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Abstract

Collision cross section values, which can be determined using ion mobility experiments,
are sensitive to the structures of protein ions and useful for applications to structural biology and
biophysics. Protein ions with different charge states can exhibit very different collision cross
section values, but a comprehensive understanding of this relationship remains elusive. Here, we
review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of
charge-reduced protein cations by reacting quadrupole-selected cations with even-electron
monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility,
mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation
strategies and review the results of various CAPTR-based experiments, exploring their
contribution to a deeper understanding of the relationship between protein ion structure and

charge state.
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I. Introduction

In cation-to-anion, proton-transfer reactions (CAPTR), gas-phase protein cations are
quadrupole-selected and reacted with even-electron monoanions to generate a sequential series
of charge-reduced cation products (Laszlo & Bush 2015). CAPTR products are then analyzed
using ion mobility (IM) mass spectrometry (MS). The precursors and products of CAPTR can
also be manipulated using other MS-based techniques, including collisional activation, prior to
mass analysis (Laszlo et al. 2016). We first introduce the foundations and context for these
experiments, including charging during electrospray ionization (ESI), IM of ESI-generated
protein ions, and methods for manipulating the charge states of protein ions. We then describe
various aspects of CAPTR experiments, review the results of our CAPTR-IM-MS studies, and
discuss how those results contribute to a deeper understanding of the relationship between

protein ion structure and charge state.

A. ESI and Charge-State Distributions

Inherent to the formation of ions is the acquisition of charge. For example, subjecting
proteins in solution to positive-mode ESI generates cations with excess protons. The charge
states of proteins in solution, and in vivo, depend on the pH of the solution or cellular
environment, amino acid composition, protein structure, and interactions with other molecules.
Notably, Figure 1A shows that charge states of proteins in solution are uncorrelated with mass
(Allen et al. 2013). In contrast, the charge states of ESI-generated ions are strongly correlated
with mass for well-folded proteins and uncorrelated with the corresponding charge states in

solution (Allen et al. 2013). This leads us to consider the factors that influence observed gas-
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phase charge-state distributions, and additionally, how that charging affects the structures of gas-
phase ions relative to their condensed-phase counterparts.

A detailed discussion of proposed ESI mechanisms is beyond the scope of this review,
but the ionization process is important to answering these questions. There is no singly agreed
upon mechanism to date, but molecular size appears to play a role (Hogan et al. 2009; Kaltashov
& Mohimen 2005). The charged-residue model is often invoked when discussing the multiple
charging of macromolecules (Iavarone & Williams 2003; Kebarle & Verkerk 2009); however,
the charged-residue model alone does not explain all observations (Allen et al. 2013; Konermann
et al. 2013). For example, it doesn’t explain the polarity dependence of protein ion charge-state
distributions: lower average charge states are observed for anions from negative-mode ESI than
for cations from positive-mode ESI (Figure 1B-E), though anions and cations have been found to
be similar in size (Allen et al. 2013). These observations and others have been used as evidence
to support the combined charged-residue, field-emission model, in which the charge states of
many protein ions are limited by competitive emission of charge carriers during the final stages
of analyte desolvation (Hogan et al. 2009; Allen et al. 2013). Positive-mode ESI is most used for
the study of proteins, so protein cations are the primary focus of this review.

In addition to molecular size, the observed charge-state distributions of macromolecules
can depend on solution conditions prior to ESI (Bohrer et al. 2008; Gadzuk-Shea & Bush 2018;
Kafader et al. 2020). Native-like solution conditions seek to preserve noncovalent interactions
from the solution environment into the gas phase; these are typically aqueous solutions at neutral
pH with similar ionic strength to physiological conditions (Kafader et al. 2020). Native-like
conditions produce narrow charge-state distributions with lower average charge states. In

contrast, denaturing solution conditions often contain organic solvent and/or have acidic pH;
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generating ions from denaturing conditions yields wider charge-state distributions and higher
average charge states (Kafader et al. 2020). Other factors that can affect the observed charge-
state distribution in ESI include current and voltage (Han & Chen 2022), the position of the ESI
emitter relative to the atmospheric-pressure interface to the mass spectrometer (Benesch et al.

2009), and other IM-MS instrument parameters (Wang & Cole 1997; Bush et al. 2010).

B. IM-MS of Protein Ions

IM-MS is sensitive to the structures of gas-phase ions, and it is increasingly being applied
to questions of structural biology (Barth & Schmidt 2020). MS is sensitive to the mass and
charge of ions, whereas IM is sensitive to the size, shape, and charge of ions. In IM, ions are
propelled forward by an applied electric field (£) and slowed down by collisions with a
background gas. lons’ mobilities (K) are calculated from their drift times (zs) through a cell of
length, L:

K=— (1)

Within the low-field limit, the kinetic energy imparted by the drift field is negligible compared to
the thermal kinetic energy, and the collision cross section, 2, can be calculated using K and the

Mason-Schamp equation (Mason & McDaniel 1988):

3ez [ 2m \1/2%1
2= GG ®

where e is the elementary charge, z is the ion charge state, N is the drift gas number density, u is
the reduced mass of the ion-drift gas pair, kg is the Boltzmann constant, and T is temperature of
the drift gas.

Since generating gas-phase ions is central to making IM-MS measurements, it is
important to consider how charge affects the structures of the analytes. As mentioned previously,

7
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ESI of proteins in denaturing solutions yields ions with higher charge than those generated from
native-like solutions. IM results show that more highly charged ions also exhibit larger Q values
(Clemmer et al. 1995; Bohrer et al. 2008; Wyttenbach & Bowers 2011; Kafader et al. 2020). IM-
MS experiments probing the effect of ESI solution conditions consistently show a strong link
between charge and Q (Clemmer et al. 1995; Shelimov & Jarrold 1997; Valentine & Clemmer
1997; Valentine et al. 1997b; Wyttenbach & Bowers 2011; Bleiholder & Liu 2019). For instance,
ubiquitin ions generated by ESI from denaturing conditions of 1:1 water: acetonitrile with 2%
acetic acid resulted in charge states 6+ to 13+ (Valentine et al. 1997b), whereas 4+ to 6+ were
observed under native-like conditions of aqueous 200 mM ammonium acetate at pH 7 (Salbo et
al. 2012). Denatured ions exhibited larger € values than native-like ions, suggesting unfolding
and elongation of the structures. Interestingly, the 6+ ions from denaturing conditions exhibited
multimodal Q distributions: as shown in Figure 2, some ions exhibited Q values similar to
native-like 6+ ions and close to values calculated using crystal structures, whereas other ions
exhibited larger Q values indicative of partial unfolding (Valentine et al. 1997b). Such studies
provided foundational insights into the contributions of solution conditions and charge state to
the structures of gas-phase ions. To investigate these relationships more extensively, a variety of
charge-manipulation strategies have been pursued.

This review focuses on the effects of charge state on the structures of protein ions. Note
that charge state also contributes the Q of an ion, even without any changes in structure, because
of long-range interactions between the ion and drift gas (Hogan et al. 2011; Laszlo et al. 2017b;
Canzani et al. 2018). The magnitude of this effect increases with the polarizability of the drift
gas. Most results described in this review are based on IM measurements performed in helium

gas, which has a very low polarizability and minimizes this effect (Canzani et al. 2018).
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C. Charge-State Manipulation
1. Solution Additives

Supercharging or charge-reducing agents can be added to solution to generate different
charge-state distributions after ESI (Lomeli et al. 2010; Sterling et al. 2010; Bornschein et al.
2011; Allen et al. 2013; Pacholarz & Barran 2016; Gadzuk-Shea & Bush 2018; Townsend et al.
2019; Kaldmée et al. 2019; Lyu et al. 2020; Yang et al. 2021; lavarone & Williams 2003).
Generating ions from denaturing or supercharging conditions are common approaches to produce
broader charge-state distributions (Sterling et al. 2011; Kafader et al. 2020), but these strategies
typically result in greater spectral congestion due to the presence of many different highly
charged ions with smaller differences in m/z, which can make it more challenging to resolve
bound species or interfering components. Increasing charge may not produce desirable
conditions for maintaining native-like structure; Coulombic repulsion can preferentially favor
extended structures relative to compact structures (Rolland et al. 2022), and supercharging agents
are associated with protein unfolding (Sterling et al. 2010, 2011; Gadzuk-Shea & Bush 2018).
Charge reduction is advantageous because it creates additional charge states and can potentially
resolve more species at higher m/z. A drawback to using solution-phase additives is that they can
make it more challenging to isolate contributions from solution conditions, ionization, and gas-
phase charge state on the structures of the resulting ions. Additionally, the entire sample is
exposed to the charge manipulation agent, whereas some gas-phase techniques discussed below

may enable the isolation of subpopulations of ions prior to charge reduction.

2. Ion/Neutral Chemistry
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Gas-phase reactions can decouple ionization and charge modulation, so contributions
from changes in charge can be isolated from solution-phase interactions. Gas-phase charge
reduction can be accomplished by ion/neutral or ion/ion reactions. lon/neutral reactions
frequently utilize proton transfer. For example, protein cations can be reacted with vapors of
neutral basic reagents, and the extent of charge reduction depends on the number of ion/reagent
collisions, the thermodynamics of the reaction, and other factors that affect the fraction of
ion/reagent collisions that lead to products, i.e., the reaction efficiency (Ikonomou & Kebarle
1992; McLuckey et al. 1991a; Ogorzalek Loo & Smith 1994; Valentine et al. 1997a). Even with
strong “proton sponges,” this charge reduction strategy is not universal and may compete with
ion/neutral clustering (Ikonomou & Kebarle 1992; McLuckey et al. 1991a; McLuckey &
Stephenson 1998; Ogorzalek Loo & Smith 1994; Valentine et al. 1997a). As charge state
decreases, the reaction efficiency also decreases, which limits the extent of charge reduction
(McLuckey et al. 1991a; McLuckey & Stephenson 1998; Stephenson & McLuckey 1996a). The
low volatility of some reagents also causes persistence in vacuum systems and limits usable

pressures (Herron et al. 1996; Ikonomou & Kebarle 1992; McLuckey et al. 1991a).

