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A B S T R A C T

Integrating artificial intelligence (AI) systems into decision-making tasks attempts to assist people by augment-
ing or complementing their abilities and ultimately improve task performance. However, when considering
recommendations from modern ‘‘black box’’ intelligent systems, users are confronted with the decision of
accepting or overriding AI’s recommendations. These decisions are even more challenging to make when there
exists a significant knowledge imbalance between the users and the AI system—namely, when people lack
necessary task knowledge and are therefore unable to accurately complete the task on their own. In this work,
we aim to understand people’s behavior in AI-assisted decision-making tasks when faced with the challenge
of knowledge imbalance and explore whether involving users in an AI’s prediction generation process makes
them more willing to follow the AI’s recommendations and enhances their perception of collaboration. Our
empirical study reveals that the involvement of users in generating AI recommendations during a task with
notable knowledge imbalance causes them to be more willing to agree with the AI’s suggestions and to perceive
the AI agent and their collaboration as a team more positively.
1. Introduction

AI-powered systems have the potential to assist humans in real-
world tasks, including high-stakes assignments in which complete au-
tomation may not be desirable; in such situations, the AI system pro-
vides a recommendation and the human user is responsible for making
the final decision, commonly known as AI-advised human decision-
making (Bansal et al., 2019a). A growing number of real-world ap-
lications are exploring the use of AI assistance in support of human
ecision-making, including decision support tools in clinical environ-
ents for patient triage (Berlyand et al., 2018), recidivism prediction
n criminal justice (Lima et al., 2021), credit assessment, and rec-
ommender systems for online retailers, streaming services, and social
media (Kunkel et al., 2019; Ngo et al., 2020). While high performance
s a required property of assistive AI systems, robustness and explain-
bility are fundamental factors for trustworthy AI (Holzinger, 2021;
olzinger et al., 2022) to avoid undesired outcomes, such as unreliable
r unfair decisions. As humans receive assistance from AI systems,
t is important to understand how they trust these systems and their
ecommendations. The success of human–AI teams also depends on
ow humans interpret and incorporate AI recommendations into tasks
o achieve superior joint performance, user satisfaction, understanding
f the system, and positive perceptions of the AI system (Smith-Renner
t al., 2020).
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Multiple factors shape the success of human–AI collaboration. For
instance, the timing of AI recommendations has been shown to affect
joint decision-making; in particular, the immediate display of an AI
recommendation before allowing people to make a decision first can
result in anchoring bias (Buçinca et al., 2021). Moreover, users’ first
impressions based on the correctness of an AI’s predictions affect their
trust in the system over time (Nourani et al., 2020). Different levels of
users’ domain or task expertise also affect how people interact with AI
systems (Wang and Yin, 2021; Nourani et al., 2020; Gaube et al., 2021;
Buçinca et al., 2021; Lai et al., 2021); for example, novice users are
more likely to blindly follow AI recommendations, a tendency known
as automation bias (Nourani et al., 2020). Though ideally expert users
are involved in critical decision-making, access to highly specialized
individuals may be limited in practice—such as in remote setups or
situations with constrained resources available for training experts.
Furthermore, the knowledge gap between users and an AI system may
vary significantly from task to task. In this work, we use the term
knowledge imbalance to refer to situations in which an AI system has a
substantially higher solo accuracy than the user in completing the task
at hand; for instance, a large knowledge imbalance can be observed
when an AI system provides assistance in a ‘‘superhuman’’ task—i.e., a
task that is difficult for humans because there are no clear directions on
how to solve or complete it. As an example in the clinical domain, AI
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systems may leverage visual information from histopathology slides to
generate a diagnosis that usually requires a molecular test in addition
to the manual inspection of specialists (Diao et al., 2021; Chen et al.,
2020).

Various challenges are associated with AI-advised human decision-
making in a knowledge imbalance setup. In particular, appropriate
trust calibration is difficult to achieve, as laypeople may not be able
to identify when the AI makes a correct or incorrect recommenda-
tion (Nourani et al., 2020), thus prompting the potential adoption of
simple and less collaborative heuristics (Bansal et al., 2021). Even
high quality machine learning models are vulnerable to poor decisions
under unexpected data variations, highlighting the importance of users’
assessments of model outcomes (Holzinger, 2021). The most common
AI-advised human decision-making paradigm involves an AI presenting
a recommendation and its user deciding whether or not to follow it
(Bansal et al., 2019a); such one-way interaction does not allow the
user to provide any input to the model, whether to refine its output,
provide additional labels, or improve it in another way. In this one-way
interaction, if the AI system is sufficiently accurate, users can achieve
superior task performance if they accept all of its recommendations;
however, they might lose agency in the decision-making process and
not perceive their interactions with the AI positively. Alternatively,
users could reject all of the AI’s recommendations and find themselves
facing undesirable task outcomes.

As motivated by the human-in-the-loop approach to model-building
processes in interactive machine learning (Amershi et al., 2014; Wall
et al., 2019), in this work we explore the role of interactivity in AI-
advised human decision-making when there exists a notable knowledge
imbalance between the human and the AI agent; specifically, we let
users provide information that they can understand from the task as fea-
tures to guide the AI model’s prediction. Our central hypothesis is that
involving users as active contributors in the process of generating AI
recommendations will mitigate the aforementioned challenges associ-
ated with knowledge imbalance in AI-advised human decision-making.
Next, we provide a brief summary of the relevant prior research that
motivated this work.

2. Related work

2.1. AI-assisted decision-making

AI assistance can support human users in different types of tasks,
including (1) familiar tasks, such as text completion (2) tasks that can
be learned with practice, such as predicting an outcome (e.g., student
admissions decisions), (3) tasks that require specialized knowledge,
such as fine-grained image classification and interpretation in medicine.
As people make the final decisions and determine whether or not
they follow the AI’s recommendations, appropriate trust calibration
requires users to catch errors either by using their own knowledge
and experience or via the presentation of information or cues by the
AI that allow them to create an accurate mental model (Bansal et al.,
2019a); however, such information might not be available or directly
accessible in practice (e.g., model performance in a new data sample).
Presenting the model’s recommendations along with explanations has
received considerable attention in an attempt to make decision mak-
ing processes more transparent and promote trust (Holzinger et al.,
2019). The lack of understanding how these models work, how the
provided information is processed, and whether they rely on the right
information might hinder people’s ability to identify when a model
is being unfair (Angerschmid et al., 2022). Certain explanation types
and visualization techniques to present additional model information
have been identified as more effective to enhance people’s perception
of fairness (Dodge et al., 2019; Van Berkel et al., 2021). However, pre-
vious studies have demonstrated that current approaches to explaining
machine learning predictions can be easily misunderstood by laypeople,
2

affecting their performance and trust (Lai and Tan, 2019) or simply
having no observed benefit (Nourani et al., 2021; Cheng et al., 2019).

Multiple factors can influence users to follow incorrect recommen-
dations from an AI agent. When users have high confidence in the
task but no information about the model’s performance is presented,
the agreement between the users’ own decisions and the AI model’s
predictions seems to affect the positive perception of the model’s per-
formance, motivating users to rely more on the model while ignoring
the correctness of its predictions (Lu and Yin, 2021). Furthermore,
even when users perform well in a task and have the ability—or can
develop the intuition—to identify when the AI’s recommendations may
be off, they follow incorrect recommendations anyway (Suresh et al.,
2020). A similar behavior has been observed when users must make
decisions under covariate shift, wherein the model’s performance is
likely to decline; despite being aware of changes in the data and their
self-performance, users still tend to rely on the model (Chiang and Yin,
2021). Meanwhile, studies with more experienced users have shown
that experts can determine when to ignore erroneous recommendations,
even when overriding them requires more effort (De-Arteaga et al.,
2020; Levy et al., 2021; Gaube et al., 2021). Even though humans
make the final decision when they receive assistance from an AI agent,
their involvement in the decision-making process should go beyond
determining whether or not to follow a recommendation and processing
the provided supporting evidence (if available) in order to decrease
negative trust outcomes.

