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ABSTRACT

Stealthy hardware Trojans (HTs) inserted during the fabrication of
integrated circuits can bypass the security of critical infrastructures.
Although researchers have proposed many techniques to detect
HTs, several critical limitations exist, including: (i) a low success
rate of HT detection, (ii) high algorithmic complexity, and (iii) a
large number of test patterns. Furthermore, as we show in this work
the most pertinent drawback of prior (including state-of-the-art)
detection techniques stems from an incorrect evaluation methodol-
ogy, i.e., they assume that an adversary inserts HTs randomly. Such
inappropriate adversarial assumptions enable detection techniques
to claim high HT detection accuracy, leading to a “false sense of
security.” To the best of our knowledge, despite more than a decade
of research on detecting HTs inserted during fabrication, there have
been no concerted efforts to perform a systematic evaluation of HT
detection techniques.

In this paper, we play the role of a realistic adversary and ques-
tion the efficacy of HT detection techniques by developing an auto-
mated, scalable, and practical attack framework, Attrition, using
reinforcement learning (RL). Attrition evades eight detection
techniques (published in premier security venues, well-cited in
academia, etc.) across two HT detection categories, showcasing
its agnostic behavior. Attrition achieves average attack success
rates of 47× and 211× compared to randomly inserted HTs against
state-of-the-art logic testing and side channel techniques. To demon-
strate Attrition’s ability in evading detection techniques, we eval-
uate different designs ranging from the widely-used academic suites
(ISCAS-85, ISCAS-89) to larger designs such as the open-source
MIPS and mor1kx processors to AES and a GPS module. Addition-
ally, we showcase the impact of Attrition generated HTs through
two case studies (privilege escalation and kill switch) on mor1kx
processor. We envision that our work, along with our released HT
benchmarks and models [19] fosters the development of better HT
detection techniques.
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1 INTRODUCTION

1.1 Globalized IC Supply Chain and Threats

Integrated circuits (ICs) are the backbone of modern computing
systems. Enabling high-performance and low-power ICs requires
access to smaller and faster transistors (building blocks of ICs).
The push for continual miniaturization of transistors necessitates
reliance on state-of-the-art fabrication facilities, also known as
foundries. However, commissioning a state-of-the-art foundry in-
curs astronomical costs [27, 67]. For instance, TSMC, the world’s
largest contract IC manufacturer, has allocated $40 billion to in-
crease chip production for the state-of-the-art 2nm technology
node [27]. To reduce the design cost and ameliorate marketing con-
straints, leading IC design companies like Apple, Qualcomm, and
NVIDIA operate in a fabless model [22] and outsource IC manufac-
turing to off-shore, third-party foundries, which could be potentially
untrustworthy. The U.S. Department of Defense (DoD) 2022 action
plan for securing defense-critical supply chains indicates that 88%
of microelectronic fabrication is performed overseas, represent-
ing a substantive security threat [39]. Such a distributed supply
chain has given rise to numerous security concerns ranging from
IP piracy [4, 26, 65] to the insertion of malicious logic known as
hardware Trojans (HTs) [3, 24, 43, 58, 60, 64].

1.2 Disruptive Impact of Hardware Trojans

HTs, once inserted during fabrication, cannot be removed. Unlike
buggy software, where a software patch can help mitigate the ill
effects, the damage incurred by a stealthy HT has far-reaching
consequences [8, 24, 50, 64]. For instance, an HT enables privilege
escalation [52, 64] or an HT implanted in critical infrastructure (e.g.,
radar systems) leads to national security threats [1]. To highlight
the practicality and importance, researchers have discovered and
demonstrated HTs in silicon [8, 50, 64]. For example, [50] found a
“backdoor” in a military-grade chip, [8] crafted HTs that compro-
mised cryptographically-secure random number generators used

An extended version of this work, providing more background information, results,
and analyses, can be found in [20].

 

1275

https://doi.org/10.1145/3548606.3560690
https://doi.org/10.1145/3548606.3560690
https://doi.org/10.1145/3548606.3560690
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3560690&domain=pdf&date_stamp=2022-11-07


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Vasudev Gohil, Hao Guo, Satwik Patnaik, and Jeyavijayan Rajendran

in Intel’s Ivy Bridge processors, and [64] performed privilege es-
calation using a capacitor-based HT on fabricated chips. These
examples showcase the pernicious effects of HTs in bypassing the
security of a system. Apart from academic endeavors, Defense Ad-
vanced Research Projects Agency (DARPA), a research and develop-
ment agency of the U.S. DoD, is accelerating HT research through
programs like Safeguards against Hidden Effects and Anomalous
Trojans in Hardware (SHEATH) [42] and Automatic Implementa-
tion of Secure Silicon (AISS) [2], the latter in collaboration with
Synopsys, a leading electronic design automation company.

1.3 Hardware Trojan Detection Techniques

Researchers attempt to detect HTs inserted during fabrication us-
ing (i) logic testing [11, 34, 41, 44] and (ii) side channel analy-
sis [3, 10, 15, 23, 25, 28, 33, 45, 70]. Both approaches apply input pat-
terns to the underlying chip, and the only difference is the modality
they monitor. In a logic testing-based approach, the defender moni-
tors the output responses from the chip to detect deviations from
the expected outputs using an HT-free (golden) chip [11, 34, 41, 44].
In a side channel-based approach, the defender monitors the physi-
cal characteristics (power consumed, path delay, electromagnetic
emissions) of the chip to detect deviations from expected behav-
ior [3, 10, 15, 23, 25, 28, 33, 45, 70].
Limitations of Existing Techniques. The aforementioned HT
detection techniques suffer from key limitations, including: (i) low
success rate for detecting HTs [11, 25, 44], (ii) high algorithmic
complexity [25, 33, 34, 44], and (iii) a large number of input pat-
terns [11, 25, 34, 41, 44], leading to increased test time and delayed
deployment. However, the most pertinent drawback arises from a
lack of proper security evaluation of these detection techniques, re-
sulting from inappropriate/incorrect adversarial assumptions (§2.3).
The ramifications of an inappropriate security evaluation lead to
a “false sense of security.” To the best of our knowledge, despite
more than a decade of research on detecting HTs (implanted dur-
ing fabrication), there have been no concerted efforts to perform a
systematic and automated evaluation of HT detection techniques
that can scale well to industrial-scale designs.

1.4 Our Goals and Contributions

In this work, we perform a systematic evaluation of HT detec-
tion techniques that aim to detect HTs during the fabrication of
ICs. We assume the role of a motivated and realistic adversary
that inserts HTs to evade state-of-the-art HT detection techniques.
However, detection techniques involve various algorithms ranging
from (i) random bit-flipping [11, 25], (ii) genetic algorithms [33, 44],
(iii) graph-theoretic algorithms [34], to (iv) reinforcement learn-
ing [41]. Therefore, we need a radical approach to systematically
evaluate HT detection techniques by inserting stealthy HTs using
an automated attack framework.

However, several hurdles exist in designing an automated attack
framework that inserts stealthy HTs. First, the underlying design
is a sea of gates and nets; it is computationally challenging to ex-
amine each net individually to create an HT. Second, the input
patterns generated by the HT detection techniques are not deter-
ministic. Third, an adversary does not have apriori information
regarding the locations tested by the defender. This moving target

(i.e., the stochasticity of locations checked by the defender, non-
deterministic input patterns, large design space exploration) makes
it challenging for an adversary to evade detection techniques.

We address the aforementioned hurdles and develop a scalable
attack framework, Attrition, using reinforcement learning (RL).
RL has shown great promise in navigating unknown and uncertain
problem spaces and finding optimal or near-optimal solutions, as in
the case of fuzzing [9, 18], Internet of Things security [32, 63], and
cyber security [17, 37]. Hence, we formulate the task of inserting
HTs, which evade the detection techniques under the uncertainty
of the input patterns, as an RL problem (§4). However, we must
overcome several challenges to realize an automated, practical, and
scalable RL agent: 1 dependence on detection techniques, i.e., re-
liance on input patterns from detection techniques, 2 expensive
reward computations, i.e., evaluation of HTs generated during train-
ing, 3 inefficiencies of the agent’s choices, i.e., inhibiting the agent
from generating HTs that are unsuitable, 4 lack of scalability, i.e.,
insert HTs in large designs like AES, GPS, and mor1kx processor,
and 5 lack of variety of HTs, i.e., generate a large corpus of HTs
for an adversary to choose from.

We overcome the challenges of 1 reliance on input patterns and
2 expensive reward computations by characterizing the design
before training. Characterization helps us compute the rewards
quickly (up to 16× faster than the naïve approach) (§4.3). To reduce
the 3 inefficient choices made by the agent, we trim the actions
available to the agent at different time steps depending on the
present state of the agent (§4.4). Finally, we overcome challenges
about 4 scalability and 5 limited variety of HTs by carefully
pruning the search space for the agent (§4.5).

By solving these challenges, we develop an automated and scal-
able RL-based framework, Attrition, that performs a systematic
evaluation of HT detection techniques by inserting stealthyHTs.At-
trition is agnostic to the choice of detection techniques considered
in this work and scalable to practical designs, such as AES, GPS, and
mor1kx processor. Attrition generated HTs evade eight HT de-
tection techniques from logic testing (§5.2) and side channel-based
detection approaches (§5.3), and we showcase two case studies to
demonstrate cross-layer, system-level attacks on mor1kx processor
(§5.5). The contributions of our work are as follows.

