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Synopsis 

The dynamics of proteins can be explored from polymorphs observed by clustering of multiple data 
wedges. 

Abstract 

One often observes small but measurable differences in diffraction data measured from different 
crystals of a single protein.  These differences might reflect structural differences in the protein and may 
reveal the natural dynamism of the molecule in solution.  Partitioning these mixed-state data into single-
state clusters is a critical step that could extract information about the dynamic behavior of proteins 
from hundreds or thousands of single-crystal data sets.  Mixed-state data can be obtained deliberately 
(through intentional perturbation) or inadvertently (while attempting to measure highly redundant 
single-crystal data).  To the extent that different states adopt different molecular structures, one 
expects to observe differences in the crystals; each of the polystates will create a polymorph of the 
crystals.  After mixed-state diffraction data are measured, deliberately or inadvertently, the challenge is 
to sort the data into clusters that may represent relevant biological polystates. Here we address this 
problem using a simple multi-factor clustering approach that classifies each data set using independent 
observables, thereby assigning each data set to the correct location in conformation space.  We 
illustrate this method using two independent observables – unit cell constants and intensities – to 
cluster mixed-state data from chymotrypsinogen (ChTg) crystals.  We observe that the data populate an 
arc of the reaction trajectory as ChTg is converted into chymotrypsin. 
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Introduction 

Proteins often undergo structural changes as part of their normal functioning. Crystal structures often 
reveal proteins in different conformations (called polymorphs).  Crystallography explores an average 
structure of all the molecules in the volume the X-ray beam interrogates, an immense number of 
individual molecules with possibly significantly different polymorphs.  These different structures might 
have revealed information on the dynamics of transitions among those polymorphs had they not all 
been averaged together.  Because of that averaging, instead of seeing distinct states clearly, we may see 
only what looks like blurred thermal motion.   

To reduce this problem, a typical structural study of a protein might involve somehow constraining the 
molecule in one of its states by binding a ligand before crystal growth.  For example, in the emerging 
field of biological data storage, proteins with two distinct conformations (called polystates) are 
intentionally switched between them to represent binary code (0 and 1) (Sethi, 2015).  It seems likely 
that molecules in a single crystal form may show slightly different structures depending on pH, the state 
of hydration, etc.  That is, they exhibit dynamic behavior that may or may not indicate changes related 
to their function.  Here we will use the term “polystates” to refer to protein structural polymorphs that 
correspond to biologically relevant conformations of proteins, as well as to other significant state 
variations.  To observe them one might sample these variables carefully to find states where all 
molecules are the same in a crystal.  We aim in this work to design a more general workflow. 

Modern crystallographic practice provides opportunities to discover and analyze the sort of changes we 
describe here: we use crystals small enough that each may contain only one polystate.  In particular, 
data collection at a synchrotron source often includes measurement of many partial sets of crystal 
diffraction data from many, often very small, crystals (Liu, Hendrickson, 2011) (Giordano et al., 2012) 
(Rossmann, 2014) (Assman et al., 2016) (Bernstein et al., 2017) (Gao et al., 2018) (Bernstein et al., 2020). 
This is possible because fourth-generation synchrotron sources are very bright, the x-ray beams are very 
small, the 2D detectors employed are very fast, and modern goniometers are very precise. With one’s 
detector operating at 200 Hz, a 360-degree rotational sweep with 0.2 degree per image will take 
approximately 9 seconds. These are standard experimental parameters at the FMX and AMX beamlines, 
NSLS-II, where one employs a beam size even smaller than small crystals.  We could sample hundreds of 
tiny crystals (1 to 5 µm), each perhaps one polymorph, and then separate them into those polymorphs. 

For this sort of treatment, one may mount crystals singly or, say, half a dozen in each sample mount 
(loop or mesh micro-mount); in each case, data are taken for each individual crystal.  The crystals may 
come from different crystallization drops, or even different preparations, but they are all nominally 
isomorphous; our objective is to improve the quality of the data by a merging of multiple measure-
ments.  In practice one may partition the data from many crystals into different clusters, based on 
differences in intensities or unit-cell parameters.  Each cluster may represent one step in the normal 
dynamic motion of the molecule.  Starting from multiple independent samples increases the chances of 
having multiple states to observe. 

As we mentioned, two popular criteria for clustering datasets are similarity in lattice-parameter values, 
or in reflection intensities.  Unit-cell databases have long been used for substance identification and are 
now used as a coarse screen for molecular-replacement candidates.  Steno (1669), as cited in Authier 



(2013), noticed the constancy of interfacial angles of crystals.   Reflection intensities represent the true 
structure, so similarity of reflections is a good metric to use in comparing datasets. 