2.2. User involvement in AI-assisted decision-making

Besides accepting or rejecting AI recommendations, a user’s role in a
decision-making task can be expanded to encourage specific behaviors
or gain further benefits. For instance, when interacting with imperfect
algorithms in a forecasting task, people prefer to use an AI model more
often and report higher satisfaction if they can modify its forecasts,
regardless of the amount by which they are able to adjust the outcomes
(Dietvorst et al., 2018). Cognitive forcing functions have been studied
to improve user engagement in analytical thinking when considering
AI recommendations and explanations, thereby reducing overreliance
(Buçinca et al., 2021); by forcing users to make an initial decision or to
wait until the AI’s suggestion is presented, it is implied that users should
have some domain knowledge to engage with the task before they
have access to the AI’s suggestion. Interactive machine learning further
allows people to modify or guide the model’s outcomes, which can
ultimately improve performance. Users can react to model predictions
with instance-level (correcting or confirming predictions) or feature-
level feedback (denoting features indicative of each outcome class).
A controlled experiment that used a classification task with support
for user feedback demonstrated positive effects on user satisfaction
(frustration, trust, and model acceptance) and increased expectations
that models would improve (Smith-Renner et al., 2020).

However, even though users had the chance to give feedback to
the model by providing task-relevant inputs, this interaction occurred
after a prediction had already been made, which may have biased
users’ responses. As another example, medical image retrieval systems
can be enhanced with interactive mechanisms that support manual
refinement, as these would allow more agency for specialists to guide
outcome generation and acquire more in-depth insights about the
current model (Cai et al., 2019). In this work, we study user involve-
ment in aiding the generation of AI recommendations by providing
task-relevant input and how such involvement may affect human–AI
collaboration under a knowledge imbalance scenario.

2.3. User characterization in AI-assisted decision-making

The human-centered approach to designing human–AI interactions
has motivated the comprehensive understanding of end users’ abilities
to achieve successful human–AI collaboration. Overall, users’ expertise



International Journal of Human - Computer Studies 172 (2023) 102977C. Gomez et al.

m
e
o

has been categorized based on their familiarity with AI technologies, as
it may be challenging for laypeople to understand algorithmic decision-
making systems (Cheng et al., 2019) and create appropriate mental
odels of said systems (Bansal et al., 2019a). Recently, the consid-
ration of end users has received particular attention in the design
f explainable AI systems (Chen et al., 2022; Eiband et al., 2018;
Schoonderwoerd et al., 2021), as most of the current techniques are
based on the intuition of researchers (Miller, 2019). To alleviate the
disconnect between AI developers and the stakeholders targeted in the
design process of such systems, one multidisciplinary framework has
considered different design goals and appropriate evaluation metrics
for each user group: AI novices, data experts, and AI experts (Mohseni
et al., 2021); similarly, a granular characterization of stakeholders has
been proposed in terms of the knowledge they may possess (formal,
instrumental, and personal) and the context in which it manifests
(Suresh et al., 2021). In addition to expertise considerations, user needs
have been distilled based on long-term goals, short-term objectives,
and the tasks required to accomplish them to create a framework
for better understanding end users and identifying opportunities in
interpretability literature (Suresh et al., 2021). Another guidance tool
to inform design practices for explainable AI represented user needs
as prototypical questions that they may ask about explainable systems
(Liao et al., 2020). In our work, we consider end users’ task expertise as
another potential dimension to characterize them and focus particularly
on how to achieve successful AI interactions for a group of users with
no preexisting domain knowledge.

2.4. Assistance under knowledge imbalance

One of the goals of augmenting human decisions with AI assistance
is to improve the joint performance of human–AI collaboration (Bansal
et al., 2019b). When people have a significantly poorer performance
than an AI model—i.e., when users lack expertise or the task at hand is
considered ‘‘superhuman’’—automation bias can result in users blindly
following the AI’s recommendations while still achieving high accu-
racy, provided the model is sufficiently accurate. Thus, performance
improvement should not be the only factor to consider for appropriate
trust calibration (Wang and Yin, 2021; Bansal et al., 2021), especially
when there is a knowledge imbalance between the advisor (e.g., the
AI) and the advisee (e.g., a non-expert user). This knowledge gap
has been considered when evaluating AI-assisted decision-making with
different participant populations, including clinicians who are not ra-
diologists reading X-ray images (Gaube et al., 2021); non-algorithmic
experts performing predictive tasks (Cheng et al., 2019); novice users
in exploratory tasks (Nourani et al., 2021); and non-experts in the ento-
mology (Nourani et al., 2020), botany (Yang et al., 2020), and nutrition
domains (Buçinca et al., 2021). Explaining the model’s output has been
proposed to help users understand the reasoning behind a particular
recommendation; however, the effects of such explanations in a task
for which users had little domain expertise in the first place were
inconclusive in a previous study (Wang and Yin, 2021). Rather than
‘‘fixing’’ the problem of users’ expertise or lack thereof, another study
analyzed the different degrees of complementary expertise between an
AI agent and its human user, from a complete overlap in expertise to
a case where they perfectly complemented each other in their skills to
identify categories in a classification task (Zhang et al., 2022). Even
though humans can easily identify errors made by an AI in tasks in
which they are already experts, better trust and reliance measures
in cases of perfect complementarity suggest that users ignore such
errors in their trust calibration process in these situations. Therefore,
more research should focus on situations in which the user has limited
expertise and requires assistance from the AI to complete a task, i.e., a
knowledge imbalance scenario.

Given that non-experts cannot identify potential errors and that pro-
viding additional information can be misleading or at best ambiguous,
3

new strategies should be explored to account for different levels of
expertise in target populations. Although different levels of domain ex-
pertise have been previously considered in AI-assisted decision-making,
users could still somehow judge the presented AI recommendations
because they had some preexisting familiarity level with the task,
they could gain experience through practice, or they felt they knew
something about the task already. As it remains unclear how users trust
and perceive an AI system in tasks with a high knowledge imbalance,
we endeavored to explore this specific situation.

3. Methods

In this section, we describe the user study we conducted to under-
stand how people who lack the necessary knowledge of an experimental
task may work with an AI system to complete that task.

3.1. Hypotheses

We investigated how different paradigms of human–AI joint
decision-making under a knowledge imbalance condition affect trust
calibration, behavioral indicators of trust, and user perception of the
AI agent, with the following hypotheses:

• H1: Participants will increasingly follow AI suggestions when
they are more involved in their interaction with the agent than
when their interaction is limited to only directly asking for a
suggestion. This hypothesis is informed by previous research on
strategies to reduce algorithmic aversion, which indicated that
people’s responses are closer to the model’s forecasts when they
can modify the model’s output (Dietvorst et al., 2018). In our
study, users had an active role in modifying the attributes that
guided the AI’s prediction generation process in the interaction
paradigms with higher levels of user involvement.

• H2: Participants’ abilities to distinguish when to trust or distrust
the AI agent will improve when they are more involved in the
AI interaction (i.e., they are less susceptible to overtrust and un-
dertrust). AI explanations have been hypothesized to foster trust
calibration (Zhang et al., 2020; Ribeiro et al., 2016) because they
allow people to understand the reasoning behind a prediction. In
our study, users were involved in the AI’s prediction generation
process by providing relevant features, adding transparency to the
AI’s internal processing.

• H3: The development of trust in the AI agent will be reflected in
users’ behavior during their interactions with it. The observation
of behavior when interacting with intelligent systems has been
used as an alternative to measure trust (Papenmeier et al., 2022).
Related to H1, behavioral indicators of trust will increase when
users are more involved in their interactions with the agent.