• We develop an automated, scalable, and practical RL-enabled
HT insertion framework, Attrition , that successfully evades
several HT detection techniques, including the state-of-the-art.
To the best of our knowledge, our work is the first to use RL for
developing a successful attack in supply chain security (§4).

• We demonstrate the generalization power of Attrition by evad-
ing eight HT detection techniques from logic testing and side
channel categories (Table 1). These techniques have been pub-
lished in premier security venues, have been widely regarded in
the industry, and cited in academia, and/or are state-of-the-art.
Attrition achieves average attack success rates of 47× and 211×
compared to randomly inserted HTs against state-of-the-art logic
testing and side channel techniques (§5.2 and §5.3).

• We showcase the efficacy of Attrition generated HTs on de-
signs ranging from the widely used ISCAS-85 and ISCAS-89
benchmark suites to open-source MIPS and mor1kx processors,
AES, and GPS (upto ≈ 200, 000 gates) (§5).
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Table 1: HT detection techniques against Attrition. ✓ indicates that Attrition evades detection.

Type Logic testing Side channel

Detection Technique MERO [11] GA+SAT [44] TARMAC [34] TGRL [41] MERS [25] MERS-h [25] MERS-s [25] MaxSense [33]
Venue CHES’09 CHES’15 TCAD’21 ASP-DAC’21 CCS’16 CCS’16 CCS’16 TODAES’21

Algorithm

Random
bit-flipping

Genetic
algorithm

Maximal clique
enumeration

Reinforcement
learning

Random
bit-flipping

Reordering using
Hamming distance

Reordering
using simulation

Genetic
algorithm

Largest Design

(# gates)

s35932
(6,500)

s38417
(22,179)

MIPS
(≈25,000)

s35932
(12,204)

s35932
(6,500)

s35932
(6,500)

s35932
(6,500)

MIPS
(≈25,000)

Evaluation

Methodology

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Randomly-
inserted HTs

Claimed Defense

Efficacy

93.5% 79.4% 93.1% 96.1% ‘... MERS is effective for any Trojan forms/sizes ..." [25] 96.6%

Attrition (This Work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

• We demonstrate how an adversary can repurpose Attrition to
design HTs that not only evade detection, but also cause practical,
cross-layer, real-world attacks through two case studies (privilege
escalation and kill switch) on mor1kx processor (§5.5).

• To foster further research in the area of HT detection and HT in-
sertion techniques, we open-source our models and HT-infested
designs [19]. Our developed HTs can be used by researchers to
evaluate the efficacy of their detection techniques.

2 BACKGROUND AND PRELIMINARIES

We first provide an overview of hardware Trojans (HTs) and explain
different HT detection techniques and their evaluation methodolo-
gies, followed by an introduction to reinforcement learning (RL).

2.1 Hardware Trojans (HTs)

HTs are malicious logic inserted by adversaries to achieve a disrup-
tive impact on ICs [3, 24, 52, 57]. HTs can (i) operate as a hardware
backdoor that leaks sensitive information such as cryptographic
keys [31], (ii) cause denial-of-service during regular operation [7],
and/or (iii) effect a deviation in the functionality of the design [64].
Typically HTs can be inserted anywhere in the IC supply chain
ranging from the register-transfer level (adversary is the third-party
intellectual property provider) to the chip layouts (adversary in the
foundry). An HT consists of two components: trigger and pay-

load. The trigger is the activation mechanism of an HT, and the
trigger is activated by rare nets (i.e., nets whose logic values are
strongly biased). In particular, the trigger is activated when the
rare nets assume their rare values. These rare nets have an activity

probability (i.e., the probability of a net being a 1 or 0) below a cer-
tain rareness threshold. Once the trigger is excited, the payload
gets activated, causing a malicious effect. A stealthy HT must be
(i) malicious (jeopardize the chip’s functionality or leak sensitive
information or degrade the performance of the device) and (ii) un-
detectable (would not be detected by any prior and state-of-the-art
HT detection techniques).

2.2 Prior Work on Hardware Trojan Detection

When the foundry is untrusted, HT detection techniques are classi-
fied into two broad categories: logic testing and side channel analy-
sis. Logic testing-based techniques detect HTs by applying test pat-
terns to the HT-infested design to activate the trigger [11, 34, 41, 44].
On the other hand, side channel-based detection techniques detect

HTs by monitoring the deviations of the side-channel measure-
ments (power consumption, path delay, electromagnetic emissions)
of an HT-infested design from the expected measurements of a
golden, i.e., HT-free, design [3, 10, 15, 23, 25, 28, 33, 45, 70].

Although there are many noteworthy HT detection techniques
for both categories, we choose eight techniques for our evaluation,
as explained next. Our selection spans from the earliest technique
with industrial adoption, namely MERO [11], to the latest one that
uses an RL algorithm as a detection tool, namely TGRL [41]. We also
select techniques that have a high impact (measured through cita-
tions) from a diverse set of conferences/journals: (i) MERS [25] from
ACM CCS, (ii) TARMAC [34], an industry-adopted technique [35],
from IEEE TCAD, a top computer-aided system design transac-
tions, (iii) GA+SAT [44] from CHES, a top hardware security confer-
ence, and (iv) MaxSense [33], the state-of-the-art technique for side
channel-based HT detection (62× better than MERS [25]). These
techniques claim the following properties: (i) scalability, (ii) effi-
ciency, (iii) accuracy in detecting stealthy HTs, and (iv) ease of
integration with IC design tools and flow. In addition to MERS and
MaxSense, there are a few other high-impact works on detecting
HTs using side-channel analysis, such as [6, 28, 45, 61]. However,
since MERS and MaxSense magnify the impact of all of these tech-
niques, we chose MERS [25] and MaxSense [33].
Logic testing-based Techniques. MERO generates test patterns
that activate each rare net 𝐾 times [11]. The hypothesis is that if
all the rare nets are activated 𝐾 times, the resultant test patterns
are likely to activate unknown triggers. GA+SAT generates test
patterns by utilizing a genetic algorithm and Boolean satisfiability
(SAT) [44]. TARMAC generates test patterns using clique enu-
meration [34]. TGRL uses RL to generate a set of test patterns to
maximize the likelihood of activating HTs [41].

Researchers evaluate the efficacy of logic testing-based detection
techniques usingHT activation rate [11, 34, 41, 44], defined as the
percentage of HTs activated by the test patterns. Mathematically,
the HT activation rate is

(
Number of HTs activated

Total number of HTs inserted

)
× 100%.

Side channel-based Techniques. MERS extends the idea of
MERO to side-channel metrics by generating test patterns that
cause rare nets to switch from their non-rare to rare values 𝐾
times [25]. Doing so increases the likelihood of activating an HT,
which in turn increases the deviation of the measured side-channel
from expected (i.e., golden) values. MERS-h reorders test patterns
generated by MERS to simultaneously maximize the activity in rare
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nets and minimize the activity in non-rare nets. Unlike MERS-h,
MERS-s relies on the actual behavior of the golden circuit (obtained
through functional simulations) to measure the activities in the rare
and non-rare nets. MaxSense exploits input affinity to generate
test patterns that maximize switching in the malicious logic while
minimizing switching in the rest of the circuit [33].

Researchers evaluate the efficacy of side channel-based detec-
tion techniques using side-channel sensitivity [25, 33], which
measures the amount of switching caused in an HT-infested design
relative to the switching caused in an HT-free design. Let 𝐺 be the
golden design (i.e., HT-free), 𝐻𝑇 be the HT-infested design, and
(𝑢𝑖 , 𝑣𝑖 ) denote the 𝑖th pair of consecutive test patterns, then, the
side-channel sensitivity of the HT-infested design 𝐻𝑇 is

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝐻𝑇 = max
(𝑢𝑖 ,𝑣𝑖 )

©­«
|𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝐻𝑇

(𝑢𝑖 ,𝑣𝑖 ) − 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔
𝐺
(𝑢𝑖 ,𝑣𝑖 ) |

𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝐺(𝑢𝑖 ,𝑣𝑖 )

ª®¬
We use these metrics (HT activation rate and side-channel sen-

sitivity) to showcase the efficacy of Attrition.

2.3 Evaluation Methodology of Detection

Techniques

The aforementioned detection techniques span over a decade—
from 2009 to 2021. Collectively, they cover several algorithms,
ranging from random bit-flipping [11], genetic algorithm [33, 44],
graph-theoretic algorithm [34], reinforcement learning-based algo-
rithm [41], to side channel-based detection [25, 33]. However, all
these techniques lack proper evaluation in two aspects.

Firstly, all aforementioned detection techniques assume that an
adversary randomly samples HTs from the rare nets. As a result,
these detection techniques claim very high efficacy (>90% HT ac-
tivation rate). Similarly, benchmark suites of HT-infested designs
(e.g., TrustHub [46, 59] and [66]) consist of randomly inserted HTs.
However, this assumption does not reflect the real-world scenario
since an adversary in a foundry is not constrained to insert HTs ran-
domly, as evidenced in [8, 50, 52, 64]. On the contrary, an adversary
inserts HTs such that the likelihood of detection is minimal. Our
results demonstrate that the HTs generated by Attrition cause a
drastic reduction in the efficacy of logic testing-based techniques
(Table 4) and side channel-based techniques (Table 5).

