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ABSTRACT: In this work, we report manganese porphyrin complexes for the electrocatalytic vicinal diazidation of alkenes with
sodium azide. This protocol shows improved practicality over our previous work using MnBr; catalysis in the following aspects: (1)
It requires substantially lower catalyst loading (as low as 0.3 mol%), which reduces the formation of metal azide complexes and
simplifies product purification; (2) The introduction of a neutral aqueous buffer prevents the generation of toxic hydrazoic acid,
contributing to a safer experimental procedure; (3) The catalytic system displays improved reactivity towards unactivated terminal
alkenes. Mechanistic studies support the roles of second-sphere hydrogen-bond donors in stabilizing key reaction intermediates.

Organic azides find broad applications in many areas of
chemistry such as chemical biology,! materials science,? and
organic synthesis.3 Vicinal diazides are a particularly
interesting class of compounds, serving as precursors to vicinal
diamines, a ubiquitous structural motif found in numerous
medicinally relevant molecules* as well as ligands in metal-
based catalysis.> The construction of vicinal diazides from
simple alkenes has the potential to accelerate the discovery
and preparation of functional molecules. Indeed, this
transformation has been achieved using various chemical
methods, which however frequently rely on the use of
stoichiometric amounts of oxidants.®

With the objective of improving the practicality and
reducing the environmental impact of this transformation, we
have previously developed a general electrochemical
approach for alkene diazidation using a catalytic amount of
MnBr, (Scheme 1A).7 Electricity was used as a traceless carrier
of redox equivalents to turn over the catalyst and generate
reactive intermediates, and H* was employed as an innocuous
terminal oxidant, generating H,. Select examples of vicinal
diazide products have been subjected to testing on their
decomposition profile and impact sensitivity (vide infra),
providing a guideline for safely handling these compounds.? In
addition, tandem procedures have been advanced to reduce
diazides to the corresponding vicinal diamines with minimal
purification of the intermediates.®® Despite showing key
improvements over the prior art, this methodology also
presents salient limitations. For example, scaling up the
reaction can pose a safety challenge due to the use of acetic
acid as the H* source, leading to the formation of toxic and
hazardous hydrazoic acid.'® In addition, because this reaction

does not require an exogenous ligand, the structure of the
active catalyst remains difficult to identify, making systematic
tuning of reactivity challenging. To address these issues, we
developed a second-generation electrochemical diazidation
method used an aminoxyl radical catalyst, CHAMPO, under
neutral conditions (Scheme 1B).!! However, a high catalyst
loading is required to achieve high conversion, and the
reaction medium gradually becomes alkaline due to the
cathodic reduction of water, which could limit compatibility
with base-sensitive substrates.

To further expand the practicality and safety factors of
electrochemical diazidation, we sought a catalytic system that
would be compatible with a neutral medium, could be carried
out with reduced catalyst loading and without perchlorate
salts, and could be systematically modified to address
substrate limitations in our previous methods.?? We identified
that manganese porphyrin complexes are ideal catalysts
towards meeting the above-mentioned aims (Scheme 1C).
Porphyrins with Dyy- and D>-symmetry can be synthesized in a
modular fashion with easy variation of the peripheral
substituents, allowing for tuning of steric, electronic, and chiral
environment.'? Indeed, fully symmetrical Mn porphyrins have
been used for the azidation of C-H bonds via chemical
oxidation.** However, structural tuning of porphyrin by
introducing second-sphere functional groups has not been
systematically investigated in such systems.



