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Abstract 

In this paper we developed an integrated model to identify the optimal subsidy schedules for clean energy 

technologies that maximize social benefits less subsidy costs. We focus on three important factors in 

determining the social benefits of subsidizing the use of clean energy technology, which are the price (or 

cost) sensitivity of adoption, induced cost reductions through learning, and environmental benefits. We 

quantify how distinct profiles of these three factors result in qualitatively different optimal subsidy plans 

for utility wind and residential solar power in 13 electricity grid regions in the United States. Results show 

that optimal subsidy schedules for utility wind depend on the region, starting at $20-60/MWh, and are 

roughly constant over time. In contrast, residential solar subsidies either decline over time (starting from 

$8-70/MWh) or are not desirable (subsidy of zero). The subsidy profiles are dramatically different for three 

primary reasons: 1) The direct environmental benefits from emissions reductions for wind are larger than 

the subsidy expenditure, justifying an ongoing subsidy; 2) The price sensitivity of diffusion for utility wind 

is larger than for residential solar; 3) Faster cost reductions for residential solar suggest a temporary subsidy 

to unlock future markets.  

Keywords: Optimal subsidy policy, clean energy technology, diffusion sensitivity, technological progress, 

environmental benefits 

Highlights 

• We study optimal subsidy design for utility wind and residential solar PV technologies. 

• Optimal subsidy declines for residential PV, whereas it remains flat for utility wind. 

• Higher price sensitivity of adoption and environmental benefits exceeding expenditure result in 

continuing subsidy for utility wind. 

• Residential solar PV is mainly justified by future technology cost reductions. 

 

 

1. Introduction 

Burning fossil fuels such as coal and natural gas for electricity generation emits greenhouse gases and 

pollutants that are a health risk to humans and cause long-term environmental damage. To overcome these 

and other negative effects, federal and state governments adopt a variety of programs to promote the use of 

clean energy technologies, including subsidies for the installation of or production from renewable 

generation. Clean energy technology subsidies can also have a wide range of social benefits which include 

advancing innovation in new and early-stage technologies, enhancing energy security, and promoting 

economic growth through creation of green jobs. However, clean energy subsidies are associated with 

substantial public spending.  
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A government report shows that tax-related credits for solar and wind power are estimated to be about 

$12.3 billion and $23.7 billion, respectively, for the years between 2016-2020 (Joint Committee on 

Taxation, 2017). While subsidies continue to be an important mechanism to promote clean energy 

development and deployment, it is not always clear how federal and state governments design subsidies in 

order to balance these costs and benefits. Large renewable energy support plans should attempt to 

implement efficient subsidies that maximize the long-term net benefits to society and considering analytical 

inputs can be helpful to ensure the cost-effectiveness of the decision making. 

There are two primary conceptual justifications for subsidy of clean energy technologies. The first 

perspective is that a subsidy prompts immediate consumer adoption of the technology, which yields direct 

social benefits in the form of reduced emissions. In other words, the subsidy is meant to stand in for the 

environmental benefits that result from offsetting fossil fuel externalities, lowering total social costs. This 

direct environmental benefits perspective is well-studied and results often show that the subsidy cost 

exceeds societal benefits (Michalek et al., 2011; Sexton et al., 2018) or estimate a high carbon mitigation 

cost (Hughes and Podolefsky, 2015; Macintosh and Wilkinson, 2011). This perspective implicitly assumes 

that the technology is stagnant, evaluating it with respect to a temporal snapshot of costs and benefits.  

A second perspective is that the subsidy promotes adoption over time, leading to the development of 

new markets and stimulating technological progress. These post-adoption innovations enable further cost 

reduction or performance improvement in these technologies (Herron and Williams, 2013; Nemet, 2009; 

Tsuchiya, 1989) and deliver benefits to society over the long-term. This idea can be embedded in a benefit-

cost model to find an optimal level of public support, i.e. the subsidy that maximizes benefits less costs. 

van Benthem et al. (2008) evaluated optimal subsidy trajectory for residential solar PV in California 

accounting for monetized environmental and consumer benefits and learning by doing externalities that are 

compared against the total subsidy cost. Wand and Leuthold (2011) carried out a similar analysis for 

residential PV systems in Germany and examined the variability of net social benefit results under different 

scenarios. Tibebu et al. (2021) developed a dynamic, analytical framework for estimating the optimal 

subsidy schedule for residential solar PV in the US that maximizes the net benefit from both the immediate 

subsidy-induced adoption and additional future adoption driven by technological learning and cost 

reduction due to the subsidy. 

Studies also explore how the optimal subsidy and the resulting net benefits vary under different 

conditions related to technological attributes such as learning rate. For example, Tibebu et al. (2021) and 

van Benthem et al. (2008) found that below some critical value of learning rates, public subsidies are no 

longer justified from a benefit-cost perspective. Matteson and Williams (2015) showed that subsidy 

spending to reach price parity is much higher when lower learning rates are considered than high learning 

rates. Optimal subsidies are also shown to vary under different levels of social cost of carbon employed to 

estimate environmental benefits (Tibebu et al., 2021). In another case, Newbery (2018) investigated how 

multiple technology attributes (learning rate, technology capacity factor and social cost of CO2) affect 

renewable energy subsidies. The analytical framework presented in Newbery (2018) assumes that 

technologies have a maximum growth rate and saturation level, and that the optimal subsidy will grow the 

technology at this pace until saturation.  