• H4: Users’ perceptions of their trust in, their collaboration with,
and the capabilities of the AI agent will improve when they
are more involved in their interactions. Empirical evidence from
previous work on the perception of interactive AI systems sug-
gests that (1) greater user involvement during a labeling process
improves users’ comfort levels and increases the perceived capa-
bilities of the system (Mahmood et al., 2021) and (2) feature-level
feedback in an interactive setup improves trust in and acceptance
of machine learning systems (Smith-Renner et al., 2020).

3.2. Experimental task and study design

To test our hypotheses, we designed a user study in which par-
ticipants were asked to complete an image-based bird classification
task with the assistance of an AI agent. Images were selected from the
Caltech-UCSD Birds 200 dataset (Welinder et al., 2010); we carefully
selected images that corresponded to uncommon birds and so that the
names of the birds depicted were not associated with their physical

appearance (e.g., blue-headed vireo, red-winged blackbird) to avoid
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Fig. 1. Example selected bird images and their corresponding categories. We classified ‘‘common’’ birds as species more likely to be recognized by laypeople. The next category
as comprised of species (i.e., blue jays) that could be validated via their observable attributes. The three rightmost images serve as examples of less common birds used in our
tudy that were determined to be harder to classify.
Fig. 2. A schematic representation of our interaction paradigms with different levels of user involvement. The numbers correspond to the steps that take place while interacting
ith the AI agent.
iving participants potential cues by which to judge the AI’s suggestions
see examples in Fig. 1). Additionally, the images chosen contained
nly one bird each, although they were diverse in terms of lighting,
ackground, pose, and scale.
We designed three interaction paradigms with different levels of user

involvement (as illustrated in Fig. 2) to explore AI-assisted decision-
making in a task with a high knowledge imbalance:

• Parallel decision-making (PDM): This paradigm represents con-
ventional human–AI interactions (Bansal et al., 2019a,b) wherein
the user and the AI make decisions in parallel; the AI only offers
its recommendations upon request. In our implementation, the
user requested an AI recommendation after having the opportu-
nity to work on the task alone (e.g., viewing the task image).
This paradigm is commonly implemented in applications such
as juridical assistance regarding recidivism, risk assessment, and
assisted medical diagnosis.

• Split decision-making (SDM): In this paradigm, the user and the
AI split the load of decision-making; for example, the user may
prepare task-relevant information according to their understand-
ing of the task in order for the AI to make a recommendation.
In our implementation, the user was presented with a task image
and asked to describe the physical features of the bird (e.g., colors
and patterns of body parts) that they considered relevant in order
for the AI model to make an accurate prediction. If needed, the
AI could ask for additional input. Once the user described at least
three physical attributes, the AI would suggest the bird category
corresponding to the provided attributes.

• Collaborative decision-making (CDM): In this paradigm, the
user and the AI collaborate more closely throughout the decision-
making process by iterating over the task-relevant information
necessary for the AI to provide a final prediction. In our imple-
mentation, the AI suggested which attributes were most relevant
for the user to describe and made a final bird category recom-
mendation based on the user’s input. If needed, the AI could
4

ask for additional input. Once the user entered at least three
attributes, the AI would present its suggestion of the bird category
to which the featured bird belonged. This paradigm contrasts with
SDM, where the user and AI take turns in contributing to the
decision-making task.

To complete the bird classification task in the PDM interaction
paradigm, participants merely requested the AI’s recommendation after
viewing the task image by clicking the ‘‘Ask the AI assistant’’ button,
as shown in Fig. 3. For the SDM and CDM interaction paradigms,
participants first had to describe the bird in the presented image by
selecting relevant physical attributes (from eighteen body parts and
color, pattern, and shape characteristics) and their corresponding val-
ues from a fixed set of options provided via a drop-down menu; they
had access to the detailed bird part information while describing the
image. Once they selected a body part, characteristic, and value, they
could add attributes one at a time to the current cumulative description.
Fig. 4 illustrates the interactive fields in our web interface that allowed
users to provide a bird description in the SDM interaction paradigm; the
same format was used for the CDM condition. The submitted body-part–
characteristic pair was removed from the drop-down menu options
following its selection to avoid duplicate descriptions and to reduce the
number of attributes left to describe. Users had the option to delete the
last added attribute or to restart their entire description at any time.
Every time an attribute was added or removed, a GIF mimicking the
AI’s processing was displayed for 2 s.

The AI agent could request the user to describe more of the bird’s
physical attributes in order to provide a final category (see the top
right box in Fig. 4). We conducted initial tests of the user interface
and defined the minimum description length for the AI to provide a
bird category as three attributes and fixed it as such for all the images
assigned to the SDM and CDM interaction paradigms. Thus, even if
users added more items to the description or modified the minimum
description required for the model to display its recommended cate-
gory, they would still get the same AI suggestion because we simulated
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Fig. 3. Example of our web interface for the PDM interaction paradigm. Users could request the AI’s bird category suggestion by clicking the ‘‘Ask the AI assistant’’ button.
Fig. 4. Example of our web interface for the SDM interaction paradigm. Suggestions on attributes to describe were displayed next to the bird image and pointed out with large
rrows. Users provided physical attributes using the drop-down menu below the image and the current description was updated in the box to the right.
A

he outcomes of the model and it was not actually considering the
sers’ inputs. This design choice isolates perceptions of the interaction
aradigms from how informative are the user’s bird descriptions for the
odel to generate a correct prediction, and in this way kept the same
odel’s performance in all the three interaction paradigms.
In the CDM interaction paradigm, the AI’s suggested attributes to

nclude in the final bird description were presented as body-part–
haracteristic pairs, as shown in the top right box in Fig. 5. The AI agent
resented three suggestions at a time. Each time the user described one
f the suggested body-part–characteristic pairs, the AI agent updated
ts suggestions with a pair from a list of predefined salient attributes
5

hat were manually selected for each bird image; new suggestions c
did not include attributes that had been already described by the
user so as to emulate the AI’s consideration of the current cumulative
description in its processing. We intentionally delayed the presentation
of a new suggestion by one second to imitate the AI processing the new
information.

In all three interaction paradigms, the presentation of the AI’s
recommended bird category was followed by a question asking whether
or not the user agreed with that recommendation; participants chose
among three responses: Yes, Not sure, or No, as shown in Fig. 3.

AI suggestion generation. To mimic a real classification model, the
I’s bird category suggestions were predetermined and had an overall

lassification accuracy of 63% (15 out of 24 images), which was kept
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Fig. 5. Example of our web interface for the CDM interaction paradigm. Suggestions on attributes to describe were displayed next to the bird image and pointed out with large
arrows. Users provided physical attributes using the drop-down menu below the image and the current description was updated in the box to the right.
the same for all interaction paradigms (i.e., five correct and three in-
correct predictions for eight images). By asking participants to evaluate
accurate and inaccurate recommendations, we were allowed to study
appropriate trust outcomes under knowledge imbalance. We manually
defined the incorrect bird category suggestions by considering birds
with appearances similar to those in the correct category, ensuring that
the new categories did not contain any embedded physical attributes in
the bird name.

Each participant was exposed to all three interaction paradigms as
in a within-subjects design. The order of the interaction paradigms
and the images assigned within each condition were randomized. We
administered our user study using a custom web application developed
with React JS, Express.js, and Firebase.

We conducted an initial online pilot study and, based on the re-
sulting data quality, decided to conduct our final study in person. Our
main concerns with the data collected from the online study were
participants always choosing the same response or answering randomly
and that they may have relied on additional help (i.e., Google search) to
validate the AI’s recommendations; thus, we conducted our final study
in person.