We demonstrate our approach using chymotrypsinogen (ChTg).  ChTg is the precursor (zymogen) for the 
mammalian digestive enzyme chymotrypsin (CHT), one of several well-known serine proteases (Kunitz, 
Northrop, 1935) (Siekevitz, Palade, 1960).  This conversion is accomplished by several enzymatic 
cleavages.  Firstly (in the digestive tract) trypsin cleaves the peptide bond between Arg15 and Ile16 to 
yield π-chymotrypsin, which is an active enzyme form.  Secondly π-CHT molecules autolyze one another 
to cleave the bonds between Leu13 - Ser14 to release Ser14 – Arg15, and between Tyr146 - Thr147 and 
Asn148 - Ala149 to release Thr147 - Asn148.  The resulting α-chymotrypsin is formed by three chains 
held by disulfide bridges.  

We measured 146 diffraction-data sets, each from a single crystal of the protein chymotrypsinogen 
(ChTg), crystallized in three different conditions, pH 4.6, 5.6, and 6.5.  We discovered that the 
polymorphs we observed resemble partial conversion of ChTg to ChT.  Almost all of the crystals that we 
successfully assembled into clusters, from each of which we could average data and solve the structure, 
were from crystals formed at pH 6.5.  To detect different molecular states in individual crystals we based 
partitioning of the single-crystal data on these two properties: cell parameters and intensities.   

We first employed differences in cell parameters as a conventional method for clustering single crystal 
data.   However, this was clearly inadequate, and we extended this to partitioning on similarities of 
diffraction intensities.  The criterion for similarity was the correlation coefficient calculated between 
pairs of measurements, thereby classifying according to the slightly different but stable conformational 
states that generated those data.  We found that clustering by correlation of intensities also revealed 
the large unit cell differences observed.  In general, however, unit cell differences are observable much 
earlier during structure determination than distinctive intensity differences, and they can provide 
preliminary clustering, with use of correlation coefficients to follow. 

Methods 

Crystallization 

We determined the crystallization conditions for chymotrypsinogen (SIGMA) using the commercial 
Hampton Crystal Screen HT (Hampton Research, Inc), and set up with a TTP mosquito robot (TTP 
Labtech/ STP Inc).  Crystals were grown via hanging-drop vapor diffusion at 18°C from condition F11. To 
optimize the crystallization conditions further, we set up a 24-well tray with hanging-drop vapor 
diffusion with a fixed pH of 6.5, varying both dioxane (10% or 15%) and ammonium sulfate (1.0 M-2.0 
M).  The drop, containing 1 µL of the reservoir solution (1.0 M-2.0 M ammonium sulfate, 0.1 M MES pH 
6.5, and 10% or 15% dioxane) and 1 µL of 10.0 mg/mL of enzyme, equilibrated over 0.5 mL of reservoir 
solution.  The other two crystallization conditions had either 0.2 M ammonium acetate, 0.1 M sodium 
acetate trihydrate pH 4.6, and 30% w/v PEG 4000, or 0.5 M ammonium sulfate, 0.1 M sodium citrate, 
and tribasic dihydrate pH 5.6, with 1.0 M lithium sulfate monohydrate in the reservoir.  All crystals were 
cryocooled in 3.5 M lithium sulfate.  A typical drop of these crystals appears in Fig. 1.  

Data collection and structure-solving strategies 

We used ChTg crystals to obtain several hundred datasets at energy of 13.48 keV (0.92 Å), collecting 
120° per crystal by employing Brookhaven National Laboratory’s National Synchrotron Light Source II at 



beamline 17-ID-1(AMX) on a Dectris EIGER X 9M detector.  The dataset for each crystal with sufficient 
data was indexed, integrated, and scaled using a version of the data-reduction pipeline fast_dp (Winter, 
McAuley, 2011) modified to run in the local distributed computing environment that supplies these 
modules: XDS (Kabsch, 2010), DIALS (Winter et al., 2018), PHENIX (Afonine et al., 2012), aimless, and 
pointless (Evans, Murshudov, 2013).   Tetragonal crystals of chymotrypsinogen diffracted between 2.0 - 
2.4 Å.   

We determined the structure by molecular replacement with PHASER (McCoy et al., 2007), using ChTg 
PDB ID 1EX3 as a model (Bernstein et al., 1977) (Berman et al., 2000) (Pjura et al., 2000).  The data were 
refined to a final resolution using iterative rounds of refinement with REFMAC (Murshudov et al., 1997) 
(Murshudov et al., 2011) and manual rebuilding in COOT (Emsley, Cowtan, 2004).  We then used this 
model to build our “average” structure from an average of all data sets at the “native” energy. While 
scaling the native-energy datasets, we had noted clusters in the data.  Perhaps they originated from 
polymorphs in the ChTg crystals, which may represent dynamic behavior in the molecules. 