In this work we undertake a case study comparing utility wind and residential solar to clarify how 

differences in three key attributes of a technology affect its optimal subsidy schedule: environmental 

benefits, price sensitivity of diffusion, and pace of cost reductions. The first attribute, environmental 

benefits, comes from reducing use of fossil generators, the largest impacts of which come from greenhouse 

gas and criteria air pollutant emissions (e.g. SO2, NOx PM2.5). Specifically, the benefits of a renewable 
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energy technology arise from the change in emission profile of the grid that technology is embedded in and 

thus should vary by region depending on local energy grid mix. Higher environmental benefits can be 

gained if the renewable technology is integrated in a grid that is composed of emissions-intensive generators 

such as coal and natural gas or is more effective at displacing emissions from these sources.  

The second attribute relates to the rate of technology diffusion. Diffusion models are used to explain 

and predict how subsidy and other technology attributes influence adoption. The price sensitivity of 

diffusion represents the increase in adoption level in response to a subsidy and is measured in W/$. The 

price sensitivity is expected to vary by technology, given that different consumer classes have different 

preferences towards technology and value their attributes differently.   

The third technology element is cost reduction over time, i.e. at what pace does the technology become 

less expensive given adoption and other factors? In this regard, experience curve models applying learning 

rates are a common choice to measure cost reductions resulting from subsidy interventions. The experience 

accumulated from learning among different technologies depends on the different level of maturity, rate of 

adoption, and observed cost reduction. This variation can affect the amount of investment and policy 

measures required to bring down the cost of emerging technologies (Neij, 1997; Neij et al., 2003). 

In this study, we develop two models to compare the optimal subsidy design for industrial wind and 

residential solar generation. The first model, referred to as “model-with-learning”, uses a techno-economic 

framework that integrates sub-models of adoption, technological progress, and emissions benefits to 

analyze the costs and benefits of long-term subsidy support. The second model applies a simplified 

algebraically-solvable framework, without accounting for technological learning, to establish a direct 

mathematical relationship between the environmental benefits and adoption and subsidy design output. We 

quantify the two models using data disaggregated into 13 US regions as described in the EIA’s “Hourly 

Electric Grid Monitor” data report across the contiguous US (EIA, 2021) (Figure S1). The results from 

these two technologies are used to better understand the determinants of optimal energy subsidy. Our 

analysis applies the same models to the two technologies but comes to different conclusions about the nature 

of government support, which we explain and discuss.  

This work contributes to the existing energy subsidy literature as the first study which explores and 

compares the effects of various technology attributes (environmental benefit, price sensitivity of adoption, 

and learning rate) on optimal subsidy patterns integrating adoption and marginal emissions models. As a 

case study, this paper takes a comparative approach to addresses the questions of why and how policy 

support should vary for different technologies. Quantitative and qualitative differences are observed when 

estimating optimal subsidies for utility wind and residential solar PV, which are two of the most important 

emerging generation technologies. While prior research (e.g., Newbery, 2019) also investigates how 

technology attributes affect subsidy, their modeling framework does not include a diffusion model and 

assumes that an optimal subsidy drives the maximum rate of adoption until saturation. In contrast, our work 

uses empirically-calibrated diffusion models and determines optimal subsidy explicitly by maximizing 

public benefits less costs. The study also provides a simple functional relationship constituting 

environmental benefits and price sensitivity of adoption to determine the optimal subsidy of a technology 

under constant technology price. We find that the optimal subsidy for utility wind is justified mainly through 

the direct environmental benefits, unlike residential solar PV in which the subsidy is primarily justified by 

indirect technological progress benefits. We also show how the optimal subsidy for the two technologies 

varies when technological progress is not accounted for.  
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The remainder of this paper proceeds as follows. Sections 2 and 3 present the methodology and the 

results from the techno-economic model. In the results section, we identify the differences in the qualitative 

form of optimal subsidy schedules for residential solar and utility-scale wind. To understand and explain 

these results, we create a simpler mathematical model and present corresponding results in Sections 4 and 

5.  

2. Methods: Model-with-learning   

In this section, we present a techno-economic model for determining the socially optimal government 

subsidy schedule for a clean energy technology, applying it to residential solar and utility wind in 13 grid 

regions in the continental US. EIA uses these regions to report hourly operating data of the electric power 

grid (EIA, 2021). The geographical map and the labels used to represent these regions is described in 

Section 1 of the SI. The geographic variability of wind and solar availability and electricity prices calls for 

a degree of regional specificity. The 13 regions are domains over which electricity is traded, thus reflecting 

differences in wholesale prices, and partly accounts for variability in renewable resource availability. The 

overall model is an integrated framework that synthesizes the two main economic justifications of clean 

energy technologies: direct environmental and indirect technological benefits. The model is based on one 

used to evaluate state-level residential solar PV subsidies in Tibebu et al. (2021). The integrated framework 

combines three independent models: adoption, technology progress, and environmental benefits (Figure 1). 

We discuss each of these models in turn.   

There is a large body of literature that creates and evaluates adoption models for clean energy 

technologies. Adoption models often use an S-shaped curve to fit technology diffusion over time and may 

take on different forms such as Bass, Logistic and Gompertz (Dalla Valle and Furlan, 2011). These models 

are applied for long-term forecasting (Dong et al., 2017), comparing technology diffusion between regions 

(Alessandra and Claudia, 2007; Panse and Kathuria, 2015), and studying adoption among different sectors 

(Wang et al., 2017). Other adoption research has used consumer choice models to study the relationship 

between various technology attributes and consumer adoption (Islam, 2014), or agent-based models to 

assess the interaction between consumers, technology manufacturers, and the government under multiple 

decision-making environment (Zhang et al., 2011). But these adoption models are often relatively complex 

and difficult to integrate into analysis of current and future policies (Gnann et al., 2018; Rao and Kishore, 

2010). As a result, the direct application of these models in energy systems modeling and proposed policy 

directives has been limited. For that type of analysis, a simpler model that captures overall trends in 

adoption is most useful, even if it lacks high-resolution diffusion data. 