Secondly, all aforementioned detection techniques consider de-
signs that contain just a few thousand gates. Such designs are not
practical since modern design intellectual property cores contain
at least a few hundred thousand gates (e.g., AES, GPS, mor1kx pro-
cessor). Furthermore, detecting HTs in designs containing a few
thousand gates is relatively easier since there are limited places
where an HT can be inserted. Thus, the evaluation methodology
used by the state-of-the-art HT detection techniques is inappropri-
ate, and it gives a “false sense of security.” We use RL as a litmus
test to demonstrate these issues and obtain the actual efficacy of HT
detection techniques. We summarize these observations in Table 1.

2.4 Reinforcement Learning (RL)

RL is a machine learning technique where an agent learns how
to act in an (unknown) environment through actions and receives

feedback through rewards. Unlike supervised/unsupervised learn-
ing, which requires labeled/unlabeled data; RL does not require
pre-defined data. RL is used to solve problems involving an optimal
sequence of decisions by modeling the underlying problem as a
Markov decision process [53, 62]. While many fields such as soft-
ware fuzzing [9, 18], Internet-of-Things security [32, 63], and cyber
security [17, 37] have reaped the benefits of using RL, hardware
security is still in its infancy to reap the powers of RL.

3 THREAT MODEL

Before diving into the specifics regarding Attrition, we outline
the location, capabilities, and goal of an adversary.
Adversary Location.We assume the adversary is present in the
untrustworthy foundry. Our threat model selection is motivated
by the fact that most IC design companies outsource fabrication to
overseas foundries [22] (§1). In fact, the U.S. Department of Defense
2022 action plan for securing defense-critical supply chains points
out that 88% of microelectronic fabrication is performed overseas,
representing a substantive security threat [39].
Adversarial Capabilities. We outline the capabilities of an adver-
sary consistent with state-of-the-art research in hardware Trojans
(HTs) [11, 25, 33, 34, 41, 44].
• An adversary obtains the gate-level design by reverse-engineering
the Graphics Database System II (GDSII). The adversary has ac-
cess to and know-how regarding state-of-the-art reverse engi-
neering equipment [14, 38, 55].

• An adversary can construct the trigger using only rare nets. To
that end, they can compute the list of rare nets by performing
functional simulations using any tool (academic or commercial).

• An adversary has resources (placement sites for trigger and pay-
load and routing resources for connecting wires) available in the
GDSII to insert the trigger and payload.

• An adversary does not know the input patterns used by the
defender for post-fabrication testing. We assume that an adver-
sary knows the type of HT detection technique(s) used by the
defender.

Adversarial Goal. The goal of the adversary is to cause a disruptive
impact (e.g., leak secret information like cryptographic keys [31],
perform privilege escalation [52, 64]) on the ICs by inserting HTs
while evading all detection techniques employed by the defender.
Our work focuses on additive HTs since all considered detection
techniques assume additive HTs [11, 25, 33, 34, 41, 44, 57].

4 ATTRITION: ATTACKING HARDWARE

TROJAN DETECTION TECHNIQUES

We initially explain why reinforcement learning (RL) is suited for
our problem definition and our preliminary formulation; however,
our preliminary formulation has several limitations. Subsequently,
we explain the challenges and the steps we took to overcome them,
and finally we outline the architecture for Attrition.

4.1 Why Reinforcement Learning?

Inserting stealthy hardware Trojans (HTs) (i.e., evading HT detec-
tion techniques) necessitates the judicious selection of trigger nets

GDSII is a database file used for exchanging IC layout information.
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Figure 1: The trigger T (constructed from F and G), when acti-

vated, triggers the payload to flip the value of K.

(rare nets that constitute the trigger). A concerted selection strategy
of trigger nets has two features, as explained next.
Sequential Decision Making. If an adversary wants to construct
the trigger using 𝛼 rare nets, a naïve approach would be to select
all 𝛼 nets simultaneously. However, since nets are part of the de-
sign, their logic values are dependent on each other. Thus, naïvely
selecting 𝛼 rare nets would be sub-optimal. For instance, consider
the design in Figure 1, where there are three rare nets (F, G, H with
rare values 1, 1, and 0, respectively). However, the value of H de-
pends on the value of G. In fact, whenever G takes its rare value,
H also takes its rare value. Thus, selecting both these nets would
be sub-optimal because any test pattern that activates G will also
activate H, leading to easy detection. Alternatively, depending on
the design’s structure (i.e., connectivity among logic gates), select-
ing one particular rare net can lead to a non-selection of other rare
nets to form a valid HT (an HT that can be activated). Hence, a
better approach would be to choose the rare nets sequentially, i.e.,
select one rare net, understand its impact on the other rare nets
in the design, and then select the next rare net. In other words, a
sequence of optimal decisions is required to construct an HT that
evades detection techniques.

Secondly, there is an uncertainty in the test patterns gener-
ated by the detection techniques, i.e., the potential triggers they
check for are unknown to an adversary. For instance, in a design
with 1000 rare nets, constructing an HT with four rare nets can
be done in 1000𝐶4 ≈ 4.1 × 1010 ways. However, an adversary does
not know the combinations checked by the defender. Hence, a
concerted strategy should construct HTs (i.e., select trigger nets)
under the uncertainty of the locations checked by the detection
techniques.

Problems with these two features (sequential decisionmaking

and uncertainty in the environment) are the kind of tasks that
RL algorithms solve well—making an optimal sequence of decisions
under uncertainty [53, 62]. Hence, we formulate the HT generation
problem as an RL problem.

4.2 Preliminary Formulation

We now explain our preliminary formulation. We assume that an
adversary constructs a trigger using 𝑇𝑤𝑖𝑑 rare nets, throughout
this section. Recall that, to evade existing detection techniques; we

The number of rare nets used to construct the trigger is defined as trigger width.

need to construct the trigger out of those combinations of rare nets
that are not simultaneously activated by test patterns from existing
detection techniques (§4.1). Note that if an adversary knew the
exact test patterns that a defender used to detect HTs, the solution
is straightforward—generate a trigger from rare nets not activated
by the test patterns.

Since an adversary knows the HT detection technique(s) used
by the defender (§3), they generate a set of test patterns, which will
be different from the patterns used by the defender. Given these
test patterns, an adversary aims to generate triggers (and hence
HTs) that are unlikely to be detected by the defender. We construct
the HT triggers by mapping the HT generation problem as an RL
problem, as described below.
• States S is the set of all subsets of rare nets. An individual state
𝑠𝑡 represents the set of rare nets chosen by the agent at time 𝑡 .

• Actions A is the set of all rare nets. An individual action 𝑎𝑡 is
the rare net chosen by the agent at time 𝑡 .

• State transition P(𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 ) is the probability that action 𝑎𝑡
in state 𝑠𝑡 leads to the state 𝑠𝑡+1. If the chosen rare net (i.e., the
action) is compatible with the current set of rare nets (i.e., the
current state), we add the chosen rare net to the set of compatible
rare nets (i.e., the next state). Otherwise, the next state remains
the same as the current state. Thus,

𝑠𝑡+1 =
{{𝑎𝑡 } ∪ 𝑠𝑡 , if 𝑎𝑡 is compatible with 𝑠𝑡
𝑠𝑡 , otherwise

• Reward function R(𝑠𝑡 , 𝑎𝑡 ). Denote IC : S×A → {0, 1}. Given
any state action pair (𝑠, 𝑎), IC (𝑠, 𝑎) indicates whether 𝑎 is com-
patible with 𝑠 or not. Denote I𝑇𝑃

𝐴
: S → {0, 1}. Given a state 𝑠 ,

I𝑇𝑃
𝐴

(𝑠) indicates if 𝑠 is activated by some test pattern in 𝑇𝑃 or
not. Then, the reward function is defined as

R(𝑠𝑡 , 𝑎𝑡 ) =


0, if ( |𝑠𝑡+1 | ≠ 𝑇𝑤𝑖𝑑 ) ∧ (IC (𝑠𝑡 , 𝑎𝑡 ) = 1)
𝜌1, if ( |𝑠𝑡+1 | ≠ 𝑇𝑤𝑖𝑑 ) ∧ (IC (𝑠𝑡 , 𝑎𝑡 ) = 0)

0, if ( |𝑠𝑡+1 | = 𝑇𝑤𝑖𝑑 ) ∧ (I𝑇𝑃
𝐴 (𝑠𝑡+1) = 1)

𝜌2, if ( |𝑠𝑡+1 | = 𝑇𝑤𝑖𝑑 ) ∧ (I𝑇𝑃
𝐴 (𝑠𝑡+1) = 0)

Note that 𝜌1 < 0, i.e., a penalty, and 𝜌2 > 0. Also, 𝑇𝑃 denotes a
set of test patterns from a detection technique (e.g., TGRL [41]).
We design the reward function so that the agent tries to construct
triggers that are not activated by the generated test patterns.

• Discount factor 𝛾 (0 ≤ 𝛾 ≤ 1) indicates the importance of
future rewards relative to the current reward.