3. Ion/Ion Chemistry

Ion/ion reactions benefit from long-range Coulombic attraction, exothermicity at all
charge states, and the ability to quickly modulate or purge anions (McLuckey & Stephenson
1998). Ion/ion reactions primarily proceed through electron or proton transfer, though ion
exchange or adduction can also occur (McLuckey & Stephenson 1998; Pitteri & McLuckey

2005). For reactions of multiply charged cations and singly charged anions, proton transfer and
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electron transfer compete. Proton transfer is more likely when even-electron anions are used
(McLuckey & Stephenson 1998):

[M + xH]** + A~ > [M + (x — )H]* D+ + AH (3)
This reaction yields a charge-reduced cation that is also even electron; fragmentation of these
products is rare (Gunawardena et al. 2005; Herron et al. 1995). Electron transfer is more likely
when a radical anion is used (McLuckey & Stephenson 1998):

[M 4+ xH]** + A~ - [M + xH]"®*~D*+ + 4 4)

This reaction yields a charge-reduced cation that is odd electron, i.e., a radical cation. When
electron transfer yields products that have the m/z of the expected charge-reduced product, it is
also possible that radical-induced cleavages occurred, but that fragments remain bound through
noncovalent interactions (Gunawardena et al. 2005; Jhingree et al. 2017; Riley et al. 2017).
Therefore, Reactions 3 and 4 may yield charge-reduced products that have very different
structures. Although beyond the scope of this review, ion/ion chemistry enables many other
exciting reactions (McLuckey & Huang 2009), including the ability to invert the polarity of
protein ions (He et al. 2005) and form crosslinks that are sensitive to the gas-phase structures of
protein ions (Cheung See Kit & Webb 2022).

The advent of electron-capture dissociation, ECD (Zubarev et al. 1998), and electron-
transfer dissociation, ETD (Syka et al. 2004), techniques helped motivate additional electron-
based charge-transfer studies (Abzalimov & Kaltashov 2010; Geels et al. 2006; Pitteri et al.
2005; Xia et al. 2008). In ECD, low-energy electrons are captured, forming odd-electron species,
which frequently undergo fragmentation at the backbone N-Cq bonds (Syrstad & Turecéek 2005;
Tureccek et al. 2008; Turec¢ek & Julian 2013). In ETD, instead of free electrons, anions are used

to transfer electrons to cations; ETD has been found to produce similar fragments to ECD (Pitteri

11
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et al. 2005; Syka et al. 2004). Charge-reduced products are also observed from both ECD and
ETD (Pitteri et al. 2005; Syka et al. 2004; Zubarev et al. 1998), but ETD has been used more
extensively to intentionally generate those products (Jhingree et al. 2017; Lermyte et al. 2015;
Pitteri et al. 2005; Yang et al. 2021). Both charge-reduction ETD (crETD) and electron transfer
with no dissociation, i.e., ETnoD, are used to describe the use of ETD as a charge-reduction
technique. For ease of discussion, we’ll use crETD to refer to both implementations for the
remainder of the review. Some reagents that have been used for crETD are fluoranthene,
azobenzene, 1,3-dicyanobenzene, 1,4-dicyanobenzene, and p-nitrotoluene (Abzalimov &
Kaltashov 2010; Jhingree et al. 2017; Lermyte et al. 2015; Liu & McLuckey 2012; Yang et al.
2021).

Perfluorocarbons have several properties that are beneficial for proton transfer
(McLuckey & Stephenson 1998). Foundational studies using perfluoro-1,3-dimethylcyclohexane
(PDCH) as an anion source were particularly useful for reactions with protein cations. Many of
these experiments were performed on a modified 3D quadrupole ion trap (Stephenson &
McLuckey 1997). An ESI source produced peptide and protein cations, and an atmospheric-
sampling, glow-discharge interface produced anions from vapors of PDCH. The ion trap was
floated at a negative voltage for the accumulation of cations, a precursor ion isolation step
followed (McLuckey et al. 1991b), and then the trap offset was switched to a positive voltage for
the subsequent injection of anions. A period of mutual storage followed during which the voltage
was held at or near zero, and ions were permitted to react. Anions were often removed, and then
cations were detected. High-m/z measurements were made using resonance ejection (Kaiser et al.

1989).
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Using this setup, ions of insulin, ubiquitin, cytochrome ¢, myoglobin, albumin,
transferrin, phosphorylase B, and more were reacted with PDCH anions (Stephenson &
McLuckey 1996a, 1997). From these experiments, key aspects of these reactions were revealed.
For one, anions derived from PDCH formed no adducts with peptide and protein cations, but, for
other anions studied, adduction to high-mass cations was observed (Stephenson & McLuckey
1996a). Furthermore, no evidence of product cation fragmentation was observed, despite the net
exothermicity of the reactions (McLuckey & Stephenson 1998). It was additionally found that
PDCH-derived anions resist electron transfer, likely due to their high electron affinity and the
instability of radical products (Gunawardena et al. 2005). Finally, favorable reaction kinetics
were demonstrated under pseudo-first-order conditions; rates increase with the square of the
charge state, and the reaction efficiency is constant for all charge states (McLuckey et al. 1998;
Stephenson & McLuckey 1996a). This work also highlighted the utility of proton-transfer
reactions for assigning the charge state and mass of protein analytes as well as for resolving

interfering signals (McLuckey & Stephenson 1998; Pitteri & McLuckey 2005).

4. Atmospheric-Pressure Analogues

As mentioned previously, it is useful to perform reactions within the mass spectrometer,
but charge reduction can be performed at the instrument interface, for example, by positioning a
corona-discharge ionization source (Campuzano & Schnier 2013; Ebeling et al. 2000) or an a
emitter (Scalf et al. 2000) adjacent to the ESI emitter induces charge reduction. The first reported
implementation of gas-phase ion/ion reactions of multiply charged ions used a y-tube reactor at
atmospheric pressure coupled with a quadrupole mass filter (Loo et al. 1991; Ogorzalek Loo et

al. 1992). In these cases, the reactant ion species are not specifically identified because they are
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formed by discharge or a particle reactions with air or bath gas at near-atmospheric pressure. The
chemistry of the reactions is less clear. lon/neutral reactions have also been performed at

atmospheric pressure by exposure of generated ions to nebulized base (Bornschein et al. 2011).

D. Combining Charge-State Manipulation and IM-MS

IM-MS has been combined with the full catalogue of charge-manipulation strategies to
achieve a range of goals including increasing the information content of experiments and probing
the effects of charge on ion structure. For example, Clemmer and coworkers performed
groundwork in incorporating IM after ion/neutral proton-transfer reactions of protein ions,
investigating the effects of multiple different reagents (Shelimov et al. 1997; Valentine et al.
1997b,a). The first instrument integrating an IM separation of charge-reduced products following
ion/ion reactions was reported by Badman and coworkers; it included three ion sources, a 3D ion
trap where ion/ion chemistry was performed, an IM drift tube, and a quadrupole-time-of-flight
mass spectrometer (Zhao et al. 2009). The implementation of CAPTR with IM-MS is described
in the following section. Selected results from IM-MS studies using different charge-reduction

strategies will be discussed in the Comparison to Other Charge Reduction Strategies section.

II. CAPTR Implementation and Effects on Mass Spectral Analysis
A. Instrumentation

CAPTR experiments were performed on a Waters Synapt G2 HDMS modified with a
radio frequency-confining drift cell (Allen et al. 2016) and a glow-discharge ionization source to
generate monoanions for ion/ion chemistry (Williams et al. 2010), as shown in Figure 3A. In

collaboration with FrantiSek Turecek, this instrument has also been used to characterize the
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structures of peptide ions and their ETD products (Marek et al. 2013; Pepin et al. 2014; Marek et
al. 2015; Pepin et al. 2016b,a). A nanoESI source was used to generate protein cations from
borosilicate capillaries with inner diameters of 0.78 mm pulled to a 1-3 pm tip for all studies. By
inserting a platinum wire into the wide end of the capillary, electrical contact with the solution
was established. The atmospheric-pressure interface was held at an elevated temperature of 120
°C for the duration of experiments to prevent fouling of the ion optics; some experiments used a
temperature-controlled source for independent control of the temperatures of the sample
capillary and MS interface since heat transfer to the capillary had been observed (Laszlo et al.
2017a). PDCH was placed in the solvent reservoir at room temperature, and nitrogen gas seeded
with the headspace vapor was introduced to a stainless-steel discharge needle positioned after the
sampling cone. [PDCH-F] monoanions were generated by glow discharge, quadrupole selected
at m/z 381, and accumulated in the stacked-ring ion trap cell for 100 ms. The instrument was
then switched to positive polarity, and cations, the whole population or a quadrupole-selected
population, were transmitted through the cloud of anions for 1 to 10 s. During transmission, the
traveling-wave amplitude in the trap remained at 0 V for maximum spatial overlap of cations and
anions. Figure 3B shows the relative potentials applied to ion optics during anion fill and cation
transmission under minimal-activation conditions. Figure 3C shows the relative potentials during
experiments that activate cations before or after CAPTR. Residual precursor ions and charge-
reduced products were sent on to the drift cell, the collision cell, and then to the time-of-flight
analyzer. Unless otherwise stated, the drift gas was helium for the discussed experiments. The
use of this platform for characterizing the relationship between charge and gas-phase ion

structure is discussed in the Effects of CAPTR on the Structures of Protein lons section.
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The instrument geometry used for CAPTR is most similar to that of Badman and
coworkers (Zhao et al. 2009). Our implementation differs from previous approaches in that
ion/ion chemistry is performed in a stacked-ring ion guide, and the anion population is depleted
significantly during most experiments, so pseudo-first order conditions are not maintained
(Laszlo & Bush 2015). In previous approaches, the reaction time was tuned to preferentially
form a specific charge-reduced product of interest, but with CAPTR a wider range of z values for

charge-reduced products are observed simultaneously (Laszlo & Bush 2015).