The adoption model selected for this study follows the approach developed by Williams et. al., (2020) 

to determine the rate of annual residential solar adoption as a function of Net Present Value (NPV) of the 

system. In that work, the parameters of the residential solar model are determined empirically from five 

different regions. The model can directly take in policy measures such as subsidies in the NPV estimation. 

In this analysis, the residential solar adoption model is directly taken from an earlier study (Tibebu et al. 

2021) and we apply the same approach to estimating the adoption model for utility-scale wind generation. 

We provide more details of the modified diffusion model for wind power in Section 2.1.1.  

The technological progress model applies a one-factor experience curve to forecast technology cost 

reductions. A one-factor experience curve gives the unit cost of production as: 
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𝐶𝑗 =  𝐶0 (
𝑃𝑗

𝑃0)

−𝛼

                                                          (1) 

In the equation above, 𝑃𝑗 is cumulative adoption, 𝐶0 and 𝑃0 are initial cost and capacity values, and 𝛼 

is a constant learning coefficient. The fractional cost reduction for every doubling of production is defined 

as the learning rate, and is given by LR = 1-2-α. Two-factor experience curves that include learning from 

R&D support are also used to model technology cost reductions (Klaassen et al., 2005). However, their 

application is restricted mostly due to data availability limitations on public and private R&D expenditures. 

Studies have also modified the one-factor experience curve by disaggregating systems into different 

component costs, such as PV module and balance-of-system costs in solar PV technologies (Elshurafa et 

al., 2018). With the goal of analyzing the impact of learning on optimal subsidy design, we choose to use 

the empirically robust one-factor experience curve in our model. The technological progress model uses a 

learning rate of 9.8% for wind (Williams et al., 2017) and 15% for rooftop solar estimated using price data 

from IEA (2017) and cumulative adoption data from SEIA (2017).  

The benefit-cost model is based on an emissions assessment model estimating environmental emissions 

reductions resulting from the adoption of renewable energy technologies that displace conventional power 

plants (Azevedo et al., 2019). The environmental benefit from clean energy technology adoption depends 

on the energy mix of the grid. In this research we apply marginal emissions and damage factors to measure 

the amount of emissions reductions and the resulting avoided health and climate damages. Marginal 

emissions factors are mainly determined by the type of generator displaced, and as a result tend to be 

relatively higher in coal-heavy areas like the Midwest than in other regions. We estimate the present benefits 

by discounting the monetized emissions benefits from reduced CO2 and criteria pollutants (SO2, NOx PM2.5) 

as a result of the subsidy-induced adoption. 

The optimization uses a social planner perspective that views government support (subsidies) as a 

means to achieve social benefits (emissions reductions). The objective of the government is to maximize 

the national net present value defined as the monetized and discounted emissions benefits minus subsidy 

cost. This framing thus takes the perspective that the government is using subsidy to “purchase” emissions 

reductions now and in the future, including the indirect effect of technological progress on later adoption.  

However, we note that this model does not attempt to account for the economic benefit (or net cost) to the 

consumer or allocative efficiency between social groups when identifying the optimal subsidy.  



6 
 

 

Figure 1. Model-with-learning for analyzing optimal subsidy schedule integrating adoption, technology 

progress, and benefit-cost models. The model accounts for both the short-term adoption stimulated by the 

subsidy and the indirectly induced adoption from technology cost reduction over the long-term.  

2.1.1. Wind adoption model  

To estimate the adoption rate of utility-scale wind power, we modify a diffusion model developed by 

Williams et al. (2020) that effectively reproduced the adoption pattern of residential solar PV using one 

explanatory variable: the NPV as experienced by the homeowner. Specifically, we estimate the same model 

using annual wind adoption and other observed cost and policy data from four states in the US (California, 

New York, Pennsylvania, and Texas) and two European countries (Denmark and Germany) within the time 

frame of 2002-2018. There are two main reasons for the selection of these regions. First is data availability. 

We used publicly available and open-source data (with sources described in Table 1) for estimating the 

NPV and wind adoption capacity in the regions considered. Second, the observed adoption of wind in these 

regions is high on average but varies over time, giving greater variation to calibrate the model.  

The NPV of adopting a wind power plant in a given region is estimated as: 

 𝑁𝑃𝑉 (
$

𝑀𝑊
) = (−𝐶𝑡𝑜𝑡𝑎𝑙) +  ∑

𝐸 ∗ 𝑅

(1 + 𝑖𝑛𝑡)𝑖

𝑁

𝑖=1 

1

𝐶𝐴𝑃
                                    (2)       

where,  

 𝐶𝑡𝑜𝑡𝑎𝑙: capital cost of wind power plant ($) 

 𝐸: electricity produced by the wind power plant in a year (MWh) 

 𝑅: revenue from wind electricity generation ($/MWh), mechanism varies by region 

 int: wind power weighted average cost of capital (%) 

 𝐶𝐴𝑃: capacity of power plant 

 N: lifetime of wind power system (20 years) 
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𝑅 ($/MWh) accounts for the revenue that wind projects receive from electricity generation. It 

constitutes the market price or contract price of wind energy and all applicable policy incentives. There are 

a variety of subsidy mechanisms at the US state and federal level, compensating producers differently, often 

proportional to electricity generated. State level Renewable Portfolio Standards (RPS) to promote wind 

energy, usually achieved through a renewable purchase requirement, are imposed on load-serving entities. 