In the training process, we initialize the agent with a random rare
net, and it chooses other rare nets at each step. At the end of the
episode (i.e., after𝑇𝑤𝑖𝑑 − 1 steps), the rare nets chosen by the agent
(so far) reflect the generated HT.
Challenges.Although this preliminary formulation achieves a high
success rate in evading HT detection techniques (e.g., on average,
our RL-generated HTs are 49.87× more stealthy against TARMAC
than random HTs for c6288, c7552, s13207, and s15850, it faces
the following challenges: 1 it relies on test patterns from detection

A set of rare nets is compatible if an input pattern exists that can activate all the rare
nets in the set simultaneously. Alternatively, we say that a rare net, 𝑟𝑖 , is compatible
with a given set of rare nets, 𝑅, if an input pattern exists that can activate 𝑟𝑖 and all
nets in 𝑅 simultaneously.
Widely used designs by hardware security community [4, 16, 65].
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techniques, 2 simulations for reward computation are expensive,
leading to large training time for medium-sized designs (e.g., agent
does not generate stealthy HTs for MIPS with ≈ 25, 000 gates even
after 12 hours of training), 3 it is inefficient in choosing rare nets
because the agent chooses some rare nets that are incompatible,
4 it is not scalable to large designs like processor cores or crypto-
engines (e.g., mor1kx and AES), and 5 it generates only 67 stealthy
HTs for mor1kx, thus limiting the options for an adversary. Next,
we explain these challenges and how we overcome them.

4.3 Offline Characterization

Challenge 1 . A fundamental limitation of our preliminary for-
mulation is that it relies on test patterns from a detection technique
like TGRL [41] or TARMAC [34] for training. Ideally, the RL agent
should be agnostic to the test patterns, thereby agnostic to the
HT detection technique. If the agent relies on test patterns and
researchers develop a better detection technique, the agent would
need to be retrained with test patterns from this new technique.
However, retraining is time-consuming since one needs to do it
for every new technique. Hence, we aim to develop an agent that
is agnostic to test patterns from detection techniques so that the
agent can be used against other techniques in the future.
Challenge 2 . Another reason for devising the agent to be agnos-
tic to test patterns is time complexity for reward computation. In
our preliminary formulation, computing the reward requires us to
check if the final state of the agent, i.e., the trigger consisting of the
set of𝑇𝑤𝑖𝑑 rare nets, is activated by any test patterns in𝑇𝑃 . To that
end, we need to (i) construct the trigger, (ii) append it to the original
design, and (iii) simulate the design using all test patterns in𝑇𝑃 . Per-
forming these steps is computationally expensive. Asymptotically,
the time complexity of simulating a design having 𝑔 gates with 𝑝
test patterns is O(𝑔𝑝). Although theoretically, the complexity is
linear, practically, each reward computation takes several seconds
even for medium-sized designs (e.g., for MIPS ≈ 25, 000 gates, the
rate is ≈ 13 seconds/reward computation), and RL agents require
several thousand episodes for convergence [53]. Hence, the training
time required for such an approach is impractical for designs with
tight time-to-market constraints in the semiconductor industry.
Solution 1. To 1 avoid reliance on test patterns and 2 reduce
the time required to compute the reward, we modify the training
process by characterizing the target design (before training) and
saving the intermediate results. The intermediate results are used
during training for computing the reward quickly. Next, we explain
how we refine the preliminary formulation by modeling the goal
of an adversary using offline characterization.

To increase the likelihood of evading unknown test patterns, an
adversary needs to identify combinations of rare nets that are com-
patible but are least likely to be activated simultaneously. However,
identifying combinations of rare nets is non-trivial as the search
space is huge: assuming 𝑁 rare nets in a design, and 𝑇𝑤𝑖𝑑 being
four, there are 𝑁𝐶4 combinations, which increases combinatorially
with the number of rare nets. For example, MIPS has 1, 005 rare
nets leading to 4.2 × 1010 different triggers. The problem is further

An adversary would prefer to have a corpus of stealthy HTs since some HTs might be
infeasible for insertion due to resource constraints (lack of placement sites for trigger
and/or lack of routing resources) or cause noticeable changes in side channels, thereby
facilitating detection.

Table 2: Comparison of training rates for online and offline

reward calculation methods for MIPS.

Reward calculation
method

Training rate
steps/min episodes/min

Online reward ≈ 13.88 ≈ 4.63
Offline reward ≈ 234.82 ≈ 78.23

Speedup 16.91× 16.89×

exacerbated because picking a set of rarest 𝑇𝑤𝑖𝑑 nets might not
work since (i) they are not compatible (i.e., the constructed HT
trigger is invalid as it can never be activated), or (ii) they are very
likely to be activated by detection techniques. Thus, to estimate the
likelihood of compatible rare nets being activated simultaneously,
we leverage a randomized algorithm, which we describe next.

The algorithm runs for 𝑇 iterations and maintains 𝑇 + 1 sets,
C1, C2, . . . , C𝑇 (C𝑖 denotes the compatible rare nets in the 𝑖th it-
eration), and a set of unexplored rare nets U. At the start of 𝑖th
iteration, C𝑖 andU are initialized as an empty set and as a set of all
rare nets in the design, respectively. Next, a random rare net, 𝑟 𝑗 , is
selected from U. If 𝑟 𝑗 is compatible with C𝑖 , it is removed from U
and added to C𝑖 ; otherwise, 𝑟 𝑗 is just removed fromU. This process
is repeated untilU is empty, i.e.,𝑁 times. Then, the algorithm starts
the next iteration, 𝑖 + 1. At the end of 𝑖th iteration, we get C𝑖 , a set
of compatible rare nets. These C𝑖 ’s, ∀𝑖 ∈ {1, 2, . . . ,𝑇 }, are used to
compute the likelihood of a given set of compatible rare nets being
activated simultaneously, which is translated into a reward for the
agent. More specifically, the reward function is updated as

R(𝑠𝑡 , 𝑎𝑡 ) =


0, if ( |𝑠𝑡+1 | ≠ 𝑇𝑤𝑖𝑑 ) ∧ (IC (𝑠𝑡 , 𝑎𝑡 ) = 1)
𝜌1, if ( |𝑠𝑡+1 | ≠ 𝑇𝑤𝑖𝑑 ) ∧ (IC (𝑠𝑡 , 𝑎𝑡 ) = 0)
0, if ( |𝑠𝑡+1 | = 𝑇𝑤𝑖𝑑 ) ∧ (∃ 𝑖 | 𝑠𝑡+1 ⊆ C𝑖 )
𝜌2, if ( |𝑠𝑡+1 | = 𝑇𝑤𝑖𝑑 ) ∧ (� 𝑖 | 𝑠𝑡+1 ⊆ C𝑖 )

Following this reward, the agent tries to select rare nets that are com-
patible but least likely to be activated simultaneously and, thereby,
likely to evade unknown test patterns from detection techniques.
Empirical results on designs of different types and sizes validate
this hypothesis (§5).

Since the characterization is performed before training, the time
complexity of computing rewards using this approach is O(𝑇 ),
where 𝑇 is the number of sets (C𝑖 ) calculated during characteriza-
tion. The value of𝑇 controls the trade-off between runtime and the
efficacy of the generated HTs. Larger (smaller) values of 𝑇 require
larger (less) time for characterization and reward computation and
generate HTs that are more (less) likely to evade the detection tech-
niques. Note that the theoretical complexity of reward calculation
during training is independent of the size (i.e., the number of gates)
of the underlying design. In practice, each reward computation
takes a few milliseconds, even for large designs such as AES, GPS,
and mor1kx with more than 150, 000 gates.

Note that each iteration of this algorithm is independent. Hence, in our implementation,
we parallelize the algorithm.
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Thus, the offline characterization approach helps alleviate the re-
liance on test patterns fromHT detection techniques. It also helps re-
duce the reward computation time, leading to faster training. Table 2
depicts the training rates (in steps/minute and episodes/minute)
for the two approaches for computing rewards: (i) using test pat-
terns during training and (ii) using the information saved during
offline characterization. Note that using offline characterization to
pre-compute information and using them during training is more
than 16× faster than the online calculation approach.

4.4 Trimming: Avoiding Redundant Actions

Challenge 3 . Recall that, in the preliminary formulation, the
actions available to the agent (at each time step) remain the same
irrespective of the state of the agent. This leads to situations where
the agent chooses an action that (i) has already been chosen in the
past (i.e., a rare net that is already present in the current state 𝑠𝑡 )
or (ii) is known to not lead to a new state (i.e., a rare net known
to be incompatible with at least one of the rare nets in the current
state). Choosing such actions makes the training process inefficient
as these actions do not lead the agent to a new state. Consequently,
the time spent by the agent on such steps is wasted.
Solution 2. To increase the efficiency of the agent in choosing
actions while training (thereby reducing the training time), we trim
the actions available to the agent based on the state at any given
time step. Doing so increases the likelihood that at each time step,
the agent chooses an action that leads it to a new state.

Ideally, to perform trimming during training, we would like to
know which combinations of rare nets are compatible (or not).
Therefore, we compute the (in)compatibility of a set of rare nets
using a SAT solver. However, if there are 𝑁 rare nets, we would
need to invoke the SAT solver 2𝑁 times (2𝑁 subsets of 𝑁 rare
nets) to compute the compatibility/incompatibility of all possible
subsets of rare nets. Since such an approach is infeasible, we use
an approximate approach, as explained next.

Instead of computing the compatibility of all subsets of rare
nets, we only compute the compatibility of all subsets of size up to
𝑆 (<< 𝑁 ). This compatibility information is computed once and
saved for later use. During training, when the episode begins in
a random state (i.e., a singleton set with a random rare net), all
actions (i.e., rare nets) that are not compatible with the initial state
are trimmed off. Then, at each step, after choosing a valid action,
the available action list is updated to trim off all rare nets that are
not compatible with the latest chosen action.