B. Charge-State Determination, Mass Assignment, and Resolution

Although this review is focused on the effects of charge on protein ion structure, we also
want to comment on the utility of CAPTR to aid in the interpretation of native mass spectra,
which often exhibit congestion and narrow charge-state distributions that challenge charge-state
assignments and determination of mass (McKay et al. 2006). Creating additional charge states
helps alleviate the uncertainty in this process. Figure 4 shows a native mass spectrum of pyruvate
kinase and the CAPTR mass spectrum of the isolated m/z 7200 ions (Laszlo & Bush 2015).
Simulated mass spectra corresponding to charge state assignments of 31+, 32+, and 33+ for the
precursor ion are plotted over the experimental spectra. Each of the simulated native mass
spectra provides a reasonable representation of the experimental native mass spectrum, but only
the simulated CAPTR mass spectrum for the charge-state assignment of 32+ agrees well with the
experimental CAPTR spectrum. With CAPTR, the ambiguity in charge state was virtually
eliminated. Adjacent mass spectral peaks that differ by one charge have increased spacing at
higher m/z, so, for example, a 12+ ion of neutral mass 223.1 kDa, a 13+ ion of neutral mass

230.1 kDa, and a 14+ ion of neutral mass 237.3 kDa can be resolved in m/z space. Additionally,
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increasing the number of mass spectral peaks provides more observations for mass
determination. This is a benefit of any strategy that increases the available charge-state
observations, but CAPTR both increases the number of observations and the spacing between
peaks. The accuracy of the mass analyzer and the mass heterogeneity of the analytes stemming
from incomplete desolvation, nonspecific adduction, covalent modifications, etc., become the
main contributing factors to mass uncertainty.

CAPTR can also increase the resolution of interfering species in congested mass spectra,
analogous to previous approaches by McLuckey and coworkers in ion traps (McLuckey et al.
1998; McLuckey & Goeringer 1995; Stephenson & McLuckey 1996a,b). Improved resolution
was demonstrated using yeast enolase and bovine serum albumin (Laszlo & Bush 2015). In the
native mass spectra, peak overlap was observed, but after isolating an overlapped peak and
performing CAPTR, the products were well resolved. After 12 CAPTR events, the mass spectral
resolution was 54 compared to 0.016 for the precursors. The change in resolution with charge
reduction depends on the effect of each CAPTR event on the peak width and centroid values of
product ion distributions. The following equation predicts the resolution of two peaks as a

function of the number of CAPTR events (n):

my My
(Zx-1) (zy—m)

Reaprr(n) = Z[Ux(zj—xn)ﬂf(Z—y)} (5)

o
y zy-n

where m, z, and ¢ are mass, charge, and standard deviation of species x and y. z* and 6" signify
the charge state and standard deviations of the initial precursor ion specifically. The relationship
between charge and peak width is based on fundamental time-of-flight equations (Guilhaus

1995); this equation assumes that centroid values shift only because of the changes in charge
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state. In sum, CAPTR provides a facile way to resolve components in high-mass, heterogeneous

samples.

I11. Effects of CAPTR on the Structure of Protein Ions

Observations of CAPTR with PDCH-derived monoanions support previous findings that
proton transfer is the predominant charge-transfer pathway, rather than anion adduction or
electron transfer (Laszlo & Bush 2015). Unlike electron transfer, no evidence for fragmentation
has been observed during CAPTR experiments (Gadzuk-Shea & Bush 2018; Laszlo & Bush
2015, 2017; Laszlo et al. 2016, 2017a,b) These properties of CAPTR, in addition to the wide
range of charge states produced for structural characterization and mass assignment, support its
utility as an analytical platform. In this section, we review the results of CAPTR-IM-MS of

various protein cations generated from different solutions.

A. CAPTR of Protein Ions from Denaturing Solutions

As discussed previously, ions generated from denaturing solutions yield more highly
charged ions with larger Q values, indicating varying degrees of protein unfolding. By
monitoring changes in 2, we used CAPTR to investigate whether charge reduction can mitigate
some of the structural effects associated with denaturing conditions. Studies also helped
investigate the relationship between protein mass, 2, and the extent of refolding with charge
reduction. Ions of ubiquitin (8.6 kDa, monomer), cytochrome ¢ (12 kDa, monomer), lysozyme
(14.3 kDa, monomer), bovine serum albumin (BSA, 66 kDa, monomer), and antibodies, IgG1
(149 kDa, heterotetramer) and IgG4 (156 kDa, heterotetramer), were probed using various

denaturing conditions. Ubiquitin and cytochrome ¢ ions were both generated from 70:30
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water:methanol acidified with trifluoroacetic acid to a pH of 2 (Laszlo et al. 2016, 2017a). 5+ to
13+ ubiquitin ions were observed from ESI, and from each precursor ion, CAPTR produced ions
as low as 3+ in charge (Laszlo et al. 2016). For ease of discussion CAPTR ions will be
represented by “P—C” for the remainder of the review where “P” is the precursor ion charge
state and “C” is the product ion charge state. For example, ubiquitin 13—3 specifies the 3+
CAPTR product ion generated from the 13+ precursor.

Figure S5A shows the Q distributions for the 13— C ubiquitin ions. With increasing
numbers of CAPTR events (i.e., decreasing C), the distributions shift to smaller Q values. The
distributions appear relatively symmetric for large and small values of C, whereas the
distributions appear multimodal for intermediate values of C. The largest compaction for
denatured ubiquitin was observed for the 13—3 ions; this corresponds to a 50% decrease in Q,
indicating significant refolding upon reduction in charge by 10 CAPTR events (Laszlo et al.
2016). Figure 5B shows the Q values found for all P—C ubiquitin ions — these values depend
strongly on C and weakly on P. Differences between selected P— C ubiquitin ions will be
discussed in the Pre-CAPTR Activation and Post-CAPTR Activation sections.

Generated from the same solution conditions, cytochrome ¢ cations as high as 18+ in
charge were observed (Laszlo et al. 2017a). Figure 6A shows the Q distributions for the 18—C
cytochrome c ions; these distributions follow the general trends with decreasing C that were
described for the 13— C ubiquitin ions. The 18+ precursor ions exhibited a near 56% decrease in
Q on charge reduction to 4+ and 3+, corresponding to 14 or 15 CAPTR events. To compare with
ubiquitin after 10 CAPTR events, cytochrome ¢ 18—8 compacted by 30%. Interestingly,
cytochrome ¢ 13—3 ions, also produced by 10 CAPTR events, compacted by 49%. Lysozyme

ions were generated by ESI from 1:1 water:acetonitrile with 0.2% acetic acid (Laszlo et al.
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2017b). Under these conditions, 8+ to 13+ ions were produced. The 13—3 ions were the lowest-
z CAPTR products observed with a corresponding 37% decrease in Q. BSA ions, which are
much larger in mass than lysozyme ions, were generated from 70:30 water:methanol with 0.2%
formic acid (Gadzuk-Shea & Bush 2018). Ions up to 45+ in charge were subjected to CAPTR.
Following 35 CAPTR events, the 45—10 ions decreased 48% in Q from that of the precursor
(Figure 7C). After 10 CAPTR events, Q decreased by only 10%. IgG1 and 1gG4 ions were
generated by ESI from aqueous 0.1% acetic acid; these ions are over twice as large in mass as
BSA ions (Gozzo & Bush, manuscript in preparation). 49+ ions were the ions of highest z
subjected to CAPTR, yielding products as low in z as 15+ and 16+ for IgG1 and 1gG4,
respectively (33 to 34 CAPTR events). The parallel decrease in Q2 was 21% for IgG1 and 17%
for IgG4. After 10 CAPTR events, 49—39 ions had only decreased by 5.4% and 4.3% in Q for
IgG1 and IgG4, respectively.

