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Abstract

It is well-established that beams of relatively narrow cross-section have a tendency to buckle lat-

erally when loaded. This type of lateral-torsional instability, which has considerable practical

importance in a variety of thin-walled structures, is a classical buckling situation in which the crit-

ical load is related, among other things, to characteristic features of the cross-section. In this short

paper, 3D-printing is exploited to provide a parametric study based on a fixed cantilever geometry

in which a number of standard cross-sectional forms are compared in terms of their e↵ect on this

kind of buckling behavior.
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1. Introduction

In fundamental beam theory, bending deflection is inversely proportional to flexural rigidity,

EI, where the Young’s modulus E is the familiar elastic material property and I is the second

moment of area. This second moment of area relates to the geometric distribution of the material

about the neutral axis, and provides the motivation for using an I-section in resisting uni-directional

bending for example. However, if the load is applied away from the centroid, or if a section does

not possess an axis of symmetry, then the deflection is typically accompanied by some twisting,

and the role of the shear center becomes paramount. In addition, if the cross-section is su�ciently

slender (in the direction of loading) and the section has relatively low lateral and torsional sti↵ness,

the advent of lateral-torsional buckling (LTB) may occur [1–8]. The torsional rigidity GJ plays an
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important role, where G is the shear modulus for the material, and J is the polar second moment

of area, or torsional constant. The motivation for this paper is largely educational [9–12]. Some

measurements are made, and they help to highlight the sensitive nature of buckling relative to

theoretical estimates of critical loads based on theory together with verification using the finite

element capabilities of Fusion 360.

2. Background

A beam may buckle with a combination of out of plane and twisting behavior if loaded in

its nominally sti↵er direction. Resistance to this type of behavior depends on the bending and

torsional sti↵ness of the cross section. In this paper we consider a specific beam configuration, a

cantilever, with length L. Under the action of an end-load it can be shown that the critical buckling

load, FcrPcr, is given by [13–16]

Fcr =
4.013

L2

p
EIyGJ (1)

assuming the end load F is applied at the centroid of the section. Applying the load a distance yp

above the centroid changes this equation to

Fcr =
4.013

L2

p
EIyGJ

2
6666641 �

yp

L

r
EIy

GJ

3
777775 . (2)

Note that Eqs. (1) and (2) assume that L
2
GJ/ECw ! 1, which is the case if the warping constant

Cw = 0 (i.e., rectangular cross section) or beam is very long (i.e., L very large). We seek to

investigate Eqs. (1) and (2) in the following systematic way: changing the cross-sectional shape

and hence I and J, and the load location yp. In addition, a horizontal o↵set of the load application

point is also studied in terms of breaking the symmetry of the system. Throughout, the boundary

conditions, length, and material properties all are fixed.

3. The baseline geometry

A standard ‘baseline’ geometry is selected in order to later compare the LTB behavior of

beams with di↵erent cross sections. Fig. 1 shows the baseline geometry, for which the following

dimensions are selected: The length L of the beam is 200 mm, and the cross section is rectangular
2
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Figure 1: Drawing of baseline geometry with rectangular cross section. Nominal dimensions shown.

with width b = 1 mm and depth d = 20 mm. The beam is cantilevered from a base block,

which provides fixed boundary conditions. At the free end of the beam, a 50 mm ⇥ 50 mm end

plate provides five loading points (pegs) located at the cross section’s centroid, ±20 mm from the

weak axis (y-y), and ±20 mm from the strong axis (x-x). Small (2-mm) fillets are included at the

beam/block and beam/end plate interfaces to minimize stress concentrations.

The Young’s modulus E and Poisson’s ratio µ for the ABS thermoplastic used in this study

were taken to be 2.1 GPa and 0.38, respectively [17]. The shear modulus G = E/[2(1+ µ)] = 0.76

GPa. With these material properties, the flexural rigidity EIy = Eb
3
d/12 = 3500 N·mm2 and the

torsional rigidity GJ = Gb
3
d/3 = 5100 N·mm2 for the baseline (rectangular) geometry. With

these specific values, the LTB load at the centroid (Eq. (1)) is Fcr = 0.423 N, corresponding to

a hanging mass of 43.1 g. If the load application is moved to a point 20 mm below the centroid

(yp = �20 mm in Eq. (2)), then Fcr ! 0.388 N (39.5 g); when moved 20 mm above the centroid

(yp = +20 mm), Fcr ! 0.458 N (46.7 g).