Scheme 1. Electrochemical Strategies for Accessing 1,2-Dia-
zides

For developments in chemical diazidation, see references 6a-6f.
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Several sets of screening experiments led us to identify a
manganese(lll) complex of Dn-symmetric amidoporphyrin,
[Mn(L1)Cl] (L1 = 3,5-Di‘Bu-lbuPhyrin), as an excellent
electrocatalyst for the diazidation of alkenes (Table 1). Using
4-tert-butystyrene 1 as a model substrate and NaNs as the
nitrogen source, 1 mol% [Mn(L1)Cl] promotes the formation of
diazide 2 in excellent yield under constant voltage (U = 2.1
V), in a mixture of MeCN and neutral phosphate buffer solution
without an additional electrolyte (entry 1). [Mn(L1)CI] was
readily synthesized in four steps from pyrrole and 2,6-
dibromobenzaldehyde.'> In the absence of an electrocatalyst,
a background reaction took place to give 24% vyield of diazide
2 in addition to undesired products such as 4-'Bu-
benzaldehyde and azidohydrin (entry 2). Using simple MnBr,—
the optimal catalyst in our first-generation diazidation
method’—instead of [Mn(L1)Cl] only furnished 31% yield of
the desired product even at 5 mol% catalyst loading (entry 3)
in addition to side products. In this case, the Mn salt
predominantly remains in the aqueous phase and the
characteristic brown color of the key Mn(lll)-N3 intermediate
was barely visible during the reaction.

We surveyed several additional Mn'" porphyrin catalysts and
identified that [Mn(L1)Cl] is particularly reactive under the
optimal conditions. Commercially available manganese
porphyrins, such as [Mn(TPP)CI] (TPP = tetraphenylporphyrin)
and [Mn(TMP)CI] (TMP = tetramesitylporphyrin), gave
substantially lower yields upon full conversion of the alkene
(entries 4 and 5). We also evaluated [Mn(L2)Cl] with the amide
groups replaced by Br, but this catalyst did not provide nearly
as high yield as [Mn(L1)Cl] (entry 6). Thus, we hypothesize that
the amide groups play an important functional role in this
reaction likely by stabilizing key Mn—N; intermediates via
hydrogen-bonding interactions (vide infra). Notably, we were
able to lower the loading of [Mn(L1)Cl] to 0.5 mol% or 0.3
mol% with only a small loss in yield (entries 7 and 8). Reactions
with 0.5 mol% or higher catalyst loading resulted in very clean
conversion of the alkene to diazide 2.

The role of the phosphate buffer is to provide a conducting
medium while also neutralizing any bases (OH™) generated
simultaneously from the reduction of H* on the cathode.
Replacing the buffer with pure H,O resulted in lower yields
with side product formation (e.g., 4-'Bu-benzaldehyde and
azidohydrin) (entry 9), and the addition of an organic soluble
electrolyte TBABF, did not provide any improvement (entry
10). Measurement of the aqueous phase pH post-electrolysis
showed the solution was significantly basified (pH > 11), which
may have led to catalyst degradation, while under optimal
condition (entry 7) the pH post-electrolysis remained at 7.

Acetone as the solvent (entry 11) or co-solvent (entry 12)
provided similar yields when compared to the optimal
conditions, which could be applied for substrates with limited
solubility in MeCN. The current optimal system using a Mn
porphyrin catalyst and a buffer solution allowed us to
circumvent the generation of hazardous hydrazoic acid, thus
significantly improving the safety factor and practicality of the
protocol while maintaining the simplicity and mildness of the
reaction conditions.

Table 1. Reaction Optimization?

Mn-catalyst (1 mol%) N
A NaNj, Electrolyte N3
Solvent/H* source (3:1 v/v)
1 C#)|Pt(), Ueey=2.1V, 1t 2

Entry Catalyst Solvent Electrolyte H* source Yield®
1 [Mn(L1)CI] MeCN - Buffer® 87%
2 - MeCN - Buffer®  24%
3 MnBry*4H,0 (5 mol%) MeCN - Buffer® 31%
4 [Mn(TPP)CI] MeCN - Buffer®  40%
5 [Mn(TMP)CI] MeCN - Buffer®  44%
6 [Mn(L2)CI] MeCN - Buffer®  48%
7 [Mn(L1)CI] (0.5 mol%) MeCN - Buffer® 86%
8  [Mn(L1)CI] (0.3 mol%) MeCN - Buffer®  77%
9 [Mn(L1)CI] MeCN - H,O 65%
10 [Mn(L1)CI] MeCN TBABF,  H,0 48%
11 [Mn(L1)CI] Acetone - Buffer®  85%
12 [Mn(L1)CI] MeCN/Acetone (2:1) - Buffer®  86%
o o
NH (|:I HN Br (il Br
O =N N O O =NV N— O
NH R! HN Br R! Br
o o
[Mn(L1)Cl] [Mn(L2)Cl]