A summary of the results for CAPTR of denatured protein ions can be viewed in Figure
8A and 8C. Across the board, protein cations generated from denaturing solutions all refolded to
some extent following CAPTR. The extent to which, if at all, removing excess charges may
enable protein ions to form new interactions that are also present in the corresponding native
structures is unclear. For example, molecular dynamics simulations of 13+ ubiquitin in the gas
phase following sequential proton stripping results in the formation of increasingly compact
structures that yield calculated Q values that are qualitatively similar to many of our
experimental observations for the CAPTR products of 13+ ubiquitin generated from a denaturing
solution (Sever & Konermann 2020). The proton-stripped 3+ ions from the simulations had
calculated Q values similar to those measured for native-like ubiquitin ions (Wyttenbach &

Bowers 2011; Salbo et al. 2012) and similar to those previously calculated for native structures
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of ubiquitin (Bleiholder et al. 2015; Jurneczko & Barran 2011). However, the molecular-
dynamics structures were “inside-out”, with new electrostatic interactions on the interior and
hydrophobic residues on the exterior, as shown in Figure 9 (Sever & Konermann 2020).
Additional simulations would benefit our understanding of the specific structural changes that
occur at the molecular level following individual CAPTR events, especially for ions that exhibit
Q distributions that depend strongly on how they were formed (e.g., 7+ ions from different
solution conditions or from different numbers of CAPTR events). A trend between the degree of
compaction and mass was also observed. As the ions increased in mass, the level of collapse in Q
from precursor ions to CAPTR products tended to decrease. This trend will be discussed further

in the Effects of Charge Density on lon Structure section.

B. CAPTR of Protein Ions from Native-Like Solutions

CAPTR was also applied to investigate the relationship between Q and charge for protein
ions generated from native-like conditions. Native-like solution conditions were the same for all
protein cations probed: aqueous 200 mM ammonium acetate at pH 7. Cytochrome c, lysozyme,
BSA, and IgG proteins were probed under both denaturing and native-like conditions, so they
will be discussed first. The observed charge states were lower overall when compared to
denaturing conditions, as expected. The most-intense charge states observed directly from
electrospray were 6+ to 8+ for both cytochrome ¢ and lysozyme. The 7+ cytochrome ¢ precursor
ions gave rise to CAPTR products as low as 3+ in z, corresponding to 4 CAPTR events (Laszlo
et al. 2017a). The 7—3 ions were observed to be 11% smaller than their 7+ precursors (Figure

6B). Lysozyme 8+ precursor ions yielded lowest-z CAPTR products of 3+ as well; these were
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8.4% smaller than their precursors (Laszlo et al. 2017b). For comparison, lysozyme 7—3
products were only about 6.3% smaller than the 7+ precursors.

CAPTR of the native-like ions of BSA yielded a maximum compaction of 6% for the
17—6 ions, corresponding to 11 CAPTR events (Gadzuk-Shea & Bush 2018) as shown in Figure
7D. From recent work probing IgG1 and IgG4 ions, maximum relative decreases in Q of 2.3%
and 2.2% were observed for the IgG1 25—13 ions and 1gG4 26— 14 ions, respectively (Gozzo &
Bush, manuscript in preparation). 12 CAPTR events occurred in both cases. Additional native-
like proteins probed by CAPTR included avidin (64 kDa, homotetramer), streptavidin (53 kDa,
homotetramer), and alcohol dehydrogenase (147 kDa, homotetramer). Relative to their precursor
ions, the maximum decreases in Q values of the product ions were 2.9%, 2.3%, and 3.6% for
avidin, streptavidin, and alcohol dehydrogenase, respectively, which occurred within the first
few CAPTR events (Figure 10).

A summary of the results for CAPTR of native-like protein ions is shown in Figure 8B
and 8D. Overall, minimal compaction was observed with charge reduction by CAPTR indicating
that the excess charges on native-like ions have a relatively small impact on Q. Less charge-state
dependence was observed than for the unfolded ions generated from denaturing solutions. €
values of cytochrome ¢ and lysozyme exhibited a stronger dependence on C than those of the
other proteins studied. Trends in this data and comparisons to those for denatured ions will be

discussed in the Effects of Charge Density on lon Structure section.

C. Comparing Solution Conditions for Single Proteins
In addition to examining the effect of charge state on protein ions spanning a range of

masses and Q values, CAPTR-IM-MS was used to investigate the relationship between Q and
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charge reduction for gas-phase ion structures of a single protein generated from different solution
conditions. Our broadest study of the relationship between solution conditions, charge state, and
Q) was one in which bovine serum albumin, BSA, ions were generated from five different
solutions ranging from native-like to very disruptive (Gadzuk-Shea & Bush 2018). These
conditions are referred to as native-like, disulfide-intact (NI); native-like, disulfide-intact,
supercharging (NISC); denaturing, disulfide-intact (DI); denaturing, disulfide-intact,
supercharging, (DISC); and denaturing, disulfide-reducing, supercharging (DRSC), as described
in the original work (Gadzuk-Shea & Bush 2018). The more disruptive the original solution, the
higher the charge states, the wider the charge-state distributions, and the larger the initial Q
values. Despite some overlap in the observed charge states produced (DISC and DRSC), none of
the observed Q values overlapped, indicating that ion structure depended strongly on the original
solution conditions.

A subset of BSA ions from each condition was selected and subjected to CAPTR (Figure
7). Q values of P—C ions from both DRSC (P = 70 and 80) and DISC (P = 50, 60, 70, and 80)
conditions depended weakly on P and decreased monotonically with decreasing C. Ions from DI
conditions exhibited lower charge states than those from DISC conditions, so the selected
precursor was 45+. A steady decrease in ) was observed for most 45— C ions, except for 35+ to
40+ products, which all had similar Q values. Compared to ions from native-like conditions, ions
from denaturing conditions exhibited more significant compaction with decreasing C due to
refolding. From NISC conditions, precursors of charge 18+ to 21+ were selected. For P =19 to
21, a steeper decrease in Q2 was observed for the first CAPTR event with smaller decreases in 2
for the remaining charge reduction down to C = 6. 18—C ions from NISC conditions were all

similar in Q. Some ions from NISC conditions exhibited weak dependence on P, e.g., the P—14
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ions increase in Q with increasing P, but the lowest C ions (6+) exhibited no trend in Q with P.
From NI conditions, P =15 to 17, and Q values for the P—C ions were all similar to each other,
suggesting no significant dependence on the charge state of the precursor or product.

When comparing ions across conditions, P—C ions from denaturing conditions were all
larger than the corresponding P—C ions from NISC conditions, which were all larger than those
from NI conditions. P—C ions of the same C from DISC and DI conditions were similar in €.
Ions from DRSC conditions were larger for high C, but the difference decreased with decreasing
C. The rate of compaction with each CAPTR event was similar for ions from both DISC and
DRSC conditions for C > 36, but both rates of compaction increased for C < 36. The DRSC
compaction rate increased more, leading to the convergence of Q values at low C. The difference
between these two conditions was the presence or absence of disulfide bonds. Ions from DRSC
conditions were more able to extend to larger structures than ions from DISC or DI conditions
and were also able to refold more with each CAPTR event, emphasizing the constraining nature
of disulfide bonding on the structures of these ions.

Another notable observation was that P—C ions from denaturing conditions with C
values also observed from native-like conditions did not compact down to similar Q values to the
P—C ions from NI conditions — they remained about 30% larger. This result suggests that these
ions retained some aspects of their solution-phase structures, even as they folded to smaller Q
with each CAPTR event. Finally, even though ions from NISC conditions decreased in Q with
decreasing charge state, they remained larger than ions from NI conditions for all charge states,
indicating that protein structure is perturbed with supercharging by sulfolane. These structural
changes were not mitigated by CAPTR, i.e., supercharging can cause irreversible changes to the

structures of protein ions.
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In summary, these results suggest that gas-phase ions retain some aspects of their
solution-phase structure in the gas phase. CAPTR revealed that the Q values of product ions can
depend simultaneously on the original solution conditions, P, and C. These experiments suggest
that protein ions have a memory of their prior structures from solution, and their gas-phase

structures respond to charge reduction and collisional activation accordingly.

D. Effects of Charge Density on Ion Structure

Together, the results discussed above suggest that charge density, as represented by m/z,
is a significant factor governing the overall impact of charge on gas-phase ion structures.
CAPTR-IM-MS experiments showed that, without exception, the €2 values of protein cations
generated from denaturing solution conditions had a stronger dependence on charge than protein
cations generated from native-like conditions. Denatured ions experienced significant refolding
with charge reduction by CAPTR. Smaller protein ions with lower masses, lower initial m/z
values, and lower initial Q generally compacted more significantly with C than larger ions, as
evidenced by larger percent decreases in 2 with CAPTR, even over the same number of CAPTR
events (Figure 8A and 8C).

An exception to this trend was observed when comparing 18—38 ions of cytochrome ¢ to
13—3 ions of lysozyme from DI conditions. Although these both correspond to 10 CAPTR
events, and the charge density is greater for 18+ ions of cytochrome ¢ when compared to 13+
ions of lysozyme from DI conditions, lysozyme ions exhibited greater compaction in € (37% vs
30%). When we instead compare 13—3 ions from both proteins, cytochrome c ions exhibited the
greater compaction in €. There was a steeper decrease in {2 when subjecting the 13+ cytochrome

¢ precursor ions to 10 CAPTR events than when subjecting the 18+ ions to the same extent of
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CAPTR. This may suggest that, up to a certain point, excess protons limit the formation of
additional noncovalent interactions because the Coulombic strain is still too high. Additionally,
13— C cytochrome c ions were similar in € to the 18— C ions where C = 13 to 3. An increase in
the rate of compaction with CAPTR was also observed for BSA ions from DISC and DRSC
conditions below C = 36, supporting this hypothesis. 18+ DI lysozyme ions were not observed
from denaturing conditions, so 18—C ions are not available for comparison; however, disulfide-
reduced (DR) lysozyme 18+ ions were produced and subjected to CAPTR. 18—C ions exhibited
similar extents of compaction to cytochrome ¢ 18— C ions across all C. This observation
suggests that, in addition to charge density, other aspects of structure, e.g., disulfide-bonding,
impact the relationship between Q and charge.