The load-serving entities can meet this requirement either by operating their own renewable energy facility 

or by purchasing renewable energy credits (RECs) from independent facilities that generate electricity from 

eligible resources (Wiser et al., 1998).  For wind power generators, this either results in a renewable energy 

credit market, which effectively plays the same role as production incentive, or a contracted bundled power 

purchase agreement (PPA) (market price including RECs). Hence, the value of 𝑅 in Eq. 2 includes the 

federal production tax credit (PTC), market value of wind, and the value of renewable energy credits (RECs) 

implemented in Texas, Pennsylvania, and New York. For California, project NPVs are estimated using 

federal PTC and PPAs signed between wind developers and the utilities. This data is collected and reported 

by the states and LBNL. For Germany, 𝑅 represents feed-in-tariffs (FITs) and for Denmark 𝑅 is the sum of 

FITs and electricity market prices (IEA, 2015). The data sources used to estimate 𝑅 are provided in Table 

1. 

The adoption model uses regression-produced parameters that are identical in the six regions 

considered, assuming that that NPV is the sole determinant of adoption. Differences between areas are only 

accounted via region-specific data influencing NPV, such as subsidy level, resource availability, and 

capacity factor.  The normalized annual wind power adoption is formulated to follow a normal distribution 

as a function of the NPV. The functional form of the adoption model is given by:  

𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 (
𝑀𝑊

𝑇𝑊ℎ
) =  

𝐴𝑛𝑛𝑢𝑎𝑙 𝑤𝑖𝑛𝑑 𝑝𝑜𝑤𝑒𝑟 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 (𝑀𝑊)

 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑇𝑊ℎ)
= 𝑘 (1 + erf (

𝑁𝑃𝑉 − 𝜇

𝜎
))          (3) 

where, erf(x) is the error function. μ and σ, determined empirically, are the NPV that results in peak increase 

in wind adoption and the spread in adopter preferences, respectively. As indicated in equation (3), the 

annual wind adoption is divided by the remaining electricity generation of each region to account for the 

different sizes of the electricity grids considered. The remaining generation in a given year is estimated as 

the total electricity generation in the grid minus cumulative wind power generation. 𝑘 defines the maximum 

achievable adoption (max adoption = 2k) and is fixed at one half of the maximum annual wind capacity per 

TWh of generation. The value of k, estimated by assuming a 35% capacity factor and a lifetime of 20 years 

for wind, is 8.2 MW/TWh. Applying non-linear least square regression, the value of μ is estimated to be 

$1,589/kW and that of σ is found to be $1,690/kW with a total square error of 561 MW/remaining TWh. 

The empirically-fitted adoption model using these values is shown in Fig. 2. The empirical fit of the model 

form is better for residential solar than for utility wind. Note that there is “lumpiness” in utility wind 

adoption, i.e. larger projects add a discrete block to capacity in a given year. Also, wind projects experience 

stochastic delays based on time needed for permitting, local approvals, and extension of transmission and 

distribution. In contrast, residential solar in a state is the accumulation of thousands of small projects, 

implemented over a time scale of months rather than years. It is thus not surprising that utility wind adoption 

does not smoothly follow economic conditions in a given year.  
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Figure 2. Adoption model for utility-scale wind generation using the NPV ($/MW) as the explanatory 

variable. The model is developed by empirically analyzing wind diffusion data from six regions, with data 

from 2002 to 2018. The adoption curve is fitted using the error function with two regression parameters μ 

and σ with values of $1,589/kW and $1,690/kW, respectively, and the value of 𝑘 is set at 8.2 MW/TWh. 

Table 1. Wind adoption model data sources. 

 

Region 

Wind 

Installed  

Cost 

Capacity 

Factor 

Electricity 

Price PTC REC PPA FIT 

Annual  

Installation 

Total 

Generation 

Interest 

Rate 

 NY  

(Berkeley 
Lab, 

2019) 

(Berkeley 
Lab 2020, 

2018) 

(NYISO, 
2003-2019) 

 (IRS, 
2002-

2018) 

(NYSERDA, 
2017)   

(Berkeley Lab, 

2019) 

 (EIA, 

2019) 

(IEA, 2018) 

 CA    

(Wiser et 

al., 2020)  

 TX  

(Potomac 

Economics, 

2002-2018) 

(Wiser and 

Bolinger, 

2008; Wiser 

and Bollinger, 

2019)   

 PA  

(Monitoring 
Analytics, 

2003-2018) 

(PAPUC, 

2007-2018)   

 Denmark  

(IRENA, 2019) 

(Nord Pool, 

2020)    

(Albizu et al., 

2018) 

(IEA, 2019; 
IRENA-

GWEC, 2013) 
(OECD, 

2021) 

 Germany      

(Federal Network 

Agency, 2018; 

Hitaj et al., 2014) 

(Federal Wind 
Energy 

Association, 

2020) 
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2.1.2. Comparing utility-scale wind and residential solar adoption curves 

In the framework of our adoption model, the effectiveness of a subsidy is reflected by the additional 

adoption resulting from an increase in subsidy, expressed in Watts adopted per $ of subsidy spent. This 

adoption price sensitivity is different for wind and solar for two reasons. First, the underlying adoption 

curves are different, i.e. different numerical values for μ and σ. μ = $1,589/kW for utility wind and 

$7,101/kW for residential solar, σ = $4,110/kW for residential solar and $1,690/kW for utility wind. 

Second, the sensitivity depends on where on the adoption curve the technology starts. For all grid regions 

except CAISO, unsubsidized wind has a higher NPV than unsubsidized residential solar.  