R = 3,5-di-tert-butylphenyl R = 3,5-di-tert-butylphenyl

@Reaction conditions: 1 (0.2 mmol, 1 equiv), Mn-catalyst (1 mol%), NaNg, (5
equiv), electrolyte (0.4 mmol), solvent (3 mL), H* source (1 mL), C felt anode, Pt
plate cathode, undivided cell, constant voltage U.e; = 2.1V, all reactions were
conducted until full conversion of alkene 1. ®Phosphate buffer (0.5 M K,HPO, +
0.5 M KH,PO,). °NMR yield using 1,3,5-trimethoxybenzene as standard.

Under the optimal conditions, we explored the generality of
this method with structurally diverse alkenes (Table 2).
Diazides derived from styrenes with different substitutions
and electronic properties could be obtained in good yields (2—
7). To ensure full solubility of E- and Z-stilbene, we employed
acetone as a co-solvent, and this approach was also applied to
the synthesis of diazides 8 and 14.

Unactivated alkenes are also suitable substrates but
furnished the diazides in lower yields at room temperature



likely due to catalyst degradation.® Nonetheless, by simply
cooling the reaction to 0 °C, the high efficiency could be
restored, furnishing compounds 8-20 in high yields. Products
8-11 showcase the reactivity across different substitution
patterns of alkenes (e.g., monosubstituted; 1,1- and 1,2-
disubstituted; and trisubstituted). For compound 13, side
products from Sy2 or E2 reaction of the tosylate group was not
observed, suggesting that the presence of water likely reduces
the nucleophilicity of azide via H-bonding interactions.” Free
alcohol was well tolerated (14) without observing the
corresponding aldehyde or carboxylic acid side products.
Electron-deficient methyl cinnamate reacted smoothly to
furnish diazide 15 at 0 °C. Various nitrogen-containing
functional groups commonly encountered in medicinal
chemistry,'® such as amide, carbamate, urea, benzimidazole,
and indole, were all compatible with this methodology (16—
20). Notably, this improved catalytic system is more reactive
than the original MnBr, system,” as the reaction requires 10—
20 times less catalyst loading and does not require heating to
achieve high yields for electronically unactivated alkenes (e.g.,
11, 16, and 18) or deactivated alkene (15). Finally, we carried
out hazard assessment for handling diazide 7 (see SI).*°

Table 2. Substrate Scope”

: Mn(L1)CI (0.5 mol%), NaN, ' Ng

' MeCN/Phosphate buffer (3:1 v/v) ’ Ng 1
C ()| Pt(), Usey=2.1V, rtor0°C '

2,R = Bu, 88%
3, R=0Me, 75%

N3 N3 From E-stilbene:
N3 7,84% (d.r. 75:25)°
Me O From Z-stilbene:
N3 7,89% (d.r. 74:26)° N; Nj

6,89% 8, 76% (d.r. 83:17)°
Me Cl Me
Na o 80% 10, 86% No4q, sa%
o}
Me Me,
N3 e O)b\ N Me WNg
3
Me>H/kMe OMe So/\)|\/N3 HO Me
N3 N3
12, 61% (d.r. 58:42) 13, 83% 14, 86% (d.r. 58:42)
N3 cl
N
CO,Me \©\ JOL 3
N 0/\)\
H Ny
15, 75% (d.r. 54:46) 16, 67% 17,52%
cl
\@ W b

18, 64% 19, 73% 20, 59%

aReaction conditions: Alkene (0.2 mmol, 1 equiv), Mn-catalyst (0.5 mol%), NaN3, (5
equiv), MeCN (3 mL), Phosphate buffer (0.5 M Ko,HPO,4 + 0.5 M KH,PO4, 1 mL), C
felt anode, Pt plate cathode, undivided cell, constant voltage Uge; = 2.1 V. °MeCN
was replaced by a mixture of MeCN/acetone (2:1, 3 mL).