4.5 Scalability: Pruning Number of Branches

Incorporating solutions 1 and 2 enables the agent to train well and
generate stealthy HTs for designs such as MIPS (≈ 25, 000 gates).
However, the agent’s performance on large designs (AES, GPS, and
mor1kx with > 150, 000 gates) is sub-optimal, as explained next.
Challenge 4 . Our updated RL framework (including solutions 1
and 2) is not scalable to large designs such as AES, GPS, and mor1kx.
For these designs, the agent is unable to learn an optimal/near-
optimal policy even after 12 hours of training (see the blue curve

Since the compatibility computation for each unique pair is independent, we parallelize
the computation to reduce the runtime. Additionally, since we already generate this
compatibility information for trimming actions, we also use it in the offline characteri-
zation algorithm (§4.3) when we check if a random rare net 𝑟 𝑗 from U is compatible
with C𝑖 . This helps reduce the runtime of the characterization algorithm.
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Figure 2: Agent’s inability/ability to learn without/with prun-

ing. Total runtime for all plots is 12 hours. The shaded region

represents the standard deviation.

in Figure 2). A possible workaround would be to train for longer
time, however, such an approach is not scalable for designs with
tight time-to-market constraints in the semiconductor industry.
Challenge 5 . Another limitation with the training process is that
for mor1kx, the agent generates only a small number of stealthy
HTs. This is due to the structure of the design, as described below.
Many rare nets are compatible with several other rare nets making
it relatively easier for detection tools to detect HTs. The agent
generated only 67 stealthy HTs across 12 hours of training. Ideally,
an HT generation framework should generate a large corpus of
stealthy HTs, providing an adversary with several options (footnote
5). Next, we outline how we overcome these challenges with a
unified solution that aids the agent in choosing better actions.
Solution 3. Recall that we initialize the agent in a random state
(i.e., with a random rare net). The agent needs to learn an optimal
sequence of decisions starting from each of the rare nets, i.e., the
agent needs to learn 𝑁 branches, where 𝑁 is the number of rare
nets in the design. Since AES, GPS, and mor1kx have a large number
of gates, in 12 hours, the agent performs 7, 923, 6, 562, and 8, 043
episodes, respectively. Thus, on average, for each branch, the agent
only performs 9.27, 7.69, and 12.54 episodes, respectively, which is
insufficient for the agent to learn. A simple approach to increase the
number of episodes per branch would be to increase the training
time. However, this approach is neither feasible nor scalable. A
better approach is to reduce, i.e., prune the number of branches for
the agent to learn. However, pruning needs to be done carefully so
that the branches that contain stealthy HTs are not pruned off.

We rely on the data collected during offline characterization to
decide which branches (i.e., rare nets as initial states) to prune. We
estimate the likelihood of each branch leading to easy-to-detect
HTs and choose the branches that are least likely. The likelihood,
𝐿(·), of each branch (i.e., rare net, denoted as 𝑟 𝑗 for 𝑗 = 1, 2, . . . , 𝑁 )
is estimated as the number of times that rare net is activated in
compatible sets, C𝑖 ’s, computed during characterization. Mathemat-
ically, 𝐿(𝑟 𝑗 ) =

��{𝑖 | 𝑟 𝑗 ∈ C𝑖 }
��. 𝐵 branches with the lowest 𝐿(·) are

picked, and the other branches are pruned off.
𝐵 controls the trade-off between the (ease of) learning of the

agent and the quality of generated HTs. Large values of 𝐵 provide
the agent a large space of candidate HTs to choose from. However,
the agent would need to learn more branches, requiring more time.
Smaller values of 𝐵 restrict the space from where the agent can
choose HTs (i.e., it could potentially miss out on some stealthy HTs
from the pruned-off branches), but assuming a fixed training time,
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Figure 3: Architecture of Attrition.

Table 3: Comparison of HT attack success rate (in percentage;

defined as 100 −HT activation rate) against TARMAC for AES,
GPS, and mor1kx: Random vs. RL without pruning vs. RL with

pruning (𝐵 = 1).

Design Randomly-
generated HTs

RL-generated HTs
No pruning With pruning Improv.

AES 48 81 99 1.22×
GPS 62 77 95 1.23×

mor1kx 1 9 87 9.66×

the number of episodes that the agent spends on each of the 𝐵
branches would be larger, allowing better learning. The red curves
in Figure 2 showcase the reward trends obtained after implementing
pruning: the reward curves ramp up quickly, i.e., the agent learns to
generate stealthy HTs. Additionally, we observe that with pruning,
the standard deviation in the reward values reduces to 0 as the
agent learns, whereas, without pruning, even after 12 hours (i.e.,
> 6, 000 episodes), either the standard deviation is still very large
(≈ 170 for AES and ≈ 214 for GPS) or the reward is close to 0 (for
mor1kx). Furthermore, we confirm that the HTs generated with
pruning have higher success rates (9.66×) than those generated
without pruning (Table 3). Having overcome all these challenges,
we discuss the final architecture of Attrition next.

4.6 Final Architecture

Figure 3 illustrates the final architecture of Attrition. Given a
design, we first identify the rare nets (based on a rareness thresh-
old) using functional simulations. Next, we perform two offline
computations: (i) compatibility information of each unique pair of
rare nets (for trimming actions) and (ii) likelihood of activation of
different combinations of rare nets (i.e., offline characterization).
Both computations are parallelized. Then, we begin the training
phase. If the design contains less than G gates, we initiate each
training episode with a random rare net. If the design contains more
than or equal to G gates, we use pruning (§4.5) and initiate each
training episode with a randomly picked rare net from the 𝐵 rare
nets that are not pruned off. In both cases, the agent takes action
(i.e., chooses a rare net) according to the policy (parameterized by a

neural network) and the trimmed action space (i.e., compatible rare
nets). The action chosen by the agent is evaluated to compute the
reward and to move the agent to the next state. This process repeats
𝑇𝑤𝑖𝑑 − 1 times (because the first rare net is already provided to the
agent as the initial state), constituting an episode. After a certain
number of episodes, the underlying RL algorithm translates the
rewards into losses, which are used to update the policy and value
neural networks. Eventually, the parameters of the neural networks
are tuned, losses become negligible, and reward saturates at the
maximum value. Finally, we use the best episodes (i.e., episodes that
have the largest rewards after the agent has converged) generated
by the agent to create our HTs. Attrition (i) is independent of
test patterns from HT detection techniques, (ii) has inexpensive
reward calculation while training, (iii) selects rare nets effectively,
and (iv) is scalable to large designs.

The final architecture described above is independent of detec-
tion techniques and test patterns. The objective of the RL agent is
not to evade a given set of test patterns; instead, an unknown set
of test patterns. It does so by selecting combinations of trigger nets
that are compatible but not likely to be activated simultaneously.
Thus, the HTs generated byAttrition are not likely to be activated
by the logic testing-based detection techniques (§5.2). On the other
hand, side channel-based detection techniques apply test patterns
to maximize the impact of the HT on side-channel modalities (i.e.,
switching activity). To have a measurable impact (beyond the noise
level) on switching activity, the HT needs to be activated by the de-
fender [25, 33]. However, since Attrition generates HTs that are
not likely to be activated, these HTs also evade side channel-based
detection techniques, as shown in §5.3. Thus, the HTs generated
byAttrition evade logic testing- and side channel-based detection
techniques considered in this work, as evidenced by our results.

5 RESULTS

We now explain our experimental setup and evaluate the perfor-
mance of Attrition in evading state-of-the-art hardware Trojan
(HT) detection techniques that are well-cited in academia and pub-
lished in premier security venues. We showcase the attack suc-
cess rates against logic testing-based (MERO [11], GA+SAT [44],
TGRL [41], TARMAC [34]) and side channel-based (MERS, MERS-h,
MERS-s [25], MaxSense [33]) detection techniques. Next, we demon-
strateAttrition’s ability to generate stealthy HTs of different sizes
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Table 4: Comparison of attack success rate (defined as 100−HT activation rate) for random HTs and Attrition-generated HTs

for logic testing-based detection techniques. All HTs have a trigger width (𝑇𝑤𝑖𝑑 ) of four. All numbers are in percentage.

Design # gates
# Random MERO [11] GA+SAT [44] TGRL [41] TARMAC [34] All Techniques Combined

rare Random RL Random RL Random RL Random RL Random RL Improv- Random RL Improv-
nets HTs HTs HTs HTs HTs HTs HTs HTs HTs HTs ement HTs HTs ement

c6288 2,416 186 68 77 1 40 1 55 21 48 0 41 >41× 0 10 >10×
c7552 3,513 282 91 94 61 88 50 98 21 64 0 54 >54× 0 44 >44×
s13207 1,801 604 97 100 85 99 21 96 97 99 1 71 71× 1 69 69×
s15850 2,412 649 100 100 92 93 34 89 97 99 2 67 33.5× 2 57 28.5×
MIPS 23,511 1,005 100 100 100 100 61 64 – – 1 88 88× 1 54 54×
AES 161,161 854 100 100 100 100 100 100 – – 48 99 2.06× 48 99 2.06×
GPS 193,141 853 100 100 100 100 96 100 – – 62 95 1.53× 62 95 1.53×

mor1kx 158,265 641 100 100 99 100 49 100 – – 1 87 87× 1 87 87×
Average 94.5 96.38 79.75 90 51.5 88 59 77.5 14.37 75.25 >47.26× 14.37 64.37 >37.01×

(i.e., trigger widths) followed by showcasing the ramifications of
HTs in performing cross-layer attacks.

