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ABSTRACT: In this work, we report manganese porphyrin complexes for the electrocatalytic vicinal diazidation of alkenes with 
sodium azide. This protocol shows improved practicality over our previous work using MnBr2 catalysis in the following aspects: (1) 
It requires substantially lower catalyst loading (as low as 0.3 mol%), which reduces the formation of metal azide complexes and 
simplifies product purification; (2) The introduction of a neutral aqueous buffer prevents the generation of toxic hydrazoic acid, 
contributing to a safer experimental procedure; (3) The catalytic system displays improved reactivity towards unactivated terminal 
alkenes. Mechanistic studies support the roles of second-sphere hydrogen-bond donors in stabilizing key reaction intermediates. 

Organic azides find broad applications in many areas of 
chemistry such as chemical biology,1 materials science,2 and 
organic synthesis.3 Vicinal diazides are a particularly 
interesting class of compounds, serving as precursors to vicinal 
diamines, a ubiquitous structural motif found in numerous 
medicinally relevant molecules4 as well as ligands in metal-
based catalysis.5 The construction of vicinal diazides from 
simple alkenes has the potential to accelerate the discovery 
and preparation of functional molecules. Indeed, this 
transformation has been achieved using various chemical 
methods, which however frequently rely on the use of 
stoichiometric amounts of oxidants.6 
With the objective of improving the practicality and 

reducing the environmental impact of this transformation, we 
have previously developed a general electrochemical 
approach for alkene diazidation using a catalytic amount of 
MnBr2 (Scheme 1A).7 Electricity was used as a traceless carrier 
of redox equivalents to turn over the catalyst and generate 
reactive intermediates, and H+ was employed as an innocuous 
terminal oxidant, generating H2. Select examples of vicinal 
diazide products have been subjected to testing on their 
decomposition profile and impact sensitivity (vide infra), 
providing a guideline for safely handling these compounds.8 In 
addition, tandem procedures have been advanced to reduce 
diazides to the corresponding vicinal diamines with minimal 
purification of the intermediates.8,9 Despite showing key 
improvements over the prior art, this methodology also 
presents salient limitations. For example, scaling up the 
reaction can pose a safety challenge due to the use of acetic 
acid as the H+ source, leading to the formation of toxic and 
hazardous hydrazoic acid.10 In addition, because this reaction 

does not require an exogenous ligand, the structure of the 
active catalyst remains difficult to identify, making systematic 
tuning of reactivity challenging. To address these issues, we 
developed a second-generation electrochemical diazidation 
method used an aminoxyl radical catalyst, CHAMPO, under 
neutral conditions (Scheme 1B).11 However, a high catalyst 
loading is required to achieve high conversion, and the 
reaction medium gradually becomes alkaline due to the 
cathodic reduction of water, which could limit compatibility 
with base-sensitive substrates. 
To further expand the practicality and safety factors of 

electrochemical diazidation, we sought a catalytic system that 
would be compatible with a neutral medium, could be carried 
out with reduced catalyst loading and without perchlorate 
salts, and could be systematically modified to address 
substrate limitations in our previous methods.12 We identified 
that manganese porphyrin complexes are ideal catalysts 
towards meeting the above-mentioned aims (Scheme 1C). 
Porphyrins with D2h- and D2-symmetry can be synthesized in a 
modular fashion with easy variation of the peripheral 
substituents, allowing for tuning of steric, electronic, and chiral 
environment.13 Indeed, fully symmetrical Mn porphyrins have 
been used for the azidation of C–H bonds via chemical 
oxidation.14 However, structural tuning of porphyrin by 
introducing second-sphere functional groups has not been 
systematically investigated in such systems.  
 



