2022 19th International SoC Design Conference (ISOCC) | 978-1-6654-5971-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/I1SOCC56007.2022.10031569

978-1-6654-5971-6/22/$31.00 ©2022 IEEE

Reinforcement Learning for Hardware Security:
Opportunities, Developments, and Challenges

Satwik Patnaik, Vasudev Gohil, Hao Guo, and Jeyavijayan (JV) Rajendran

Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA
{satwik.patnaik, gohil.vasudev, guohao2019, jv.rajendran} @tamu.edu

Abstract—Reinforcement learning (RL) is a machine learning
paradigm where an autonomous agent learns to make an optimal
sequence of decisions by interacting with the underlying envi-
ronment. The promise demonstrated by RL-guided workflows in
unraveling electronic design automation problems has encour-
aged hardware security researchers to utilize autonomous RL
agents in solving domain-specific problems. From the perspective
of hardware security, such autonomous agents are appealing as
they can generate optimal actions in an unknown adversarial
environment. On the other hand, the continued globalization of
the integrated circuit supply chain has forced chip fabrication to
off-shore, untrustworthy entities, leading to increased concerns
about the security of the hardware. Furthermore, the unknown
adversarial environment and increasing design complexity make
it challenging for defenders to detect subtle modifications made
by attackers (a.k.a. hardware Trojans). In this brief, we outline
the development of RL agents in detecting hardware Trojans, one
of the most challenging hardware security problems. Addition-
ally, we outline potential opportunities and enlist the challenges
of applying RL to solve hardware security problems.

Index Terms—Reinforcement Learning, Hardware Security

I. INTRODUCTION

A. Reinforcement Learning

Reinforcement learning (RL) enables a computing system
(ak.a. agent) to learn using a trial-and-error approach by
exploring and exploiting the underlying environment. The
agent interacts with the environment and gradually realizes
how to take improved actions to maximize the total expected
reward [1]. Over time, the agent learns to take optimal actions
sequentially with limited or no prior knowledge regarding the
environment. Formally, RL solves the underlying problem by
modeling it as a Markov decision processes (MDP). An MDP
is defined to be a 5-tuple (X, A, P, R,~): X is the set of states;
A is the set of actions; P(x¢41|at, x¢) is the probability that
action a; in state x; leads to state x;4;; the reward function
ri41 = R(xy,ar) gives reward ryq after taking action a; in
state x4; the discount rate v, 0 < v < 1, discounts future
rewards to their present value.

B. Surge of RL in Solving EDA Problems

The pronounced capability shown by RL-based algorithms
in reducing human effort and providing optimal solutions
compared to heuristic and algorithm-driven computer-aided
design (CAD) tools have led researchers in the electronic
design automation (EDA) community to apply RL to domain-
specific problems [2]. For instance, Google demonstrated their
RL-based approach could generate optimal chip floorplans in
under six hours compared to human-generated floorplans that
take months [3]. Researchers have utilized RL for problems
ranging from logic synthesis [4], optimization of parameters
for placement [5], global routing [6], sizing of transistors [7],
gate-sizing to achieve timing closure [8], etc.

217

C. Globalization of IC Supply Chain and Associated Threats

On the other hand, design companies employ the continual
shrinking of technology nodes to develop faster and low-power
systems, which necessitates access to advanced technology
nodes. As the financial implications of commissioning, owning
and maintaining a state-of-the-art technology node (e.g., 3nm)
are exorbitant [9], design houses outsource the fabrication of
integrated circuits (ICs) to third-party, off-shore, potentially
untrustworthy foundries [10]. Outsourcing of fabrication leads
to security concerns ranging from piracy of the design in-
tellectual property (IP), unauthorized overproduction of ICs,
to insertion of malicious circuits (a.k.a. hardware Trojans
(HTs)) [10]. Security researchers widely recognize the in-
sertion of HTs as a pernicious threat. This is because HTs
inserted during fabrication cannot be removed, and the damage
incurred by HTs has far-reaching consequences [11].

D. RL for Hardware Security: Opportunities

Cybersecurity researchers have used RL agents to develop
promising approaches for some security problems, including
intrusion detection [12], fuzzing [13], [14], and developing
secure cyber-physical systems [15]. With the latest advance-
ments in RL algorithms and from the perspective of hardware
security, such autonomous RL agents are appealing as they can
efficiently navigate high-dimensional search space and gener-
ate optimal actions in an unknown adversarial environment.
However, using RL for hardware security problems is in its
infancy, and researchers have primarily focused on employing
RL for detection of HTs [16], [17], [18], [19] barring recent
works on employing RL for insertion of HTs [20], [21].