5.1 Experimental Setup

Implementation Setup. We implement Attrition using PyTorch
1.12 and stable-baselines3 and train it using a Linux machine with
AMD Ryzen Threadripper PRO 3975WX with an NVIDIAA5000 GPU.
We use the Proximal Policy Optimization [48] as our reinforcement
learning (RL) algorithm. We have a two layered (64 × 64) fully-
connected neural network with Tanh activation function for our
policy and value networks. We select the reward parameters, 𝜌1
and 𝜌2, as −1000 and 500, respectively (§4). These values are chosen
so that reward is positive only when the agent selects rare nets that
are compatible (i.e., would form a valid HT), and the HT is likely to
evade the test patterns. We set 𝑇 , the number of iterations in the
offline characterization algorithm (§4.3), equal to the number of
test patterns used for the logic testing-based detection techniques.
We set the parameter 𝑆 , which controls the number of compatibility
calculations and the runtime for the calculations (§4.4), to be 2 since
the number of compatibility calculations for 𝑆 = 3 is much larger.
For example, for MIPS with 1005 rare nets, for 𝑆 = 2, the number of
calculations is 504, 510 whereas, for 𝑆 = 3, it is ≈ 1.6 × 108. We set
the parameter 𝐵, which controls the number of branches we do not
prune in §4.5, as 1 because that provides enough HTs for the agent
to explore and allows the agent to perform about 7, 000 episodes
of training in 12 hours. Based on empirical observations, we set
the threshold G, which decides whether to employ pruning or not,
as 100, 000 (§4.6). More details such as hyperparameters, reward
trends, training time, and other results are available in [20].
Evaluation Setup.We implement MERO [11], GA+SAT [44], TAR-
MAC [34],MERS [25],MERS-h [25],MERS-s [25], andMaxSense [33]
in Python 3.6, as they are not publicly available. We set a timeout of
24 hours on all detection techniques for generating the test patterns.
We received test patterns for TGRL from the authors of [41]. Addi-
tionally, we also generate random patterns for each design. Please
note that since Attrition is agnostic to the test patterns (§4.3), we
only require test patterns from detection techniques to evaluate our
generated HTs. We generate random HTs following the procedure

We reached out to the respective authors of the HT detection techniques but we did
not receive the test patterns at the time of submission.

outlined in the detection techniques, i.e., we randomly selected
the trigger nets from the set of rare nets. We verified the validity
of random HTs and Attrition generated HTs using a Boolean
satisfiability check. We evaluated 100 HTs in both cases and set the
trigger width, 𝑇𝑤𝑖𝑑 , (i.e., the number of rare nets constituting the
trigger) to be 4. Note that HTs with smaller trigger widths are easier
to detect than HTs with larger trigger widths since the probability
of activating the trigger is proportional to the product of the proba-
bilities of rare nets being set to their rare values. In our experiments,
we set the trigger width as 4 to constrain the adversary.
Designs. In addition to the designs used by the prior detection
techniques (i.e., the ISCAS-85 and ISCAS-89 benchmarks widely
used by the hardware security community [4, 16, 65]), we also per-
formed experiments on the MIPS processor from OpenCores [40],
AES [56], GPS module from Common Evaluation Platform [36], and
mor1kx [51]. Since the HT detection techniques assume full-scan
access, for sequential designs, we modified the designs accord-
ingly [11, 25, 33, 34, 41, 44]. Following prior work, the rareness
thresholds are: 0.1 for the ISCAS benchmarks, 9e-4 for MIPS, 7.2e-3
for AES, 4e-3 for GPS, and 1e-4 for mor1lx. These thresholds are
chosen to have about 1, 000 rare nets to enable a fair comparison
with prior work [11, 25, 33, 34, 41, 44].

5.2 Evaluation Against Logic testing Techniques

To evaluate the efficacy of Attrition, we define the metric attack
success rate as the percentage of HTs that evade the detection
techniques. Mathematically, it is equivalent to 100 − HT activation
rate (§2.2). We compare the attack success rates of randomly gener-
ated HTs and Attrition generated HTs against logic testing-based
detection techniques in Table 4.

Since we obtain the TGRL test patterns from [41], we use the
same number of test patterns for other logic testing-based HT
detection techniques to enable a fair comparison. However, the test
patterns did not match the designs for s13207 and s15850. Hence,
the success rates of randomly generated HTs are high for these
designs. Also, since TGRL does not show results for MIPS, AES, GPS,
and mor1kx [41], the corresponding cells in Table 4 are empty.

Full-scan access enables the defender to control the values of all flip-flops in the
designs, representing the best case scenario for the defender.
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Table 5: Comparison of side-channel sensitivities (lower value denotes more successful attack) for random HTs and Attrition-

generated HTs for side channel-based detection techniques. All HTs have a trigger width of four. All numbers are in percentage.

Design
Random MERS [25] MERS-h [25] MERS-s [25] MaxSense [33] All Techniques Combined

Random RL Random RL Random RL Random RL Random RL Improv- Random RL Improv-
HTs HTs HTs HTs HTs HTs HTs HTs HTs HTs ement HTs HTs ement

c6288 1.13 0.71 2.26 1.19 5.78 2.61 6.08 2.85 19.19 6.50 2.95× 19.21 7.18 2.67×
c7552 0.21 0.23 0.48 0.34 0.56 0.41 0.83 0.58 57.25 16.83 3.40× 57.25 16.83 3.40×
s13207 0.40 0.51 0.56 0.59 0.64 0.64 0.67 0.68 49.30 10.27 4.79× 49.30 10.27 4.79×
s15850 0.29 0.32 0.38 0.40 0.42 0.44 0.44 0.47 47.55 13.24 3.59× 47.55 13.24 3.59×
MIPS 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.02 2.12 2.48 0.85× 2.12 2.48 0.85×
AES 5.74e-3 4.97e-3 3.27e-3 4.09e-3 3.29e-3 4.12e-3 3.10e-3 3.65e-3 40.91 0.02 1667.80× 40.91 0.02 1667.80×
GPS 3.82e-3 4.08e-3 3.34e-3 2.14e-3 3.23e-3 2.10e-3 2.82e-3 2.12e-3 0.19 0.04 4.05× 0.19 0.04 4.04×

mor1kx 2.48e-3 2.80e-3 1.90e-3 0.91e-3 1.78e-3 0.98e-3 1.90e-3 0.91e-3 1.19 2.79 0.42× 1.19 2.79 0.42×
Average 0.26 0.22 0.46 0.32 0.93 0.51 1.01 0.57 27.21 6.52 210.98× 27.21 6.61 210.94×

Table 6: Attack success rate (%) for HTs generated by [47]

against TARMAC [34].

Design c432 c880 c1355 c1908 c3540 c6288 Average

Success Rate 0 0 0.02 0.15 0 0.02 0.03

Our results demonstrate the attack success rates of Attrition gen-
erated HTs to be significantly higher than randomly generated HTs,
i.e., our HTs are 47.26× more successful in evading the state-of-
the-art logic-testing technique, TARMAC [34]. On average, Attri-
tion generated HTs achieve a success rate of 96.38%, 90%, 88%,
77.5%, and 75.25% against test patterns generated from random,
MERO [11], GA+SAT [44], TGRL [41], and TARMAC [34], respec-
tively. In contrast, the success rates of randomly generated HTs are
94.5%, 79.75%, 51.5%, 59%, and 14.37%, respectively.

Additionally, since in realistic scenarios, the defender is not con-
strained to rely on a single detection technique, we also evaluate
the attack success rates against test patterns combined with all de-
tection techniques considered in this work. Even in such a scenario,
our attack success rates are 37× higher than the success rates of
randomly generated HTs. Hence, our results corroborate that the
HTs used by prior detection techniques [11, 34, 41, 44] provide a
false sense of security to the designers. Under the assumption of
randomly generated HTs, the state-of-the-art detection technique
(TARMAC [34]) detects 85% of the HTs; however, against a moti-
vated adversary (such as ours), TARMAC detects only 24% of the
HTs. Our results highlight that we can successfully insert

stealthy HTs even when a defender uses all logic testing-

based detection techniques considered in this work.

Recently, Sarihi et al. [47] proposed a technique that utilizes
RL to insert HTs. However, there are several fundamental differ-
ences between our work and [47], which are elucidated in §6.1.
We obtained the HT-inserted netlists from the authors of [47] and
evaluated the efficacy of their HTs through test patterns generated
by TARMAC. As shown in Table 6 the attack success rates of their
HTs are close to 0%. In comparison,Attrition-generated HTs have
a success rate of 58.25% for designs of similar sizes (<7K gates).

