
1

A wideband generalization of the near-field region
for extremely large phased-arrays

Nitish Deshpande, Student Member, IEEE, Miguel R. Castellanos, Member, IEEE, Saeed R. Khosravirad, Member,
IEEE, Jinfeng Du, Member, IEEE, Harish Viswanathan, Fellow, IEEE, and Robert W. Heath Jr., Fellow, IEEE

Abstract—The narrowband and far-field assumption in conven-
tional wireless system design leads to a mismatch with the optimal
beamforming required for wideband and near-field systems. This
discrepancy is exacerbated for larger apertures and bandwidths.
To characterize the behavior of near-field and wideband systems,
we derive the beamforming gain expression achieved by a
frequency-flat phased array designed for plane-wave propagation.
To determine the far-field to near-field boundary for a wideband
system, we propose a frequency-selective distance metric. The
proposed far-field threshold increases for frequencies away from
the center frequency. The analysis results in a fundamental upper
bound on the product of the array aperture and the system
bandwidth. We present numerical results to illustrate how the
gain threshold affects the maximum usable bandwidth for the
n260 and n261 5G NR bands.

Index Terms—Near-field, wideband, phased-array, frequency-
selective, beamforming gain.

I. INTRODUCTION
Distinguishing between the near-field and far-field is becom-

ing increasingly relevant as modern wireless devices begin to
operate in both propagation regions. The most common near-
field distance, known as the Fraunhofer distance, is propor-
tional to the square of the aperture and inversely proportional
to the wavelength [1]. To satisfy the data rate requirements of
5G and beyond, wireless systems have shifted to higher carrier
frequencies and larger antenna arrays [2]. For these modern
arrays, the Fraunhofer distance becomes comparable to the
typical cell radius. For example, the Fraunhofer array distance
for a uniform linear array (ULA) with 128 antennas and
half-wavelength inter-antenna spacing operating at 28 GHz
is around 88 m. This is a good fraction of the cell radius
of an urban microcellular and picocellular deployment [3].
In the near-field, the phase variation over the array aperture
is non-linear and is difficult to estimate with a phased-array
using conventional beam-training procedures [2]. Hence, a
uniformly-spaced phase shift technique based on far-field
propagation with planar wavefronts is used in practice [1] [4].
The phase mismatch due to the inaccurate use of the far-field
beamforming technique can lead to beamforming gain losses
that worsen as the array aperture increases [4]–[6].

Wideband systems with large arrays suffer from a phe-
nomemon known as beam squint, i.e., the phase mismatch be-
tween the frequency-flat response of the phased-array and the
frequency-selective response of the wideband channel. More-
over, array inter-symbol interference occurs for frequency-
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selective multipath channel because the propagation delay
across a large array is non-negligible compared to the symbol
duration [7]. This reduces the beamforming gain for frequen-
cies away from the center frequency. This phase-mismatch can
be corrected by replacing the frequency-flat phased-array with
a frequency-selective beamformer. However, the implementa-
tion of a frequency-selective beamformer using a fully-digital
space-time precoder [8] or an analog true-time-delay (TTD)
architecture [9] is difficult for larger arrays due to high power
consumption. For wideband phased-array systems operating
in the near-field, the two phase mismatches due to far-field
and narrowband system design jointly affect the beamforming
gain. Hence, it is crucial to characterize this combined effect
for the analysis of large phased-array wideband systems [6].

Near-field and wideband effects have generally been con-
sidered separately in the literature. Various near-field metrics
have been proposed in prior work [10], [11]. The definition of
the Fraunhofer array distance is based on the phase variation
of a monochromatic wave over the array length [1]. In [10],
the proposed near-field metric uses the amplitude variations
to determine the far-field to near-field transition distance. The
metrics in [1], [10] did not consider the angle of incidence and
have assumed broadside incidence only. The effective Rayleigh
distance incorporates the incidence angle in the beamforming
gain analysis [11]. One common shortcoming of these methods
is that the beamforming gain analysis is restricted only for
a single frequency and not for a band of frequencies. Al-
though [12], [13] analyzed the beamforming gain for wideband
systems and incorporated beam squint effect, they are based
on the plane-wave approximation. To summarize, the existing
work on the beamforming gain analysis either assumes a near-
field and narrowband system [1], [10], [11] or a far-field and
wideband system [12], [13].