Ligand L1 provides a significantly higher yield and cleaner
reaction than other types of porphyrins (see Table 1),
suggesting that the H-bonding interactions exerted by the
amide groups play important roles. Similar noncovalent
interactions have been shown to facilitate the stabilization and
activation of structurally analogous Co(L1)-nitrene radical
intermediates in aziridination of styrenes.®> In addition,
second-sphere H-bonds have been shown to facilitate
electrocatalytic CO, reduction by metal porphyrins.?® We
envision that in the current system, the azide group bound to
the Mn center could engage in dual H-bonding with the N-H
groups in a similar fashion. UV-vis titration of [Mn(L1)CI] with
NaN; revealed quantitative formation of a new manganese
complex containing one azide ligand (see SI for details).
Attempts to isolate this complex for structural elucidation
have been thus far unsuccessful.?!

To probe the structure of [Mn(L1)Ns], we performed density
functional theory (DFT) calculations at the B3LYP-D3(BJ)/def2-
SVP level.?*?% To reduce the computational expenses, the
isopropyl and tert-butyl groups of L1 were replaced by
hydrogen atoms (L3). Electronic structure calculations indicate
that [Mn"(L3)Ns] exhibits a quintet ground state. Two N-H--:N
H-bonds between the amide and azidyl groups were identified
and further confirmed by the Quantum Theory of Atoms in
Molecules (Figure 1A).2-2° The N-H--:N3 (N3 = distal nitrogen
atom of the Mn-bound Ns) H-bond is shorter and stronger than
the N-H--N1 (N1 = Mn-bound nitrogen atom) H-bond.

(A)  N-H--N1H-bond
d(H--N1) = 2.39 A
p(BCP) = 0.011 a.u.
V2p(BCP) = 0.031 a.u.

N-H--:N3 H-bond
d(H--N3) = 2.05 A
p(BCP) =0.022 a.u.

\ V2p(BCP) = 0.069 a.u.

N-H:-+:N3 H-bond
®) d(H--N3)=2.12A
p(BCP) = 0.019 a.u.
V2o(BCP) = 0.059 au. Y~ P

N-H---N3 H-bond
d(H--N3) =222 A
p(BCP) =0.015 a.u.
V2p(BCP) = 0.045 a.u.

Color scheme: H, white; C, gray; N, blue; O, red; Mn, purple;
N---H bond critical points (BCPs), yellow.

Figure 1. Optimized geometries for (A) [Mn(L3)Ns] (S = 2) and (B)
[Mn(L3)(N3)2] (S = 3/2) at the B3LYP-D3(BJ)/def2-SVP level. p =
electron density. V2p = Laplacian of electron density.

We further investigated the structure of the anodically
generated diazidomanganese(lV) intermediate (Figure 1B),
whose presence has been postulated in the literature?® and
supported by our own cyclic voltammetry data (vide infra).
Topological analysis supports the existence of H-bonds



between the second-sphere amide groups and the Mn-bound
azides, which likely stabilize the key intermediates.

We conducted cyclic voltammetry analysis to elucidate the
active catalytic species in the reaction (Figure 2). In MeCN, the
oxidation of tetrabutylammonium azide (TBANs), a soluble
source of azide anion, shows an oxidation wave at E,j; = +453
mV (vs. Fc*/°), with an onset potential of +165 mV. The complex
[Mn(L1)CI] alone only exhibits oxidation above +600 mV, with
two overlapping features that correspond to two sequential 1-
electron oxidation events of [Mn(L1)Cl] likely accompanied by
ligand addition (e.g., MeCN). After mixing [Mn(L1)Cl] and
TBAN;3, the redox wave of [Mn(L1)Cl] at +800 mV disappeared
and a new redox peak at E;» = +155 mV appeared. We
attribute this peak to the oxidation of an incipient manganese-
azide complex, plausibly [Mn(L1)Ns]. Notably, ligand exchange
from ClI~ to N5~ significantly lowered the oxidation potential of
the Mn"" complex by >600 mV.

501" [Mn(L1)CI] (0.4 mM) and TBAN, (2 mM)
[Mn(L1)CI] (0.4 mM)
401 TBAN, (2 mM)

0 200 400 600 800 1000 1200
E (mV) vs. Fc*°

Figure 2. Cyclic voltammetry studies, MeCN (solvent), LiClO4 (0.1
M), scan rate = 30 mV/s, glassy carbon working electrode.