The Q values of native-like ions depended relatively weakly on charge (Figure 8B and
8D). Compared to denatured ions, the percent decrease in Q values with CAPTR was minimal,
but a similar trend between charge density and the extent of compaction was observed. These
experiments suggest that the amount of charging resulting from ESI is generally well-
accommodated by large, native-like protein ions, but it can still have a modest effect on Q. The
structures of smaller protein ions appear to be far more sensitive to the excess charges associated
with ESI.

Altogether, these observations reveal that excess charges can have a larger effect on
smaller protein ions, which may be the result of higher charge density, lower surface-to-volume
ratios, and a more limited ability to self-solvate those excess charges. These results are in
agreement with recent work investigating the charge-state distributions of protein ions formed by
ESI and their relationships with Q (Rolland et al. 2022). Smaller protein ions exhibited more

positive slopes in € with increasing charge across their charge-state distributions. The increase
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in Q with charge was attributed to the limited ability of these smaller proteins to undergo surface
compaction and self-solvation, leading to Coulombic repulsion that stabilized larger
conformations (Rolland et al. 2022). This is consistent with the stronger relationship observed
between Q and z for smaller proteins using CAPTR-IM-MS. This suggests that smaller, native-
like 1ons have significant Coulombic strains, which are associated with more significant
decreases in € upon charge reduction, whereas larger, native-like ions initially have lower

Coulombic strains, and concomitantly, exhibit less compaction upon charge reduction.

IV. Probing Energy Landscapes

Energy-dependent IM is used to study the stability and conformational space of ions in
the gas phase (Pierson et al. 2010). For example, in collision-induced unfolding (CIU), native-
like ions are activated as a function of collision energy and then analyzed by IM. Activation
enables ions to overcome the energy barriers to isomerization and often results in the formation
of new, stable structures that have larger Q values (Dixit et al. 2018). CIU results have been used
to study the stabilities of proteins (Freeke et al. 2012), modes of ligand binding (Rabuck et al.
2013), and to differentiate similar biotherapeutics (Tian et al. 2015). Applying collisional
activation before or after CAPTR enables us to probe different regions of the energy landscapes

of gas-phase ions.

A. Pre-CAPTR Activation
Pre-CAPTR activation is performed on precursor ions prior to subjecting them to CAPTR
for charge reduction. This will be represented with an asterisk by the precursor charge state:

P*—C. Pre-CAPTR activation can be accomplished at the atmospheric-pressure interface by
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increasing the bias between the sampling cone voltage and the extraction cone (Figure 3C). Pre-
CAPTR activation has also been accomplished by increasing the bias between the quadrupole
and the trap cell (Laszlo et al. 2016). These methods allow for the investigation of the effects of
precursor activation on product ion structures and have been proposed to provide an indirect
probe of precursor ion structure. For example, in studying denatured ubiquitin ions with CAPTR,
the 8*—8 (activated precursor ions that did not undergo reaction) Q distributions were
independent of the voltage applied (Laszlo et al. 2016), but the Q distributions of the 8*—6 ions
changed with increasing energy (Figure 11E). The 8*—6 ions display features I, II, and III, with
I being the most intense at low energies. Features II and III grow in intensity, whereas feature I
decreases in intensity, with increasing activation. It is possible that the 8*%—8 ions isomerize to
different conformations that have indistinguishable €, but form structures with resolvable Q for
the 8*—6 ions. For the highest energies tested (70 to 100 V), the 8*—6 distributions were
similar. This may reflect a quasi-equilibrium (Pierson et al. 2010) of structures formed in the
8*—8 populations at those energies.

Recently, pre-CAPTR activation was used to differentiate [gG1x and 1gG4x from human
myeloma (Gozzo & Bush, manuscript in preparation). These antibodies have high sequence
similarity and have the same number of interchain disulfide bonds, but they differ in connectivity
of said bonds (Vidarsson et al. 2014). They are difficult to differentiate by IM-MS alone (Tian et
al. 2015). The 25*—25 ions of IgG1 and IgG4 displayed indistinguishable or very similar
distributions at all the pre-CAPTR activation voltages tested, but with charge reduction, the Q
distributions of the 25*—12 ions were more resolved. At 75 V precursor activation, for example,
IgG4 did not compact as much as IgG1 with charge reduction, creating differences in the Q

distributions with decreasing charge that reflect the subtle differences in their structures. These
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results suggest that pre-CAPTR activation and IM-MS may be useful for differentiating similar
biomolecules and biotherapeutics, even in cases where activation and IM-MS alone (i.e., CIU)

are inadequate.

B. Post-CAPTR Activation

Post-CAPTR activation is performed on residual precursor and CAPTR product ions after
exiting the trap cell and before analysis by IM-MS. This is represented with an asterisk by the
product charge state: P—C*. Post-CAPTR activation can be performed as a function of the dc
bias between the trap cell and mobility cell, which increases the kinetic energy of ions during
injection to the mobility cell (Figure 3C). Collisional activation after CAPTR also been
accomplished by establishing a region analogous to the helium cell on the unmodified Synapt G2
(Giles et al. 2011), but pressurizing it with argon for more energetic collisions (Laszlo & Bush
2017). This region is located just prior to the drift region. Post-CAPTR activation is used to
directly probe the stabilities and structures of product ions.

Post-CAPTR activation was applied to the 6+ ions generated from various precursors (P
=6, 8, and 13) of denatured ubiquitin (Laszlo et al. 2016). The 6*—6 and 6—6* results were
similar, indicating similar activation mechanisms for pre- and post-CAPTR activation in the
experiments (Figure 11A and 11D). Features I, II, and III were observed in the Q distributions,
with feature I being the most compact and feature III being the most unfolded. At low energies,
6—6* displayed mainly feature I, with low intensity for the other two features. 8—6* ions also
exhibited the highest intensity for feature I, but presented significant intensities for features II
and III as well. With increasing activation voltage, both the 6—6* and 8—6* ions unfolded to

predominantly feature III, though 8 —6* ions completed the transition 10 V earlier than 6—6*
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ions (Figure 11A and 11B). In contrast, 13—6* ions populate feature II mainly, with low
intensities of I and III at low energies (Figure 11C). The intensity of feature I doesn’t change
significantly with increasing energy but feature II gives way slightly and feature III increases in
intensity until they are about equivalent at the highest voltages. The persistence of features I and
IT contrasts observations for the 6—6* and 8—6* ions, which suggests that 13—6* ions exhibit
different structures than those ions. They do not appear to interconvert in these experiments,
indicating that different regions of the energy landscape were probed.

Post-CAPTR activation was also applied to 15+ ions of BSA generated from different
solution conditions (Gadzuk-Shea & Bush 2018). In this case, nitrogen was used as the drift gas,
s0, as ions were injected into the mobility cell with increasing voltage, more efficient energy
deposition occurred than with a helium-filled drift cell. 15—15* ions from NI conditions,
60—15* ions from DISC conditions, and 70—15* ions from DRSC were tested. The apparent Q
distributions and their median values are presented in Figure 12. At low energies, Q distributions
of ions from DRSC and DISC conditions overlapped significantly, while the Q distributions of
ions from NI conditions were distinct and appeared at smaller Q. With increasing activation, the
populations from DRSC and DISC conditions began to compact while the ions from NI
conditions got larger. At the highest injection voltages, ions generated from all three conditions
exhibited similar Q values and their Q distributions largely overlapped, providing evidence for
population of similar areas of their energy landscapes. The distributions of ions from DRSC were
slightly shifted to larger Q2 compared to distributions of ions from NI and DISC conditions. This
is different from the results observed using post-CAPTR activation on ubiquitin 6+ ions
generated from the same solution conditions, but from different precursors (Laszlo et al. 2016).

In this case, a quasi-equilibrium (Pierson et al. 2010) of structures may have been reached before
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the energy required for dissociation was reached. On the other hand, these ions could have
different structures that just happen to coincide in Q. The initial population of 15+ ions from NI
conditions is significantly different than the other populations based on its response to increasing
energy; the ions from NI conditions overcome energy barriers to isomerize to larger structures
while the other ions decrease in size. This reflects the disintegration of intramolecular
interactions that prevent such expansion, whereas the compaction of ions from DISC and DRSC
conditions may be credited to the formation of initially absent intramolecular interactions. This
provides additional support for the generation of kinetically trapped structures via ESI; ions from
different solution conditions retain aspects of condensed-phase structure, but gas-phase

equilibrium structures may be significantly different.

V. Comparison to Results from Other Charge-Reduction Strategies

The following section compares the IM-MS results from studies using CAPTR with those
using other methods to manipulate charge. As discussed in the Charge Manipulation section,
these methods include the addition of solution modifiers prior to ESI, atmospheric-pressure
methods, gas-phase ion/neutral chemistry, and gas-phase ion/ion chemistry. Some methods
include the isolation of precursors of a specific charge state, but others simultaneously affect all
precursors. This discussion focuses on studies of ubiquitin, cytochrome ¢, lysozyme, alcohol
dehydrogenase, and pyruvate kinase. Although many of these studies used drift tubes (Gabelica
et al. 2019) or radio-frequency confining drift tubes (Allen & Bush 2016) containing helium gas,
some used traveling-wave IM in N2 gas and external calibration with helium-based Q values. We

will not discuss potential bias in the values determined using the latter, but the challenges and

31



708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

potential errors associated with calibration are discussed elsewhere (Bush et al. 2010, 2012;

Zhong et al. 2011).