Table 7: Comparison of percentage of HTs with side-channel

sensitivity less than 10%, for randomly generated and Attri-

tion generated HTs against MaxSense [33].
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ge

Random HTs 27 19 5 13 100 0 100 99 45.37
RL HTs 81 71 60 60 97 100 100 97 83.25
Improv. 3.00× 3.73× 12× 4.61× 0.97× >100× 1× 0.97× >15.78×

5.3 Evaluation Against Side-channel Techniques

We evaluate the success rates of HTs generated by Attrition in
evading the side channel-based detection techniques in Table 5. To
that end, we compare the side-channel sensitivity (a metric chosen
by prior [25] and state-of-the-art side channel-based detection tech-
niques [33]) of randomly generated HTs withAttrition-generated
HTs in Table 5. Recall that side-channel sensitivity measures the
amount of switching caused by an HT relative to the switching in
an HT-free design (§2). A lower sensitivity value implies that the
impact of an HT on the side-channel metrics is overshadowed by
the impact of the regular circuit activity and environmental noise.
Therefore, lower values of side-channel sensitivity indicate a more
successful attack. On average, the sensitivity of test patterns gener-
ated from MaxSense [33] (the state-of-the-art side channel-based
technique) for Attrition-generated HTs is 210.98× lower than
randomly generated HTs. We also perform an experiment to com-
bine the test patterns generated from all detection techniques, in
such a scenario, the sensitivity of the combined set of test patterns
for Attrition-generated HTs is 210.94× lower than randomly gen-
erated HTs. As Table 5 and [33] demonstrate, MaxSense is by far
the best side channel-based HT detection technique (among the
techniques considered in this work), so, in the remainder of this
section, we perform further analysis of its efficacy. In particular, we
analyze the percentage of HTs evading detection from side channel-
based detection techniques based on the threshold (side-channel
sensitivity) of 10% used by prior works [5, 33]. An HT is considered
detected if the sensitivity is greater than the threshold, i.e., 10%.
Table 7 demonstrates the percentage of HTs evading detection from
MaxSense [33]. On average, 83% of Attrition generated HTs evade
detection from MaxSense [33], whereas, for randomly generated
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Table 8: Comparison of sensitivity to power consumption for

randomly generated and Attrition generated HTs against

MaxSense [33].
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Random HTs 18.84 56.32 52.41 53.89 0.23 0.18 0.02 3.83 23.21
RL HTs 6.68 15.97 11.23 16.38 0.06 0.03 0.02 0.28 6.33
Improv.

in stealthiness 2.81× 3.52× 4.66× 3.28× 3.55× 5.14× ∼ 1× 13.53× 4.68×

HTs (i.e., the evaluation approach used by prior work), only 45%
of the HTs evade detection. Our results highlight that we can

successfully insert HTs even when a defender uses all side

channel-based detection techniques considered in this work.

The side channel-based HT detection techniques considered in
this work evaluate the efficacy using logic simulation-based sensi-
tivity analysis as we did in Table 5. To further validate the efficacy
of Attrition, we performed power simulations to compare the
sensitivity of Attrition-generated HTs and randomly generated
HTs against MaxSense test patterns. In particular, following the
user guides of industrial tools, we executed the industrial tool flow
to measure the stealth of Attrition-generated HTs in evading
power-based side-channel analysis. Given the HT-inserted netlists
and MaxSense test patterns, we perform logic simulations using
Synopsys VCS to obtain a value change dump (VCD) that contains
information about the switching activity of all nets in the netlists.
This VCD and the academic NanGateOpenCell45nm library files
are provided to Synopsys PrimeTime (a widely-used industrial tool
used by semiconductor companies for power simulations to accu-
rately predict the power characteristics of a manufactured chip) to
obtain power consumption traces for the MaxSense test patterns.

The power traces for randomly- and Attrition-generated HTs
are compared with the power trace for the HT-free netlist to cal-
culate the percentage deviations in the power consumption, i.e.,
sensitivity to power consumption. Table 8 depicts this sensitiv-
ity for the randomly- and Attrition-generated HTs. On average,
the sensitivity of Attrition-generated HTs is 4.68× lower than
randomly-generated HTs.

5.4 Is Reinforcement Learning Necessary?

Till now, our results demonstrated that Attrition (consisting of
domain-specific optimizations and RL agent) generates stealthyHTs
that evade the detection techniques considered in this work. Here,
we showcase that RL is an integral part of Attrition and crucial
to generating stealthy HTs. To that end, we develop a new HT-
insertion algorithm called “Attrition minus RL.” In other words,
we use the same compatibility information, trimming, and detection
metrics as Attrition, but generate HTs without using an RL agent.
In particular, we generate HTs iteratively. In each iteration, a set of
trigger nets are chosen and evaluated using the characterization,
compatibility information, and trimming outlined in §4.3 and §4.4. If
trigger nets are (i) not compatible or (ii) activated by any of the sets
(C𝑖 ) from offline characterization, they are discarded. Otherwise,
we generate an HT. To enable fair comparison, this algorithm is
executed for the same duration as the RL training. We compare

Table 9: Comparison of attack success rate against TAR-

MAC [34] for Attrition minus RL, Synopsys TestMAX [54],

and Attrition.
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Attrition
minus RL 51 33 59 37 25 72 80 40 49.62

Impr./ Attrition
minus RL 0.80× 1.63× 1.20× 1.81× 3.52× 1.37× 1.18× 2.71× 1.71×

Synopsys
TestMAX 0 0 2 2 2 39 59 1 13.12

Impr./Synopsys
TestMAX >41× >54× 35.5× 33.5× 44× 2.53× 1.61× 87× >37.39×

the success rates of Attrition minus RL and Attrition against
TARMAC in Table 9.

Attrition minus RL achieves an average success rate of 49.62%
(Table 9) whereas Attrition has a success rate of 75.25% against
TARMAC (Table 4). MoreoverAttrition has a success rate of 1.71×
that of Attrition minus RL, showcasing that utilizing domain-
specific optimizations are not sufficient and that RL plays a signifi-
cant role in Attrition toward generating stealthy HTs.

Till now, we evaluated the efficacy of Attritionwith regards to
randomly generated HTs, which is consistent with the assumptions
made in detection techniques considered in this work. To further
demonstrate the improvement in stealthiness offered byAttrition,
we consider a better approach for inserting HTs, i.e., we generate
HTs that are guaranteed to evade test patterns generated by a
commercial IC testing tool. To that end, we generate test patterns
using Synopsys TestMAX (for a given design) and use a random
sampling approach to create a corpus of HTs that evade these test
patterns [54]. We showcase the success rates of the HTs generated
using TestMAX test patterns in Table 9. Results demonstrate the
superiority of Attrition-generated HTs; overall, we achieve a suc-
cess rate of >37.39× compared to HTs generated to evade TestMAX
test patterns.

Even though training an RL agent consumes time, the solutions
we developed to ensure scalability, Attrition generates stealthy
HTs in less than 12 hours, even for the largest designs.

5.5 Ramifications of Stealthy Hardware Trojans

Till now, our results demonstrated that Attrition generates HTs
that evade the considered detection techniques; however, this does
not necessarily imply that they can be used to launch practical at-
tacks. Here, we demonstrate the usefulness of Attrition generated
HTs by showcasing two case-studies that undermine the security
of the largest processor considered in this work, i.e., mor1kx.
Privilege Escalation. To perform privilege escalation, we need to
identify the high-level instructions an adversary should use to trig-
ger the rare nets, i.e., the Boolean values of the rare nets need to be
mapped to valid assembly-level instructions. Given Attrition gen-
erated rare nets, we write formal properties corresponding to the
values of those rare nets and use Cadence JasperGold to provide
binaries that would trigger the HT. Finally, we translate the binaries
into valid instructions using the processor architecture manual [30].

Since the generated HTs are guaranteed to evade test patterns; this approach is superior
to randomly-generated HTs.

 

1285



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Vasudev Gohil, Hao Guo, Satwik Patnaik, and Jeyavijayan Rajendran

D Q

Malicious

Privilege

Signal

CLK

Logic 1

0

1

Trigger

Inserted HT

SR[0]

mor1kx 

(Cappuccino)

FETCH

ICACHE

IMMU

Branch 

Predictions

D
E
C
O
D
E EXECUTE

ALU

FPU

LSU

DCACHE

DMMU

CONTROL

SR

Trigger 

Logic

Original

Privilege

Signal

Figure 4: HT performing privilege escalation in mor1kx.

Table 10: Instructions to launch a privilege escalation attack

and to activate a kill switch (i.e., force the processor in an

infinite loop) using Attrition generated HTs for mor1kx.

Clock Cycle Privilege Escalation Clock Cycle Kill Switch

1

3

6

9

12

l.j 0xc0000

l.bf 0x3ee7ef4

l.mtspr r7, r7, 0x0

l.j -0x123fff0

l.mulu r15, r15, r15

1

3

6

9

12

15

18

l.j -0x4

l.mtspr r18, r18, 0x0

l.mtspr r9, r18, 0x1000

l.jr r2

l.mtspr r5, r25, 0x4000

l.mtspr r11, r24, 0x0

l.mulu r31, r0, r0

Note that the devised HT that causes privilege escalation evades
all detection techniques considered in this work.