Data-clustering program 

We used a custom-modified version of the clustering pipeline KAMO (Yamashita et al., 2018), which uses 
the clustering program Blend (Foadi et al., 2013) to generate a dendrogram of the data sets.  We 
expanded KAMO and Blend to allow two-factor clustering, as follows.  Unit cell parameters and 
amplitudes contain independent information.  One expects differences in cell parameters to reflect 
changes in the outer shape of the structure, perhaps responding to the presence of internal or external 
ligands.  On the other hand, differences in amplitudes will be sensitive to all conformational changes in 
the protein.   

In our new scheme, in a single workflow, to obtain initial “coarse” clusters one partitions data sets into 
groups according to the similarity of their crystallographic unit cells (space group clusters), and then 
generates “fine” clusters by a further partitioning of each cluster according to the similarity of the 
amplitude data. (The modified software is available in github.com/nsls-ii-mx/blend and github.com/nsls-
ii-mx/yamtbx.)   

The approach involving Pearson Correlation Coefficient (CC) calculations to determine similarity scores 
requires that pairs of data sets have many measured amplitudes in common: one requires a reasonably 
complete set of structure factors.  For this CC clustering, one requires 70% completeness. One can 
introduce a penalty for unmatched structure factors, and can get a solution with completeness as low as 
20 - 40% (Bernstein et al., 2017); we are studying the effect of even lower completeness to apply that 
method to partial data sets.  We will show that this clustering approach demonstrates how increasingly 
sensitive clustering methods can identify increasingly detailed structural differences (Figs. 4 -- 8). 

In our study, when we ran KAMO.multi_merge with Blend, it informed us that the datasets belong to 
different space groups.  Hence, we chose the space group with the largest population; we aimed to 
display the changes of the space group’s structures based on structure factors.  We used KAMO to divide 
the datasets of the chosen space group into different clusters based on intensity CC (please note that 
the term space group clustering is in common usage, but the technically correct term for clustering done 
prior to refinement is point group clustering; for example, our algorithms clustered the cymotrypsinogen 
data using the exemplar space group 89 of its point group, rather than space group 92) 



The distance between datasets was calculated by d(i,j)=√(1-CC(i,j)).  The method then used a hierarchical 
clustering analysis (Rokach, Maimon, 2005) with Ward’s method (Ward, 1963) to find distinct groups of 
the chosen dataset.  In Ward clustering, the datasets are considered first by building a small cluster out 
of the two closest datasets and then by adding one dataset at a time to whichever dataset or existing 
cluster results in a new cluster of smallest variance.  There are many other choices of what is called 
“linkage” in forming a cluster dendrogram, such as using cluster centroids.  Using the minimal variance 
allows use of one simple distance matrix as input to the clustering algorithm, rather than requiring 
repeated calculation of distances among cells, or, worse, among hkl-vectors of structure factors, but it 
does tend to produce dendrograms for which the heights grow rapidly.   

Strauss et al. (Strauss, von Maltitz, 2017) discusses some alternative linkage choices.  The program 
outputs a dendrogram that illustrates the distances (differences) among clusters by the y axis (the 
height).  To get a certain number of clusters which contain more similar datasets, we chose a height 
cutoff value k accordingly.  The lower the k value, the more similar the datasets in each cluster are.  Each 
cluster now relates to a structure built after merging datasets within it. 

We want to understand how cell-parameter values of datasets relate to the clusters determined by 
similarity in diffraction intensities.  Since the space group is P 41212 [89/92], the cell parameters a and b 
are equal, and all cell angles are 90°.  Since there are only two free parameters, so we could visually 
demonstrate how the intensity clusters relate to the cell parameters a and c for each dataset (Fig. 4).  

Finally, we created a molecular structure from the average of intensities from all of the crystals in each 
intensity cluster, and also averaged structures for each of the different cell-parameter clusters (see 
Figure 5, available from the corresponding authors).  To create structures that relate to each of these 
clusters, we employed the average structure defined above in the data collection section as the starting 
model for structure determination and refinement for each of the clusters’ structures.  All the processes 
we used to build clusters’ structures and to refine them later are automated with the help of REFMAC 

(Murshudov et al., 1997) (Murshudov et al., 2011).  Following the automated refinement steps, we 
performed a manual check-and-refine step using COOT (Emsley, Cowtan, 2004) to ensure no serious 
errors remained from the automated process and corrected the refined model as needed.  FATCAT (Ye, 
Godzik, 2004) allowed us to quantify the morphological differences among structure solutions.  

Illustrating the differences to identify physically meaningful clusters 

Any software that uses observable parameters to generate clusters may generate a very large number of 
clusters.  How is one to determine which clusters are physically meaningful?  Dendrograms can illustrate 
the relationships among clusters, but one must illustrate physical relevance using structural tools, i.e. 
comparing the structures obtained from each of these clusters.  We generated two software tools for 
this purpose (see https://github.com/nsls-ii-mx/chymotrypsinogen).  Both tools use individual colors to 
differentiate among clusters, which we can then test for physical relevance, and both tools use two- or 
three-dimensional plots to illustrate an underlying physical characteristic of the structure. 