II. DETECTING HARDWARE TROJANS USING RL

Logic-testing and side-channel analysis are the two primary
classes of techniques used to detect HTs.
Logic testing-based techniques apply test patterns and monitor
the outputs to measure deviations from the expected, i.e.,
golden output [17], [18]. These techniques suffer from three
limitations: (i) generating test patterns that activate all possible
combinational and sequential triggers are challenging, (ii) de-
tecting HTs that are devoid of any triggering mechanism (e.g.,
always-on) or HTs without payloads, and (iii) requiring im-
provement in controllability and observability through design
modifications, resulting in area and power overheads.
Side channel-based techniques monitor side-channel informa-
tion (e.g., power, delay) instead of the output response. These
techniques do not require the HT to be fully activated or propa-
gate its impact to the primary outputs, rendering it a practical
approach over logic testing-based HT detection techniques.
These techniques suffer from two limitations: (i) multiple
golden ICs are required to create the golden signature, and
(i1) the impact of HTs on side-channels can be overshadowed
by environmental noise (e.g., process variations). Next, we

Authorized licensed use limited to: Texas A M University. Downloaded on May 03,2023 at 01:22:50 UTC from IEEE Xplore. Restrictions apply.

ISOCC 2022

summarize efforts by researchers in utilizing RL to detect HTs
inserted by an untrustworthy foundry.

Test Generation using RL for Delay-based Side-Channel
Analysis. Pan et al. [16] proposed an RL-based test generation
method for delay-based HT detection. Unlike existing methods
that rely on the delay difference of a few gates, this approach
utilizes critical path analysis to generate test vectors that
maximizes the side-channel sensitivity. The authors sub-divide
the problem of generating effective test patterns to detect HT's
into: (i) how to find a good initial test for triggering the HT,
and (ii) how to efficiently generate proper succeeding tests to
switch triggering signals.

TGRL. Pan et al. [17] attempt to solve the issues about
scalability and detection accuracy by proposing a logic testing-
based approach using a combination of testability analysis
and RL. The authors train the RL model using a stochastic
learning scheme that generates test patterns, continuously
improving itself to cover as many suspicious nodes as possible.
TGRL drastically reduces the test generation time (6.54x
on average) and detects a vast majority of the Trojans in
all benchmarks (96% on average), a significant improvement
(14.5% on average) compared to state-of-the-art techniques.
DETERRENT. Gohil ef al. [18] aim to find a minimal set of
test patterns that can activate all combinations of rare nets.!
This is based on the premise that a single test pattern can
simultaneously activate multiple combinations of rare nets.
The authors define compatible rare nets if there exists a
test pattern that can activate all the rare nets (in a given
set) simultaneously and develop an RL agent that generates
maximal sets of compatible rare nets [18]. DETERRENT
achieves two orders of magnitude reduction (169x) in the
number of test patterns over TGRL [17] while improving
accuracy.

AdaTest. Chen et al. [19] proposed AdaTest that leverages RL
and integrates adaptive sampling to prioritize test samples that
provide more information for HT detection. Such a process
progressively generates test patterns with high ‘reward’ values.
Although AdaTest demonstrates up to two orders of test
generation speedup and two orders of test set size reduction
compared to the prior works, they do not showcase any results
with regards to other RL-based approaches [17], [18].

III. CHALLENGES IN APPLYING RL
To use RL effectively for hardware security problems, one

long evaluation time, off-policy and offline RL methods can
be applied, which do not require real-time interaction with
the environment. Methods such as offline characterization and
pre-computation of data can be performed based on domain-
specific hardware security problems.

Generality. The current RL approaches for HT detection
produce test patterns for individual benchmarks using separate
agents. Whether a trained model can be transferred to unseen
data remains a challenge. Designing model architectures that
can work on unseen data using principles of transfer learning
and/or meta-learning are promising directions.

IV. CONCLUSION

In this brief, we summarized the efforts undertaken by
hardware security researchers in utilizing RL to address one
of the consequential hardware security problems, i.e., the
detection of HTs inserted by an untrustworthy foundry. Then,
we outline some general challenges that need to be solved
when applying RL to other hardware security problems. These
challenges and research directions hopefully would inspire
future research for employing RL in hardware security, both
in the development of attacks and defenses.

ACKNOWLEDGMENTS

The work was partially supported by the National Science
Foundation (NSF CNS-1822848 and NSF DGE-2039610).

REFERENCES

[1] R.S. Sutton et al., Reinforcement learning: An introduction. MIT press,
2018.

[2] A. F. Budak et al., “Reinforcement Learning for Electronic Design
Automation: Case Studies and Perspectives,” in Proc. ASPDAC, 2022,
pp. 500-505.

[3] A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, no. 7862, pp. 207-212, 2021.

[4] A. Hosny et al., “DRILLS: Deep Reinforcement Learning for Logic
Synthesis,” in Proc. ASPDAC, 2020, pp. 581-586.