In this letter, we analyze the beamforming gain of a
multiple-input-single-output (MISO) communication system
with ULA at transmitter for a general near-field and wide-
band channel with a beamformer based on the far-field and
narrowband assumption. For a large number of antennas, the
beamforming gain can be approximated with a closed-form
expression. The derived expression can be generalized to
arbitrary carrier frequencies and array sizes. We propose the
bandwidth-aware-near-field distance (BAND) to characterize
the far-field to near-field transition in a wideband system.
The BAND increases for frequencies away from the center
frequency, which implies that wideband systems have a larger
near-field region. Expressing the system parameters as a func-
tion of the beamforming gain uncovers a tradeoff between the
aperture and bandwidth.

Notation: A bold lowercase letter a denotes a vector, (·)∗
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denotes conjugate transpose, | · | indicates absolute value, [a]n
denotes the nth element of a, O(·) denotes the big O notation,
C(γ) =

∫ γ

0
cos(π2 t

2)dt and S(γ) =
∫ γ

0
sin(π2 t

2)dt denote
cosine and sine Fresnel functions, inf{·} denotes the infimum.

II. SYSTEM MODEL

Let us assume a co-polarized single-user MISO communi-
cation system with an N antenna ULA at the transmitter and
a single antenna at the receiver. All antennas are assumed to
be isotropic. The transmitter is oriented along the x axis with
inter-antenna spacing d. The x coordinate of the nth transmit
antenna is defined as dn = 2n−N+1

2 d for n = 0, 1, . . . , N −1.
The receiver location is assumed to be fixed at a distance r
from the transmit array center, i.e., the origin, and at an angle
θ with the y axis. The receiver location is (r sin(θ), r cos(θ)).
The distance between the receive antenna and the nth transmit
antenna is rn =

√
r2 − 2rdn sin(θ) + d2n.

For analytical purposes, we assume the channel to be a line-
of-sight (LOS) path between the transmitter and receiver. The
inclusion of non-line-of-sight (NLOS) components in a near-
field communication system is a second-order effect and is ig-
nored in the current work. The LOS path can be characterized
by the path loss and the path delay. The LOS path loss between
all transmit antennas and the receive antenna is assumed to
be the same and denoted by G(r). This assumption is valid
for r ∼ O(Lp) when p > 1, where L = Nd is the array
aperture [14]. In this work, the proposed BAND ∼ O(L2)
which will be proved in Section IV. Hence, it is appropriate
to ignore path loss amplitude variations across the array. Let
fc denote the center frequency of the passband signal, λc

denote the center wavelength, and c denote the speed of
light. The passband time-domain channel impulse response
from the nth antenna is [hp(t)]n =

√
G(r)δ

(
t− rn

c

)
. The

pseudo-complex baseband equivalent channel response after
down-conversion is [hb(t)]n =

√
G(r)e−j2π rn

c fcδ
(
t− rn

c

)
.

The frequency-domain channel impulse response at baseband
frequency f is

[h(f)]n =
√
G(r)e−j2π rn

c (fc+f). (1)

The general channel response in (1) can be approximated
under the narrowband and far-field assumptions. Under the
narrowband assumption, the baseband frequency can be
treated as small, i.e. f ≈ 0. Taking the series expansion
of the channel phase response around f = 0, we have
exp(−j2π rn

c (fc + f)) = exp(−j2π rn
c (fc +O(f))). Under

the far-field assumption, the distance r can be treated large,
i.e., r → ∞. Taking the series expansion of the channel phase
response around r → ∞, we have exp(−j2π rn

c (fc + f)) =

exp

(
−j2π

(r−dn sin(θ)+O( 1
r ))

c (fc + f)

)
. Combining both

of the expansions, we have, exp
(
−j2π rn

c (fc + f)
)

=

exp

(
−j2π

(r−dn sin(θ)+O( 1
r ))

c (fc +O(f))

)
when the nar-

rowband and far-field assumptions both hold. Using the sub-
scripts nf, ff, wb, and nb to denote near-field, far-field,
wideband, and narrowband assumptions, respectively, we sum-
marize the four channel models, for the N×1 channel vectors,
hnf,wb(f), hnf,nb, hff,wb(f), and hff,nb, in Table I.

