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ABSTRACT: Bacterial infections are a serious threat to human health, and the development of effective antibacterial agents
represents a critical solution. In this study, NH2-MIL-101(Fe)@MoS2/ZnO ternary nanocomposites are successfully prepared by a
facile wet-chemistry procedure, where MoS2 nanosheets are grown onto the MIL-101 scaffold forming a flower-like morphology with
ZnO nanoparticles deposited onto the surface. The ternary composites exhibit a remarkable sterilization performance under visible
light irradiation toward both Gram-negative and Gram-positive bacteria, eliminating 98.6% of Escherichia coli and 90% of
Staphylococcus aureus after exposure to visible light for 30 min, a performance markedly better than that with NH2-MIL-101(Fe)@
MoS2 binary composites and even more so than MoS2 nanosheets alone. This is ascribed to the unique electronic band structure of
the composites, where the separation of the photogenerated carriers is likely facilitated by the S-scheme mechanism in the NH2-
MIL-101(Fe)@MoS2 binary composites and further enhanced by the formation of a p−n heterojunction between MoS2 and ZnO in
the ternary composites. This interfacial charge transfer boosts the effective production of superoxide radicals by the reduction of
oxygen, and the disproportionation reaction with water leads to the formation of hydroxy radicals, as attested in spectroscopic and
microscopic measurements. Results from this study highlight the significance of structural engineering of nanocomposites in the
manipulation of the electronic band structure and hence the photodynamic activity.
KEYWORDS: NH2-MIL-101(Fe)@MoS2, photodynamic, antibacterial activity, Gram-positive, Gram-negative

1. INTRODUCTION
Bacterial infections pose a serious threat to human health.1,2

Antibiotics are traditional remedies to treat bacterial infections,
but long-term usage of antibiotics can cause bacteria to
develop drug resistance.3−5 In recent years, inorganic
composites have been extensively studied as effective
bactericidal agents,6,7 and photodynamic and photothermal
effects are the leading antibacterial mechanisms,8 which can kill
bacteria efficiently with minimal cytotoxicity and side
effects.9,10 Specifically, under photoirradiation, photosensitive
materials can produce reactive species, which are known potent
antimicrobial agents.11 Concurrently, the sample temperature
can be increased substantially and may impact cell membrane
permeability12,13 and enable reactive species to enter the
bacterial cells and oxidize proteins and enzymes within the
cells.14,15 Such a performance is apparently dictated by the
optoelectronic properties of the photocatalysts.

Molybdenum disulfide (MoS2) is a well-known p-type
semiconductor that exhibits a two-dimensional lamellae
structure and high electron mobility,16 and the relatively
narrow band gap (1.8 eV) allows for photoexcitation by
photons within the ultraviolet to visible range,17,18 a unique
characteristic that has been exploited for solar energy
conversion and photocatalysis.19,20 Additionally, molybdenum
disulfide has been confirmed to possess low cytotoxicity.21,22

However, the low electron−hole separation efficiency of
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pristine MoS2 greatly limits its photocatalytic performance.18

This can be improved by the formation of p−n heterojunctions
with an n-type semiconductor,16,23−25 such as zinc oxide
(ZnO), which has been known to be an excellent photocatalyst
due to its high photosensitivity, low cost, controllable form,
environmental nontoxicity, and chemical stability.26−29

Iron-containing metal−organic framework, NH2-MIL-
101(Fe), is another photocatalytic material with a high surface
area, strong absorption in the visible range, and robust
structure, where the ligands can activate the metal cluster
nodes under photoexcitation.30,31 Notably, the electron-
donating amine groups (−NH2) can enhance the photo-
catalytic activity and photostability of NH2-MIL-101(Fe) by
boosting electron mobility and absorption in the visible light
range.32 Furthermore, the cavities within NH2-MIL-101 (Fe)
allow for efficient growth of MoS2 nanosheets due to its
adjustable pore size and abundant active groups (e.g., COOH,
NH2, and OH).33,34 Yet, there has been no report on the
construction of NH2-MIL-101 (Fe)@MoS2/ZnO nanocompo-
sites.
In the present study, ternary NH2-MIL-101(Fe)@MoS2/