3D modeling of the part was performed in Fusion 360 (Autodesk, v2.0.12392). In addition to

generating the STL file needed for 3D printing, Fusion 360 also has simulation tools, including

structural buckling studies using finite element analysis (FEA) [18, 19]. For students, in addition to

introducing them to advanced analysis tools, this feature is convenient to check their design prior

to printing to ensure the design is reasonable for the testing setup and any limitations. Fig. 2(a)

shows the FEA model of the baseline geometry. A new material was defined based on the specific
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(a) (b)

Figure 2: Fusion 360 results for the baseline geometry with rectangular cross section and load applied at the middle

peg: (a) finite element model and (b) first buckling mode.

ABS thermoplastic properties used. Structural constraints were used to fix the top and bottom of

the base block, and a 1-N downward load was applied to the peg. For the buckling study, default

settings were used with the exception of the model-based, average element size which was reduced

to 3% for greater accuracy. The results of the analysis for a load applied to the middle peg on the

baseline geometry is shown in Fig. 2(b). The corresponding buckling load is given in Table 1. Note

that in Table 1 two buckling loads are reported—a positive load in the direction of the applied load

(i.e., downward), and a negative load in the opposite direction (i.e., upward). For the case of the

middle-peg load, these two values are equal in magnitude, as expected. The (downward) LTB load

is smaller when applied at the top and larger when applied at the bottom, confirming Eq. (2). The

(downward) LTB load is smaller when applied at the left and right than when applied at the middle

(even though this is no longer strictly a buckling problem), with some slight asymmetry due to

modeling tolerances.

4. Cross section variations

We then depart from the baseline case in order to assess the e↵ect of modifying the cross

section. The 1 mm ⇥ 20 mm rectangle from the baseline case is retained as the web of T-shape,

I-shape, Z-shape, and C-channel sections. These shapes are formed by including 1-mm-thick, 4-

mm-wide flanges (or legs) to the top and bottom of the web. Small (1-mm) fillets are used between

the web and flanges for the I-shape, Z-shape, and C-channel, but not the T-shape. Fig. 3 shows the
4



Table 1: LTB loads [N] calculated using Fusion 360 for di↵erent load application locations. The two values given

correspond to loads applied downward (#) / upward (").

Cross Load application location

section Top Left Middle Right Bottom

Rectangle 0.396 / 0.479 0.430 / 0.438 0.441 / 0.441 0.434 / 0.431 0.479 / 0.396

T-shape 0.815 / 1.33 0.921 / 1.19 0.957 / 1.15 0.985 / 1.02 1.07 / 0.874

I-shape 1.47 / 2.17 1.86 / 1.87 1.87 / 1.87 1.87 / 1.86 2.17 / 1.47

Z-shape 1.70 / 2.92 2.46 / 2.34 2.41 / 2.41 2.34 / 2.46 2.92 / 1.70

C-channel 1.77 / 3.23 2.74 / 2.75 2.64 / 2.64 2.50 / 2.50 3.23 / 1.78

nominal dimensions of the sections along with their location on the end plate (i.e., centered on the

rectangular web). The I-beam (Fig. 3(b)) is doubly symmetric, so the middle peg is located at the

center of the end plate. While having no axes of symmetry, the Z-shape (Fig. 3(c)) also has the

middle peg located at the center of the end plate, which is coincident with the section’s centroid

and shear center. For the other two sections, which have single symmetry or “monosymmetry”, the

middle peg is shifted. For the T-shape (Fig. 3(a)), the middle peg is located at the section centroid,

1.75 mm above the center of the end plate. For the C-channel (Fig. 3(c)), the middle peg is located

approximately at the shear center, 1 mm left of center. In all cases, left and right pegs are located

at the same location with respect to the center of the end plate. The top and bottom pegs are in

the same locations with respect to the center of the end plate, except for the C-channel (Fig. 3(d))

which has the top and bottom pegs aligned with the middle peg.