We developed a tool to create color-coded coordinate ellipses.  We plotted the XYZ coordinates for the 
Cα atom of a particular amino acid in the structure that we observed to be highly mobile among the 
clusters.  We created color-coded ellipsoids that enclosed all Cα atoms found from each of the individual 
clusters.  The size of each ellipsoid indicates the variation of the coordinates within the corresponding 
cluster.   Ideally the size of each color-coded ellipsoid will not be very large compared to the separations 



among the centroids of the ellipsoids, indicating that each cluster represents a separable state.  The 
code is available in the github.com/nsls-ii-mx/chymotrypsinogen.git git repository in the file 
raw.githubusercontent.com/nsls-ii-mx/chymotrypsinogen/master/ellipsoid.py. An example of use of this 
graphic appears in Figure 8. 

We also plotted the a and c axis lengths for each dataset that resides within an amplitude-based cluster 
(Fig. 4).  Employing a dendrogram-plotting graphic tool from KAMO, we illustrated all data that 
originated from each postulated cluster in a different color (Fig. 6). 

To detect subtle differences among the clusters’ structures, we used FTMap (Kozakov et al., 2015), 
software designed to determine and characterize ligand-binding hot spots on proteins’ surfaces. The 
algorithm uses a library of 16 molecules as probes to discover potential patches on the surface of a 
structure where a molecule might bind.  Differences in proposed surface binding could reveal otherwise 
unnoticeable physical differences among the structures. 

Results 

Data collection and protein structures 

We collected 511 complete data sets and processed 325 of them by our data-reduction pipeline 
fast_dp_nsls2. Of these175 files had a resolution better than 4 Å.  Finally, 146 datasets from space group 
89, P422, were merged using BLEND cell-based cluster analysis.  The protein is a single chain of 245 
residues, of which four residues (147 – 150) are not resolved. 

We obtained our initial structure, PDB ID 7KTY, from a merge of all 146 datasets and called this the 
Average Structure (denoted thus in Table 1).  We used REFMAC and COOT to refine the structure and 
reduce the R value to about 18%. 

Averaging all 146 data sets together resulted in a relatively high Rmerge value (48%) but nevertheless our 
PDB ID 7KTY was a good fit to these data (Rwork 19%, Rfree 20%).  This average structure is slightly 
different from the published PDB ID 1EX3 structure which we used as an initial phasing model.  For 
example, PDB ID 7KTY has a missing loop from residue 147 to residue 150, which is a characteristic of 
mature α-chymotrypsin.  Fig. 2 displays the sequence alignment between PDB ID 1EX3 ChTg and our 
structure, PDB ID 7KTY, with the elements of the secondary structure drawn on top. 

Clustering with unit cells and with amplitudes 

Clustering software will generate data corresponding to candidate polystates, even in cases where truly 
distinct polystates are not actually present in the samples.  Two independent data sets collected on two 
samples will always give different average structures.  Such differences often are not relevant in terms 
of dynamics or states when the differences are small compared to experimental error.  The only way to 
determine if candidate clusters may correspond to biologically relevant polystates is to generate and 
examine corresponding structural models (typically atomic models) with appropriate real-space tools, 
such as FATCAT and COOT.  In the case of the ChTg data, we could see from inspection that the data 
could divide into two large clusters corresponding to structures with a ≈ 111 Å axis and those with a ≈ 
114 -- 115 Å (Fig. 4). 

Employing only the observed diffraction intensities, we identified two main clusters that corresponded 
to the two main polymorphs that ChTg adopted in our crystals, based on the length of the a axis.  In 



addition, there were five clusters that corresponded to biologically relevant polymorphs present in our 
data.  The cell-based clustering shows that the cell lengths separate clearly into two groups, while the c 
cell length varies less and is not clearly separable.  There were significant solvent-region differences 
between the a =   Å cluster and the a = 114 -- 115 Å cluster (Fig. 4). 

When comparing the structures corresponding to the a = 111 Å cluster and the a = 114 -- 115 Å cluster 
we observed that the a = 114 -- 115 Å cluster data yields observable density for all 245 residues (similar 
to 1EX3), while the 111 Å a cluster data indicates that there is a missing loop from residue 147 to residue 
150 (this region is also not observed in the average structure).  Another thing we observed is the 
presence of strong density near Lys 175 in the a = 111 Å cluster data while the a = 114 -- 115 Å cluster 
data does not have this large artifact (Fig. 5). 