ZnO nanocomposites are prepared via a facile hydrothermal
procedure, where the unique photocatalytic activity leads to a
high antibacterial efficiency toward both Gram-negative
Escherichia coli and Gram-positive Staphylococcus aureus. As
depicted in Scheme 1, NH2-MIL-101(Fe) is selected as the
structural scaffold for the growth of MoS2 nanosheets,
producing flower-like NH2-MIL-101(Fe)@MoS2 microspheres
(denoted as F101@MoS2). Subsequently, ZnO quantum dots
(QDs) are deposited onto the outer surface of F101@MoS2 to
produce ternary NH2-MIL-101(Fe)@MoS2/ZnO composites
(denoted as F101@MoS2/ZnO). Remarkably, the resulting
composites exhibit excellent antimicrobial activity, eliminating
98.6% of E. coli and 90% of S. aureus after exposure to visible
light for 30 min, mostly due to the effective photocatalytic
generation of superoxide and hydroxy radicals.

2. EXPERIMENTAL SECTION
2.1. Chemicals. Sodium molybdate (Na2MoO4·2H2O), thiourea,

zinc acetate [Zn(OAc)2·2H2O], potassium hydroxide (KOH, AR,
99.5%), ferric chloride (FeCl3·6H2O, AR, 99%), 2-aminoterephthalic

acid, N,N-dimethylformamide (DMF, 99%), and glutaraldehyde were
acquired from Macklin Co., Ltd (Shanghai, China). Propidium iodide
(PI) and SYTO9 were purchased from Kailiqi Biopharma Technology
Co., Ltd (Tianjin, China). Glutathione (GSH) and Tris−HCl buffer
(C4H11NO3) were acquired from Macklin Biochemicals Co., Ltd. All
reagents were used directly without additional purification.

2.2. Synthesis of NH2-MIL-101(Fe). NH2-MIL-101(Fe) was
synthesized by following a procedure described previously.35 In brief,
4.16 mmol of FeCl3·6H2O and 2.15 mmol of 2-aminoterephthalic acid
were mixed into 40 mL of DMF under stirring for 40 min. The
mixture was then heated at 110 °C for 24 h in a Teflon-lined reactor.
The reddish-brown precipitate was collected via centrifugation and
filtration, rinsed 3 times with a mixture of ethanol−water, and dried at
50 °C overnight. The product NH2-MIL-101(Fe) was abbreviated as
F101.

2.3. Synthesis of F101@MoS2 Composites. The F101@MoS2
composite was synthesized by a simple one-step hydrothermal
method. First, 0.3 g of Na2MoO4·2H2O and 0.5 g of thiourea were
dispersed into 50 mL of ultrapure water under vigorous agitation for
40 min, into which was then added 1 g of the F101 prepared above
under sonication for 1 h. The suspension was heated at 180 °C in a
Teflon-lined reactor for 24 h. The black precipitate was collected by
centrifugation, rinsed multiple times with a mixture of ethanol and
water, and dried for 8 h at 60 °C, affording F101@MoS2 composites.

2.4. Synthesis of F101@MoS2/ZnO Composites. To synthesize
ternary F101@MoS2/ZnO composites, 0.48 g of Zn(OAc)2·2H2O
and 0.24 g of KOH were added into 150 mL of ethanol under stirring
for 20 min at 32 °C, into which was then added 0.4 g of F101@MoS2
obtained above under sonication for 30 min. The solution was then
placed in a flask and heated in an oil bath at 90 °C for 5 h. The
produced black precipitate was collected by centrifugation, rinsed
with a copious amount of water, and dried overnight at 50 °C,
producing ternary F101@MoS2/ZnO composites.

2.5. Structural Characterization. The morphology of the
samples was examined by transmission electron microscopy (TEM,
F20 S-TWIN) and scanning electron microscopy (SEM, S4800,
Japan). The elemental compositions were determined by energy-
dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD, D/max
2200PC) patterns were acquired to investigate the crystalline
structure. Raman spectra were collected to analyze the structure
and composition of materials. X-ray photoelectron spectroscopy
(AXIS ULTRA DLD) studies were carried out to evaluate the valence
states and elemental compositions. Fluorescence spectroscopic
measurements were conducted with an Omni PL spectrophotometer.
Electron spin resonance (ESR, JEOL JES-FA200) measurements were

Scheme 1. Schematic Illustration of the Preparation of F101@MoS2/ZnO Nanocomposites and the Corresponding
Antibacterial Activity
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carried out with 5-dimethyl pyrroline-1-oxide (DMPO) as the spin
trap agent. Zeta potentials of the samples were measured with a
Malvern NAMO-ZS instrument. Inductively coupled plasma-optical
emission spectrometry (ICP-OES) measurements were conducted
with an iCap 7400 analyzer.
2.6. Electrochemical Studies. In photoelectrochemical and

electrochemical impedance spectroscopy measurements, a calculated

amount of the MoS2, F101@MoS2, and F101@MoS2/ZnO
suspensions was dropcast onto the surface of a glassy-carbon
electrode, which was used as the working electrode; a platinum
wire as the counter electrode; and Ag/AgCl as the reference electrode,
along with 0.1 M Na2SO4 as the electrolyte.