 

Scheme 1. Electrochemical Strategies for Accessing 1,2-Dia-
zides 

 

Several sets of screening experiments led us to identify a 
manganese(III) complex of D2h-symmetric amidoporphyrin, 
[Mn(L1)Cl] (L1 = 3,5-DitBu-IbuPhyrin), as an excellent 
electrocatalyst for the diazidation of alkenes (Table 1). Using 
4-tert-butystyrene 1 as a model substrate and NaN3 as the 
nitrogen source, 1 mol% [Mn(L1)Cl] promotes the formation of 
diazide 2 in excellent yield under constant voltage (Ucell = 2.1 
V), in a mixture of MeCN and neutral phosphate buffer solution 
without an additional electrolyte (entry 1). [Mn(L1)Cl] was 
readily synthesized in four steps from pyrrole and 2,6-
dibromobenzaldehyde.15 In the absence of an electrocatalyst, 
a background reaction took place to give 24% yield of diazide 
2 in addition to undesired products such as 4-tBu-
benzaldehyde and azidohydrin (entry 2). Using simple MnBr2—
the optimal catalyst in our first-generation diazidation 
method7—instead of [Mn(L1)Cl] only furnished 31% yield of 
the desired product even at 5 mol% catalyst loading (entry 3) 
in addition to side products. In this case, the Mn salt 
predominantly remains in the aqueous phase and the 
characteristic brown color of the key Mn(III)–N3 intermediate 
was barely visible during the reaction. 
We surveyed several additional MnIII porphyrin catalysts and 

identified that [Mn(L1)Cl] is particularly reactive under the 
optimal conditions. Commercially available manganese 
porphyrins, such as [Mn(TPP)Cl] (TPP = tetraphenylporphyrin) 
and [Mn(TMP)Cl] (TMP = tetramesitylporphyrin), gave 
substantially lower yields upon full conversion of the alkene 
(entries 4 and 5). We also evaluated [Mn(L2)Cl] with the amide 
groups replaced by Br, but this catalyst did not provide nearly 
as high yield as [Mn(L1)Cl] (entry 6). Thus, we hypothesize that 
the amide groups play an important functional role in this 
reaction likely by stabilizing key Mn–N3 intermediates via 
hydrogen-bonding interactions (vide infra). Notably, we were 
able to lower the loading of [Mn(L1)Cl] to 0.5 mol% or 0.3 
mol% with only a small loss in yield (entries 7 and 8). Reactions 
with 0.5 mol% or higher catalyst loading resulted in very clean 
conversion of the alkene to diazide 2.  

The role of the phosphate buffer is to provide a conducting 
medium while also neutralizing any bases (OH–) generated 
simultaneously from the reduction of H+ on the cathode. 
Replacing the buffer with pure H2O resulted in lower yields 
with side product formation (e.g., 4-tBu-benzaldehyde and 
azidohydrin) (entry 9), and the addition of an organic soluble 
electrolyte TBABF4 did not provide any improvement (entry 
10). Measurement of the aqueous phase pH post-electrolysis 
showed the solution was significantly basified (pH > 11), which 
may have led to catalyst degradation, while under optimal 
condition (entry 7) the pH post-electrolysis remained at 7. 
Acetone as the solvent (entry 11) or co-solvent (entry 12) 

provided similar yields when compared to the optimal 
conditions, which could be applied for substrates with limited 
solubility in MeCN. The current optimal system using a Mn 
porphyrin catalyst and a buffer solution allowed us to 
circumvent the generation of hazardous hydrazoic acid, thus 
significantly improving the safety factor and practicality of the 
protocol while maintaining the simplicity and mildness of the 
reaction conditions. 
Table 1. Reaction Optimizationa 

 
Under the optimal conditions, we explored the generality of 

this method with structurally diverse alkenes (Table 2). 
Diazides derived from styrenes with different substitutions 
and electronic properties could be obtained in good yields (2–
7). To ensure full solubility of E- and Z-stilbene, we employed 
acetone as a co-solvent, and this approach was also applied to 
the synthesis of diazides 8 and 14. 
Unactivated alkenes are also suitable substrates but 