Given the cross-sectional dimensions we expect the critical loads to scale according to the

entries in Table 2, for central loading. The predicted LTB loads for the T-shape, I-shape, Z-shape,

and C-channel sections calculated with Fusion 360 are given in Table 1.

5. 3D printing of slender structures

Five cantilevers with di↵erent cross-sections were printed on a Stratasys 3D-printer using ABS

thermoplastic, according to the parameters described. A photographic image of the basic experi-
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Figure 3: Variations in the cross sections: (a) T-shape, (b) I-shape, (c) Z-shape, and (d) C-channel. Units: mm.

mental set-up is shown in Figure 4, with the unloaded cantilever shown in part (a) including the

laser proximity sensor, and the loaded (buckled) system in part (b).

Owing to inevitable resolution limitations of the printer, the actual parameters of the printed

parts di↵er slightly from the nominal design values. Specifically, the ‘wall’ thickness tended to

have a slightly greater dimension than designed. It is also worth pointing out that in comparing

Table 2: Cross-sectional properties for the various shapes with nominal dimensions: web = (20 mm ⇥ 1 mm), flange

= (4 mm ⇥ 1 mm). *based on the formula Uh
3/3, where U is the middle line.

Cross J
⇤

Iy

p
IyJ

p
IyJ

p
(IyJ)rect

section [mm4] [mm4] [mm4] [–]

Rectangle 6.67 1.67 3.34 1.0

T-shape 8.17 7.00 7.56 2.26

I-shape 9.67 12.33 10.92 3.27

Z-shape 9.33 30.3 16.81 5.03

C-channel 9.33 48.5 21.27 6.37
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Figure 4: Experimental arrangement, rectangular cross-section: (a) unloaded system, and (b) post-buckled system.

with theory, we assume the elastic moduli values based on standard specifications. The Young’s

modulus and shear modulus are not quite exact values, with a slight dependence on print orienta-

tion, small amounts of anisotropy, and imperfections in general [17].

Weights were added to each of the various pegs sequentially and corresponding lateral deflec-

tion measured at a point near mid-span of the cantilever (0.3 < x/L < 0.6). All the subsequent

plots are simply vertical force (weight) versus lateral deflection �. The phenomenon of buckling

corresponds to the increase in the rate of change of deflection with load, rather than a specific load.

6. Experimental testing results

In this section, we present the results of placing weights of increasing magnitudes at the free

ends of slender cantilevers liable to buckle in a lateral-torsional sense.

We start with the simple rectangular cross-section. In Figure 5, the results of placing the

weights at the five peg locations are shown. When loaded at the centroid of the cross-section the
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Figure 5: Experimental results for the narrow rectangular cross-section.

beam buckles in a clear preferred (left) direction, and this is true for any loading on the central

vertical axis. It is only when loaded at the right peg that the beam buckles in the other (right)

direction. Here, when the beam is heavily in its post-buckled state, it is moved across to its com-

plementary post-buckled configuration (indicated by the dashed lines). Despite the relatively high

resolution of the printer, the specific estimate of the critical buckling load (0.441 N) only provides

a rough guide to the buckling instability. Although not conclusive, the critical load associated with

the upper peg is slightly higher than the critical load associated with loading via the lower peg.

The results for the T-shaped cross-section (see Figure 3(a)) are shown in Figure 6. The ‘up-

right’ T-shape has a critical load of 0.957 N, and the ‘downward’ critical load of 1.15 N. In both

orientations (simply rotating the cross-section through 180 degrees), the buckling deformation

proceeds in the leftward direction (looking onto the end of the cantilever).

The I-shape results are shown in Figure 7, with an increase in the buckling load as expected.

The Z-shape results are shown in Figure 8. Given the anti-symmetric nature of this cross section, it

is not surprising that this system has a strong directional preference, even for low levels of loading.

Finally, the C-channel results are shown in Figure 9. In this case the central peg was located at the

shear center of the cross-section. This is the section most resistant to lateral-torsional buckling.

We can summarize these results by superimposing them as shown in Figure 10. In each of the

data sets, the ‘natural’ load path is shown for each cross-section, and each beam is loaded at its
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Figure 6: Experimental results for (a) the narrow T-shape cross-section and (b) the narrow ‘upside down’ T-shape

cross-section.