The photocatalytic activity of the F101@MoS2/ZnO composite
was evaluated by the degradation of methyl orange (MO, 10 mg L−1)

Figure 1. SEM images of (a) F101, (b) F101@MoS2, and (c) F101@MoS2/ZnO. TEM images of (d) F101, (e) F101@MoS2, and (f) F101@
MoS2/ZnO. (g) HRTEM image of F101@MoS2/ZnO. (h) EDS images of F101@MoS2/ZnO.

Figure 2. (a) XRD patterns and (b) Raman spectra of F101, MoS2, F101@MoS2, and F101@MoS2/ZnO composites. (c) XPS full spectrum and
high-resolution scans of the (d) Mo 3d, (e) S 2p, and (f) Zn 2p electrons of F101@MoS2/ZnO composites.
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under visible light irradiation (480 to 780 nm, 0.36 W cm−2). An
aliquot of the MO solution was removed every 20 min to measure the
optical absorbance of the supernatant with a UV−vis spectropho-
tometer.
2.7. Ellman’s Assay. In Ellman’s assay, 225 μL of the composites

prepared above and 225 μL of GSH (1 mM) were dispersed into a
0.05 M phosphate buffer solution (PBS, pH = 8.5) and incubated for
10, 20, 30, and 40 min under simulated solar light irradiation, into
which was then added 15 μL of Ellman’s reagent, 5,5′-dithio-bis-2-
nitrobenzoic acid (DTNB, 0.1 mM), and 785 μL of Tris−HCl (0.05
M, pH = 8.3). The supernatant was separated by centrifugation and
injected into a 96-well microplate reader. The antioxidant perform-
ance of GSH was estimated by quantifying the absorbance loss of
DTNB at 410 nm.
2.8. Minimum Inhibitory Concentration. The minimum

inhibitory concentration (MIC) of MoS2, F101@MoS2, and F101@
MoS2/ZnO composites against E. coli and S. aureus was measured
using the 96-well cell culture dilution method. A single colony of E.
coli or S. aureus was taken out of the broth medium (LB) and
cultivated in the liquid LB medium for 12 h at 37 °C to obtain a fresh
bacterial suspension. Subsequently, 5 μL (1 × 106 CFU mL−1) of a
fresh bacterial suspension and 5 μL of liquid LB medium were
inoculated into 96-well plates. Then, the sample was added to the 96-
well plates and diluted with PBS into a series of concentration
gradient solutions, with the final volume of the liquid at 100 μL. The
UV−vis absorption profiles of each group of samples were then
recorded at a 10 min interval for 24 h by a microplate reader and the

absorbance at 600 nm was used to construct the growth curve, from
which the corresponding MIC was determined.

2.9. Photodynamic Antibacterial Performance. E. coli or S.
aureus (at OD = 0.1) and the nanocomposites at different
concentrations were inoculated into a 5 mL centrifuge tube, shaken
for 30 min to allow full contact between the bacteria and the
composites, and irradiated under visible light (480−780 nm, 0.36 W
cm−2). An aliquot (25 μL) was taken out of the suspension and
injected into the broth medium. After cultivation for 24 h, the number
of colonies in the broth medium was used to estimate the bacterial
survival rate. The antibacterial efficiency (ε) was calculated by using
the formula, ε = (I0 − It)/I0 × 100%, where I0 is the number of
colonies in the control group and It is the number of colonies in the
sample group.

2.10. Fluorescent Staining of Bacteria. The F101@MoS2/ZnO
composites and bacterial suspension were placed into a 5 mL
centrifuge tube under visible light photoirradiation for 30 min. The
treated bacteria were rinsed with PBS and collected by centrifugation
(6000 rpm), into which was added 50 μL of PI (15 μM) under
shaking for 30 min. The PI-stained bacteria were rinsed with PBS
before 50 μL of SYTO9 (5 μM) was added, and the suspension was
subject to additional shaking for 30 min. The living and dead cells
were examined through a fluorescence microscope, where dead cells
marked with PI appeared red and live cells marked with SYTO9
appeared green.