TABLE I
SUMMARY OF THE CHANNEL MODELS

Channel response Expression

[hnf,wb(f)]n
√

G(r)e−j2π rn
c

(fc+f)

[hnf,nb]n
√

G(r)e−j2π rn
c

fc

[hff,wb(f)]n
√

G(r)e−j2π
(r−dn sin(θ))

c
(fc+f)

[hff,nb]n
√

G(r)e−j2π
(r−dn sin(θ))

c
fc

The most general channel response is hnf,wb(f). The optimal
beamforming vector with unit norm constraint that maximizes
the signal to noise ratio is fnf,wb(f) =

1√
NG(r)

hnf,wb(f) [8].

Using a mismatched beamforming vector, i.e., f ̸= fnf,wb(f)
leads to beamforming gain loss. To characterize this mismatch,
we define vectors fnf,nb, fff,wb(f), and fff,nb similarly. In
practice, the beamformer fff,nb is employed because of the
following reasons: (a) The beamformer fff,nb is frequency-
flat and easily implementable with a phased array. Although
fnf,wb(f) and fff,wb(f) are frequency-selective, they require
complex hardware for implementation and consume more
power. (b) The beamformer fff,nb can be easily computed by
the knowledge of θ obtained by beam-training procedures in
IEEE standards [2], unlike fnf,nb which requires new channel
estimation techniques yet to be standardized [4]. In this letter,
we analyze the phase mismatch that occurs when using fff,nb
for a near-field wideband system. This analysis is crucial to
characterize the scenarios where frequency-flat beamforming
does not work well.

III. BEAMFORMING GAIN ANALYSIS

We analyze the performance loss due to fff,nb in terms of the
normalized beamforming gain. The definitions of the normal-
ized beamforming gains under different channel assumptions
are summarized in Table II. The normalization is such that the
maximum gain value is 0 dB. The beamforming gain µff,wb(f)

TABLE II
DEFINITIONS OF NORMALIZED BEAMFORMING GAINS

Normalized beamforming gain Expression

µnf,wb(f)
1√

G(r)N

∣∣∣h∗nf,wb(f)fff,nb∣∣∣
µff,wb(f) [13] 1√

G(r)N

∣∣∣h∗ff,wb(f)fff,nb∣∣∣
µnf,nb [4] 1√

G(r)N

∣∣∣h∗nf,nbfff,nb∣∣∣
only captures the wideband effect and µnf,nb only captures the
near-field effect.

We express the inner product in µnf,wb(f) as a summation
of the complex phases over N antennas as

∣∣∣ 1
N

∑N−1
n=0 ejϕn

∣∣∣,
where ϕn = −∠([hnf,wb(f)]n) + ∠([fff,nb]n). From the def-
inition of fff,nb, ϕn = −∠([hnf,wb(f)]n) + ∠([hff,nb]n). In

the radiating near-field (Fresnel) region, i.e., rn > 0.62
√

L3

λc
,

the O
(

1
r2

)
term in the expansion of rn = r − dn sin(θ) +

d2
n cos2(θ)

2r +O
(

1
r2

)
can be ignored [15]. Hence, from Table I

and expansion of rn, we express ϕn ≈ 2π
c [(r − dn sin(θ) +

d2
n cos2(θ)

2r )(fc+f)−(r−dn sin(θ))fc]. To express ϕn in terms
of dimensionless parameters, let the normalized distance be
r̄ = r

λc
, the normalized inter-antenna spacing be d̄ = d

λc
,

and the normalized frequency be f̄ = f
fc

. Hence, we express
ϕn ≈ ϕwb,n+ϕnf,n, where ϕwb,n = −π(2n−N+ 1)d̄ sin(θ)f̄
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and ϕnf,n = π(f̄+1)d̄2 cos2(θ)(2n−N+1)2

4r̄ . The expression for
µapprox
nf,wb (f̄) ≈

∣∣∣ 1
N

∑N−1
n=0 ej(ϕnf,n+ϕwb,n)

∣∣∣ depends only on the
normalized parameters. Hence, this analysis is independent
of the carrier frequency; the same beamforming gain can be
obtained for different carrier frequencies provided that the
normalized parameters remain fixed. The expression for the
far-field wideband gain µff,wb(f) in [13] can be obtained by
setting ϕnf,n = 0. The near-field narrowband gain µnf,nb in [4]
can be obtained by setting ϕwb,n = 0 and f̄ = 0. In Lemma 1,
we further simplify µapprox

nf,wb (f̄) to get an expression in terms
of Fresnel functions whose arguments depend on the system
parameters.