3.3. Measures

We used a set of objective and subjective metrics to understand how
people interact with an AI agent when a high knowledge imbalance
exists between the collaborating parties. Our objective metrics aimed
to capture participants’ levels of agreement with the AI agent, whether
their trust in the agent’s recommendations was properly calibrated,
and the presence of behaviors associated with trust in the agent. Our
subjective metrics aimed to capture participants’ perceptions of the AI
6

agent while they completed the task.
3.3.1. Objective metrics
• Agreement with the AI. To evaluate users’ willingness to follow
the AI’s recommendations, we used participants’ final answers
regarding their concurrence with the bird category suggestions
presented by the AI agent; the answer options were: Yes, No, and
Not sure.

• Overtrust and undertrust. We evaluated users’ trust calibration
outcomes when accepting or rejecting recommendations from the
AI agent via two dependent variables, overtrust and undertrust,
as informed by the trust outcome variables used in previous
work (Wang and Yin, 2021). In our analysis, we considered
that a decision resulted in overtrust when users answered Yes
to incorrect recommendations and undertrust when users an-
swered No or Not sure to correct recommendations. Each variable
(overtrust or undertrust) was binary; i.e., users either did or did
not over/undertrust the AI’s recommendation for each image.

• Behavioral indicators of trust. We defined two metrics that
take into account the bird attributes provided by participants
in the SDM and CDM interaction paradigms. The first metric
compares the number of bird attributes included in the final
description for each image in the SDM and CDM conditions.
Since the minimum number of attributes for the AI to provide
a bird category prediction was three for both paradigms, any
additional attributes provided by the participants could be viewed
as a lack of confidence in the current bird category prediction;
therefore, we associated descriptions with fewer total items with
more trust in the AI agent. The second metric is the percentage
of physical attributes in the final description provided by the user
that were originally suggested by the AI in the CDM paradigm; a
higher percentage indicates that participants preferred to use the
AI’s attribute suggestions rather than proposing their own, which
could be associated with higher levels of trust in the AI agent to

complete the task.
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• Decision time. This metric represents the time users spent con-
sidering the AI’s bird category recommendations. Time allocation
strategies have been explored in AI-assisted decision-making tasks
(Rastogi et al., 2022) to reduce potential biases when evaluat-
ing AI recommendations, with longer decision times helping the
decision-maker sufficiently adjust away from a biased anchor.
We measured decision time as the time from the appearance of
the AI’s bird category prediction to the moment the participant
chose their final response agreeing or disagreeing with it. Decision
time can be an indirect measure of trust—the more hesitant the
participant is, the more time it takes them to make a decision
on whether or not they want to follow the AI’s recommendation;
therefore we associated shorter decision times with more trust in
the AI agent.

.3.2. Subjective metrics
We assessed users’ perceptions of the AI agent through eight sub-

ective statements to be rated using a 5-point Likert scale, with 1
eing ‘‘Strongly disagree’’ and 5 being ‘‘Strongly agree’’. The statements
robed participants’ perceived trust in and reliance upon the AI, the
erceived usefulness of those recommendations, the perceived knowl-
dge of the AI agent regarding the task, whether they perceived the AI’s
uggestions as questionable, their perceived sense of teamwork, the AI
gent’s perceived contribution toward completing the task, and its per-
eived contributions with respect to the participants’. We additionally
sked participants to subjectively rate their ability to complete the task
uccessfully without the AI agent. The complete set of statements is
isted in the Appendix.

.4. Experimental procedure

Upon agreeing to participate in the study with informed consent,
articipants were asked via our user interface for their demographic
nformation, including their age range, gender, education level, and
amiliarity with AI technology. They then took a pre-study test to
ssess their knowledge of birds; in this test, participants had to provide
category for five birds, three common and two uncommon. The

nstructions for the main task were then presented to them and they
eviewed useful information about birds’ body parts. Besides, users
ere required to complete a practice bird description task to familiarize
hemselves with the information available in the drop-down menus
efore moving on.
In the main task, participants classified 24 images within 24 dif-

erent bird categories, with one image representing each category. The
rder in which the three interaction paradigms were presented to each
articipant was random, and the distribution of images (eight) per
nteraction paradigm was random as well. For each trial, the user was
resented with a bird image and additional instructions (depending
n the interaction paradigm) to prompt the AI’s bird category recom-
endation. Once the AI’s suggestion was presented, we asked users
f they agreed with that category choice; they selected among three
ossible responses: Yes, Not sure, or No. Participants were allowed
o change their response before moving to the next image and we
ecorded their response history. This process was repeated for all eight
mages in each interaction paradigm. After completing all the trials
ithin one interaction paradigm, participants were asked to respond
o a questionnaire about their experience with the AI agent in that
aradigm. In the final questionnaire, after the users had been exposed
o all three interaction paradigms, they were asked to choose which
aradigm they would prefer for future use.
This user study was approved by our institutional review board.

n average, participants took 40 min to complete the study and were
ompensated with a $10 gift card.
7

w

3.5. Participants

We recruited 28 participants (13 female, 13 male, and 2 self-
identified as otherwise gendered) through convenience sampling from
a local university community. The age range distribution was 𝑛 = 14
etween 18–24 years, 𝑛 = 10 between 25–29 years, 𝑛 = 3 between
0–34 years, and 𝑛 = 1 for 50 years or older. Most of the participants
ere current graduate students (𝑛 = 17), followed by those who
ad completed graduate school (𝑛 = 5), those who had graduated
rom college (𝑛 = 3), and current undergraduate students (𝑛 = 3).
articipants had an average rating of 4.12 (𝑆𝐷 = 0.88) with regard
o their familiarity with AI technology on a scale from 1 to 5, where 1
enotes ‘‘Extremely unfamiliar’’ and 5 denotes ‘‘Extremely familiar’’.

. Results

We used mixed effects models for each dichotomous variable to
ccount for participant-level effects and the repeated measure experi-
ental design. Similarly, for the continuous variables, we used one-way
epeated measure analysis of variance (ANOVA) models. All post-hoc
airwise comparisons were conducted using pairwise paired t-tests with
onferroni correction and we report the adjusted p-values. Paired t-tests
ere used when the comparisons involved two groups. Assumptions of
ormality and homogeneity of variance were checked with Shapiro–
ilke and Levene’s test, respectively, and outliers were identified using
he interquartile range, removing extreme values for the statistical tests
Lazar et al., 2017). For all the statistical tests reported below, 𝑝 < .05
s considered as a statistically significant effect. We followed Cohen’s
uidelines (Cohen, 1988) on effect sizes and considered 𝜂2𝑝 = 0.01 a
mall effect size, 𝜂2𝑝 = 0.06 a medium effect size, and 𝜂2𝑝 = 0.14 a large
ffect size. For Cohen’s or Hedge’s index, 0.2 is considered small, 0.5
edium, and 0.8 a large effect.

.1. Validation of knowledge imbalance

To verify that there was a large knowledge gap between the AI
ystem and the human participants, we administered a pre-study test
n participants’ knowledge of bird categories, in which the average
umber of correctly identified birds was 0.79 (𝑆𝐷 = 0.92) out of 5.
dditionally, we did not provide any training or immediate feedback
o users regarding the AI’s performance or the correctness of each trial
uring the main experiment to prevent any learning effects and keep
he knowledge imbalance. The knowledge gap was further confirmed
y users’ high rate of agreement with the statement, ‘‘I would not
ave been able to successfully complete the task without the AI’’: 4.11
𝑆𝐷 = 1.13), 3.96 (𝑆𝐷 = 1.14), and 4.32 (𝑆𝐷 = 0.98) on a 5-point Likert
cale in the PDM, SDM, and CDM interaction paradigms, respectively.