2.11. SEM Study of Bacterial Cells. The effect of F101@MoS2/
ZnO composites on the bacteria cell morphology was analyzed by
SEM measurements. In brief, a bacteria suspension was treated with

Figure 3. Photographs of the growth of (a) E. coli and (c) S. aureus after 30 min of treatment with MoS2, F101@MoS2, and F101@MoS2/ZnO
under visible light irradiation (480−780 nm, 0.36 W cm−2) and in the dark. The corresponding antibacterial efficiency against (b) E. coli and (d) S.
aureus (error: n = 3, **P < 0.01, ***P < 0.001).
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the F101@MoS2/ZnO composites under visible light irradiation,
collected by centrifugation, fixed for 2 h with 3% glutaraldehyde at 4
°C, and rinsed with PBS. Then, a different concentration of ethanol
(25, 50, 75, and 99%) was used to dehydrate the cells, which were
vacuum-dried for 4 h and sputter-coated with a thin layer of gold prior
to the acquisition of SEM images.

3. RESULTS AND DISCUSSION
3.1. Structural Characterization. The microscopic

morphology and size of the as-prepared composites were first
analyzed by SEM measurements. From Figure 1a, F101 can be
seen to exhibit a smooth rhombohedral octahedron shape (ca.
0.5 μm in diameter), in accordance with results reported in the
literature.36 Such a shape was largely retained in the F101@
MoS2 composite except that the surface became markedly
roughened and decorated with a number of petals that are
most likely MoS2 nanosheets (Figure 1b). The formation of
such a flower-like microsphere morphology (about 1 μm in
diameter) was likely due to the high surface area and plentiful
active sites of F101 for the growth of MoS2 nanosheets

33 and
driven by the electrostatic interaction between the positively
charged F101 and negatively charged MoS2, as manifested in

the zeta potential (ζ) measurements (Figure S1). Further
deposition of ZnO QDs onto F101@MoS2, which is also likely
driven by electrostatic interactions (Figure S1), did not alter
the material morphology, as evidenced in the SEM image of
the F101@MoS2/ZnO composite in Figure 1c, probably due
to the small size of the ZnO QDs (8−10 nm in diameter,
Figure S2).
In TEM measurements, F101 can be seen to exhibit a

diameter of approximately 500 nm (Figure 1d), consistent with
results from SEM measurements (Figure 1a). The F101@
MoS2 (Figure 1e) and F101@MoS2/ZnO composites (Figure
1f) show a flower-like microsphere structure with an average
size of 1 μm, where tiny ZnO QDs can be found to attach to
the outer surface of F101@MoS2, as highlighted by the red
arrows (Figures 1f and S2). From the HRTEM image in Figure
1g, the F101@MoS2/ZnO composite can be seen to show two
sets of well-defined lattice fringes with an interplanar spacing of
0.62 and 0.24 nm due to the MoS2 (002) and ZnO (101)
crystal planes,37,38 respectively; ZnO QDs are indeed attached
onto the MoS2 surface. In EDS measurements (Figure 1h), one
can see that the elements of Mo, S, Zn, O, and Fe are

Figure 4. Growth curves of (a) E. coli and (b) S. aureus in the presence of F101@MoS2/ZnO at different concentrations (shown in figure legends).
Growth rate constant of (c) E. coli and (d) S. aureus at different concentrations of F101@MoS2/ZnO.
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uniformly distributed within the F101@MoS2/ZnO composite.
These results confirm the successful preparation of ternary
F101@MoS2/ZnO composites.
The XRD patterns of the sample series are shown in Figure

2a. F101 (purple curve) exhibits no clear diffraction peaks
(except for the two broad peaks at 2θ = 9.2 and 25°),39,40
suggestive of a mostly amorphous structure. For the F101@
MoS2 composite (blue curve), a series of new diffraction peaks
emerged at 2θ = 14.3, 32.8, and 58.5°, which can be assigned
to the (002), (100), and (110) crystal planes of MoS2 (PDF#
card no. 73-1508) (black curve), respectively.41 In the F101@
MoS2/ZnO composite, on top of the diffraction features of
F101 and MoS2, additional diffraction peaks can be resolved at
2θ = 36.3, 47.5, 63.1, and 67.9°, corresponding to the (101),
(102), (103), and (112) planes of ZnO (PDF# card no.36-
1451). This, again, confirms the successful preparation of the
F101@MoS2/ZnO ternary composite.
Further structural insights are obtained from Raman