Using Blend and KAMO, we obtained 145 clusters from the 146 ChTg data sets.  We then generated 
structures after merging datasets belonging to each of these 145 clusters, and we visually inspected 
each of them to find any recurring patterns.  This visual inspection allowed us to determine that all the 
reproducible differences could be accounted for by using just five of the larger clusters (which we call 
the green, red, cyan, purple, and yellow clusters).  In other words, we chose the “height” at which we 
cut the KAMO dendrogram so that five clusters contain the data corresponding to the relevant 
structures (Fig. 6).  

The 145 clusters could also be overlaid on the a and c axis diagram, color coded according to each of the 
five main clusters (Fig. 4).  All the datasets of the green and red clusters belong to the a = 114 – 115 Å 
cell-based cluster and datasets of the cyan, purple, and yellow clusters belong to the a = 111 Å cell-
based cluster.  If we increase the cut height to 1.5, we get the two intensities’ sub-master clusters, one 
containing green and red clusters, the other containing cyan, purple, and yellow clusters.  This means 
the intensity cluster result has a strong alignment with the cell parameter cluster result. 

The five data clusters 

We generated a dendrogram using Ward’s method for hierarchical clustering with the height cutoff at 
1.0 to get distinct groups of datasets.  To observe the differences between the 145 structures generated 
using individual data clusters, we calculated the largest differences in physical coordinates at each 
residue’s Cα. We observed that the most mobile area, particularly residue 139 to residue 145, is near the 
missing loop from residue 146 to residue 152. Note that distinctive differences between ChTg the 
zymogen and ChT the enzyme chymotrypsin are the cleavages at the N-terminus and the gap between 
Tyr146 and Ala149 (Fig. 8). The largest differences were observed for residue 146 with more than 3 Å 
average positional differences (Fig. 8). 

At each residue position, we plotted ellipsoids to illustrate the variation in the Cα coordinates observed 
in each of the structures corresponding to the green, red, cyan, purple, and yellow clusters.  For 
example, the ellipsoid for position 146 illustrates that the Cα atoms in the green and red clusters have a 
much greater positional variation (the ellipsoids are bigger) compared to the cyan, purple, and yellow 
clusters. The ellipsoids show the variation of Cα coordinates of all structures belonging to each sub-
master cluster.  The sizes of the ellipsoids show that residue 146 of the green and the red cluster’s 
structures varies a lot while the structures of the cyan, purple, and yellow cluster’s structures do not 
change as much. 



Table 1 shows that datasets which belong to the green and red cluster have a = b unit cell values around 
114 – 115 Å, while datasets of the other clusters have these values around 111 Å (Fig. 4).  Table 1 also 
reflects the fact that datasets belonging to the cyan, purple, and yellow clusters have higher resolution 
than those of the green and red clusters.  The overall resolution of around 2 Å with good structure 
quality for each of the six structures is indicated by Rwork and Rfree of about 20%. 

When we align the model derived from the average cluster with the five major subclusters using FATCAT 
in rigid mode, all the residues between 1 and 138 are well-aligned, but residues 139 to 146 increasingly 
diverge (Fig. 9). 

Detecting dynamic behavior via ligand-binding hot spots 

FTMap shows six binding hotpots for each of the five structures (Fig. 10) (Kozakov et al., 2015). Among 
them, we observed the largest differences between the pockets of the red cluster’s structure (7KU2, 
cluster 140) and the purple cluster’s structure (7KTZ, cluster 131).  Notably, the pockets with largest 
differences overlap with the binding site of the Bowman-Birk protease inhibitor. Since these two 
structures belong to each of the two different cell-based clusters, the differences provide strong 
evidence for the effectiveness of both cell-based and amplitude-based clustering in detecting 
polymorphs in the case of very small physical changes.   

Note that the binding pocket for the Kazal-type inhibitor includes the Thr147→ Asn150 missing loop 
(ChTg Tyr146 makes two hydrogen bonds with the Kazal-type inhibitor, a direct hydrogen bond to Glu40, 
and a water mediated hydrogen bond to Lys43). This would be a characteristic of the active enzyme, 
chymotrypsin. The similarity between the results from data clustering and the results from computer 
modelling increase our confidence in both methods.  We observed additional similarities between the 
two methodologies, which we are currently investigating.  

Discussion 

Although both experimental work (Debrunner et al., 1982) and theoretical work (McCammon, 1984) 
established that dynamic behavior underlies most protein functions, crystallography was not regarded in 
the early years as an appropriate tool for investigating protein dynamics.  An early review of protein 
crystallography concluded by stating that, “crystallographic methods are not suitable for the direct study 
of the dynamics of protein structure and interactions” (Stryer, 1968).   

However, the presence of diffuse scatter implied that there is dynamic behavior within protein crystals 
(Caspar et al., 1988). Crystal structures soon illustrated examples of protein dynamics (Ringe et al., 1985) 
that were induced by physical changes such as temperature (Tilton et al., 1992), pH (Diao, 2003), and 
ionic strength (Sanishvili et al., 1994)), and induced by chemical changes by the addition of denaturants 
(Dunbar et al., 1997) or ligands (Edwards et al., 1990)).   