.2. Distribution of user responses to AI recommendations

We analyzed the distribution of users’ responses regarding their
greement with the AI’s bird category recommendations in the 672
otal trials (eight trials for three interaction paradigms for each of the
8 participants). Table 1 presents the distribution of responses for each
nteraction paradigm and the overall count. In both the PDM and CDM
nteraction paradigms, Not sure was the most common response, fol-
owed by Yes, and then very few No responses. In the SDM interaction
aradigm, the number of Yes and Not sure responses was equal and
sers did not respond No in any trial. Overall, there were 296 Yes, 5
o, and 371 Not sure responses in the 672 trials of all participants and
n all paradigms. We note two observations from the distribution of
esponses: (1) participants were less likely to answer Yes than Not sure
n the PDM interaction paradigm and (2) participants barely answered
o in all three interaction paradigms, presumably because they had
ittle knowledge of bird classification in the first place. As a result, in
he following analyses, we combine the No and Not sure responses to
epresent disagreement with the AI’s recommendations, while Yes re-
ponses represent agreement; in other words, we considered agreement

ith the AI’s recommendations as a binary dependent variable.
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Table 1
Distribution of participant agreement with the bird category suggested by the AI system
for all trials in each interaction paradigm.
Interaction paradigm Yes No Not sure Total

Parallel decision-making 76 3 145 224
Split decision-making 112 0 112 224
Collaborative decision-making 108 2 114 224

Total 296 5 371 672

Table 2
Generalized linear models for agreement with the AI agent and interaction paradigm.
SE denotes standard error.
Mixed effects logistic regression for agreement with the AI

Outcome Model term 𝛽 SE z p Odds ratio

Agree (answered Yes) Intercept −0.94 0.31 −3.02 .003 –
SDM 0.91 0.23 4.00 <.001 2.48
CDM 0.81 0.23 3.57 <.001 2.25

Table 3
Generalized linear models for overtrust in the AI’s recommendations and interaction
paradigm. SE denotes standard error.
Mixed effects logistic regression for overtrust outcomes

Outcome Model term 𝛽 SE z p Odds ratio

Overtrusted Intercept −0.72 0.32 −2.24 .025 –
SDM 0.67 0.35 1.91 .056 1.95
CDM 0.73 0.35 2.08 .038 2.07

4.3. Do different levels of user involvement affect non-expert users’ agree-
ment with AI recommendations when interacting with an AI agent?

Table 2 exhibits the detailed results of a mixed effects logistic
regression (dependent variable [DV]: user responses—agree with the AI
or not; independent variable [IV]: interaction paradigm—PDM, SDM,
or CDM), where the PDM paradigm was set as the baseline group. The
results suggested a significant positive influence of the SDM (𝑝 < .001)
and CDM (𝑝 < .001) interaction paradigms on users’ agreement with the
AI agent, suggesting that participants were significantly more likely to
agree with the agent in those conditions than in the PDM interaction
paradigm. More specifically, it was found that the odds of agreeing
with the AI agent increased by 148% and 125% for participants in the
SDM and CDM interaction paradigms compared to the standard PDM,
respectively.

4.4. Do different levels of user involvement affect non-experts’ development
of overtrust and undertrust when interacting with an AI agent?

4.4.1. Overtrust
To evaluate overtrust, we only considered the trials in which the AI

agent provided incorrect recommendations—i.e., three of eight trials in
each interaction paradigm, or 252 trials in total. We measured the effect
of the interaction paradigm (IV) on developing overtrust in the AI agent
using a mixed effects logistic regression with a binary DV (whether or
not participants overtrusted the AI agent when it was incorrect). Ta-
ble 3 summarizes the detailed outcomes of the regression. We observed
a positive influence of the SDM (41∕84 trials with overtrust) and CDM
(42∕84 trials with overtrust) interaction paradigms on overtrusting the
AI agent, but only the latter influence was significant (𝑝 = .038) com-
pared to the PDM paradigm. This finding suggested that participants
in the CDM interaction paradigm had 107% more odds of overtrusting
the AI agent by accepting its incorrect recommendations than those in
8

the standard PDM paradigm.
Table 4
Generalized linear models for undertrust in the AI’s recommendation and interaction
paradigm. SE denotes standard error.
Mixed effects logistic regression for undertrust outcomes

Outcome Model term 𝛽 SE z p Odds ratio

Undertrusted Intercept 1.07 0.36 2.94 .003 –
SDM −1.05 0.29 −3.57 <.001 0.35
CDM −0.84 0.29 −2.89 .004 0.43

4.4.2. Undertrust
To evaluate undertrust, we only considered the trials in which the

AI agent provided correct recommendations—i.e., five of eight trials
in each interaction paradigm, or 420 trials in total. We measured the
effect of the interaction paradigm (IV) on developing undertrust in the
AI agent using a mixed effects logistic regression with a binary DV
(whether or not participants undertrusted the AI agent when it was
correct). Table 4 summarizes the detailed outcomes of the regression.
The coefficients of the SDM (69∕140 trials with undertrust, 𝑝 < .001) and
CDM (74∕140 trials with undertrust, p = .004) interaction paradigms
uggested a significant negative influence on undertrusting the AI agent
hen compared with the PDM paradigm, which means that participants
ere less likely to undertrust the AI agent in the former conditions.
ore specifically, participants in the SDM interaction paradigm had
dds of undertrusting the AI agent that were 0.35 of the odds of those
n the PDM paradigm. Likewise, participants in the CDM interaction
aradigm had odds of undertrusting the AI agent that were 0.43 of
he odds of those in the PDM paradigm. This observation also aligns
ith the higher likelihood that participants followed the AI’s recom-
endations in the SDM and CDM interaction paradigms regardless of
orrectness; as participants were less likely to reject potentially correct
I recommendations, they were therefore less likely to undertrust the
I agent in general.

.5. How may different interaction paradigms shape user contribution to
oint decision-making?

A paired t-test comparing the number of provided attributes be-
ween the SDM and CDM interaction paradigms found a significant
ifference in the average number of attributes described in each con-
ition (𝑡(219) = 3.35, 𝑝 < .001, Hedge’s 𝑔 = 0.26). On average, users
escribed more attributes in the SDM interaction paradigm (𝑀 =

3.66, 𝑆𝐷 = 1.05) than they did in the CDM interaction paradigm (𝑀 =
3.41, 𝑆𝐷 = 0.78), as shown in Fig. 6. Furthermore, in the CDM inter-
action paradigm, participants followed on average 2.70 (𝑆𝐷 = 0.74)
suggestions from the AI agent regarding which attributes to describe,
and these represented on average 84.44% (𝑆𝐷 = 25.54) of the attributes
present in the final bird descriptions.

4.6. Do different levels of user involvement affect non-experts’ decision time
when considering an AI agent’s recommendations?

We used a one-way repeated measure ANOVA where the interaction
paradigm was set as a fixed effect and participants as a random effect.
Fig. 6 visualizes our results for decision time. The average decision
time (in seconds) was longest for the PDM interaction paradigm (𝑀 =
7.50, 𝑆𝐷 = 3.48), followed by the SDM (𝑀 = 5.71, 𝑆𝐷 = 2.69) and then
the CDM (𝑀 = 5.36, 𝑆𝐷 = 2.09) paradigms. We found a significant main
effect of interaction paradigm on decision time, (𝐹 (2, 54) = 20.66, 𝑝 <
.001, 𝜂2𝑝 = .430), and further pairwise comparisons using the Bonferroni
correction revealed that decision time was significantly higher in the
PDM paradigm than in the CDM (𝑝 < .001) and SDM (𝑝 < .001).
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Fig. 6. Box and whisker plots for decision time across all interaction paradigms (left) and description length in the SDM and CDM interaction paradigms (right).
Fig. 7. Bar plots of the subjective metrics of user perception regarding the AI’s knowledge, the usefulness of and user reliance on its recommendations, its contribution to the
task, and sense of user–AI teamwork. Significant comparisons are displayed. Error bars correspond to standard errors.
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4.7. Does the level of user involvement affect non-expert users’ perceptions
of an AI agent when interacting with it?

