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1. INTRODUCTION

Consider a collection of d Hermitian matrices X1, . . . , Xd

in R
n×n and a d-tuple λ = (λ1, . . . , λd) ∈ R

d. Let us
consider the problem determined by the computation of
a collection of joint approximate eigenvectors that can
be represented as a rectangular matrix W ∈ C

n×r with
orthonormal columns such that

W = arg min
Ŵ∈Rn×r

d
∑

j=1

∥

∥

∥
XjŴ − ŴΛj

∥

∥

∥

2

F
. (1)

Solutions to problem (1) can be used for model order
reduction as will be illustrated in §4.

Given one Hermitian matrix X we are only interested
in the real part of the pseudospectrum. By the usual
definition, real λ is in the ϵ-pseudospectrum of X if

∥

∥(X − λ)−1
∥

∥

−1
≤ ϵ.

One can easily see this is equivalent to the condition

∃v such that ∥v∥ = 1 and ∥Xv − λv∥ ≤ ϵ.

We will call ∥Xv − λv∥ the eigen-error. This comes up all
the time in applications, and the less matrices commute
the more it must be considered.

For Hermitian matrices X1, X2, . . . , Xd we often want a
unit vector with the various eigen-errors small. There are
many ways to combine d errors, such as their sum or
maximum. Not surprisingly, a clean theory arises when
we consider the quadratic mean of the eigen-errors.

Here then is a definition of a pseudospectrum. In the
noncommutative setting, there are several notions of joint
spectrum and joint pseudospectrum that compete for our
attention, such as one using Clifford algebras (Loring,
2015). None is best is all settings.

Definition 1. Suppose we have finitely many Hermitian
matrices X1, X2 , . . . , Xd. Suppose ϵ > 0. A d-tuple λ is
an element of the quadratic ϵ-pseudospectrum of (X1, X2

, . . . , Xd) if there exists as unit vector v so that
√

√

√

√

d
∑

j=1

∥Xjv − λjv∥
2
≤ ϵ. (2)
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If (2) is true for ϵ = 0 then we say λ is an element of the
quadratic spectrum of (X1, X2 , . . . , Xd). The notation
for the quadratic ϵ-pseudospectrum of (X1, X2 , . . . , Xd)
is QΛϵ(X1, X2, . . . , Xd).

Remark 2. Very simple examples show that the quadratic
spectrum can often be empty.

It should be said that the more interesting examples of
this tend to require calculation, or at least approximation,
by numerical methods. Often the best way to display the
data is via images of 2D slices through the function

λ 7→ µQ
λ
(X1, . . . , Xd)

where we define

µQ
λ
(X1, . . . , Xd) = min

∥v∥=1

√

√

√

√

d
∑

j=1

∥Xjv − λjv∥
2
. (3)

That is, we have a measure of how good of a joint approx-
imate eigenvector we can find at λ. Then, of course, the
more traditional interpretation of QΛϵ(X1, X2, . . . , Xd) as
the sublevel sets of this function.

Remark 3. We will make frequent use of the following
notation:

Qλ(X1, . . . , Xd) =
d

∑

j=1

(Xj − λj)
2
,

Mλ(X1, . . . , Xd) =







X1 − λ1

...
Xd − λd







Finally we use σmin to indicate the smallest singular value
of a matrix.

As a particular application of quadratic pseudospectrum
based techniques, for the computation of truncated joint
approximate eigenbases, in section §4 we will present
an application of these quadratic pseudospectral based
methods to the computation of a reduced order model for
a discrete-time system related to least squares realization
of linear time invariant models (De Moor, 2019).

2. MAIN RESULTS

We now list the main results that corresponding to some
important properties of the quadratic pseudospectrum.
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Proposition 4. Suppose that X1, X2, . . . , Xd are Hermi-
tian matrices, that ϵ > 0 and λ is in R

d. The following
are equivalent.

(1) λ is an element of the quadratic ϵ-pseudospectrum of
(X1, X2, . . . , Xd);

(2) σmin (Mλ(X1, . . . , Xd)) ≤ ϵ;
(3) σmin (Qλ(X1, . . . , Xd)) ≤ ϵ2.

The following technical result is very helpful for numerical
calculations. Assuming that one does not care about the

exact value of µQ
λ
(X1, . . . , Xd) once this value is above

some cutoff, then knowing Lipschitz continuity allows one
to skip calculating this values at many points near where
a high value has been found.

Proposition 5. Suppose that X1, X2, . . . , Xd are Hermi-
tian matrices. The function

λ 7→ µQ
λ
(X1, . . . , Xd),

with domain R
d, is Lipschitz with Lipschitz constant 1.

For details on the proofs of Propositions 4 and 5, the reader
is kindly referred to (Cerjan et al., 2022).

3. ALGORITHM

Combining the ideas and methods presented in (Eynard
et al., 2015) and (Cardoso and Souloumiac, 1996), with the
ideas and results presented in §2, we obtained Algorithm
1.

Algorithm 1: Approximate Joint Eigenvectors Com-
putation

Data: Hermitian matrices: X1, . . . , Xd ∈ R
n×n,

d-tuple λ ∈ C
d, Integer: 1 ≤ k ≤ n,

Threshold: δ > 0, Selector: ϕ
Result: Partial isometry V ∈ O(n, k)
0: Set the choice indicator value ϕ: ϕ = 0 for smallest

eigenvalues or ϕ = 1 for largest eigenvales;

1: Set L :=
∑N

j=1(Xj − λjIn)
2;

2: Approximately solve LV = V Λ for
V ∈ C

n×k,Λ ∈ C
k×k according to the flag value ϕ;

for j ← 1 to d do

3.0: Set Yj := V ⊤(Xj − λjIn)V ;

3.1: Set Yj := (Yj + Y ⊤
j )/2;

end

4: Solve W = argminU∈O(n)

∑d

k=1 off(U
⊤YkU) using

complex valued Jacobi-like techniques as in Cardoso
and Souloumiac (1996) with threshold= δ.;

5: Set V := VW ;
return V

In this document, the operation A⊤ represents the trans-
pose of some given matrix A.

4. EXAMPLE

Consider the discrete-time system with states x1(t) and
x2(t) in R

400:

x1(t+ 1) = A1x1(t), x2(t+ 1) = A2x1(t+ 1), (4)

y1(t) = ê⊤1,400x1(t), y2(t) = ê⊤2,400x2(t),

for some given matrices A1, A2 ∈ R
400×400 such that

A1A2 = A2A1 that are generated with the program

Fig. 1. Original system and ROM outputs.

QLMORDemo.py available at (Vides, 2021)., here ê1,400 and
ê2,400 denote the first and second columns of the identity
matrix in R

400×400, respectively. Let us consider the ma-
trices

H1 = A⊤
1 A1,

H2 = A⊤
2 A2,

H3 = A⊤
1 A2 +A⊤

2 A1

We can apply Algorithm 1 toH1, H2, H3 with δ = 10−5 ob-
taining the matrix V ∈ R

400×6 with orthonormal columns,
that can be used to compute a model order reduction for
(4), determined by the following equations.

x̂1(t+ 1) = V ⊤A1V x̂1(t), x̂2(t+ 1) = V ⊤A2V x̂1(t+ 1),

ŷ1(t) = ê⊤1,400V x̂1(t), ŷ2(t) = ê⊤2,400V x̂2(t).

The outputs corresponding to the original and reduced
order models are plotted in Figure 1.
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