However, Stryer’s 1968 assertion stands to this day in the sense that investigators rarely employ simple 
tools to identify dynamics from diffraction data, consequently most crystallographic contributions to 
dynamics continue to be fortuitous. We propose here a method to suggest insights into the dynamics of 
proteins by a systematic surveying of diffraction data for the presence of clusters. Once 
crystallographers are equipped with appropriate tools to identify clusters within aggregates of 
diffraction data, results indicating dynamic behavior may emerge routinely in many protein-
crystallography projects. 



A tool to identify dynamic contributions in diffraction data must be as automated as possible, must 
present results in a way that is easy to interpret, and must be sensitive enough to identify small 
movements. The first of these requirements was simple to accommodate by deploying our software 
within the existing KAMO software package, which we easily integrated into our existing version of the 
fast_dp automated data-analysis pipeline. The experimenter may include this test in the data-reduction 
pipeline with the flip of a switch, at reasonably low cost in processing speed. We addressed the second 
requirement by incorporating visual tools such as systematic color annotation of clusters (Fig. 6), dot-
plot visualization for structure variation (Fig. 7), and ellipsoid visualization for model variations (Fig. 8)w. 

The most difficult benchmark was the ability to differentiate clusters where dynamic contributions are 
small and subtle.  We tested our techniques using our data from ChTg, which was not known at the 
outset to exhibit dynamic behavior. Many of the changes that we identified involved just a few amino 
acids. By combining the strengths of unit-cell clustering (ability to operate on thin wedges of data that 
are often incomplete) and the strengths of diffraction-based clustering (sensitivity to very small 
structural changes), we believe that our technique will accurately identify relevant clusters of different 
structures hidden within highly similar data.  Our method detected different polystates with coordinate 
differences less than 3Å in just two amino acids.  In addition, the visualization tools that we created 
(color-based ellipsoid and scatter plots) allow easy identification of the highly dynamic regions.  This 
provides verification that our clusters are physically meaningful.  These tools provide scientists a simple 
method to screen their data for dynamic behaviors.  

High-data-rate crystallography represents a large and growing fraction of all crystallographic data.  At 
synchrotrons, serial crystallography and combinatorial crystallography (e.g. fragment screening) produce 
large streams of data from samples that are similar but not identical.  One can cluster such data streams 
automatically, with visual results presented to scientists either to inform their main project or to yield 
serendipitous information that may expand their thinking of the system in question.  

XFEL light sources generate even larger data streams, with individual diffraction images that are derived 
nearly instantaneously from very small protein crystals.  The great reduction in the time- and space-
averaging in XFEL data (compared to synchrotron data) further increases the likelihood of obtaining data 
from crystals that are in different resolvable polystates.  We acknowledge that our software as it stands 
will not handle the partial data sets produced by the XFEL method. However, eventually the data-
processing challenge will be the same: one needs a data-clustering algorithm that is robust enough to 
work with mixed quality data, sensitive enough to partition all the polystates that are present, and 
intuitive enough that investigators can identify useful clusters that represent biologically relevant 
polystates.  Here, we presented an algorithm that accomplishes these goals.   

Our data processing and clustering are all automatic to reduce the time of screening and analyzing the 
molecules.  We also do manual checking to verify that the automated processes achieved reasonable fits 
to density.  However, it is still a challenge for us if the data contain a lot of noise such as blurs or 
unindexable spots.  This problem may be solved by future research on spot finding and auto-indexing.  
In addition, we would like to test if different distance-metrics could improve the accuracy of the 
clustering output and further improve the chances of detecting smaller potentially meaningful changes. 
We also will test if the tools could detect polystates well with datasets from other molecules so that we 
would have a comprehensive understanding about the efficiency of our clustering method. 



Conclusions 

Observing differences in protein structures, even small differences, could be meaningful and important.  
However, we usually miss the changes that are very small since they are very hard to measure.  In this 
paper, we show how one might use the combination of our cell-based and structure-factor-based 
clustering methods to detect polystates of molecules.  We applied these methods on ChTg data and 
were able to detect polystates with very small differences among five clusters of datasets.  From these 
clusters, we built molecular structures and verified the differences among them.  The combined method 
should help scientists to discover minor changes in molecules that are hardly noticeable by the change 
of cell parameters only.  

We have developed color-based visualization to assist investigators in screening their data for distinct 
groupings that may represent polystates: dendrograms to show correlations among intensities and 
scatter plots and ellipsoids to indicate differences in automatically refined structures. The dendrogram 
shows the members of clusters with custom height cutoffs and the differences among those clusters.  
The scatter plot quickly shows cell-based clusters and their relations with structure factor-based 
clusters, and ellipsoids show the variations of physical coordinates of clusters’ structures. Using the 
color-based plots, one could easily discriminate among groups of datasets.  This visualization method is 
a fast way to screen many datasets, and to point out which ones are important for further investigation. 