We conducted a one-way repeated measures ANOVA for each sub-
jective questionnaire item separately where the interaction paradigm
was set as a fixed effect and participants as a random effect. We
describe the results for the questions for which we observed significant
differences in the following subsections and Fig. 7 presents the ratings
or these questions; Table A.1 in the Appendix summarizes the statis-
ics and test results for all of the questionnaire items. Overall, most
articipants (75%) preferred the CDM interaction paradigm for future
nteractions, followed by the PDM (14%) and SDM (11%) paradigms.
9

B

.7.1. Perceived knowledge of the AI agent
We found significant differences across interaction paradigms for

sers’ ratings of the AI’s perceived knowledge of the task (𝐹 (2, 54) =
.12, 𝑝 = .022, 𝜂2𝑝 = .132). Post-hoc pairwise comparisons using the
onferroni correction revealed that users perceived on average the AI
o be significantly more knowledgeable in the CDM than in the SDM
nteraction paradigm (𝑝 = .046).

.7.2. Usefulness of the AI agent’s suggestions
We found significant differences across interaction paradigms for

sers’ ratings of the usefulness of the AI’s suggestions (𝐹 (2, 54) =
.72, 𝑝 = .013, 𝜂2𝑝 = .149). Post-hoc pairwise comparisons using the
onferroni correction revealed that users’ average rating of the agent’s
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usefulness was significantly higher in the CDM interaction paradigm
than in the PDM (𝑝 = .040) paradigm, while no significant differences
were observed against the SDM paradigm.

4.7.3. Reliance on the AI agent to complete the task
We found significant differences across interaction paradigms for

users’ ratings of their reliance on the AI to complete the task (𝐹 (2, 54) =
.32, 𝑝 = .044, 𝜂2𝑝 = .110). However, post-hoc pairwise comparisons using
he Bonferroni correction did not reveal any significant difference on
sers’ reliance ratings under different interaction paradigms.

.7.4. Perceived contribution of the AI agent
We found significant differences across interaction paradigms for

sers’ ratings regarding the AI’s contribution to the task (𝐹 (2, 54) =
.26, 𝑝 = .046, 𝜂2𝑝 = .108). Post-hoc pairwise comparisons using the
onferroni correction revealed that users perceived that, on average,
he AI agent contributed more to the task than they did in the PDM
nteraction paradigm compared with the SDM (𝑝 = .043), but no
ignificant differences were observed against the CDM paradigm.

.7.5. Perception of teamwork in completing the task
We found significant differences across interaction paradigms for

sers’ ratings on working together with the AI agent (𝐹 (2, 54) =
4.96, 𝑝 < .001, 𝜂2𝑝 = .356). Post-hoc pairwise comparisons using
he Bonferroni correction revealed that users’ teamwork ratings were
ignificantly higher in both the CDM (𝑀 = 3.71, 𝑆𝐷 = 1.21, 𝑝 < .001)
nd SDM (𝑀 = 3.21, 𝑆𝐷 = 0.99, 𝑝 = .011) interaction paradigms than in
he PDM (𝑀 = 2.36, 𝑆𝐷 = 1.10) paradigm.

. Discussion

We studied how interaction paradigms with different levels of user
nvolvement affected people’s behavior toward and perceptions of an AI
gent in a task with a high knowledge imbalance. Our main findings
uggest that users are more willing to agree with an AI’s recommenda-
ions when they are more involved in its prediction generation process.
n addition, undertrust outcomes were less frequent and users’ positive
erceptions of the AI agent and their collaboration as a team were
uperior in the more interactive paradigms than in the standard parallel
I-assisted decision-making condition.

.1. Participants’ willingness to follow the AI’s recommendations

When analyzing participants’ responses to whether or not they
greed with the bird categories suggested by the AI agent, our results
ndicate that answering No was hardly ever observed (5∕672 trials),
hile the other two options (Yes and Not sure) were more commonly
hosen in all three interaction paradigms. We attribute the lack of
utright AI recommendation rejections to the knowledge imbalance
n the task and participants’ high rating of their familiarity with AI
echnologies; this self-rating could have biased users to inherently trust
his specific agent given AI’s general success in visual recognition tasks
Russakovsky et al., 2015), rather than showing algorithmic aversion
where we would have observed this same trend for the Yes answer).
Furthermore, considering the knowledge imbalance present in the

ask, it was difficult for users to judge the AI model’s performance even
fter observing the model in practice. The AI’s performance was far
rom accurate (its accuracy was around 63%), but this was never shown
r stated to the participants during the task. While both stated and
bserved performance have been demonstrated to affect users’ reliance
n an AI partner (Yin et al., 2019), how people rely on an AI agent in
knowledge imbalance scenario should be further explored, especially
nder different accuracy levels as these can influence the development
f trust (Papenmeier et al., 2022).
The interaction paradigms in which users played a more active role

esulted in a higher likelihood that they agreed with and followed the
10
ecommendations presented by the AI agent compared to the standard
DM paradigm, providing support for H1. We attribute users’ willing-
ess to follow the AI’s recommendations to the fact that they were
art of its process in generating these predictions, which is typically
bscured otherwise (i.e., ‘‘a black box’’) and can result in user distrust
Schaffer et al., 2019).
An alternative interpretation is that, when users were presented

only with the AI’s final bird category recommendations in the PDM
interaction paradigm, they were less likely to follow those recom-
mendations, which is supported by the majority of Not sure responses
observed in this paradigm—that is, participants were less likely to
answer Yes and follow the AI’s recommendations. This finding is con-
sistent with prior research demonstrating that novice users followed
less frequently the recommendations from a diagnostic support tool
that were presented as a direct or indirect cue to solve the main task
(Chavaillaz et al., 2019).

However, blind agreement with an AI is not always desired, which
is why we further explored overtrust and undertrust, noting that the
agreement distribution determines desired and undesired trust out-
comes. We observed more overtrust outcomes in the CDM interaction
paradigms than in the standard PDM paradigm, signifying that partic-
ipants were less likely to follow incorrect recommendations from the
agent in the standard paradigm. We attribute this to the fact that, in the
PDM paradigm, participants were more likely to answer Not sure when
asked if they agreed with the AI’s recommendations and were overall
less likely to follow them—which, if incorrect, would have resulted
in overtrust. Users’ lack of involvement and knowledge of the inner
workings of the AI model might have resulted in more caution and
reluctance to blindly follow the AI’s recommendations, reducing the
possibility of participants experiencing overtrust. Although we did not
observe a tendency to accept incorrect AI advice in the PDM interaction
paradigm, previous work has reported that users with less expertise are
prone to accept AI advice when it is incorrect (Micocci et al., 2021),
as we observed in the CDM interaction paradigm. Users’ involvement
and closer collaboration with the AI agent promoted agreement with
the AI’s recommendations and approximates people’s trust in terms of
a behavioral measure (Yin et al., 2019). However, as people feel they
can trust the AI more because they received assistance that they could
understand (in form of the bird attributes) and apparently guided the
model’s outcome generation, they might end up following incorrect
recommendations in the main task as well. In such case, the initial trust
in the AI system became overtrust.