A. Effects of Charge on Small, Single-Domain Proteins

Ubiquitin and cytochrome c are widely used as models of single-domain proteins. Results
from the following experiments were selected for comparison to results from CAPTR of these
protein ions: ion/neutral proton transfer of denatured ubiquitin (Valentine et al. 1997b), crETD of
denatured ubiquitin (Lermyte et al. 2017), and crETD of native-like and denatured cytochrome ¢
(Jhingree et al. 2017). CAPTR was performed on quadrupole-selected 6+ to 13+ ubiquitin ion
populations generated from denaturing solution conditions, as discussed in the CAPTR of
Proteins from Denaturing Solutions section and shown in Figure 5 (Laszlo et al. 2016). Clemmer
and coworkers generated ubiquitin ions from a different denaturing solution and performed
ion/neutral proton-transfer reactions broadly, on the whole population of observed ions, 6+ to
13+ (Valentine et al. 1997b). Results of ion/neutral proton-transfer reactions are shown in Figure
2. PTQye values of the precursor ions in these two studies were similar, with some differences
observed for 6+ to 8+ distributions. After CAPTR, all P—C ions exhibited smaller Q values than
their precursors (Laszlo et al. 2016). The product ions of a particular C formed from different P
had very similar Q values, pointing to a strong dependence on P and a weak dependence on C.
These results are also consistent with an earlier study of ion/ion proton transfer of ubiquitin ions
(Zhao et al. 2009).

The 4+ and 5+ products of ion/neutral proton transfer from ubiquitin cations to different
bases exhibited either compact or partially folded, rather than elongated conformers (Valentine et

al. 1997b). More-compact populations were depleted preferentially; this effect was stronger with
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stronger bases. More-elongated populations exhibited no evidence for folding, which was
attributed to the larger gas-phase acidities of elongated protein ions (i.e., removing a proton from
those ions is more endergonic) and the preferential depletion of compact ions that are expected to
have smaller gas-phase acidities (Valentine et al. 1997b) (i.e., removing a proton from those ions
is less endergonic). In contrast, CAPTR appears to charge reduce all conformers of ubiquitin
(Laszlo et al. 2016), which is consistent with the large exergonicity of ion/ion proton-transfer
reactions. Despite these differences, both studies report Q2 values that depend strongly on z.

CAPTR (Laszlo et al. 2016) and crETD (Lermyte et al. 2017) of selected ubiquitin ions
generated from denaturing solutions both resulted in folding and compaction in Q with charge
reduction. ctETD was performed on quadrupole-selected ubiquitin ions with 1,4-dicyanobenzene
radical anions (Lermyte et al. 2015, 2017); this reagent yields both proton-transfer and electron-
transfer products (Gunawardena et al. 2005; Liu & McLuckey 2012; McLuckey & Stephenson
1998). In this case, the apparent ratio of proton-transfer to electron-transfer products was
determined, and, in contrast to ion/neutral studies, preferential depletion of certain conformations
was not observed, which was attributed to the more homogenous sizes of the precursor ions. In
both the crETD and CAPTR studies, the charge-reduced products exhibited similar Q values to
those for the identically charged ions generated directly from ESI, indicating that 2 depends on
z. With increasing post-reduction collisional activation, the € distributions of 6—6* and 8—6*
ions evolved qualitatively similarly in the two studies, suggesting similar structures may have
been probed.

CAPTR was performed on quadrupole-selected cytochrome ¢ ions generated from both
native-like and denaturing solution conditions as discussed earlier and shown in Figure 6 (Laszlo

et al. 2017a). crETD was performed on quadrupole-selected cytochrome ¢ ions from similar
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solution conditions using 1,3-dicyanobenzene radical anions (Jhingree et al. 2017). That study
reports that proton transfer was not a major pathway in those crETD experiments. Like the
ion/neutral studies of denatured ubiquitin, the most compact features of denatured cytochrome ¢
were preferentially depleted by charge-reduction reactions; the remaining precursor ions
exhibited more extended populations. In CAPTR experiments, preferential depletion was not
observed. Despite some differences in precursor and product distributions, both studies observed
that Q depended on z. For instance, 10+ products of ctrETD from 10+, 11+, and 12+ precursor
ions all exhibited similar Q distributions (Jhingree et al. 2017). For the intermediate-charged
CAPTR products (P—C, C=9 to 5), the Q of the product ions also depended weakly on P
(Laszlo et al. 2017a). Q distributions of native-like ions generated for CAPTR experiments were
significantly smaller and exhibited fewer features than the corresponding native-like ions in
crETD studies. To perform crETD in this case, the optimized instrument conditions were
activating. When crETD was performed on the native-like 7+ ions for example, the resulting 6+
ions compacted to sizes closer to native-like 6+ ions measured under non-crETD conditions
(Jhingree et al. 2017). As a result, compaction was more significant than was observed with
CAPTR. Overall, these studies suggest that €2 can depend strongly on z for small, single-domain

protein cations.

B. Effects of Charge on Proteins with Internal Disulfide Bonds

Lysozyme is a 14 kDa protein whose native structure contains four internal disulfide
bonds. The charge states of lysozyme ions from denaturing, disulfide-intact (DI) and denaturing,
disulfide-reducing (DR) conditions have been manipulated using ion/neutral proton transfer

reactions (Valentine et al. 1997a) and CAPTR (Laszlo et al. 2017b). Both studies reported
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similar PTQue values for ions from DR conditions and the presence of a slightly unfolded
population for ions from DI conditions, but the earlier study also reported a more-folded
population for ions from DI conditions. For the ion/neutral proton-transfer experiments, the full
populations of lysozyme ions from DI or DR conditions were transmitted through a gas cell
containing a vapor of either n-butylamine or 7-methyl-1,5,7-triazobicyclo[4.4.0]dec-5-ene
(Valentine et al. 1997a). For ions from both conditions that were subjected to ion/neutral proton-
transfer reactions, °"Que distributions were more compact than those of the originating ions
(Valentine et al. 1997a). CAPTR of selected precursors from both conditions also yielded
charge-reduced product ions that were more compact than their precursors (Laszlo et al. 2017b).
Energy-dependent experiments were used to probe stabilities of charge-reduced lysozyme
ions. For ions from DI conditions, collisional activation of 6+ lysozyme ions from ion/neutral
proton transfer resulted in PTQue values that appeared to be independent of the applied activation
voltage (Valentine et al. 1997a). In contrast, the **Que values of 12—6* CAPTR products
decreased with increasing energy (Laszlo et al. 2017b). At low energies, the 12—6* ions
exhibited PTQue values that were larger than those of the 6+ ions from ion/neutral proton
transfer, and at the highest energies, 12—6%* ions exhibited °TQne values that were
indistinguishable from those of the 6+ ions from ion/neutral proton transfer (Laszlo et al. 2017b;
Valentine et al. 1997a). The results are consistent with the formation of fully annealed products
following ion/neutral proton-transfer reactions and kinetically trapped products following
CAPTR; with increasing energy the CAPTR products anneal and have similar structures to those
formed directly by ion/neutral proton-transfer reactions. Potential factors that may contribute to
these results include: (1) the CAPTR product was generated from a 12+ precursor, whereas the

ion/neutral proton-transfer products were generated from a full distribution of charge states that
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did not extend to the 12+ ion, (2) ion/neutral proton-transfer products may have preferentially
reacted with more compact precursors and yielded more compact products (Valentine et al.
1997b), and (3) ion/neutral proton-transfer may result in greater heating (and pre-annealing) than
CAPTR.

For ions from DR conditions, collisional activation of 6+ lysozyme ions from ion/neutral
proton transfer resulted in PTQue values that increased with increasing energy (Valentine et al.
1997a). At low energies, the 12—6* CAPTR products exhibited larger "Que values than those
for the 6+ ions from ion/neutral proton transfer. With increasing energy, structures with smaller
PTQOne values became populated, but larger structures near 17.5 nm? persisted over all energies.
Although the results from these two studies using identical DR conditions indicate that Q can
depend strongly on z and the presence of disulfide bond, the significant differences in the energy-
dependent IM analysis of ions from ion/neutral proton-transfer reactions and CAPTR suggest
that those two charge-reduction methods can yield products that populate very different regions

of the energy landscape of a protein.

C. Effects of Charge on Native-Like Ions of Larger Proteins

Alcohol dehydrogenase (ADH) and pyruvate kinase (PK), which are homotetramers with
masses of 147 and 237 kDa respectively, have been used to study the effects of charge on the
structures of native-like protein ions. In addition to CAPTR (Laszlo & Bush 2017), the charge
states of ADH and PK have been manipulated using solution-phase additives of triethylamine
(Allen et al. 2013) or 1,5-diazabicyclo[4,3,0]non-5-ene (DBU) (Bornschein et al. 2011), and
ion/neutral proton transfer with nebulized DBU (Bornschein et al. 2011). In addition, the charge

states of ADH have been manipulated using crETD with 1,4-dicyanobenzene radical anions
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(Lermyte et al. 2015) and those of PK have been manipulated using corona-discharge
(Campuzano & Schnier 2013). CAPTR and crETD were applied to quadrupole-selected ions,
whereas other charge-reduction methods were applied to all ions simultaneously.