  

  



Figure 1.  Representative ChTg crystals from the crystallization condition containing 1.0 – 2.0 M 
ammonium sulfate, 0.1 M MES pH 6.5, and 10% or 15% dioxane. 

  

  



Figure 2. Sequence alignment of ChTg PDB ID 1EX3 and the average structure PDB ID 7KTY. The loop 
residues 147-150 do not display electron density in PDB ID 7KTY. 

 

 

  



Figure 3. Cross-eyed stereo pair of the structural alignment of PDB ID 1EX3 (dark grey) and the average 
structure PDB ID 7KTY (light grey). The FATCAT chain RMSD is 0.56 Å.  The regions with significant 
differences are adjacent and appear at the upper left of this figure.  First, in the average structure the 
amino acids between Thr147 and Asn150 are missing.  Second, in the average structure the amino acids 
between Thr139 and Tyr146 adopt a significantly different conformation. 

  

  



Figure 4. Two main data clusters can be identified by inspection (a = 111 Å group and a = 114 – 115 Å 
group). 

We observed that our data partitioned cleanly between 28 data sets with an a (=b) unit cell of 
approximately 114 -- 115 Å and 118 data sets with an a (=b) unit cell of approximately 111 Å.  The 
separation into the two unit-cell clusters is shown in the monochrome clustering on the left.   

The further division of those two clusters into amplitude-based clusters is shown by the colors on the 
right.  The a = 114 -- 115 Å cell-based cluster contained the green and red clusters, and the a = 111 Å 
cell-based cluster contained the cyan, purple, and yellow clusters.  Each of our data sets was sufficiently 
large that amplitude-based clustering could have been used from the start.  However, many serial 
crystallography projects consist of narrow wedges of data, each of which might be too small to cluster 
effectively using amplitudes because amplitude-based clustering requires that data sets have a sufficient 
number of observations in common.  This figure illustrates how a first use of cell-based clustering might 
be used to boot-strap amplitude-based clustering. 

  

  



Figure 5.  Differences in solvent between the a = 111 Å cluster and the a = 114 – 115 Å cluster. 

Fo-Fc electron difference density displaying two differences we observed in solvent density between the 
a = 111 Å cluster and the a = 114 -- 115 Å cluster (difference densities at 2-sigma shown in green for 
both data sets). Left: Ribbon diagram of ChTg around Lys175 (cyan) for the cluster a = 111 Å. Right: 
Ribbon diagram of ChTg around Lys175 (cyan) for the cluster a = 114 Å. This density was modeled as a 
water molecule. 

  

  



Figure 6. Amplitude-based clusters generated using KAMO (dendrogram).   

This dendrogram shows a representation of the similarity of pairs of data sets, and clusters of more data 
sets.  They are arranged with the most similar ones near each other, and the connecting bar at a height 
corresponding to the distance between clusters.  The difference was calculated using Ward’s method for 
hierarchical clustering, which yields a composite metric that contains information from amplitude 
differences and from unit-cell differences.  Our algorithm is described in Section 2.3.  Structures were 
solved corresponding to each of these 145 clusters.  We deposited the overall average structure as PDB 
ID 7KTY. We selected a height within the dendrogram at which to partition our data.  We made our final 
choice to use five clusters through inspection of the derived structures. We then averaged all structure 
factors within each of the five distinct clusters to give a cluster-average structures. We deposited the 
averaged structure from the green clusters as PDB ID 7KU1, the red clusters as PDB ID 7KU2, the cyan 
clusters as PDB ID 7KU3, the purple clusters as PDB ID 7KTZ, and the yellow clusters as PDB ID 7KU0.  
Note that by “average structures”, we mean structures derived from structure-factor averages.   

  

  



Figure 7. Dot plot of differences between Cα positions of each residue in the structures. 

To determine which regions of ChTg were most mobile in our data, we examined the five structures 
from five intensity clusters, and noted the distances among the Cα carbons for each of the 146 amino 
acids. We plotted the largest value for each amino acid. The data illustrate one extended region with 
very large variation (between residues 146 and 151, in the vicinity of the missing loop that is a normal 
cleavage point for α-chymotrypsin).  There are also two shorter regions with smaller variation around 
Ser75 and Val200. 

  

  



Figure 8. Using ellipsoids to illustrate variation in the Cα coordinate at position 146. 