[5] A. Agnesina et al., “VLSI Placement Parameter Optimization using
Deep Reinforcement Learning,” in Proc. ICCAD, 2020, pp. 1-9.

[6] H. Liao er al., “A Deep Reinforcement Learning Approach for Global
Routing,” Journal of Mechanical Design, vol. 142, no. 6, 2020.

[71 Z. Zhao et al., “Deep Reinforcement Learning for Analog Circuit
Sizing,” in Proc. ISCAS, 2020, pp. 1-5.

[8] Y.-C. Lu et al., “RL-Sizer: VLSI Gate Sizing for Timing Optimization
using Deep Reinforcement Learning,” in Proc. DAC, 2021, pp. 733-738.

[9] R. Zafar, “TSMC’s Total 3nm Investment Will Equal At Least $ 23
Billion,” https://wccftech.com/tsmc-3nm-investment-23-billion-project-
end/, 2021, [Online; last accessed 2-May-2022].

needs to identify whether the underlying problem can be [10] M. Rostami ef al., “A Primer on Hardware Security: Models, Methods,
m n MDP an hether there exi notion of and Metrics,” Proc. of the IEEE, vol. 102, no. 8, pp. 1283-1295, 2014.
apped' to a .. a d Wwhethe t.e ce St.s a notion of a [11] K. Yang et al., “A2: Analog Malicious Hardware,” in Proc. IEEE
Sequentlal deCISlon"maklng process n the actions. Symposium on Security and Privacy (S&P’16), 2016, pp. 18-37.
Problem Complexity. The RL problem needs to be formulated [12] G. Caminero et al., “Adversarial environment reinforcement learning
so that the training process is efficient. The complexity of the gl6g01ré)tgmz Of% intrusion detection,” Computer Networks, vol. 159, pp.
trammg' process 18 d_lre(fﬂy related t(? the CmeIGXIty of the [13] K. B(itiinger et al., “Deep Reinforcement Fuzzing,” in Proc. IEEE
underlying game, which is measured either with the state-space Security and Privacy Workshops (SPW), 2018, pp. 116-122.
complexity or game tree complexity.2 [14] D. Wang et al., “SyzVegas: Beating Kernel Fuzzing Odds with Rein-
P . Y . g P Yo . forcement Learning,” in Proc. 30th USENIX Security, 2021, pp. 2741-
Evaluation Time. The reward computation time for RL should 2758,
not be the bottleneck; in other words, the computation time [15] H.-D. Tran er al., “Safety Verification of Cyber-Physical Systems with
for the reward should be quick and inexpensive. As opposed Reinforcement Learning Control,” TECS, vol. 18, no. 5, pp. 1-22, 2019.
q . P PP [16] Z. Pan et al., “Test Generation using Reinforcement Learning for Delay-
to EDA problems, where at times, the reward can be evalu- based Side-Channel Analysis.” in Proc. ICCAD, 2020, pp. 1-7.
ated/computed by running processes within commercial tools, [17] , “Automated Test Generation for Hardware Trojan Detection using
which can be computationally expensive, one needs to figure Reinforcement Learning,” in Proc. ASPDAC, 2021, pp. 408-413.
P Yy expe . 8 [18] V. Gohil ef al., “DETERRENT: Detecting Trojans using Reinforcement
out methods to aCCurately characterize the underlylng environ- Learning,” in Proc. 59th ACM/IEEE DAC, 2022, pp. 697-702.
ment to generate rewards quickly. To address the challenge of [19] H. Chen er al., “AdaTest: Reinforcement Learning and Adaptive Sam-
pling for On-chip Hardware Trojan Detection,” arXiv:2204.06117, 2022.
1 . . : : [20] V. Gohil et al., “ATTRITION: Attacking Static Hardware Trojan Detec-
”ljhe problem of deternpmn_g a minimal set of test patterns is a variant of tion Techniqués Using Reinforcement Learning,” in ACM SIGSAC CCS
the set-cover problem, which is NP-complete. (to appear), 2022
2State-space complexity is defined as the number of legal game positions [21] A. Sarihi et al, “Hardware Trojan Insertion Using Reinforcement
obtainable from the initial position of the game, while the game tree Learning,” in Proc. of GLSVLSI, 2022, pp. 139-142.
complexity is defined as the number of leaf nodes in the solution search ~ [22] H. J. Van Den Herik ef al., “Games solved: Now and in the future,”
tree of the initial position of the game [22]. Artificial Intelligence, vol. 134, no. 1-2, pp. 277-311, 2002.
978-1-6654-5971-6/22/$31.00 ©2022 IEEE 218 ISOCC 2022

Authorized licensed use limited to: Texas A M University. Downloaded on May 03,2023 at 01:22:50 UTC from IEEE Xplore. Restrictions apply.