To show how differences in the adoption curve affect subsidy effectiveness, Figure 3 displays the 

adoption curves for utility-scale wind and residential solar, with adoption normalized to its value at zero 

Net Present Value. Because of different scales and capacity factors that impede a comparison in absolute 

terms, we normalize the adoption from a given NPV by the adoption resulting at the NPV breakeven point 

(NPV = 0).  In this adoption model, the slope changes with NPV, positively accelerating over the range of 

relevant NPV levels. Figure 3 shows that adoption of utility wind power is more sensitive to changes in 

NPV than for rooftop PV. Also, a closer look at the left side of the plot shows that residential solar adoption 

rate is higher than utility-scale wind in cases where NPV is negative, implying that homeowners are more 

willing to adopt the technology than wind developers when net losses are possible. These differences could 

be due to the two different groups of consumers: homeowners versus power plant developers. A 

homeowner’s financial decision invest in rooftop solar adoption is mainly to offset their residential retail 

electricity price. But their decision can also be strongly influenced by consumer attitude towards the 

environmental benefits of green energy and indirectly by network effects (Bollinger and Gillingham, 2012; 

Crago and Chernyakhovskiy, 2016), potentially even outweighing the financial considerations. On the other 

hand, wind developers aim to sell the generated electricity into a market, which may be more directly based 

on financial considerations. Overall, the different patterns of adoption have further implications on the 

optimal subsidy design of the technology. The steepness of the adoption curve determines the amount of 

induced adoption resulting from a subsidy and thus the economic effectiveness of the subsidy.  
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Figure 3. Normalized adoption curves for utility wind and residential solar PV. For both technologies, the 

adoption is normalized to the respective value of adoption when NPV=0. 

3. Model-with-learning results 

We use the integrated model shown in Figure 1 to analyze the optimal subsidy schedules for utility wind. 

We then compare the wind subsidy to the optimal subsidies for residential PV derived from Tibebu et al. 

(2021) with a minor change of the geographical resolution from state-level to 13 grid regions (to match the 

geographical unit of the wind analysis). The two technologies use the same framework but with different 

inputs, as described in Table 2, specifically using different parameters for diffusion, capacity factor, 

learning rates, and electricity prices for the two technologies.  Project lifetime and emissions offset benefits 

per MWh are the same. In both cases, the model uses a non-linear optimization technique to determine an 

optimal subsidy schedule (a subsidy that is free to vary over time).  

Table 2: Optimal subsidy model data. 

 Utility-scale wind Residential solar PV 

Installed price (Wiser et al., 2020) (Berkeley Lab, 2020b) 

Learning rate (Williams et al., 2017) (IEA, 2017; SEIA, 2017) 

Electricity price 

(CAISO, 2018; ERCOT, 2018; 

MISO, 2018; NEISO, 2017; 

NYISO, 2018; PJM, 2017) 

(EIA, 2020) 

Capacity factor (NREL, 2016a) (NREL, 2016b) 

Total generation (EIA, 2021)  

Detached households  (US Census Bureau, 2011) 

Marginal emissions factors (Azevedo et al., 2019) (Azevedo et al., 2019) 
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Marginal damage factors 

 

In this section, we present two sets of results for optimal subsidy schedule: a homogeneous subsidy 

schedule in which the subsidy level is the same across the 13 regions (effectively a uniform Federal subsidy) 

and a heterogeneous subsidy schedule that offers different levels of subsidies for each region (representing 

either differentiated regional/state subsidies or the less likely case where a Federal subsidy varies by 

location). In both cases, the objective is to maximize the discounted national net benefit.  

Fig. 4 shows the homogeneous optimal government subsidy schedule for utility wind and 

residential solar, respectively. For utility-scale wind power, the optimal subsidy ranges between $34/MWh 

and $38/MWh over the 30-year analysis period (Fig. 4a). On the other hand, our model for residential solar 

PV (Fig. 4b) suggests its optimal subsidy should start at $25/MWh and decline to zero over 16 years. The 

qualitative difference between these two trends is surprising. The causes of the differing wind and solar 

results are discussed later (and motivates the creation of a “model-without-learning”) but are related to the 

different techno-economic properties of the technologies. 

     a. Utility wind power                                                    b. Residential solar PV 

     

Figure 4. Uniform federal subsidy schedule that optimizes national net benefits, using the model-with-

learning for (a) utility-scale wind power and (b) residential solar PV. The optimal subsidy for utility wind 

will be ongoing for the study period whereas the subsidy for solar PV is declining and becomes zero after 

16 years.  

Figure 5 displays our proposed optimal subsidy schedules that vary across the 13 regions, for utility 

wind and residential solar power, respectively. Note that the 13 regions have different electricity rates and 

renewable energy potential (capacity factor), both of which influence the NPV of adopting the technology. 

The existing electricity grid generation mix also varies across regions, governing the level of displaced 

emissions and monetized benefits. As a result, optimal support varies by region. The general trend of each 

subsidy remains similar to that of the homogeneous subsidy, but the level of the optimal subsidy varies for 

the different regions.  

Our model suggests that wind generation should be subsidized at a higher level in MISO than in 

CAISO, the Southwest, or Florida. The reason for this finding is that the current electricity system is 

emissions-intensive in MISO and the wind potential is high. The subsidy level for wind power in Florida is 

the lowest mainly because of the unfavorable wind resource potential in the region (capacity factor = 21%) 
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as compared with other regions such as MISO (capacity factor = 43%), along with a lower capability to 

offset emissions. The marginal CO2 emissions factor in FL is 461 kg/MWh, lower than the 693 kg/MWh in 

MISO.   