We calculated five ellipsoids for each residue position, corresponding to the observed variation in the Cα 
positions at a specific residue for the green, red, cyan, purple, and yellow clusters’ data.  The lengths of 
the perpendicular axes were determined using the minimum volume method (which minimizes the 
volume of the ellipsoid enclosing the data – see https://github.com/nsls-ii-mx/chymotrypsinogen and 
https://raw.githubusercontent.com/nsls-ii-mx/chymotrypsinogen/master/ellipsoid.py).  This method 
optimizes the fit of each ellipse to the data, including the major axis in the direction of greatest 
variation.  For example, at Cα position 146 (shown here) the green cluster yielded 18 structures with 
large variation in the [0.2, -0.8, 0.0] direction.  The volume of the ellipsoids indicates the overall 
variation in corresponding Cα positions.  For example, at position 146 the green and red clusters yielded 
structures with much larger positional variation than the cyan, purple, and yellow clusters. 

 

  



Figure 9.  Structural alignment of residues 138 -- 141 displaying the variation in position among the 
structures representing each cluster.  

The overall average structure, 7KTY, which is cluster 145 in the dendrogram, is colored white.  PDB 
entries 7KTZ, 7KU0, 7KU1, 7KU2, and 7KU3, which are clusters 131, 138, 139, 140, and 141, are colored 
purple, yellow, green, red, and cyan, respectively.  The top half shows the variation in the backbone 
alone.  The bottom half shows the variation with the side chains. Remember that green and red come 
from structures with a = 114 – 115 Å and all the others have a = 111 Å. 

 

  

  



Figure 10.  Surface representation of the ChTg as calculated by FTMap comparing the hot spot areas of 
clusters 131 (7KTZ) and 140 (7KU2). 

Left FTMap surface representation of the ChTg structure of model 131 (7KTZ, the purple cluster with a = 
111.49 Å,) overlapped with a wire-frame rendering of critical parts of Bowman-Birk protease inhibitor 
complex with chymotrypsinogen, PDB ID 3RU4 (Barbosa et al., 2007). 

Right is an FTMap mapping result of model 140 (7KU2, the red cluster with a = 115.57 Â, as a Lee-
Richards surface) overlapped with a wire-frame rendering of critical parts of Kazal Type inhibitor, PDB ID 
1CGI (Hecht et al., 1991). 

  

  



Table 1.  Data collection and processing  

PDB ID                7KTY  7KU1  7KU2  7KU3  7KTZ  7KU0 
Description Average Green  Red  Cyan  Purple  Yellow 
Cluster # 145  139  140  141  131  138 
No of datasets.  146  12  16  32  37  49 
Wavel. (Å)  0.9201  0.9201  0.9201  0.9201  0.9201  0.9201 
Temp. (K) 100  100  100  100  100  100 
Detector E9M  E9M  E9M  E9M  E9M  E9M 
Dist. (mm)  100-200 100-200 100-200 100-200 100-200 100-
200 
Rotation (°)  0.2  0.2  0.2  0.2  0.2  0.2 
Total range (°) 120  120  120  120  120  120 
Space group P 41212  P 41212  P 41212  P 41212  P 41212  P 41212 
a, b (Å)   114.49  114.49  115.57  111.33  111.49  111.47 
c (Å)   51.90  51.9  52.92  51.87  52.02  52.36 
α, β, γ (°)  90   90   90   90   90   90   
Resolution (Å) 2.00  2.39  2.19  2.00  2.00  2.02  
Reflections # 23,850  14,139  18,927  22,533  22,696  22,261 
Complet. (%) 99.94%  99.80%  98.98%  99.81%  99.93%  99.59% 
I/σ(I)  10.91  9.48  9.76  10.66  12.15  10.85 
Wilson B (Å2) 53.96  61.87  53.31  33.72  29.15  30.16 
 

  

  



Table 2.  Structure solution and refinement  

PDB ID 7KTY  7KU1  7KU2  7KU3  7KTZ  7KU0 
Description Average Green  Red  Cyan  Purple  Yellow 
Final Rwork (%) 19.13  22.08  20.97  18.15  16.18  16.74 
Final Rfree (%) 20.19  26.37  23.42  21.01  19.01  19.41 
No. of non-H atoms             
  Protein 1,786  1,771  1,778  1,794  1,786  1,786 
  Ligand  15  5  5  15  15  15 
  Water  99  10  44  195  249  243 
  Total  1,900  1,786  1,827  2,004  2,050  2,044 
R.m.s. deviations              
  Bonds (Å) 0.01  0.01  0.01  0.01  0.01  0.01 
  Angles (°) 0.86  1.00  0.86  0.77  0.80  0.74 
Average B factors (Å2)              
  Protein 57.9  67.4  58.7  36.6  28.1  28.8 
  Ligand  63.0  83.9  75.7  40.7  40.7  34.8 
  Water  58.7  63.0  56.1  42.3  37.1  36.8 
Ramachandran plot (%)            
   Favored 97.47  96.20  97.06  97.47  98.31  98.73 
   Allowed 1.69  2.95  2.52  2.11  1.27  0.84 
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