spectroscopic measurements (Figure 2b). F101 (black curve)
can be seen to exhibit two broad bands at 1396 and 1584 cm−1,
arising from sp2 carbon virbations.36 The MoS2 shows three
characteristic peaks at 280.8, 376.5, and 404.7 cm−1 due to the
E1g, E2g1, and A1g longitudinal phonon modes of 2H-MoS2 (red

curve), along with three additional peaks at 195.4, 235.6, and
335.7 cm−1 characteristic of the phonon modes of 1T-
MoS2.

42,43 These vibrational features were all well-defined in
F101@MoS2 and F101@MoS2/ZnO. The latter also includes a
peak at 938 cm−1 due to the oxygen vacancy on the surface of
ZnO QDs.44,45 Taken together, these results further confirm
the successful preparation of the F101@MoS2/ZnO nano-
composites.
The elemental composition and chemical valence state of

the F101@MoS2/ZnO composite were further analyzed by
XPS measurements. In the full spectrum (Figures 2c and S3),
the elements of C (1s, 284 eV), O (1s, 530 eV), Mo (3d, 229
eV), Fe (2p, 712.3 eV), S (2p, 161 eV), and Zn (2p, 1021 eV)
can be readily identified. Based on the integrated peak areas,
the sample was found to consist of 5.67 at % of Mo, 11.86 at %
of S, 1.09 at % of Zn, 0.59 at % of Fe, and 42.37 at % of C
(Table S1). In addition, the Mo/S atomic ratio was estimated
to be 1:2.1, very close to the stoichiometric ratio of MoS2. In
the high-resolution scan of the Mo 3d electrons (Figure 2d),
deconvolution yields two doublets, where the first one at 229.2
and 232.3 eV can be assigned to the 3d5/2 and 3d3/2 electrons
of Mo4+ in 1T-MoS2, and the other at 233.6 and 236.5 eV to
those of Mo6+ of 2H-MoS2 (the peak at 226.3 eV is due to the
S 2s electrons of Mo-S in MoS2).

46,47 The S 2p spectrum of the
F101@MoS2/ZnO composite is shown in Figure 2e, which can
be deconvoluted into two peaks at 161.6 and 162.8 eV due to
the 2p3/2 and 2p1/2 electrons of S in MoS2,

42 respectively.
Figure 2f shows the corresponding Zn 2p spectrum, which
includes a doublet at 1021.3 and 1044.6 eV arising from the
Zn2+ 2p3/2 and Zn 2p1/2 electrons of ZnO QDs. Consistent
results were obtained with pristine MoS2 (Figure S4) and
F101@MoS2 binary composite (Figure S5). Again, these
results are consistent with the formation of ternary F101@
MoS2/ZnO composite.

3.2. Antibacterial Activity. The antimicrobial activity of
the MoS2, F101@MoS2, and F101@MoS2/ZnO nanocompo-
sites was then evaluated and compared under visible light
irradiation. From Figure 3a,c, one can see that a large number
of E.coli and S. aureus cells grew on the agar medium in the
dark, suggestive of minimal bactericidal activity of all samples
without photoexcitation, yet under visible light irradiation
(480−780 nm, 0.36 W cm−2) for 30 min, the number of E. coil
and S. aureus colonies decreased significantly, indicating high
photodynamic activity in inhibiting bacterial growth, which
also increased with increasing photoirradiation time (Figure
S6). In particular, in the presence of the F101@MoS2/ZnO
ternary composite, the bacteria barely grew on the plate
medium, in comparison to MoS2 and F101@MoS2, suggesting
that F101@MoS2/ZnO stood out as the best among the
sample series and ZnO played a critical role in dictating the
bactericidal activity (Figure 3b,d). In fact, the antibacterial
efficiency of MoS2, F101@MoS2, and F101@MoS2/ZnO
composites against E. coil after 30 min visible irradiation was
estimated to be 31.5, 63.4, and 98.6%, respectively (Figure 3b),
whereas 15.2, 42.1, and 89.7% against S. aureus (Figure 3d).
Notably, ICP-OES measurements showed that leaching of
Zn2+ ions from the F101@MoS2/ZnO composites into the
aqueous solution under visible light irradiation was minimal,
with a low concentration of only 0.92 ± 012 ppm (Table S2),
suggesting that the release of Zn2+ ions was not the primary
bactericidal effect.
Figure 4 shows the growth curves of (a) E. coli and (b) S.