The regional-variable optimal subsidy for residential solar PV declines in all regions, offering the 

highest subsidy in MISO and no subsidy in CAISO. The indirect technological progress benefit plays a 

major role when accounting for the net benefit of subsidizing rooftop solar. Essentially, the model finds 

that technology progress will drive down the cost sufficiently for adoption and the optimal subsidy schedule 

declines as the technology becomes more cost competitive.  

a. Utility scale wind                                                           b. Residential solar PV 

       

 

Figure 5. Subsidy schedules that vary by region that optimize national net benefits, using the model-with-

learning, for (a) utility-scale wind power and (b) residential solar PV. The subsidy for wind is flat whereas 

solar subsidy declines over time in all regions. The optimal subsidy differs by region due to variation in 

electricity price, wind and solar energy potential, and energy grid mix. 

4. Model-without-learning 

From Fig. 4 and Fig. 5, the optimal subsidies of utility scale wind and residential solar are quantitatively 

and qualitatively different. The subsidy schedule for utility-scale wind stays approximately the same over 

the time period, whereas the residential solar subsidy schedule declines to zero. Identifying the cause(s) of 

the qualitative differences in subsidy schedules is difficult to explain as the model is comprised of three 

independent sub-models simultaneously interacting with one another. The subsidy determines the adoption 

through both short- and long-term technology cost reduction, hence, the adoption and the technology 

progress models cannot be easily isolated as possible causes. The model also applies a non-linear 

optimization that finds the optimal schedule numerically, accounting for direct and indirect benefits and 

costs. To further examine the technological factors that determine the optimal subsidy, we created a simpler 

model which captures the important features of the model above but simple enough for the optimal solution 

to be solved algebraically. Specifically, unlike the previous model based on non-linear optimization, this 

model relies on a set of equations that can be solved mathematically for the optimal solution. This model-

without-learning assumes technological progress to be zero in order to make it mathematically simple. 

Turning off the technological progress in both residential solar PV and utility scale wind technologies 

allows us to account for only the direct adoption resulting from the subsidy and nullify the adoption 
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stimulated by technological progress. While we also address the problem by setting learning equal to zero 

in the model-with-learning (see SI, section 2), the set of equations below allows for a direct understanding 

of the relationships between inputs and outputs. 

4.1.  Benefit-cost analysis 

We begin by assuming the social benefits of clean energy subsidies come from the emission reduction 

of induced adoption of the technology, and hence, define the 𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡, 𝑁𝐵 ($) as the monetized 

emissions benefit from subsidy-stimulated adoption minus the subsidy cost. 

 

𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 ∗  𝐵 − 𝐴(𝑆) ∗  𝑆                                   (4) 

where, 

     𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 = 𝐴(𝑆) −  𝐴(𝑆 = 0)                                (5) 

𝐴(𝑆)(𝑀𝑊) is the adoption with subsidy, 𝐴(𝑆 = 0)(𝑀𝑊) is the adoption with no subsidy and 𝑆 (
$

𝑀𝑊
) is 

the unit subsidy cost. In essence, the benefit of a subsidy comes just from the additional induced adoption 

while the cost of the subsidy must be paid to all adopters (including those who would adopt without 

subsidy). The  𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠, 𝐵 (
$

𝑀𝑊
) is the discounted environmental benefit of adopting a clean energy 

technology over a lifetime of 20 years and is given by:  

                         𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 =  ∑
𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐷𝑎𝑚𝑎𝑔𝑒

(1 + 𝐷𝑅)𝑖
                                               

20

𝑖=1

   (6) 

𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒 is estimated from marginal emissions and damage factors of CO2 and criteria pollutants 

and 𝐷𝑅 is the discount rate. Substituting Eq. 5 in Eq. 4 and rearranging, the net benefit can be written as: 

𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠 = 𝐴(𝑆) ∗ (𝐵 − 𝑆) − 𝐴(𝑆 = 0) ∗ 𝐵                             (7) 

Here, we draw upon a similar approach implemented by Chen and Song (2017) and Fischer and Newell 

(2005), and define the policymaker’s objective of determining a subsidy level that maximizes the net 

benefit. Thus, we find the first-order differential solution of Eq. 7.  

𝜕𝑁𝑒𝑡 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝜕𝑆
= (𝐵 − 𝑆) ∗

𝜕𝐴(𝑆)

𝜕𝑆
− 𝐴(𝑆) = 0                                    (8) 

The solution to Eq. 8 depends on the adoption curve and the parameters used for defining it. Since different 

clean energy technologies can have different adoption curves and adoption parameters, the optimal 

solutions vary for different technologies.  

4.2.  Model-without-learning for optimal subsidy level 

We specify a simpler adoption model with an exponential curve (equation 9) to explain the functional 

relationship between a given subsidy level and the resulting adoption. We choose this model because it has 

a similar shape as our preferred error function model in the range of realistic NPVs, has a higher R2 (i.e., 
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goodness of fit) value than other types of curves, and is easily differentiable. For the subsidy ranges we 

consider in this study, the exponential curve is a very good approximation of our preferred model (see 

Section 3 of SI). 

𝐴(𝑆) = 𝐴(0)𝑒𝑎1𝑆                                           (9) 

where, 𝑎1 is defined as the price sensitivity of adoption. The unit of 𝑎1 is $/W and related to the economic 

price elasticity of adoption as: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
𝜕 𝐴(𝑠) 𝐴(𝑠)⁄

𝜕 𝑆 𝑆⁄
= 𝑎1 ∗ 𝑆                           (10) 

Substituting Eq. 9 into Eq. 8 and solving for the optimal solution gives a rather simple solution: 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑢𝑏𝑠𝑖𝑑𝑦 = 𝐵 −
1

𝑎1
                                   (11) 

Eq. 11 gives the estimate for the optimal subsidy level and defines a mathematical condition for when 

subsidy is justified. For a clean energy technology with an adoption curve as defined in Eq. 9, the choice to 

subsidize a technology should occur when 𝐵 >
1

𝑎1
. This criterion implies that to justify subsidizing a given 

technology at the current price, the environmental benefit (in $/MW) should be greater than the subsidy 

expenditure per stimulated adoption (also in $/MW). As an additional verification, the model-without-

learning is also implemented using the error function adoption model from Eq. 3 (presented in Section 2 of 

the SI) and the numerically solved results of that analysis is similar to the simpler result presented below.  

