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Abstract

The annotated whole genome sequences of five cultured phietaviruses infecting Staphylococcus aureus
are presented. They are closely related to prophages previously sequenced as part of S. aureus
genomes. Three of these viruses were confirmed to be temperate in laboratory.

Announcement

Staphylococcus aureus is a human commensal bacterium that has the potential to cause life-threatening
infection (1). Its interactions with bacteriophages are an increasingly studied part of microbiome studies
(2). We present the annotated genomes of five, plaque-purified S. aureus temperate phages in genus
Phietavirus (3). Four aliquots of municipal wastewater influent from a Mid-Atlantic, US, treatment plant
were collected in March 2021. To enrich for S. aureus phages, five mL of each sample was co-cultured
with S. aureus RN4220 (4) in tryptic soy broth containing 10 mM CaCl, (TSB, 5). Phages were isolated
using centrifugation and 0.22 um filtration before plating with S. aureus RN4220 using the pour-plate
technique. Plaques underwent three rounds of subculturing through single plaques to yield purified
phage stocks (6). Transduction analysis was conducted on the isolated phages using a chloramphenicol-
resistant S. aureus donor strain (7, 8). Each of the phages were cocultured with the donor strain in TSB
with 10 pg mL? chloramphenicol. Phages were isolated by 0.22 um filtration and cocultured with
chloramphenicol-sensitive S. aureus RN4220 for one hour. The recipient cells were pelleted by
centrifugation and free phage removed by decanting. The bacterial pellet was resuspended in 100 mM
sodium citrate, and plated on selective on solid tryptic soy medium containing 10 pg mL™
chloramphenicol. Three phages with transducing ability (SAP1, SAP2 and SAP13, for S. aureus phage) and
two with negative results (SAP3, SAP8) were chosen for further analysis. The DNA genomes of these five
phages were extracted using QlAamp MinElute Virus Spin Kits.

Paired end (2x150bp) lllumina sequencing was performed on NextSeq 2000 at MiGS (Microbial Genome
Sequencing Center). Reads were analyzed using CPT Galaxy Phage genome assembler v2021.01
Workflow (9), which produced linear contigs with small overlaps at the end which suggested the
genomes were circular. The overlaps were manually cut. Taxonomic assignment of five genomes with
dsDNA phage genomes was performed with GRAVIiTy v1.1.0 (10), which showed they were phietaviruses
(symmetrical Theil’s U(Ref, Pred): 0.863) related to SAP26 (GU477322, which was arbitrarily linearized).
The genomes were reoriented to reflect the termini of Staphylococcus prophages from a closely related
genus (e.g. DQ530359). Genome annotation was performed as previously published (11, 12): ORFs were
annotated using Prokka (parameters Genus: Phietavirus, Kingdom: Viruses) (v1.14.6, Galaxy) (13),
further annotated for functionality with PHROGs v4 (14) database and Phyre2 v2.0 (15), and non-
protein-coding features were identified including tRNAs (tRNAscan-SE v. 2.0) (16), terminators (ARNold
v1.0) (17), ncRNAs (Rfam v14.8) (18), and promoters (Genome2D Prokaryote Promoter Prediction) (19).
Sequence coverage was calculated using Map with BWA-MEM (v0.7.17.2, Galaxy) (20) and Samtools
depth (v1.13, Galaxy) (21). Default parameters were used except where otherwise noted.

The five SAP genomes are ~43KB (Table 1) and portions of the genomes are very similar to one another
(the most divergent pair, SAP1 and SAPS8, are 294% identity by BLAST over 60% of the genome). There
was significant synteny between the 63-69 ORFS of the genomes (Figure 1). The closest BLAST hits to
these phage genomes in the NCBI nr database are all prophages within S. aureus genomes (e.g., SAP3 is
100% identical, 100% query cover by BLAST to CP051919).
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Table 1: Summary of SAP Genomic Characteristics

Genome # of # of # of Putative Average GC GenBank
Phage Length Predicted Putative Rho-independent Sequencing Content accession
(bp) ORFs Promoters Terminators Coverage number

SAP1 43,962 68 10 22 9,518x 34.3% ON911714

SAP2 43,863 69 6 23 9,069x 34.0% ON911715

SAP3 43,586 66 11 18 11,412x 34.6% ON911716

SAPS8 42,981 63 8 20 11,997x 34.1% ON911717

SAP13 43,478 67 10 25 11,145x 34.6% ON911718

Figure 1: Genomic maps of the five phage genomes. Colors indicate blocks of homology, ORFs without

homology with other SAP genomes are depicted in white. All have integrase genes at the 5’ end

indicating they are likely capable of lysogeny. They share a large, syntenous block of genes towards the
3’ end containing structural and hypothetical proteins.
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Data availability

Genomes are in GenBank: accession numbers ON911714 (SAP1), ON911715 (SAP2), ON911716 (SAP3),
ON911717 (SAP8), ON911718 (SAP13). lllumina data are available in the NCBI SRA (PRINA857681). The
phages are available by request from the corresponding authors.
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