For mor1kx, one rare net chosen by Attrition is from the pro-
cessor control unit, another is from the system bus, and the other
two are from the fetch stage. The target flip-flop to perform privi-
lege escalation is a part of the special-purpose Supervision Register,
SR. The least significant bit of SR holds the mode of the processor:
0 indicates user mode and 1 indicates supervisor mode. Table 10
denotes the instruction sequence that needs to be executed to per-
form privilege escalation. The attack requires 12 clock cycles since
the first instruction l.j 0xc0000 to activate the HT that flips the
privilege bit (Figure 4).
Kill switch. Here, we demonstrate a case study on how Attri-
tion generated HTs can be used to force the mor1kx processor in
an infinite loop, i.e., stop further useful execution when the ma-
licious instructions are executed. Attrition picks the four rare
nets as follows: one from the system bus, one from the fetch stage,
and two from the processor control unit. The target register is the
program counter. Table 10 denotes the instruction sequence that
need to be executed to launch the attack. This attack requires 20
clock cycles since the first instruction l.j -0x4. Upon HT acti-
vation, the program counter gets stuck at 0x00000000 preventing
further execution until a restart is performed. Essentially, this HT is
a demonstration of a “kill switch” that can be activated by executing
a handful of malicious instructions.

Thus, these case studies demonstrate that an adversary can re-
purpose Attrition to design HTs that not only evade detection,
but also cause practical, cross-layer, and real-world attacks.

6 RELATED WORK AND DISCUSSION

While this work assumes a hardware Trojan (HT) inserted in an
untrusted foundry (§3), we highlight how our work relates to HTs
inserted during design time. We also demonstrate an additional

advantage of Attrition in generating dynamic HTs as opposed
to the static HTs available in TrustHub [59], a popular database
used by the hardware security community, and discuss potential
countermeasures. We refer an interested reader to the extended
version of this work [20] for a discussion on the resilience of At-
trition against other types of defenses and utilizing reinforcement
learning (RL) for attacks in other domains.

6.1 Hardware Trojan Insertion and Evasion

HTs can be inserted during design time (adversary is the third-
party intellectual property provider) or during fabrication time
(adversary in the foundry). Next, we highlight some examples of
HT insertion in an untrusted foundry. Lin et al. [31] designed an
HT that induced physical side-channels to leak the keys of an AES
cryptographic accelerator. Becker et al. [8] modified the dopant
polarity of transistors that forces the input of the logic gates to a
constant logic level of 0 or 1. Yang et al. [64] performed privilege
escalation using a capacitor-based HT on fabricated chips.

For HTs inserted during design time, researchers proposed var-
ious insertion and corresponding evasion techniques, leading to
a cat-and-mouse game, which we briefly outline next. [24] identi-
fies unused portions of the circuit during design-time testing and
flags them as potentially malicious. They attempt to detect HTs
by identifying pairs of dependent signals in the design that could
ostensibly be replaced by a wire without impacting the outcome of
verification test cases. However, Sturton et al. [52] thwarted [24] by
developing HTs such that no pair of dependent signals are always
equal during design-time testing. Functional analysis for nearly-
unused circuit identification (FANCI) identifies input wires that
can serve as backdoor triggers by measuring the degree of control
an input has on the outputs of a design [60]. VeriTrust examines
verification corners to identify trigger signals [68]. However, De-
Trust [69] evades FANCI [60] by spreading the trigger logic across
multiple combinational logic blocks, while HT triggers are hidden
into multiple sequential levels to deter VeriTrust [69].

More recently, Sarihi et al. [47] also utilize RL to insert HTs.
However, several key differences exist. First, the modeling of states,
actions, and rewards of both techniques differ considerably. Sec-
ond, Attrition focuses on inserting HTs that evade detection
techniques, whereas [47] insert HTs that maximize the number of
inputs (i.e., trigger width). Third, [47] does not evaluate the efficacy
of generated HTs in evading detection techniques. In contrast, the
prime objective of Attrition is generating HTs that evade detec-
tion techniques (across logic testing-based and side channel-based
approaches). Fourth, Attrition incorporates three solutions using
domain knowledge, rendering it scalable; such solutions providing
experimental evidence of scalability are missing in [47]. Finally, At-
trition demonstrates results on designs up to >190K gates, whereas
the largest design in [47] has only ≈7K gates.

In contrast, Attrition: (i) is an automated framework to gener-
ate stealthy HTs, requiring no manual intervention; (ii) can adapt
to new detection techniques and generate HTs dynamically, so, if a
new detection technique is developed in the future, our framework
would still hold even if the current HTs we generate may or may
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not; (iii) is not a point solution to defeat a specific detection tech-
nique unlike the efforts in the design-time attack model, so, is not
subject to a cat-and-mouse game of attacks and defenses.

6.2 “Static” Hardware Trojan Benchmarks

TrustHub [46, 59] is a database of different HT benchmarks (a total
of 91) and provides a common platform for researchers to evaluate
detection techniques. However, the HTs in TrustHub are created
from randomly selected rare nets, i.e., they do not reflect a real-
world adversary because the adversary inserts HTs in a directed
manner with the objective of evading detection. Moreover, these
benchmarks were last updated in 2017, and since then, there have
been several new HT detection techniques. So, the benchmarks
do not keep up with the developments in HT detection since they
are static, unlike our framework, which can generate HTs targeted
towards new detection techniques too.

After TrustHub, there have been several works that have devel-
oped automated tools for HT insertion [13, 49, 66]. However, most
automated tools for HT insertion rely on signal probability, i.e.,
the generated HTs have a very low probability of getting triggered
during logic testing [13]. Another limitation of these tools is that
they insert HTs in the design by randomly picking the rare nets
from a pool of rare nets [13, 66]. However, an adversary is not
constrained to design the trigger randomly. Instead, an adversary
would characterize the design space of the underlying design and
insert HTs that are likely to evade many detection techniques. Ad-
ditionally, the benchmarks from the aforementioned HT insertion
tools are “static” in nature, i.e., they have not evolved with time
and new detection techniques.

In contrast, Attrition generates HTs in an automated manner
and can readily adapt to new detection techniques, thereby gener-
ating HTs dynamically and providing a litmus test for existing (and
future) HT detection techniques. We envision that such a set of HT-
infested benchmarks can aid researchers in developing detection
techniques that do not provide a “false sense of security.”

6.3 Potential Countermeasures

Attrition generates stealthy HTs that evade eight detection tech-
niques spanning logic testing and side channel-based approaches
(§5). As a result, our work highlights the requirement of developing
robust HT detection techniques. Next, we outline two directions
that could potentially mitigate the attack presented in this work.

The first direction involves modifying the GDSII of the design to
prevent HT insertion. Designers can modify the GDSII by mak-
ing the design congested [12, 29, 57] or increasing the utiliza-
tion [12, 29, 57]. Such an approach makes the targeted insertion
of HTs difficult for an adversary. Recall that HT insertion entails
augmenting logic gates and wires into the underlying design, and
if there is a dearth of space (in terms of placement sites and/or rout-
ing tracks) in the GDSII, an attacker faces considerable challenges.
ICAS took the first step toward this direction [57], and the tool-
chain enables designers to evaluate the susceptibility of a GDSII
toward HT insertion. However, increasing congestion and utiliza-
tion of the chip is usually impractical since timing closure becomes
challenging [29]. Real-world designs such as processors are rarely
fabricated with utilization greater than 70% to allow engineering

change order-related fixes. This provides enough space for inserting
HTs, thereby limiting the efficacy of such defenses.

Another direction is a consequence of our results in Table 4.
Consider the design c6288 for which Attrition’s success rate is
low. This is due to the structure of the design where several rare
nets are compatible with each other, which increases the ease of
activating many rare nets simultaneously, leading to easy detection
of HTs. As part of future work, we intend to explore a way to
mitigate attacks such as Attrition by making changes to the
structure of a given design so that many rare nets are compatible
with each other. This way, we can make detecting HTs easier for
existing detection tools.

7 CONCLUSION AND RAMIFICATIONS

Hardware Trojans (HTs) inserted during fabrication pose a potent
threat to the security of integrated circuits. Unfortunately, we note
that state-of-the-art HT detection techniques have been tested only
with weak adversarial assumptions (i.e., random insertion of HTs),
providing a “false sense of security” for over a decade. This calls
for a critical rethinking of security evaluation methodologies for
HT detection techniques.

Aided by the power of reinforcement learning (RL), we devel-
oped Attrition that automatically generates stealthy HTs that
evade eight HT detection techniques from two different approaches,
including the state-of-the-art. To that end, we overcame five chal-
lenges related to computational complexity, efficiency, scalability,
and practicality using three solutions. We showcased the efficacy
of Attrition on different designs ranging from widely-used aca-
demic benchmarks to processors. Attrition achieved average at-
tack success rates 47× and 211× compared to randomly inserted
HTs against the state-of-the-art logic testing and side channel tech-
niques. Additionally, we illustrated cross-layer attacks through two
case studies (privilege escalation and kill switch) on the open-source
mor1kx processor, demonstrating an end-to-end methodology for
generating HTs that are not only stealthy, but also useful for realis-
tic attacks. As part of future work, we intend to examine how an
RL-based defender [21] can spar with an RL-based attacker (such
as Attrition) to generate interesting attacks and defenses.
Ramifications. Attrition calls for action on re-evaluating the
assumptions made by the HT detection techniques. Rather than con-
sidering randomly inserted HTs, developers of future HT detection
techniques must consider the existence of a motivated adversary. To
that end, Attrition (i) demonstrates the reduction in the efficacy
of HT detection techniques when Attrition generated HTs are
considered, (ii) aids in creating a suite of HT-infested designs that
can be used by researchers to benchmark the strength of their detec-
tion techniques, and (iii) urges the community to develop efficient
detection techniques that are scalable to real-world designs.
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