Meanwhile, we observed fewer undertrust outcomes in both the
SDM and CDM interaction paradigms than in the standard PDM. In
the former interaction paradigms, participants were more likely to
agree with the AI’s recommendations and less likely to reject them,
which reduced the possibility of undertrusting then model when it was
correct. These findings suggest that, despite the knowledge imbalance
present in the main task, allowing users to provide information for the
model to use in its prediction generation process encourages them to
follow the AI’s recommendations and thus avoid undertrust outcomes.
Conversely, participants in the PDM interaction were more likely to
undertrust the AI agent by rejecting its recommendations even when
they might be correct; the rejection of the AI’s recommendations is
consistent with the majority of Not sure responses recorded in this
interaction paradigm. These findings provide partial evidence for H2;
while undertrust was less common in the two more involved interaction
paradigms, overtrust was only reduced in the interaction paradigm with
the least user involvement.

5.2. Additional behavioral indicators of trust

We further explored indirect indicators of trust by analyzing the
attributes provided by participants when describing the bird images.

When the participants were presented with recommendations on which
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characteristics to describe in the CDM interaction paradigm, the av-
erage number of attributes described was fewer than when the users
did not have any guidance, as in the SDM interaction paradigm. We
attribute this difference to the fact that in the former condition, par-
ticipants could be more confident when the AI agent displayed its bird
category recommendation because the agent itself had suggested which
attributes were most important to provide. Furthermore, in the CDM
paradigm, we analyzed the average percentage of attributes suggested
by the AI agent that were present in participants’ final bird descriptions
with respect to the total description length; the high percentage of
suggested attributes (84%) in the final descriptions could be an indi-
cator of users’ trust in the agent. In contrast, in the SDM interaction
paradigm, users did not receive any information on which attributes
were useful for the AI’s recommendation process. Without this further
guidance, their descriptions included on average more attributes. A
potential explanation for longer bird descriptions is that users could
keep adding more attributes either because they expected an updated
recommendation with the additional attributes or because they thought
that the AI agent might need more information to generate the bird cat-
egory, given that they were not aware of the usefulness of the attributes
they had provided for the AI model to distinguish the bird. However,
we note that fixing the AI’s bird category suggestions irrespective of
user-provided attributes and minimum description length may have
negatively affected users’ perception of whether the AI had actually
considered their input. This limitation could have ultimately affected
users’ willingness to provide more attributes for the AI model in both
the SDM and CDM interaction paradigms.

Initially, we formulated the description length as a proxy for trust
in the AI’s recommendations. From users’ behavior toward AI’s recom-
mendations, we found that in both the SDM and CDM paradigms users
were more likely to follow the AI’s bird category recommendations
than in the PDM. However, our initial claim is not fully validated
when considering the subjective assessment of trust. A correlation
analysis between perceived levels of trust with the length of the de-
scriptions for each interaction paradigm did not reveal a significant
relationship between the two measures (SDM: 𝑟(28) = 0.34, 𝑝 = .074
and CDM: 𝑟(28) = 0.30, 𝑝 = .122). Furthermore, we did not observe
significant differences in subjective trust between the two interaction
paradigms that required participants to describe the birds. Therefore,
these findings do not support H3. The concept of trust is challenging
to capture in human–AI interactions as previous works have referred
to the nuanced differences between attitudinal measures of trust and
behavioral measures of reliance (Scharowski et al., 2022; Papenmeier
t al., 2022).
As another indicator of user trust, we used the measurement of

ecision time when agreeing or disagreeing with the AI agent’s rec-
mmendations. Considering participants’ increased involvement during
he main task, we found that having an active role in collaborating
ith the AI agent (i.e., in the SDM and CDM paradigms) resulted in
sers responding faster to the agreement question posed to them than
n the PDM interaction paradigm. In the PDM condition, users had a
assive role and may have needed additional time to compare the bird
ategory suggested by the AI agent with the image presented to them.
eanwhile, in the SDM and CDM interaction paradigms, asking users to
rovide task-relevant information regarding the description of the bird
equired them to make an initial effort by looking at the finer details of
he images in the first place. Additionally, since participants provided
he input for the AI agent to generate its bird category suggestion, they
ay have been less hesitant about the final recommendation. However,
articipants’ increased willingness to follow the AI’s bird category
ecommendations in the more active paradigms (SDM and CDM) than
n the standard PDM and faster responses in the active paradigms do
ot necessarily indicate higher levels of trust; a correlation analysis
etween perceived levels of trust with decision times did not reveal
significant relationship between the two measures (𝑟(84) = 0.07, 𝑝 =
11

544). Therefore we did not find evidence for H3. Lastly, even though i
sers could change their responses to the agreement question after
eeing the AI’s recommendation, we only observed such changes in a
ew trials (7∕672), which we attribute to an overall lack of confidence
he participants may have had due to the high knowledge imbalance.

.3. Perceptions of the AI agent

Overall, users’ reliance on the AI agent’s recommendations and
heir perception of their usefulness, the agent’s task knowledge, team-
ork, and team members’ contributions varied across the interaction
aradigms. These concepts are related to the perceived capabilities
f the AI agent and should be enhanced appropriately in successful
nteractions.
Participants’ perceived usefulness and reliance ratings did not differ

cross the SDM and CDM paradigms, presumably because in the former,
heir perceptions still benefited from being involved in the AI’s overall
ecommendation generation process. However, displaying updated at-
ribute recommendations and requesting attributes to describe resulted
n higher usefulness ratings than in the PDM paradigm, where users
nteracted with a black box AI agent. The task-relevant suggestions on
ird attributes to provide in the CDM interaction paradigm could be
asily understood by users, contributing to a better perception of the
sefulness of the AI’s suggestions to complete the main decision-making
ask.
The AI agent provided bird category suggestions in all three in-

eraction paradigms with the same error rate, but users perceived
he AI to be more knowledgeable when they were further presented
ith additional suggestions on bird attributes to describe in the CDM
nteraction paradigm than when the AI agent only provided a bird
ategory suggestion following the user’s input in the SDM paradigm.
e attribute participants’ higher ratings of the AI’s knowledge in the
nteraction paradigm where they collaborated more closely with the AI
gent to generate the bird category recommendation to the fact that
he AI further demonstrated knowledge of the relevant attributes to
lassify the bird in the image. However, no differences were found with
espect to the PDM paradigm where the AI agent solely provided bird
ategory recommendations. Even though in both the SDM and CDM
aradigms users provided feature-level information that they believed
as processed by the AI agent to update the bird category outcomes,
he presence of feature-level feedback in a binary text classification
ask negatively affected perceived model accuracy (Smith-Renner et al.,
020); we hypothesize that this difference in user perception is due to
he knowledge imbalance in our task, which made it difficult for users
o detect the model’s weaknesses or flaws.
The level of user involvement in the studied interaction paradigms

etermined the roles and contributions of both the advisor and the
dvisee. By giving both the AI agent and the user the opportunity
o contribute to the task’s completion under a knowledge imbalance
ondition, participants had a better impression of working together
ith the AI when they collaborated by providing descriptive bird
ttributes—either in the SDM or CDM interaction paradigms—than
hen they merely accepted or rejected recommendations in the PDM
aradigm. We were further interested in users’ perceptions of the AI
gent’s contribution to a task under a knowledge imbalance condition.
n the PDM paradigm, in which users were not involved in the AI’s
rocess of generating a bird category recommendation, the AI’s contri-
ution was perceived to be greater as compared to the SDM paradigm,
here users alone guided the AI’s prediction generation process. Giving
sers some sense of control over the AI’s recommendations made them
eel that they contributed more to complete the task. However, we
id not observe such a difference in the perceived contribution of
he AI agent when comparing against the CDM interaction paradigm,
n which the AI agent also made recommendations on what task-
elevant information to provide as users similarly guided the prediction
eneration process. Overall, users’ perceptions of the AI agent were

mproved in the interaction paradigms with more user involvement,
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providing evidence for H4. Furthermore, participants may have poten-
tially preferred the AI agent in the CDM interaction paradigm only due
to their own contributions and the additional guidance provided by the
AI agent allowing them to build a prediction together as a team.