Figure 13A shows Q values of ADH as a function of charge state. Overall, CAPTR
yielded the widest range of product-ion charge states. The products compacted slightly following
the first few CAPTR events and the maximum decrease in Q relative to the precursor was 3.6%
(Laszlo & Bush 2017). Q values of ions generated from solutions with triethylamine were nearly
identical to those of ions of the same z from native-like conditions (Allen et al. 2013). Below
24+, ions generated from triethylamine solution increased in Q2 modestly with decreasing charge
(Allen et al. 2013). A similar trend was observed for ions exposed to nebulized DBU at
atmospheric pressure (Bornschein et al. 2011). When DBU was added to solution, instead of
introduced in the gas phase, addition activation was required to knock off proton-bound base
molecules and accomplish the desired charge reduction (Bornschein et al. 2011). This also
resulted in slightly unfolded ions that were significantly larger than native-like ions from ESI at
charge states 21+ to 27+. These ions exhibited a significant decrease in  with decreasing charge
state. The observation that solution modifiers often complex with protein cations during ESI —
thus requiring supplemental activation to release the protein ion of interest — illustrates some of
the challenges associated with using solution modifiers and using the resulting data to understand
the relationship between charge and protein ion structure. The Q values of crETD products of
ADH depended more strongly on charge state than those for the CAPTR products, e.g., the 26+
precursor yielded a 15+ product that was 6.4% smaller (Lermyte et al. 2015). The comparatively
large decrease in Q when 26+ ADH is subjected to crETD is consistent with heating and

annealing of those products; the arrival times of 25— 17* ADH ions decrease with increasing
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post-CAPTR collision energy (Laszlo & Bush 2017). The products generated from crETD may
be different than those produced from CAPTR; charge reduction with 1,4-dicyanobenzene
radical anions can proceed through either non-dissociative electron transfer or proton transfer.
All studies of the charge reduction of native-like ions of ADH indicate the Q) values of these ions
depend less strongly on charge than smaller, single-domain proteins.

Figure 13B shows Q values as a function of charge state for PK. For experiments with
DBU and triethylamine, similar challenges were reported as described above for ADH (Allen et
al. 2013; Bornschein et al. 2011). Incorporating triethylamine into the electrospray solution and
exposing ions to nebulized DBU both yielded ions with Q values that were similar to those
generated from solutions without those modifiers (Allen et al. 2013; Bornschein et al. 2011).
These results support the claim that the structure of native-like PK ions does not depend strongly
on charge state. Another study generated PK ions from native-like conditions in close proximity
to a corona-discharge probe using N2 gas (Campuzano & Schnier 2013). Contrary to results
using the other approaches discussed, the application of the corona-discharge probe yields ions
whose Q values decrease significantly with decreasing z, e.g., the Q values of the 25+ ions were
19% smaller than the 36+ ions (Campuzano & Schnier 2013). These differences may be
attributable to factors inherent to the charge-reduction method, e.g., generation of new species by
corona discharge or activation in the high fields of the discharge region. Alternatively, the larger
changes reported for these experiments could be a consequence of the IM measurement, which

used traveling-wave IM with ramped amplitudes.

VII. Energetics
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As discussed in the section Manipulating the Charge States of Protein lons, ion-ion
reactions like CAPTR (Reaction 3) are expected to be highly exothermic. These expectations
originate from comparison of the proton affinities of the monoanion and the protein cations
(McLuckey & Stephenson 1998). Here, we will expand on energetics by quantifying the change
in free energy of these reactions, and we will discuss implications for interpreting CAPTR data.
Reaction 3 can be separated into reactions for extracting a proton from a protein polycation:

[M + xH]** > [M + (x — DH]|® D+ + g+ (6)
and adding a proton to the monoanion:
[PDCH — F]" + H" -» [PDCH — F + H] (7)

The change in free energy for a proton-transfer reaction in the gas phase is usually
expressed using the gas-phase basicity (GB) of the proton acceptor, which is the negative of the
change in free energy that occurs when the proton acceptor and a proton combine to form
product. Therefore, the change in free energies for Reactions 6 and 7 are:

AGreqctions = GB([M + (x — DH]*™D*) (8)

AGgeactione = —GB([PDCH — F]7) )

Experimental measurements of the apparent GB of cytochrome c ions generated from denaturing
solutions range from 801 kJ mol! (for the 15+ ion) to 980 kJ mol™! (for the 3+ ion) (Schnier et
al. 1995); GB values increase with decreasing charge state. Based on experimental measurements
of the GB of lysine-containing peptide ions (Schnier et al. 1995; Sterner et al. 1999) and the
relative GB of lysine and arginine (Bouchoux 2012), we proposed an upper limit for the GB of a
protein ion of 1080 kJ mol™! (Laszlo & Bush 2015). Based on electronic structure calculations,

the diabatic GB of the lowest-energy conformer of [PDCH-F]~ was 1310 kJ mol™'. Many
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conformers of the reactant and product were also considered, but this was the smallest GB found
for this reaction (Laszlo & Bush 2015).

These comparisons suggest that each CAPTR event is exergonic by at least 230 kJ mol ™,
as shown in Figure 14. A protein ion has far more degrees of freedom than the PDCH—containing
product, therefore statistical partitioning of the energy from a series of CAPTR events would
result in significant heating of the protein ion. However, no significant fragmentation has been
observed during CAPTR experiments (Laszlo & Bush 2015), which is consistent with analogous
reactions performed under different conditions (Stephenson et al. 1997). Furthermore, activation
and re-thermalization of CAPTR products can result in the formation of new structures (see the
Post-CAPTR Activation section). Those results indicate that the structures of CAPTR products
depend strongly on kinetic trapping, i.e., energy deposition during CAPTR is insufficient to
anneal the products and form the equilibrium distribution of structures.

Although the total change in free energy resulting from each CAPTR event is highly
exergonic, it is possible that the energy does not partition statistically between the products. For
example, Uggerud and coworkers reported results from ab initio direct dynamics of proton
transfer from the hydronium cation to neutral ammonia (Bueker et al. 1996) In some trajectories,
the proton transferred directly and deposited a “high and nonstatistical fraction of the reaction
enthalpy into the product ammonium ion.” In trajectories exhibiting long-lived interaction
complexes, the reaction enthalpy partitioned statistically between the products (Bueker et al.
1996). Because the rate-limiting step of ion/ion reactions in the gas phase is the formation of a
long-range interaction complex (Gunawardena et al. 2005), direct proton transfer and
nonstatistical partitioning may be even more likely for ion/ion reactions than for the ion/neutral

reaction considered by Uggerud and coworkers.
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Based on the evidence and discussion above, we propose that nonstatistical partitioning
of energy into the neutralized monoanion is a significant process during CAPTR experiments,
which would result in significantly less heating of charge-reduced protein ions than suggested by
the large total change in free energy associated with each CAPTR event. Although some
interpretations of ECD and ETD data invoke nonstatistical partitioning of energy after the
polycation combines with an electron (Breuker et al. 2004; Leib et al. 2007), all models are
consistent with the bulk of that recombination energy being available to the reduced cation
(Syrstad & Tureccek 2005; Tureccek et al. 2008; Turecek & Julian 2013). Note that in ECD, a
free electron combines with a polycation; without fragmentation the entire recombination energy
must partition into the protein. In ETD, extracting an electron from a monoanion is endergonic
and combining that electron with the polycation is exergonic; it is challenging to envision a
mechanism for the exergonicity of that reaction to preferentially partition into the electron donor.
Therefore, relative to CAPTR, electron-based, charge-reduction methods result in greater energy
deposition into the charge-reduced protein ions. The extent of ion heating from this energy
deposition will be mitigated by the large number of degrees of freedom of protein ions and

competition with relaxation via radiative emission and collisional cooling.

VII. Conclusions

Foundational IM-MS studies demonstrated that protein ions with different charge states
can exhibit very different Q values (Figure 2). However, the charge states observed for a given
protein can depend on many factors (Figure 1), not all of which affect their Q values. Combining
charge manipulation and IM-MS has furthered our understanding of the relationship between the

charge states and structures of protein ions in the gas phase. Results from CAPTR-IM-MS
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experiments on a variety of protein ions suggest that charge density plays a crucial role in this
relationship. Protein ions with higher charge densities, i.e., smaller m/z values, generally
experience significant decreases in Q values following each CAPTR event (Figure 8C). For these
protein ions, the charge state appears to be a predominant factor affecting their gas-phase
structure (Figures 5, 6A, and 7A-C). On the other hand, protein ions with low charge densities
tend to have Q values that depend weakly on charge state (Figure 8D), suggesting that their gas-
phase structure is not primarily determined by charge state and corroborating their ability to
retain many structural characteristics from solution (Figures 6B, 7D, and 10). Other factors
influencing the magnitude of the decreases in € values following CAPTR events include the
original solution conditions prior to ESI and the presence of disulfide bonds (Figure 7).
Compared to other charge-manipulation strategies, CAPTR-IM-MS experiments offer the
advantage of precursor isolation (Figure 3) and the ability to analyze a large series of charge-
reduced products in parallel (Figure 4).