Lateral de!ection [mm] at x/L = 0.535

F [N]

Figure 7: Experimental results for the narrow I-shape cross-section.

centroid/shear center (i.e., middle peg). The horizontal dashed lines correspond to the theoretical

values obtained from Fusion 360 (and color-coded accordingly).

7. Southwell Plot

Despite the fact that the theoretical estimate for the critical LTB load is a specific number,

an eigenvalue, it is clear from the experimental results that initial geometric imperfections and

symmetry-breaking e↵ects in general play an important role, and make practical estimates of the
9



F [N]

Lateral de!ection [mm] at x/L = 0.47

Figure 8: Experimental results for the narrow Z-shape cross-section.

F [N]

Lateral de!ection [mm] at x/L = 0.46

Figure 9: Experimental results for the narrow C-channel cross-section.

buckling load challenging. It is clear that in the vicinity of buckling there is an increases in the rate

of deflection, sometimes referred to as a ‘knee’ in the data. In Figure 10(a), this relatively sudden

increase in deflection does indeed occur where the ‘perfect’ system would buckle.

This rate of increase in deflection was recognized by Southwell [20], who realized that plotting

deflection/load versus deflection would result in a straight line, with the important consequence

that the (reciprocal of the) slope of the data would provide an estimate of the buckling load. That is,

given � = �0/(1�F/Fcr) where � is representative of the measured lateral deflection, �0 is an initial

10
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Figure 10: (a) Experimental results for the central peg for all cross-sections, and (b) alternative plot of the experimental

data.

deflection, F is the measured load, and Fcr is the buckling load, we can re-write this expression as

�/F = �/Fcr + �0/Fcr. This is the equation of a straight line with slope 1/Fcr if �/F is plotted as a

function of �. Figure 10(b) shows the same data from Figure 10(a) but now plotted in terms of the

new axes. Each data set was fit using a linear least squares giving the estimates in Table 3. All of

these estimates were based on including all the measured data, and provide reasonable estimates

in comparison with the theoretical values based on the buckling analysis reported in Tables 2 and

3. These values also confirm the relative ratios suggested in Table 2. The estimate for the Z-shape,

which showed the greatest disparity between theory and experiments (41% error), was based on

data that showed the least amount of noticeable increasing deflection; this di↵erence is explored in

the following section. These estimates can be improved upon using various mechanisms, mostly

concerning the range of applicability of the method [21, 22], but overall seem to be adequate in
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terms of a comparative study seeking to shed light on the relation between cross-sectional shapes

and LTB.

7.1. Numerical Validation

To validate the experimental observations from the Southwell plot, a similar analysis was per-

formed with Fusion 360’s Simulation capabilities. Whereas geometric anomalies were the source

of imperfections in the experiments, a small lateral (notional) load was applied in the simulation

for convenience. Figure 11 shows the load-deflection and Southwell plots for the di↵erent shapes

assuming a 1% notional load. In Figure 11(a), the dashed lines indicate the LTB estimates based on

a buckling analysis (see Section 4 and Table 1). As expected, the force-deflection curves asymp-

tote to the buckling load, with the exception of the Z-shape. Because of the rotated orientation

of the Z-shape’s principal axes, the vertical load immediately generates a large lateral deflection.

This lateral deflection dominates the buckling e↵ect. As a result, the critical load estimates based

on the Southwell plot (see Figure 11(b) and Table 3) are artificially high, as was the case for the

experimental tests. The Southwell plot estimates in Table 3 for the numerical results are based

on a best fit line for the highest 3 loads—20 load increments were used in all cases—because this

is the portion of the results in which buckling dominates and the �/F–� curves asymptote to the

Table 3: LTB critical load Fcr [N] estimates based on buckling analysis (Table 1) and Southwell plots (Figs. 10 and

11).