Lemma 1: The expression of µapprox
nf,wb (f̄) can be further

approximated for large N with fixed d as

G(γ1, γ2)= lim
N→∞

µapprox
nf,wb (f̄) =

∣∣∣∣ C̄(γ1, γ2) + jS̄(γ1, γ2)
2γ2

∣∣∣∣, (2)

C̄(γ1, γ2) ≡ C(γ1 + γ2) − C(γ1 − γ2) and S̄(γ1, γ2) ≡
S(γ1 + γ2) − S(γ1 − γ2), where γ1 = − tan(θ)f̄

√
2r̄
1+f̄

,

γ2 = L̄ cos(θ)
√

1+f̄
2r̄ , and the normalized array aperture is

L̄ = Nd̄.
Proof: We rewrite µapprox

nf,wb (f̄) by defining ∆m = 1
N

for m = 0, 1
N , . . . , N−1

N , a = cos(θ)

√
(1+f̄)d̄2

2r̄ , and b =
1
a

(
(1+f̄)d̄2 cos2(θ)(N−1)

4r̄ + d̄ sin(θ)f̄
2

)
to get

µapprox
nf,wb (f̄) =

∣∣∣∣∣∣∆m

1− 1
N∑

m=0

exp
(
j2π(amN − b)2

)∣∣∣∣∣∣ . (3)

As N → ∞, we can express the summation in (3) as an
integral using the Riemann integral method [4] as

µapprox
nf,wb (f̄) =

∣∣∣∣∫ 1

0

exp
(
j2π(aNt− b)2

)
dt+O

(
1

N

)∣∣∣∣ ,
(a)
=

∣∣∣∣∣
∫ 2aN−2b

−2b
exp

(
j π
2 (t

′)2
)
dt′

2aN
+O

(
1

N

)∣∣∣∣∣ , (4)

where (a) follows by letting aNt−b = t′

2 . For large N , using
(N − 1)d̄ ≈ (N + 1)d̄ ≈ Nd̄ = L̄, we get (2). □

The purpose of this simplification is to establish a closed-
form algebraic relationship between the system parameters
and the beamforming gain threshold. Lemma 1 shows the
relationship between the parameters, {f̄ , r̄, L̄, θ}, and a 2D
parameter space defined by γ1 and γ2. The compression from
four parameters to two new parameters γ1 and γ2 allows us
to visualize the beamforming gain function. It also simplifies
numerical simulations by varying γ1 and γ2 instead of varying
four system parameters.

The expression derived in Lemma 1 simplifies to the nar-
rowband case, i.e., f̄ = 0, by substituting γ1 = 0 in (2).
Hence, the near-field narrowband gain for large N is defined
as Gnb(γ2) = lim

N→∞
µnf,nb =

∣∣∣C(γ2)+jS(γ2)
γ2

∣∣∣, which is the same
near-field gain expression derived in [4] and [11]. We have
generalized Gnb(γ2) [4], [11] by incorporating the bandwidth
effect through the parameter γ1.