We carried out the electrolysis under the optimal conditions
using alkene 1 and monitored the anodic potential. The
potential raised from +230 mV to +420 mV (vs. Fc*/°) through
the course of the reaction, which is enough to oxidize both free
Ns;~ and the putative [Mn(L1)Ns] complex. Thus, both direct
and Mn-mediated azide oxidation are considered as possible
pathways to initiate alkene diazidation.

Experimental data together with related literature
reports3%3! suggested that our reaction proceeds through a
formally Mn"/Mn" cycle. Taken together, we propose the
following reaction mechanism via anodically coupled
electrolysis (Scheme 2).32 Upon reaction of [Mn(L1)Cl] with N3~
to form [Mn(L1)Ns], anodic oxidation of [Mn(L1)Ns] followed
by fragmentation of the resultant [Mn(L1)(Ns),] gave rise to a
free azidyl radical. Alternatively, direct oxidation of N3~ can
also lead to the same outcome. The incipient azidyl radical
adds to alkene I to form transient radical 11.>* Given cross-
coupling of two transient radicals is statistically disfavored,3
the second C—N formation proceeds through azidyl transfer
from anodically generated [Mn(L1)(Ns),] to Il, thus delivering
diazide Ill.

The mechanistic insights suggest that introduction of chiral
information on the porphyrin ligand could enable the
development of an asymmetric version of this method. Thus,
Mn"" complexes of D,-symmetric chiral amidoporphyrins®
were explored as catalysts in the diazidation of 4-tert-
butystyrene (1) (Table 3). While [Mn(L4)CI] (L4 = 3,5-Di‘Bu-

ChenPhyrin) gave diazide 2 in a racemic form, [Mn(L5)CI] (L5 =
2,6-DiMeo-ChenPhyrin)  containing  2,6-dimethoxyphenyl
groups instead of 3,5-di-tert-butylphenyl groups provided low
but significant asymmetric induction (13% e.e.), implying that
structurally tuning of the porphyrin ligand could impact the
stereoselectivity of the electrochemical diazidation. This
preliminary result indicates that the second azidyl transfer
from a manganese azide complex is a plausible pathway.

Scheme 2. Proposed Mechanism

1l
Table 3. Enantioselective Diazidation of 4-tert-Butylstyrene®

N3
N Mn-catalyst (1 mol%), NaN; N
MeCN/Phosphate buffer (3:1 v/v)
1 C#)|PtE), Ueey=2.1V, 1t 2

Diazide 2

R' group

84% yield
0% e.e.

[Mn(L4)CI] (L4 = 3,5-DitBu-ChenPhyrin)

MeO OMe 89% vyield

& X\H 13% e.e.

[Mn(LB)CI] (L5 = 2,6-DiMeO-ChenPhyrin)

aReaction conditions: 1 (0.2 mmol, 1 equiv), Mn-catalyst (1 mol%), NaN3, (5
equiv), MeCN (3 mL), Phosphate buffer (0.5 M KoHPO4 + 0.5 M KHoPOy, 1 mL),
C felt anode, Pt plate cathode, undivided cell, constant voltage Ugey = 2.1 V.

In conclusion, we reported electrocatalytic diazidation of
alkenes mediated by a new manganese porphyrin complex. A
safer protocol was developed using an aqueous phosphate
buffer, which suppressed the formation of toxic hydrazoic acid
and circumvented the use of perchlorate electrolytes. This
methodology proved to be general across a diverse range of
alkenes, showing improved reactivity for unactivated alkenes
vis-a-vis our previous MnBr;-catalyzed system. Mechanistic
investigation revealed that second-sphere H-bonding
interactions stabilize key metal-azido intermediates and
suggested the possibility of asymmetric catalysis, which will be
the focus of our ongoing work.
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' 0.5 mol% [Mn] N;:
NaNj, neutral buffer
20 Examples
Improved safety and practicality
Low catalyst loading - Highly reactive
for simple alkenes