furnished the diazides in lower yields at room temperature 
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aReaction conditions: 1 (0.2 mmol, 1 equiv), Mn-catalyst (1 mol%), NaN3, (5 
equiv), electrolyte (0.4 mmol), solvent (3 mL), H+ source (1 mL), C felt anode, Pt 
plate cathode, undivided cell, constant voltage Ucell = 2.1 V, all reactions were 
conducted until full conversion of alkene 1. bPhosphate buffer (0.5 M K2HPO4 + 
0.5 M KH2PO4). cNMR yield using 1,3,5-trimethoxybenzene as standard.
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likely due to catalyst degradation.16 Nonetheless, by simply 
cooling the reaction to 0 °C, the high efficiency could be 
restored, furnishing compounds 8–20 in high yields. Products 
8–11 showcase the reactivity across different substitution 
patterns of alkenes (e.g., monosubstituted; 1,1- and 1,2-
disubstituted; and trisubstituted). For compound 13, side 
products from SN2 or E2 reaction of the tosylate group was not 
observed, suggesting that the presence of water likely reduces 
the nucleophilicity of azide via H-bonding interactions.17 Free 
alcohol was well tolerated (14) without observing the 
corresponding aldehyde or carboxylic acid side products. 
Electron-deficient methyl cinnamate reacted smoothly to 
furnish diazide 15 at 0 °C. Various nitrogen-containing 
functional groups commonly encountered in medicinal 
chemistry,18 such as amide, carbamate, urea, benzimidazole, 
and indole, were all compatible with this methodology (16–
20). Notably, this improved catalytic system is more reactive 
than the original MnBr2 system,7 as the reaction requires 10–
20 times less catalyst loading and does not require heating to 
achieve high yields for electronically unactivated alkenes (e.g., 
11, 16, and 18) or deactivated alkene (15). Finally, we carried 
out hazard assessment for handling diazide 7 (see SI).19 
Table 2. Substrate Scopea 

 

Ligand L1 provides a significantly higher yield and cleaner 
reaction than other types of porphyrins (see Table 1), 
suggesting that the H-bonding interactions exerted by the 
amide groups play important roles. Similar noncovalent 
interactions have been shown to facilitate the stabilization and 
activation of structurally analogous Co(L1)-nitrene radical 
intermediates in aziridination of styrenes.15 In addition, 
second-sphere H-bonds have been shown to facilitate 
electrocatalytic CO2 reduction by metal porphyrins.20 We 
envision that in the current system, the azide group bound to 
the Mn center could engage in dual H-bonding with the N–H 
groups in a similar fashion. UV-vis titration of [Mn(L1)Cl] with 
NaN3 revealed quantitative formation of a new manganese 
complex containing one azide ligand (see SI for details). 
Attempts to isolate this complex for structural elucidation 
have been thus far unsuccessful.21 
To probe the structure of [Mn(L1)N3], we performed density 

functional theory (DFT) calculations at the B3LYP-D3(BJ)/def2-
SVP level.22-26 To reduce the computational expenses, the 
isopropyl and tert-butyl groups of L1 were replaced by 
hydrogen atoms (L3). Electronic structure calculations indicate 
that [MnIII(L3)N3] exhibits a quintet ground state. Two N−H···N 
H-bonds between the amide and azidyl groups were identified 
and further confirmed by the Quantum Theory of Atoms in 
Molecules (Figure 1A).27-29 The N−H···N3 (N3 = distal nitrogen 
atom of the Mn-bound N3) H-bond is shorter and stronger than 
the N−H···N1 (N1 = Mn-bound nitrogen atom) H-bond. 

 
Figure 1. Optimized geometries for (A) [Mn(L3)N3] (S = 2) and (B) 
[Mn(L3)(N3)2] (S = 3/2) at the B3LYP-D3(BJ)/def2-SVP level. ρ = 
electron density. ∇2ρ = Laplacian of electron density. 