aureus in the presence of the F101@MoS2/ZnO composite at

Figure 5. (a) Optical microscope image of E. coli. Fluorescence
microscopic image of E. coli (a1) before and (a2) after visible light
irradiation with F101@MoS2/ZnO composite for 20 min. (b) Optical
microscope image of S. aureus. Fluorescence microscopic image of S.
aureus (b1) before and (b2) after visible light irradiation with F101@
MoS2/ZnO composite for 20 min. SEM images of E. coli (c) before
and (d) after photoirradiation with F101@MoS2/ZnO for 20 min.
SEM images of S. aureus (e) before and (f) after photoirradiation with
F101@MoS2/ZnO for 20 min. Scale bars are (a−b2) 10 μm and (c−
f) 3 μm.
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different concentrations in the dark, from which the MIC

against E. coli and S. aureus can be estimated to be 0.4 and 0.6

mg mL−1, respectively. Additionally, one can see that the

bacterial growth rate decreased with increasing concentration

of the F101@MoS2/ZnO composite. The growth of bacteria

colony (N) is commonly modeled as a first-order reaction of

time (t)

=N
t

kN
d
d (1)

with k being the first-order rate constant. Because the optical
density of bacteria is proportional to the concentration,48 this
equation can be rearranged to

=
i
k
jjjjj

y
{
zzzzz

A
A

ktln
0 (2)

where A0 and A are the absorbance at 600 nm of the bacterial
suspension at the starting time point and time t, respectively.
From Figure 4c,d, the k values for both bacterial strands can be
seen to decrease markedly with increasing composite
concentration. For instance, in the absence of the nano-
composite (control measurements), the E. coli exhibited a

Figure 6. ESR spectra of the production of (a) •O2
− and (b) •OH radicals under visible light radiation for 5 min with MoS2, F101@MoS2, and

F101@MoS2/ZnO. (c) Photoluminescence emission spectra (the excitation wavelength 600 nm) and (d) photocurrent measurements of the
sample series. (e) Ellman’s assay of the loss of GSH after the treatment of the nanocomposite samples under visible light radiation.
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growth rate of 1.67 × 10−4 min−1, which decreased sharply by
almost 2 orders of magnitude to only 5.55 × 10−6 with the
addition of 0.4 mg mL−1 of the composites (Figure 4c).
Similarly, for S. aureus (Figure 4d), the growth rate decreased
drastically from 1.14 × 10−4 to 8.56 × 10−6 min−1 before and
after the addition of 0.6 mg mL−1 of the composites.
To validate the antibacterial activity of the F101@MoS2/

ZnO composites, fluorescence staining with PI was employed
to detect the living and dead bacteria. From the microscopic
images in Figure 5a,b, the untreated E. coli and S. aureus can be
seen to display a rod-like and spherical shape, respectively,
along with strong green fluorescence, corresponding to a
normal living state of the bacterial cells (Figure 5a1,b1). In
contrast, almost all E. coli and S. aureus showed red
fluorescence after visible light irradiation for 20 min in the
presence of F101@MoS2/ZnO composite, suggesting effective
damage of the bacteria cells (red fluorescence arises from the
binding of PI to the DNA of damaged bacterial cells, Figure
5a2,b2). Such an evolution of the bacterial morphology can
also be clearly seen in SEM measurements of E. coli (Figure
5c) and S. aureus (Figure 5e), where photoirradiative treatment
with F101@MoS2/ZnO resulted in apparent damages of the
bacterial cells (red arrows, Figure 5d,f).
3.3. Antibacterial Mechanism. To evaluate the con-

tributions of radical species to the antimicrobial activity, ESR
measurements were carried out with DMPO as the radical trap.
From Figure 6a, it can be seen that no ESR signals were
detected in the solution containing MoS2, F101@MoS2, or
F101@MoS2/ZnO composites in the dark, yet after the
exposure to visible light irradiation, apparent signals (quartets)
emerged within the magnetic field strength of 3195 and 3255
G with g = 2.005, suggesting the formation of the superoxide
radicals (•O2

−),48 and the peak-to-peak intensity can be seen
to increase apparently in the order of MoS2 < F101@MoS2 <
F101@MoS2/ZnO, indicating the high efficiency of •O2

−

radical generation by the F101@MoS2/ZnO ternary compo-
sites as compared to the other two. Notably, •OH species was
also produced, as manifested by the quartet within the range of
3182 to 3186 G with g = 2.001 (Figure 6b), and the F101@
MoS2/ZnO composites exhibited a markedly higher •OH yield
than MoS2 and F101@MoS2. This is likely due to the
enhanced electron−hole separation of F101@MoS2/ZnO, in
good agreement with the lowest photoluminescence emission
among the sample series (Figure 6c).