Table 3: Model with and without learning. 

 Model-with-learning  Model-without-learning 

Adoption model 𝐴(𝑆) =  𝛼̅  (1 + erf (
𝑁𝑃𝑉𝑜 + 𝑆 − 𝜇

𝜎
)) 𝐴(𝑆) = 𝐴(0)𝑒𝑎1𝑆 

Optimal subsidy 

Numerically solved (non-linear 

optimization) 
𝑆∗ = 𝐵 −

1

𝑎1

 

Federal subsidy type 

Heterogeneous (varies over 

13regions) or homogeneous 

(uniform federal) Heterogeneous 

 

 

Learning rate 

15% (residential solar) and 9.8% 

(utility wind) 0% 

 

4.3.  Model-without-learning results 

The optimal subsidy level determined by the model-without-learning considers two main factors: the 

benefit, B ($/MW) and the price sensitivity of adoption, 𝑎1 (MW/$). The break-even line for subsidizing a 

technology is 𝐵 = 1 𝑎1⁄  (Equation 11). Using the data we have collected for the wind and solar models 

with learning, we calculate and plot the values of 𝑎1and B for each region. 𝑎1 is determined by applying 

exponential regression curve fitting to the adoption model for each region. 𝐵 is estimated using equation 6 

considering each region’s marginal emissions and damage data. When estimating the value of 𝐵 in a 
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particular region, marginal emissions and damage factors are the same for both wind and solar PV 

technologies, but differ by capacity factor. Since wind technology has a relatively higher capacity factor 

than solar PV, the monetized environmental emissions reduction benefit per MW of adoption is higher for 

wind than solar PV and has different geographic distribution. Moreover, as we show in Figure 3, the 

adoption curve for wind technology is determined to be steeper than solar, implying that the subsidy 

expenditure per stimulated adoption for wind is lower than for solar PV. 

Figure 7 shows the values of price sensitivity of diffusion and benefit for residential solar and utility-

scale wind power in the 13 regions. The optimal subsidy, equal to 𝐵 − 1 𝑎1⁄ , is positive for wind in all 

regions. Meanwhile, optimal subsidy for rooftop solar lies below the break-even line for 9 regions out of 

13.  

 

Figure 7. Analytical solutions of optimal subsidy schedule for wind and rooftop solar in 13 regions, using 

the model-without-learning. The optimal subsidy for residential solar is below the breakeven line for most 

regions, whereas the optimal subsidy for wind is above it for all regions. Note that this simpler model does 

not include technological progress, which is an important element justifying solar subsidies. 

Figure 8 presents a comparison of the optimal subsidy estimates from the model-without-learning 

and the first-year subsidy level from the model-with-learning, for both technologies. For utility wind, the 

optimal subsidies obtained using this model, which assumes zero learning rate, are close to the estimates 

from the model incorporating learning rate. This suggests that technology progress plays a minor role in 

determining the optimal wind subsidy. But the optimal subsidy results from the two models are noticeably 

different for residential solar PV. When accounting for technological progress, the optimal subsidy of 

residential solar has increased noticeably, suggesting that technological progress is a critical part of the 

argument in favor of subsidy.  

a. Utility-scale wind                                                          b. Residential solar PV 
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Figure 8. First-year optimal subsidy level for model-with-learning and model-without-learning in 13 

regions for utility-scale wind (a) and residential solar (b). The main difference between the two models is 

that the model-without-learning assumes a zero learning rate for both technologies whereas the model-with-

learning uses learning rates of 9.8% and 15% for wind and residential PV, respectively. For utility wind, 

optimal subsidy is less affected by learning but in the case of solar PV, the subsidy is much higher when 

learning is included. 

4.4 Linking technology attributes to subsidy structure 

To better understand the drivers of differences in the optimal subsidies for wind and solar, we further 

examine the three sets of technology attributes we identify as most relevant, which include cost reductions 

through technology progress, adoption sensitivity, and environmental benefits. Table 4 shows important 

input values and various output calculations for utility wind and residential solar. First, for cost reduction, 

the learning rate for solar (15%) is larger than wind (9.8%). The subsidy profiles in Figure 5 suggest that a 

higher learning rate leads to a steeper slope of subsidy reductions. This is because rapid cost reductions 

imply more frequent subsidy adjustment to avoid payments to consumers who would otherwise purchase 

at the lower price. Additionally, the results in Figure 8 show that the higher learning rate for solar makes it 

a critical part of the justification of subsidies for that technology, unlike wind energy. Previous work by 

(Tibebu et al., 2021) also demonstrated that residential solar provides the most benefits when subsidy starts 

at a high level and is phased out over time. 

Second, the price sensitivity of adoption is determined from an empirical analysis of NPV and adoption 

for both technologies. Relative to residential solar, utility wind adoption accelerates faster for NPV above 

zero and falls more quickly when NPV is below zero, partly explained by utilities being more sensitive to 

price changes than private consumers. This means that a subsidy-induced shift in NPV has a stronger effect 

for wind than for solar, making subsidy a “stronger” influence on wind adoption and reducing concerns 

about “free riders” that are not influenced by the government support.   