Activating CAPTR precursors, i.e., pre-CAPTR activation, or CAPTR products, i.e.,
post-CAPTR activation (Figure 3C), often results in the formation of new structures that have
different Q values (Figures 11 and 12). This indicates that CAPTR products are kinetically
trapped and can retain a memory of their solution-phase structures. The observed kinetic trapping
and lack of fragmentation, despite the high net exergonicity of each CAPTR event (Figure 14),
suggests that energy partitions preferentially into the neutralized monoanion. This may limit the
structural changes to the portions that interacted with the extracted charge. Compared to other
charge-reduction strategies, CAPTR-IM-MS appears to offer more independent control over the
extent of charge reduction and energy deposition during experiments. CAPTR also exhibits no

signs of selective reaction with certain precursor conformations over others.
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CAPTR-IM-MS has proven to be an effective method for unraveling the complex
relationship between the charge state and structure of protein ions. With the ability to isolate the
contributions of charge from other factors, this technique offers a valuable addition to the current
suite of tools for structural biology and biophysics research. Its ability to resolve charge-state
ambiguities (Figure 4) and enhance the resolution of ions with similar m/z values (Equation 5)
provides a clear advantage for native mass spectrometry. We suggest that researchers consider
incorporating CAPTR into their workflows when exploring the structures of proteins and their

complexes.
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Figure 1. (A) Net charges of proteins in solution estimated based on the pKa of constituent
amino acids (Putnam 2006). NanoESI of B-galactosidase in 200 mM ammonium acetate at pH
7.0 measured in (B) positive and (C) negative polarities. Spectrum D is similar to spectrum B,
but the solution also contained 10 mM triethylamine and additional charge-reduced cations were
also observed. (E) Absolute value of the average charge states of selected protein and protein
complex ions in positive (red) and negative (black) ion mode as a function of mass. Power
functions are fit to the data to serve as a guide to the eye. The bars on those markers span two
standard deviations of the observed charge-state distribution. The mean and width of each
charge-state distribution varied little between experiments performed over several months.

Figure and caption adapted with permission from (Allen et al. 2013).
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Figure 2. Experimental collision cross sections for all conformations and charge states observed
for ubiquitin, including those produced via charge reduction. 6+ to 13+ charge states were
observed directly from ESI from 1:1 water: acetonitrile with 2% acetic acid. The vertical lines
correspond to a distribution of unresolved conformations having a range of collision cross
sections. The filled circles that are superimposed on the lines correspond to reproducible maxima
in the unresolved spectra. The horizontal dashed lines correspond to the calculated cross sections
for the crystal conformer (C) and the near-linear conformer (L). Horizontal dotted lines are used
to divide the data into three conformer types: compact, partially folded, and elongated. Figure

and caption adapted with permission from (Valentine et al. 1997b).
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energy diagrams for cation transmission during minimal activation, pre-CAPTR activation, and

post-CAPTR activation experiments. Panels (A) and (C) and associated caption adapted with

permission from (Laszlo et al. 2016). Panel (B) and associated caption adapted with permission

from (Laszlo & Bush 2015).
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1334  distributions, respectively. (B) Q of precursor (P) and CAPTR product ions (P—C) of ubiquitin.
1335  The lowest charge state product detected for each precursor ion was 3+. Precursor charge states
1336  are represented by differently colored circles, which were selected to facilitate visualization of
1337  the data. Average Q of 4+ to 6+ ubiquitin from a native-like solution (Salbo et al. 2012) is shown
1338  with a dotted line for comparison. Figure and caption adapted with permission from (Laszlo et al.

1339 2016).
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Figure 6. (A) Apparent Q distributions for all 18— C ions of cytochrome ¢ from denaturing
conditions. (B) Q distributions for all 7—C ions of cytochrome ¢ from native-like conditions.
The Q distribution (black solid lines), cumulative distribution (red lines), and critical Q values
(black dashed lines) for the (C) 18—9 and (D) 9—9 ions from denaturing conditions. All
experiments probed ions generated using a temperature-controlled, ESI source set to 25 °C.

Figure and caption adapted with permission from (Laszlo et al. 2017a).

64



1348
1349

1350

1351

1352

1353

1354

1355

1356

1357

200[ (a) 200[ gy

160 DRSC 160 DISC
120 120
80 80 //

~
E 40 30 50 70 40 10 30 50 70
G 120f () 55| (D)
100l DI o ::sc »
80 15| g
—
60 af =
40 35

85
200 75 (E) 1
L 65 ]
160 55 ]
| 45 ]

E 101214 16 18 20
£120
c

o

40.‘:3'&:'..‘:'..‘:"7'

10 20 30 50 60 70 80
Product Charge State (C)

Figure 7. Results from IM-MS of CAPTR products of bovine serum albumin ions generated
from various solution conditions. Markers correspond to the 2 (median) values and the shaded
regions span from 10% to 90% of the cumulative distribution function of each apparent Q
distribution. Results for (A) the PRS¢P>C, P =70 and 80, ions, (B) the PSCP>C, P = 50, 60, 70,
and 80, ions, (C) the P'45->C ions, and (D) the N'SCP>C, P = 18 to 21 (copper tones), and the
NP>, P =15 to 17 (cool tones), ions. (E) Summary of results for the highest P from each
solution condition, i.e., the PRS€80>C, PI5€80>C, P'45>C, N5€21>C, and N'17->C ions. The
inset of E shows the results for PRS€80->C, PI5€80->C, P'45-> C ions for 20 > C > 10.

Figure and caption adapted with permission from (Gadzuk-Shea & Bush 2018).
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Figure 8. Summary of CAPTR results across different studies. € values used to determine
Qproduct/ Qprecursor correspond to either the centroid values of the Gaussian fits of the Q
distributions or to the 50% critical value calculated from cumulative distributions functions
(integrations of apparent € distributions), depending on the study. Panels (A) and (C) show
results from protein ions generated by ESI from native-like conditions. Panels (B) and (D) show
results from protein ions generated from denaturing conditions. Panels (A) and (B) represent
Qproduct/ Qprecursor as a function of charge state, so precursors are of the highest charge and have
Qproduct/ Qprecursor €qual to 1.0. Panels (C) and (D) represent {product/2precursor as a function of m/z,
so precursors are of the lowest m/z. Protein abbreviations are as follows: cytochrome ¢ (cyt ¢),
lysozyme (lyso), ubiquitin (ubq), bovine serum albumin (BSA), streptavidin (SAVD), avidin
(AVD), and alcohol dehydrogenase (ADH).

66



1370

1371

1372

1373

1374

1375

1376

1377

A U
Slplched slow conversion
QO00G00 N
= o -
e Native-like
2
[i}]
1]
o
global minimum T
B memeeae 00000 .
+9 -0+ -] Native
stretched ESI
s 3 slow
i, :
g dcofdg Ucompact_ 2o folding
= ¥ Pse
s solution e
N
ative
global minimum

protein compactness

Figure 9. Cartoon summary of protein folding (A) in the gas phase and (B) in aqueous solution.

Native ESI provides a connection between the two energy landscapes. Protein chains are shown

in hydrophobic (green) and hydrophilic (positive/blue, negative/red) residues. An extended
Ustretched conformation was included in part B to facilitate comparisons with the gas-phase
behavior; we do not suggest that folding in solution generally starts from Ustretched. Figure and

caption adapted with permission from (Sever & Konermann 2020).
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Figure 10. Q) values of the P—C ions of (A) serum albumin, (B) streptavidin, (C) avidin and (D)
alcohol dehydrogenase, where “P” is the charge state of the precursor and “C” is the charge state
of the CAPTR product. The bars span the 95% confidence interval for each value, and the upper
and lower limits of each panel correspond to the Q values calculated using the projection
approximation, PA, and exact hard spheres scattering, EHSS, methods. The different colors
indicate ions from different P. Figure and caption adapted with permission from (Laszlo & Bush

2017).
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Figure 11. Post-CAPTR activation of (A) 6—6%*, (B) 8—6%*, and (C) 13—6* ubiquitin ions. Pre-
CAPTR activation of (D) 6*—6, (E) 8%*—6, and (F) 13*—6 ubiquitin ions. Vertical lines
corresponding to the average Q for the three features of the Q distribution of 6+ (I to III) from
Figure 5B are included for comparison. These mobility experiments used a field of 6.4 V-em™.

Figure and caption adapted with permission from (Laszlo et al. 2016).
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Figure 12. (A) Apparent (2, distributions of the N1 5* (magenta), P'5°60>15* (purple), and
DISC70>15* (yellow) BSA ions as a function of the injection voltage used to transfer the ions
into a drift cell containing 1.2 Torr nitrogen gas. (B) 2 n, values of the distributions in panel A as

a function of the injection voltage. Figure and caption adapted with permission from (Gadzuk-

Shea & Bush 2018).
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Figure 13. Q values for (A) alcohol dehydrogenase and (B) pyruvate kinase ions. Results from
CAPTR (blue triangles) are based on the average of the values for the products from each
precursor (Laszlo & Bush 2017). For comparison, values are also plotted for ions generated from
ESI of solutions containing 200 mM ammonium acetate at pH 7.0, black circles, (Allen et al.
2013), 200 mM ammonium acetate with 10 mM triethylamine at pH 7.0, cyan diamonds, (Allen
et al. 2013), 100 mM ammonium acetate at pH 6.9 with exposure to nebulized 1,5-
diazabicyclo[4,3,0]non-5-ene, DBU, green squares (Bornschein et al. 2011), 100 mM
ammonium acetate at pH 6.9 and reacted with 1,4-dicyanobenzene radical anions, red inverted
triangles, (Lermyte et al. 2015), and 100 mM ammonium acetate in close proximity to a corona
discharge probe, purple inverted triangles, (Campuzano & Schnier 2013). Dashed horizontal
lines indicate +2% of the data point marked with an asterisk (*). Figure and caption adapted with

permission from (Laszlo & Bush 2017).
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Figure 14. Partial reactions that were used to estimate the exergonicty of each CAPTR event

(Reaction 3). See text for a discussion of these estimates.
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