The 2D cross-sections of the beamforming gain are shown
in Fig. 1. In Fig. 1 (a), we keep γ1 fixed and plot G(γ1, γ2)
as a function of γ2. Assuming a non-zero angle θ, the 2D
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Fig. 1. 2D cross-sections of G(γ1, γ2) in dB scale. (a) G(γ1, γ2) vs γ2 for
a fixed |γ1|; (b) G(γ1, γ2) vs γ1 for a fixed γ2.

plot corresponding to γ1 = 0, shown in blue, represents the
narrowband case which is same as the plot shown in prior work
on near-field propagation [4], [11]. The parameter γ2 captures
the transition from far-field to near-field in [11]. The effective
Rayleigh distance, dERD(θ)=0.367 cos2(θ)(2L̄2λc), is defined
using γ2 with f̄ = 0, as the distance below which the value of
the beamforming gain Gnb(γ2) falls under the threshold 0.95
in linear scale [11]. We observe that for the wideband case,
i.e., f̄ ̸= 0, the value of G(γ1, γ2) drops sharply with γ2 as
|γ1| increases. In Fig. 1 (b), γ2 is fixed and we plot G(γ1, γ2)
as a function of γ1. For small values of γ2, the peak value
is close to 0 dB. However, for larger values of γ2, the peak
value drops and the main lobe shrinks. These results suggest
that the joint effect of γ1 and γ2 is more severe than their
individual effect.

The 2D cross-sections in Fig. 1 resemble the plots from
existing works [11]–[13] which study the wideband and near-
field phenomena separately. The beamforming gain G(γ1, γ2)
jointly models the wideband and near-field effects. We analyze
the connections of {γ1, γ2} with {f̄ , r̄, L̄, θ} in Section IV.

IV. INVERSE MAPPING OF BEAMFORMING GAIN TO
SYSTEM PARAMETERS SPACE

Most of the existing studies [1], [10]–[13] analyze the
beamforming gain as a function of the different system
parameters. From a system design perspective, however, it
is essential to understand the inverse relationship for each
system parameter as a function of the beamforming gain and
other system parameters. We identify a fundamental tradeoff
between the aperture and bandwidth in Section IV-A. We also
establish a frequency-selective near-field boundary distance in
Section IV-B.
A. Aperture-bandwidth product

In Section III, we introduced the beamforming gain depen-
dence on f̄ through γ1 and γ2. From Lemma 1, the normalized
frequency f̄ can be expressed as f̄ = − γ1γ2

L̄ sin(θ)
. We also define

the fractional bandwidth as fB = |2f̄ |. Hence, we have the
relation

|fBL̄ sin(θ)| = |2γ1γ2|. (5)
To understand the maximum limit up to which the aperture
and/or bandwidth can be scaled up while maintaining the
narrowband and far-field assumption, we are interested in the
maximum limit of the right hand side of (5) which can be
found numerically for a given value of G(γ1, γ2).

We show the 2D contour plot of G(γ1, γ2) in Fig. 2. The
contour plot is defined as the locus of the points in the (γ1, γ2)
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space which achieve a fixed value of the beamforming gain
G(γ1, γ2). The pair of hyperbola marked in red, |γ1γ2| = 0.16,
corresponds to G(γ1, γ2) = −0.2 dB. The pair of hyperbola
marked in blue, |γ1γ2| = 0.12, corresponds to G(γ1, γ2) =
−0.1 dB. Hence, from (5) and Fig. 2, we conclude that to
maintain a beamforming gain, G(γ1, γ2) ∈ [−0.2,−0.1] dB,
|fBL̄ sin(θ)| must approximately lie in the range [0.24, 0.32].
The upper limit on |fBL̄ sin(θ)| decreases as the threshold
increases. From a system design perspective, the maximum
angle of incidence θmax can be chosen based on the sector di-
vision [16]. Hence, we get the worst case upper bound on fBL̄

as fBL̄ ≤
∣∣∣ 2γ1γ2

sin(θmax)

∣∣∣ . In terms of un-normalized parameters,
this simplifies to an important fundamental constraint on the
product of the bandwidth, B, and the array aperture, L, as

BL ≤
∣∣∣∣ 2cγ1γ2
sin(θmax)

∣∣∣∣ . (6)

The relationship in (6) plays an important role in determining
the limits on the system design parameters for a particular
beamforming gain. We define the maximum usable bandwidth,
for a fixed aperture L, that achieves beamforming gain τ , for
the maximum incidence angle, as Bmax =

∣∣∣ 2c[γ1γ2]max

L sin(θmax)

∣∣∣, where
[γ1γ2]max is computed numerically for a given τ . If the system
bandwidth exceeds Bmax, the beamforming gain drops below
the required threshold.