Southwell

Cross section Buckling Experimental Numerical

Rectangle 0.441 0.49 0.47

T-shape 0.957 1.08 1.07

Upside down T-shape 1.15 1.26 1.27

I-shape 1.87 1.72 1.98

Z-shape 2.41 3.40 5.61

C-channel 2.64 2.35 2.76
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Figure 11: Numerical results from Fusion 360 for the di↵erent sections with 1% notional load: (a) Vertical force F

versus lateral displacement � midway along beam, and (b) corresponding Southwell plot.
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Figure 12: Southwell plot results from Fusion 360 for the rectangular section with di↵erent notional loads: (a) Vertical

force F versus lateral displacement � midway along beam, and (b) Southwell plot.

1/Fcr slope.

To further explore the e↵ects of this symmetry breaking, varying notional load levels were

considered for the baseline rectangular section. These results are shown in Figure 12. As the

notional load is increased, its e↵ect tends to dominate the buckling behavior, turning the problem

into a large-deflection problem as opposed to a buckling problem. This is reflected in the critical

load estimates from the Southwell plot: Fcr = 0.47 N (0.2%), 0.47 N (0.5%), 0.48 N (1%), 0.50 N

(2%), 0.59 N (5%), and 0.86 N (10%). Clearly, when the symmetry-breaking is larger (i.e., higher

notional load), the Southwell plot estimate is worse and tends to be higher. This is similar to what

is seen for the Z-shape.
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Figure 13: (a) Experimental arrangement in a di↵erent lab, and (b) experimental results for the T-shape cross-section

printed with PLA.

8. Adoption by Others

As the motivation for this paper is in part educational, it is important that other educators and

researchers can easily adopt and implement the demonstration model. To illustrate this, a few

of the tests were repeated at the University of Oklahoma on a consumer-grade 3D printer (Prusa

i3 MK3S+) using a di↵erent material (PLA). Figure 13(a) shows the experimental setup for the

T-shape cross-section, and the experimental results are shown in Figure 13(b). The demonstra-

tion model was straightforward to print, albeit requiring substantial (nonsoluble) support material.

Moreover, the LTB phenomenon was captured. Note the buckling load is higher for this speci-

men than the one shown in Figure 6. The di↵erence is attributed to PLA having a higher Young’s

modulus (⇠3.1 GPa [23]) than ABS.

We also note that it would possible to incorporate the various cross-sections into a modular sys-

tem with a common base-support, thus facilitating a direct tactile comparison as done for example

for torsion in Ref. [24].
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9. Discussion

This paper has focused on relatively slender cross-sectional cantilever beams, which could

then be assessed according to their resistance to lateral-torsional buckling. 3D-printing allows for

relatively high geometric precision.

The use of ABS thermoplastic material is not perfect however. For the C-channel and Z-shape,

the higher loads seemed to have the e↵ect of producing relatively high stress, and in some cases a

kind of creep behavior (very slow but steadily increasing deflection under a constant weight) was

observed. It was also apparent that this led to the unloading path not quite following the loading

path, although returning to the undeflected shape after a while.

In all cases it should be emphasized that even when the lateral deflection at the measured point

(roughly a third of the way along the beam from the clamp) was close to zero, the twist could be

quite appreciable and not really reflected in the single measurement.

The areas (and hence material used) of the cross-sections are slightly di↵erent: the size of

the web was kept constant between all the di↵erent sections, and thus, a strict comparison of the

di↵erent sections was compromised. However, the overall trends illustrate the phenomenon of

lateral-torsional buckling and its dependence on cross-sectional geometry.
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Appendix A. System Identification

In comparing experimental data with theory, it is necessary to input values for the various

parameters. For the small geometric parameters the actual 3D-printed dimensions tended to be

slightly di↵erent from the design (nominal) values. For example, the 1-mm web thicknesses were

typically measured (using calipers) around 1.05 mm, and since this parameter enters into the sti↵-

ness via the second moment of area it will produce a propagated error.

Similarly for the material properties. Previous testing of the ABS thermoplastic suggested

a Young’s modulus of E = 2.1 GPa, based on the type of flexural testing appropriate to the

situation under study but also indicated the approximate nature of this estimate [17]. However, as a

further confirmation of modeling, using the measured dimensions and estimated elastic properties

in a FEA within Fusion 360 resulted in a fundamental natural frequency in bending of 6.38 Hz,

comparing favorably with a measured frequency of 6.3 Hz.
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