We further investigated the structure of the anodically 
generated diazidomanganese(IV) intermediate (Figure 1B), 
whose presence has been postulated in the literature29 and 
supported by our own cyclic voltammetry data (vide infra). 
Topological analysis supports the existence of H-bonds 
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between the second-sphere amide groups and the Mn-bound 
azides, which likely stabilize the key intermediates. 
We conducted cyclic voltammetry analysis to elucidate the 

active catalytic species in the reaction (Figure 2). In MeCN, the 
oxidation of tetrabutylammonium azide (TBAN3), a soluble 
source of azide anion, shows an oxidation wave at Ep/2 = +453 
mV (vs. Fc+/0), with an onset potential of +165 mV. The complex 
[Mn(L1)Cl] alone only exhibits oxidation above +600 mV, with 
two overlapping features that correspond to two sequential 1-
electron oxidation events of [Mn(L1)Cl] likely accompanied by 
ligand addition (e.g., MeCN). After mixing [Mn(L1)Cl] and 
TBAN3, the redox wave of [Mn(L1)Cl] at +800 mV disappeared 
and a new redox peak at E1/2 = +155 mV appeared. We 
attribute this peak to the oxidation of an incipient manganese-
azide complex, plausibly [Mn(L1)N3]. Notably, ligand exchange 
from Cl− to N3

− significantly lowered the oxidation potential of 
the MnIII complex by >600 mV. 

 
Figure 2. Cyclic voltammetry studies, MeCN (solvent), LiClO4 (0.1 
M), scan rate = 30 mV/s, glassy carbon working electrode. 

We carried out the electrolysis under the optimal conditions 
using alkene 1 and monitored the anodic potential. The 
potential raised from +230 mV to +420 mV (vs. Fc+/0) through 
the course of the reaction, which is enough to oxidize both free 
N3

– and the putative [Mn(L1)N3] complex. Thus, both direct 
and Mn-mediated azide oxidation are considered as possible 
pathways to initiate alkene diazidation. 
Experimental data together with related literature 

reports30,31 suggested that our reaction proceeds through a 
formally MnIII/MnIV cycle. Taken together, we propose the 
following reaction mechanism via anodically coupled 
electrolysis (Scheme 2).32 Upon reaction of [Mn(L1)Cl] with N3

− 
to form [Mn(L1)N3], anodic oxidation of [Mn(L1)N3] followed 
by fragmentation of the resultant [Mn(L1)(N3)2] gave rise to a 
free azidyl radical. Alternatively, direct oxidation of N3

− can 
also lead to the same outcome. The incipient azidyl radical 
adds to alkene I to form transient radical II.33 Given cross-
coupling of two transient radicals is statistically disfavored,34 
the second C–N formation proceeds through azidyl transfer 
from anodically generated [Mn(L1)(N3)2] to II, thus delivering 
diazide III. 
The mechanistic insights suggest that introduction of chiral 

information on the porphyrin ligand could enable the 
development of an asymmetric version of this method. Thus, 
MnIII complexes of D2-symmetric chiral amidoporphyrins35 
were explored as catalysts in the diazidation of 4-tert-
butystyrene (1) (Table 3). While [Mn(L4)Cl] (L4 = 3,5-DitBu-

ChenPhyrin) gave diazide 2 in a racemic form, [Mn(L5)Cl] (L5 = 
2,6-DiMeo-ChenPhyrin) containing 2,6-dimethoxyphenyl 
groups instead of 3,5-di-tert-butylphenyl groups provided low 
but significant asymmetric induction (13% e.e.), implying that 
structurally tuning of the porphyrin ligand could impact the 
stereoselectivity of the electrochemical diazidation. This 
preliminary result indicates that the second azidyl transfer 
from a manganese azide complex is a plausible pathway. 
Scheme 2. Proposed Mechanism 

 
Table 3. Enantioselective Diazidation of 4-tert-Butylstyrenea 

 
In conclusion, we reported electrocatalytic diazidation of 

alkenes mediated by a new manganese porphyrin complex. A 
safer protocol was developed using an aqueous phosphate 
buffer, which suppressed the formation of toxic hydrazoic acid 
and circumvented the use of perchlorate electrolytes. This 
methodology proved to be general across a diverse range of 
alkenes, showing improved reactivity for unactivated alkenes 
vis-à-vis our previous MnBr2-catalyzed system. Mechanistic 
investigation revealed that second-sphere H-bonding 
interactions stabilize key metal-azido intermediates and 
suggested the possibility of asymmetric catalysis, which will be 
the focus of our ongoing work. 
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