Fig. 2. Contour plot of G(γ1, γ2) in dB scale. The hyperbolas determine
upper bound on the aperture-bandwidth product for a fixed beamforming gain.

Remark 1: We observe that fBL̄ can also be written as the
ratio of the maximum propagation delay difference across the
array to the symbol duration Ts, i.e., fBL̄ = Nd/c

Ts
. In [7], the

upper bound on fBL̄ was loosely specified using Nd/c ≪ Ts.
The bound proposed in (6) is more precise.
B. Bandwidth-aware-near-field distance (BAND)

Using the relationship in Lemma. 1, we propose a
frequency-dependent near-field distance termed as BAND. The
BAND is the smallest distance beyond which the beamforming
gain is always above a certain threshold τ . The definition of
BAND is valid for f ∈ (−Bmax

2 , Bmax

2 ). To compute the BAND,
we propose a numerical procedure as follows.

1) Compute the set T1 = {(γ1, γ2)|G(γ1, γ2) ≥ τ} nu-
merically. For example, the bright yellow region in the
contour plot of Fig. 2 for τ ≡ −0.1 dB.

2) Compute the set T2={(γ′
1, γ

′
2)∈T1|γ′

1γ
′
2=−f̄ L̄ sin(θ)}.

3) Compute BAND=λc
L̄2 cos2(θ)(1+f̄)

2γ2
2

where γ2 = max
T2

γ′
2.

(The smallest value for distance is attained for the
highest value of γ′

2.)

Step 2 is essential in the BAND computation because it in-
troduces the frequency dependence. For the narrowband case,
step 2 is not required because f̄ = 0. A closed form expression
for BAND is obtained only at the center frequency. By setting
τ = 0.95 (or -0.22 dB) and f̄ = 0, we get the same expression
for the effective Rayleigh distance, dERD, which was derived
in [11]. Similarly, by setting θ = 0, f̄ = 0, γ2 = 0.5,
we get the expression for the Fraunhofer array distance [1]
as dFA = 2L̄2λc. A generalization of dFA is the direction-
dependent Rayleigh distance [14], dDDRD, which is also based
on the maximum phase variation metric ∆φ(r, θ). It is defined
as the minimum link distance r such that ∆φ(r, θ) ≤ π

8 . For
a ULA, the expression for ∆φ(r, θ) is given as ∆φ(r, θ) =

max
n

2π
λc
(rn− (r−dn sin(θ)))≈max

n

2π
λc

d2
n cos2(θ)

2r ≈πL̄2λc cos
2(θ)

4r .

Hence, dDDRD(θ) = 2L̄2λc cos
2(θ) = dFA cos2(θ) = dERD(θ)

0.367 .
The BAND is a wideband generalization of the near-field dis-
tances proposed in [1] [11] [14]. The BAND also determines
the favorable regime for a transceiver hardware operating at
any general frequency offset from fc.

Remark 2: Comparison of BAND and dERD, dFA, dDDRD :
For a fixed τ (say 0.95 or -0.22 dB), let dERD be expressed
as λc

L̄2 cos2(θ)
2γ̃2

2
(γ̃2 = 0.8257 for τ = 0.95 [11] ). For the

wideband case i.e., f̄ ̸= 0, let the BAND be expressed as
λc

L̄2 cos2(θ)
2γ2

2
(1 − γ1γ2

L̄ sin(θ)
). The condition for BAND at f̄ ̸= 0

to be always greater than or equal to dERD is given as
γ2
2

γ̃2
2
+ γ1γ2

L̄ sin(θ)
− 1 ≤ 0. Equality holds when γ1 = 0 and

γ̃2 = γ2. The parameters in Section. V are chosen such that
this condition is satisfied. Also, BAND≥0.367dDDRD(θ) and
BAND≥0.367 cos2(θ)dFA.

V. NUMERICAL RESULTS
The analysis presented in Section III and Section IV holds

for any carrier frequency. In this section, we provide illustra-
tions for some specific carrier frequencies currently used in
the 5G standards [17].
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Fig. 3. Bmax as a function of the beamforming gain threshold for {L, fc} ≡
(0.68 m, 28 GHz), (0.34 m, 28 GHz), (0.49 m, 39 GHz), (0.25 m, 39 GHz)
for (a) θmax = π

6
; (b) θmax = π

3
. Tradeoff between gain threshold and

maximum usable bandwidth is illustrated by varying carrier frequency, angle,
and aperture.

