demand response [58], [31] and power emergencies [20].

VII. CONCLUSION

In this paper, we presented MPR, a market-based approach
to managing oversubscribed HPC systems. MPR enables HPC
users’ participation in resource reduction in exchange for
rewards. Using extensive real-world trace-based simulation,
we showed that both HPC users and HPC managers are highly
incentivized for their market participation. To the best of our
knowledge, the solution outlined in this paper is the first
market-based approach to handle power oversubscription in
an HPC system via active user participation.
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