5.4. Implications for designing AI-assisted decision-making systems that
account for high knowledge imbalance

The design of human–AI interactions should consider both the end
users of the AI system and their contextual knowledge, accounting
for potential differences in domain knowledge for diverse reasons. In
our study, we contextualized such a knowledge gap between an AI
agent and its users in a task wherein our participants were all novices
and therefore could not complete said task on their own. One of the
main challenges in achieving effective collaboration with an AI agent
under a knowledge imbalance condition is a novice’s limited ability to
appropriately calibrate their trust (Gaube et al., 2021; Nourani et al.,
2020), whereas experts can use their domain knowledge to evaluate
AI recommendations more critically, question those recommendations’
validity, and better identify the limitations of the AI agent. In an
attempt to allow novice users to gain insight into the task at hand, we
provided them with the opportunity to guide the AI’s prediction gener-
ation process via task information that they were familiar with—in our
task setting, a description of visual information. We identified potential
benefits to this paradigm, such as better perception of the AI agent and
increased willingness to follow its recommendations, which ultimately
aids in trust development; however, trust calibration outcomes should
be further adjusted to avoid undesired behaviors such as overtrusting
the AI agent. In our study design, we considered users’ opportunities
to provide input to the model in isolation, but such interactions can
be complemented with additional insights from the AI model, such
as explanations (Smith-Renner et al., 2020) or providing uncertainty
measures of its suggestions. Furthermore, designers should consider
the trade-off between designing for deeper engagement in human–AI
interactions and the efficiency and usability of the AI system (Gajos and
Mamykina, 2022) depending on the task domain. We recommend that
future AI system designers incorporate features in the joint decision-
making process that allow users to gain further insight into the task at
hand so as to better validate the AI’s recommendations.

5.5. Limitations and future work

Our results may reflect the perceptions of a specific group of people,
as the participants in our study were mostly recruited from close
contacts in an academic environment in which people were abnormally
familiar with AI techniques, as confirmed by the high self-rating of
familiarity with AI technologies (4.12 (𝑆𝐷 = 0.88)). Further empirical
validations with more diverse and larger groups of users can provide
additional insights on the effects of different interaction paradigms
when working with AI systems.

Based on users’ feedback and the distribution of user responses, we
recognize that the knowledge gap present in this task might have been
considerably large, resulting in users with zero knowledge of how to
complete the task. Therefore, even if users did not respond randomly to
the agreement question at the end of each categorization trial, it would
still be difficult to tell if they were guessing when considering each AI
suggestion. Furthermore, the fixed, static predictions of the AI agent
were a simplification for our implementation, but we acknowledge
that users’ involvement and collaboration with the AI agent could be
improved with a more dynamic model. Similarly, as no feedback from
the AI system was presented during the experiment, it would have been
difficult for participants without previous task knowledge to develop an
accurate mental model of the AI.

For future work, we recommend testing different levels of user
involvement in tasks with lesser knowledge gaps to determine if the
same benefits to teamwork perception are observed when users can be
12
more independent and may not need the AI’s assistance to complete the
task. Besides, as AI systems will potentially assist non-expert users in
certain circumstances, we encourage considering strategies that provide
training or embed domain expertise for users to interpret and use the
AI system appropriately.

6. Conclusion

Designing human–AI interactions is especially challenging when
there is a knowledge imbalance present. Previous studies have demon-
strated that the benefit from providing explanations is reduced when
users lack domain expertise—as they cannot extract any meaningful
insights (Wang and Yin, 2021)—and that providing additional infor-
mation can be misleading for users even in simple tasks (Suresh et al.,
2020) or may fail to increase trust or performance (Cheng et al., 2019;
Nourani et al., 2021). Our findings suggest that involving users in
the decision-making process by giving them an active role has the
potential to enhance user perception of an AI system, but appropri-
ately calibrating their trust for successful teaming outcomes remains
a challenge.

CRediT authorship contribution statement

Catalina Gomez: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Writing – original draft. Mathias
Unberath: Conceptualization, Methodology, Writing – original draft,
Supervision, Project administration. Chien-Ming Huang: Conceptu-
alization, Methodology, Software, Formal analysis, Resources, Writ-
ing – original draft, Visualization, Supervision, Project administration,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Funding

This work was in part supported by the National Science Foundation
award #1840088.

Appendix

Subjective questionnaire. The list of the statements presented to
participants read as follows:

• I trusted the AI’s suggestions.
• The AI’s suggestions were helpful.
• The AI seemed to be knowledgeable about the task.
• I relied on the AI’s suggestions in completing the task.
• The AI’s suggestions were questionable.
• The AI and I worked together as a team to complete the task.
• The AI contributed significantly to the completion of the task.
• The AI contributed to the task more than I did.
• I would not have been able to successfully complete the task
without the AI.
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Table A.1
Summary of users’ ratings in response to statements in the subjective questionnaire across interaction paradigms. The scale of the means and
standard deviations is 1 (Strongly disagree) to 5 (Strongly agree). 𝑝 < .05 is considered a significant effect.
Question PDM SDM CDM F p

Trust in the AI’s
suggestions

𝑀 = 3.43
𝑆𝐷 = 0.69

𝑀 = 3.64
𝑆𝐷 = 0.68

𝑀 = 3.75
𝑆𝐷 = 0.93

𝐹 (2, 54) = 2.67 𝑝 = .078

Usefulness of the
AI’s suggestions

𝑀 = 3.57
𝑆𝐷 = 0.88

𝑀 = 3.93
𝑆𝐷 = 0.72

𝑀 = 4.11
𝑆𝐷 = 0.79

𝐹 (2, 54) = 4.72 𝑝 = .013

AI’s knowledge
of the task

𝑀 = 3.75
𝑆𝐷 = 0.80

𝑀 = 3.75
𝑆𝐷 = 0.70

𝑀 = 4.11
𝑆𝐷 = 0.69

𝐹 (2, 54) = 4.12 𝑝 = .022

Reliance on the AI’s suggestions
to complete the task

𝑀 = 3.79
𝑆𝐷 = 1.17

𝑀 = 3.93
𝑆𝐷 = 1.02

𝑀 = 4.32
𝑆𝐷 = 0.77

𝐹 (2, 54) = 3.32 𝑝 = .044

The AI’s suggestions were
considered questionable

𝑀 = 2.89
𝑆𝐷 = 0.92

𝑀 = 2.71
𝑆𝐷 = 0.94

𝑀 = 2.57
𝑆𝐷 = 0.88

𝐹 (2, 54) = 1.56 𝑝 = .23

Perceived
teamwork

𝑀 = 2.36
𝑆𝐷 = 1.10

𝑀 = 3.21
𝑆𝐷 = 0.99

𝑀 = 3.71
𝑆𝐷 = 1.21

𝐹 (2, 54) = 14.96 𝑝 < .001

The AI contributed
significantly to the task

𝑀 = 3.93
𝑆𝐷 = 1.36

𝑀 = 4.00
𝑆𝐷 = 1.19

𝑀 = 4.21
𝑆𝐷 = 1.03

𝐹 (2, 54) = 0.834 𝑝 = .44

The AI contributed
more to the task

𝑀 = 4.14
𝑆𝐷 = 1.24

𝑀 = 3.54
𝑆𝐷 = 1.35

𝑀 = 3.75
𝑆𝐷 = 1.11

𝐹 (2, 54) = 3.26 𝑝 = .046

Perceived inability to complete the
task without the AI’s assistance

𝑀 = 4.11
𝑆𝐷 = 1.13

𝑀 = 3.96
𝑆𝐷 = 1.14

𝑀 = 4.32
𝑆𝐷 = 0.98

𝐹 (2, 54) = 2.14 𝑝 = .14
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