Consistent results were obtained in photocurrent measure-
ments. From Figure 6d, it can be seen that under visible light
photoirradiation, the photocurrent increased in the order of
MoS2 < F101@MoS2 < F101@MoS2/ZnO. This is also
reflected in the photocatalytic degradation of methyl orange
(Figure S7), where the degradation was completed in 120 min
in the presence of the F101@MoS2/ZnO composite under
visible light irradiation, where only ca. 80% was degraded by
F101@MoS2.
Similar results were obtained in Ellman’s assay. From Figure

6e, it can be seen that the loss of GSH increased with visible
light radiation time in the presence of MoS2, F101@MoS2, and
F101@MoS2/ZnO, and after 40 min photoirradiation, the loss
reached 77, 84, and 87%, respectively, consistent with the
highest efficiency of ROS generation by F101@MoS2/ZnO as
manifested in ESR measurements.
Such a disparity of the photochemical activity can be

accounted for by the electronic band structures of the ternary
composites. From UV−vis absorption measurements (Figure
S8), the effective band gap was estimated to be 1.67 eV for
MoS2, 2.32 eV for F101, and 3.24 eV for ZnO, and the
corresponding valence band maximum (VBM) was determined
by XPS measurements (Figure S9) to be +0.56, +1.97, and
+2.27 V (vs normal hydrogen electrode, NHE), with the
conduction band minimum (CBM) at −1.11, −0.35, and
−0.97 V.49 One may notice that the VBMs are all less positive
than the formal potential for water oxidation to •OH (+2.33
V),48 whereas the CBMs are all more negative than the formal
potential for O2 reduction to •O2

− (−0.33 V), as depicted in
Figure 7. This suggests that •O2

− can be readily prepared by
the reduction of O2 by photogenerated electrons, whereas it is
energetically difficult for the photogenerated holes to oxidize
water to •OH. Yet as both •O2

− and •OH were clearly
detected in ESR measurements, it suggests that •OH was
actually produced by the spontaneous disproportionation
reaction of •O2

− with water, •O2
− + H2O → O2 + HO2

− +
•OH.50

For the binary F101@MoS2 composite, the photogenerated
carriers under visible irradiation (1.59−2.58 eV) likely
followed the S-scheme charge-transfer mechanism, where the
photoexcited electrons in the conduction band of the more
reducing MoS2 would transfer to the valence band of F101
(orange arrow, Figure 7), facilitating the charge separation and
the formation of •O2

− and •OH radicals.51 For the ternary
F101@MoS2/ZnO composite, the charge-separation efficiency
was further enhanced by the formation of a p−n junction
between MoS2 and ZnO that boosted the interfacial charge
transfer (red arrow, Figure 7) and ultimately the antimicrobial
activity, as observed above�note that no photocarriers were
generated for ZnO under visible photoirradiation because the
band gap was too large.

4. CONCLUSIONS
In summary, F101@MoS2/ZnO ternary composites were
successfully prepared by a facile hydrothermal approach,
where ZnO QDs were grown onto the surface of the F101@
MoS2 scaffold and exhibited an excellent antimicrobial activity
toward both Gram-negative and Gram-positive bacteria under
visible light photoirradiation, as compared to MoS2 and
F101@MoS2 binary composites. This was accounted for by the
unique electronic band structure of the ternary composites that
led to an enhanced efficiency in producing superoxide radicals
by reduction of oxygen by photogenerated electrons. Hydroxy

Figure 7. Electronic band structure of the ternary composite.
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radicals were then produced by disproportionation reaction of
the superoxide radicals with water and responsible for the
bactericidal actions, as confirmed in spectroscopic and
microscopic measurements. Results from this study indicate
that manipulation of the nanocomposite electronic band
structure plays a critical role in dictating the charge separation
efficiency, the formation of specific radical species, and the
eventual photodynamic activity.
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