In Fig. 3, Bmax is plotted as a function of the beamforming
gain threshold for (a) θmax = π/6 and (b) θmax = π/3. For
n261 band in 5G NR [17], fc = 28 GHz. For n260 band in
5G NR [17], fc = 39 GHz. For each band, we plot Bmax for
N = {64, 128} and d = λc

2 . We also mark the bandwidths of
200 MHz, 400 MHz, and 1.2 GHz.

Fig. 3 offers two important insights. For a given {L, fc}
pair, we can determine the maximum possible beamforming
gain for the 5G NR bandwidths. Conversely, we can also
determine Bmax for a fixed value of beamforming gain. As
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Fig. 4. Contour plot of beamforming gain (in dB) as a function of distance
(in m) and frequency (in GHz) for fc = 39 GHz, N = 64, and θ = 60◦.
The BAND attains a global minima at fc.

expected from (6), for a fixed fc, Bmax doubles as L gets
halved to maintain the same beamforming gain. Comparing
Fig. 3(a) and Fig. 3(b), we demonstrate the tradeoff between
Bmax and θmax. In line with the result in (6), keeping remaining
parameters fixed, Bmax reduces as θmax increases. In other
words, less bandwidth is available when the angular coverage
increases. In practice, θmax is based on the antenna coverage
and sector division at the base station [16].

In Fig. 4, we show the contour plot in Fig. 2 with a change
of variables from (γ1, γ2) to the (r, f) space using Lemma. 1
for d̄ = 0.5, θ = 60◦, fc = 39 GHz and for N = 64. Each
contour denotes the BAND for a given gain threshold. For
operating distances greater than the BAND, the beamforming
gain will always remain above the threshold. The plot shows
that the distance increases for frequencies away from the
center frequency. This distance diverges beyond a certain value
of frequency |f |, which illustrates the concept of the maximum
usable bandwidth derived in (6). In Fig. 4, we also plot dERD,
dDDRD, and dFA which are same for all frequencies in the
band. The distance dFA is inaccurate because it does not
incorporate the angle dependence and frequency-selectivity.
Although both dDDRD and dERD are angle dependent, dERD
is based on the beamforming gain, which is a better metric
from a capacity perspective compared to the phase variation
metric. The distance dERD is consistent with the BAND value
for τ = −0.22 dB only at the center frequency 39 GHz
because dERD is derived using a narrowband model. In line
with Remark 2, the distance dERD underestimates the near-
field distance for f̄ ̸= 0.

VI. CONCLUSION AND FUTURE WORK
In this letter, we proposed a new definition of the beam-

forming gain metric which incorporates both wideband and
near-field propagation effects. For a MISO system with a
ULA at the transmitter, we provided a simple closed-form
expression for the beamforming gain in terms of standard
Fresnel functions with two parameters that model the near-
field and wideband effects. A key observation is that the
beamforming gain depends only on the normalized frequencies
and distances, which enables the validity of the insights for any
carrier frequency. The proposed upper bound on the aperture-
bandwidth product is useful for characterizing the performance

of existing frequency-flat beamforming when scaling up in
carrier frequency, bandwidth, and array aperture. We showed
that the BAND corresponding to a fixed threshold attains
minima at fc and increases for frequencies away from fc.

The model and analysis presented in this work is especially
relevant for short distance transmission where the near-field
effect is more relevant, with potentially small impact from
angular spread. Analyzing impact of angular spread on beam-
forming gain is a second-order effect and out of the scope of
the current work. The analysis of amplitude variations due to
polarization mismatch in the near-field is a future research
direction [10]. The expressions for BAND and aperture-
bandwidth product can be extended to planar arrays and
MIMO. This analysis is challenging because of the increase
in number of system parameters compared to ULA and MISO
model. Another research direction is performance analysis of
dense arrays which requires a circuit theoretic approach with
proper modeling of frequency-selective mutual coupling. We
also encourage the study of the aperture-bandwidth tradeoff
for holographic metasurface antennas [5], [6] and TTD [9].
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