Third, environmental benefits for a given capacity of wind (0.8-3.4 $/W) are much higher than solar 

(0.6-1.2 $/W) in most regions. This is largely due to the higher capacity factor for wind compared to solar 

(21-49% versus 14-19%), which leads to higher generation, and thus benefits from a given quantity of wind 

capacity. However, environmental benefits are also influenced by the relationship between wind resource 

and grid emissions, both of which are geographically dependent (wind resource is strong in the central US, 

which is more heavily reliant on coal power). The larger environmental benefits for wind, combined with 

its stronger sensitivity of adoption, leads to a qualitatively different subsidy pattern: Optimal wind subsidies 
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persist over time, though with values that vary by region. As wind power is both more mature and has a 

lower learning rate, the optimal subsidies are roughly constant over time, rather than declining, as for 

residential solar. The model-without-learning shows the combinations of environmental benefits and 

diffusion sensitivity that justify an ongoing subsidy.  

Table 4: Technology attributes of residential solar and utility wind and optimal subsidies (with and without 

technological progress). Range of values reflects results from 13 different grid regions. 

Technology attribute Utility wind Residential solar 

Capital cost in 2019 ($/W) 1.4 3.8 

Capacity factor 21-49% 15-19% 

Annual income (no subsidy) ($/yr-kW) 48-118 125-264 

NPV in 2020 (no subsidy) ($/kW) -783-170 -1,939-122 

Emission benefits ($/W) 0.8-3.4 0.6-1.2 

Learning rate 9.8% 15% 

Diffusion sensitivity (W/$) 0.97-1.50 0.77-1.09 

Optimal subsidy ($/MWh) – Model-with-learning 18-45, roughly 

constant 

0 in 1 region; 7-70, 

declining to zero over 4-

27 years in 12 regions 

Optimal subsidy ($/MWh) – Model-without-learning 9-78 0-20 

 

5. Caveats/Assumptions 

This work is based on the integration of different models, each with their own limitations. First, with 

regards to the overall scope of the model, note that the interaction of wind and solar with the rest of the 

electricity grid is mediated through an exogenous electricity price. Within the scope of covered factors, the 

diffusion model developed for utility scale wind does not fit the historical empirical data as closely as for 

residential solar (Williams et al., 2020). Second, our adoption model uses a single factor, i.e., the Net 

Present Value, to determine adoption level. But utility scale wind developments can be affected by other 

factors such as policy uncertainty and investor decisions, that are not fully accounted for in our model. We 

also explore a different form of adoption model using a more traditional ordinary least square/linear 

regression method, and for some regions, we obtained qualitatively different optimal subsidy results from 

the base case analysis (Section 4 of SI). Third, the revenues from clean energy technologies may also vary 

in the future depending on changes in net metering policies and lower electricity prices for renewables. 

Lastly, the environmental benefit of clean energy technologies is estimated via a social cost of carbon (base 

case = $45/ton) and use of the EASUIR environmental risk model (Heo and Adams, 2015), though we note 

that the estimation of future carbon price and emissions factors are uncertain.  

6. Conclusion 

In this study we employ two models (with and without technological learning) to understand the role 

of technology attributes in the optimal subsidy design for two important clean energy technologies. The 

model-with-learning applies an integrative approach to capture the dynamic interaction between the 

constituent elements of adoption, technology progress, and environmental benefits. The setup of the model 

makes it difficult to disentangle the relationships between these inputs and conclusions. Hence, we develop 

a simpler, more analytically tractable model (model-without-learning) that neglects technological progress, 

allowing us to solve for explicit relationships between technology attributes and the optimal subsidy. The 

model-with-learning indicates an ongoing subsidy for wind is justified in all 13 grid regions, while for 
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residential solar the optimal schedule has subsidies decline to zero over time. The model-without-learning 

clarifies how region-dependent environmental benefits and price sensitivity of adoption determine the 

optimal subsidy.  

Our research findings have specific implications for the ongoing discussion about existing renewable 

energy policy. For utility wind, there is a recurring debate at the federal level whether to continue the 

Production Tax Credit. One argument to end subsidies is that cost reductions in wind have led to an industry 

that no longer needs them. It may be true that the wind industry does not require subsidy to continue, but 

the benefit-cost perspective indicates that subsidy continuation is still an efficient means of realizing public 

benefits in terms of emission reductions. For residential solar, both the Federal Tax Credit and most state 

programs have demonstrated some form of scaling down support over time. From this analysis we highlight 

that wind power development does not actually require technology cost reductions to deliver net societal 

benefits. However, subsidy for this technology is justifiable and is less dependent on tuning the subsidy 

schedule to adjust for cost reductions.  

What do these results suggest for policy design in the general sense? First, while government subsidies 

for clean energy technologies are well-known in economic theory, there has been limited research about 

the optimal subsidy design by technology over the long run (e.g., whether and how the subsidy levels should 

be adjusted compared to the past).  Our research introduces a new perspective that compares utility wind 

and residential solar with a similar adoption and subsidy modeling framework, and accounts for their 

distinctive technology attributes in their respective optimal subsidy schedules. Our results demonstrate that 

two superficially similar clean energy technologies (in our case, both are intermittent renewable electricity 

sources transitioning to a mature industry) may call for different government support strategies with 

different justifications. Specifically, a prior analysis (Tibebu et al., 2021) demonstrated that residential solar 

provides the most benefits when subsidy starts at a high level and is phased out over time. But for utility 

wind, the story appears to be different: due to somewhat stronger environmental benefits and a customer 

base that is more sensitive to financial elements, a continual subsidy is preferred. This analysis also suggests 

that the arguments we use to support other clean energy technologies should be carefully considered: a “one 

size fits all” policy design is not appropriate. Instead, the details of optimal policy support depend on each 

technology’s techno-economic characteristics.  
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