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The angular momentum radiated in gravitational scattering can be changed by performing a super-
translation of the asymptotic metric, i.e., by adding radiation with infinite wavelength to the metric. This
puzzling property can be avoided by adopting a supertranslation-invariant definition of the angular
momentum flux in general relativity. Definitions currently available in the literature cannot reproduce the
flux necessary to obtain the correct radiation reaction effects in gravitational scattering. They also disagree
with computations of the flux performed using scattering amplitudes and soft-graviton theorems. In this
Letter, we provide a new supertranslation-invariant definition of the angular momentum flux in
gravitational scattering that uses only asymptotic metric data and reproduces the flux necessary to obtain
the correct radiation reaction effects.
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Gravitational scattering produces radiation that carries
away energy, momentum, and angular momentum. These
quantities can be defined rigorously using the formalism
developed in [1–4]. They are computed at future null
infinity Iþ in Bondi-Sachs coordinates
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where the mass aspect mðΘ; uÞ is a scalar, the angular
momentum aspect NAðΘ; uÞ is a vector, and the shear
CABðΘ; uÞ is a symmetric and traceless tensor. All these
quantities are defined on the celestial sphere with coordi-
nates ΘA and round metric hAB and also depend on the
retarded time u. The dots in (1) denote subdominant terms in
1=r. The coordinate system in Eq. (1) is left invariant by the
asymptotic symmetries u → uþ fðΘÞ, called supertransla-
tions [2]. Energy and angular momentum are defined in
terms of m, NA, and the three Killing vectors YA of the
celestial sphere [2]

EðuÞ ¼ 1
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ffiffiffi
h

p
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h

p
YANAðθ; uÞ: ð2Þ

By definition, the Killing vectors obey DAYB þDBYA ¼ 0.
When it is well defined, the total energy flux ΔE≡
Eðþ∞Þ − Eð−∞Þ is invariant under supertranslations,
while the angular momentum flux ΔJY ≡ JYðþ∞Þ −
JYð−∞Þ is not, as first noticed in [5].
Supertranslation-invariant definitions of the angular

momentum flux for finitely radiating systems were given
in [6] and later, independently, in [7,8]. A definition of the
angular momentum flux in terms of bulk integrals of soft-
graviton dressed canonical degrees of freedom was given
in [9]. All these definitions coincide and amount to a
simple prescription: replace NAðu;ΘÞ in Eq. (2) with
NAðu; θÞ − 2mðu;ΘÞDACðΘÞ,

JBMS
Y ðuÞ¼ 1

8πG

Z
d2Θ

ffiffiffi
h

p
YA½NAðθ;uÞ−2mðu;ΘÞDACðΘÞ':

ð3Þ

The superscript “BMS” denotes supertranslation-invariant
quantities. The change in angular momentum flux implied
by this prescription cannot be reabsorbed in a local
redefinition of NA because it uses the boundary graviton
C, which is defined at u ¼ −∞ by

lim
u→−∞

CABðu;ΘAÞ ¼−2DADBCðΘAÞþhABD2CðΘAÞ: ð4Þ

The angular momentum fluxΔJBMS
Y can be written also as a

3D integral over future null infinity [9,10]. Assuming that
the only massless field relevant to the scattering is the
graviton, we find
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ĈABðu;ΘÞ≡ CABðu;ΘÞ − CABð−∞;ΘÞ ¼
Z

þ∞

−∞
duNAB;

NAB ¼ ∂uCAB: ð6Þ

The non-supertranslation-invariant definition of ΔJY given
in Eq. (2) is the same, except for the replacement
ĈAB → CAB.
Equation (5) is a natural but not unique definition of the

angular momentum flux. When the radiating system
reverts back to empty space, it defines an angular
momentum that, together with translations and with the
definition of boosts given in [9], generates the Poincaré
algebra by Poisson brackets and coincides with the usual
definition of angular momentum for boosted Kerr black
holes and Minkowski space [9]. Reference [11] proves
that it is also cross section continuous. All would be well if
it were not for a fly in the ointment, namely, the
contribution of radiation reaction to gravitational scatter-
ing. It first appears at third post-Minkowskian, OðG3Þ
order and has been computed by Damour in [12] using
linear response theory [13]. The computation has been
confirmed by several independent computations used by
various groups using different methods [14–18]. The
linear response theory requires ΔJY to be OðG2Þ, but
the lowest order at which the Bondi news NAB can be
nonzero is OðG2Þ, so Eq. (5) implies ΔJBMS

Y ¼ OðG3Þ.
Clearly, the angular momentum flux computed in [12] and
derived by different methods in [19,20] is not the BMS-
invariant one. It is instead the non-BMS-invariant
expression computed using (2) in a particular BMS
frame [21]. The special frame is defined perturbatively
in G in terms of the initial scattering data, namely, the
energies and momenta of the incoming particles [21]. In
that frame, the boundary graviton CðΘÞ is nonzero and is
also defined in terms of particle energy and momenta. It
was computed explicitly in [21] and is implicitly given
in [19,20] (see also [22]). Because the BMS-invariant
angular momentum in (5) precisely subtracts CðΘÞ, it
differs from the one used in [12,19,20]. The explicit
relation between the flux used by Damour, which we shall
call ΔJDY , and the BMS-invariant one ΔJBMS

Y is

ΔJDY ¼ΔJBMS
Y þ 1

4πG

Z
d2Θ

ffiffiffi
h

p
YAΔmðΘÞDAβðp;ΘÞ: ð7Þ

Here ΔmðΘÞ ¼ mðþ∞;ΘÞ −mð−∞;ΘÞ, while βðp;ΘÞ
is the boundary graviton computed in [21]. These
notations make clear that β is a function of the n initial
four-momenta of the initial particles p ¼ ðp1;…; pNÞ.

Explicitly [21], the metric is written as gμν ¼ ημν þ δgμν,
δgμν ¼ OðGÞ, the signature is mostly plus, and

βðp;ΘÞ ¼
XN

I¼1

2GmIðn · vIÞ logð−n · vIÞ: ð8Þ

Here n · v≡ nμvμημν, v
μ
I is the four-velocity of the Ith

particle, mI is its mass, and nμ ¼ ð1; niÞ, xi ¼ rni, andP
3
i¼1 n

ini ¼ 1. Notice that the sign of β in (8) is the
opposite of Ref. [21] because for us β is the boundary
graviton, while for [21] it is the supertranslation that sets
the shear to zero.
The angular momentum flux ΔJDY is BMS invariant by

construction since it is computed in a specific BMS
frame, but it is not defined in terms of the true, BMS-
independent asymptotic degrees of freedom NABðu;ΘÞ
and mðu;ΘÞ.
The purpose of this Letter is to present a new formula for

the angular momentum, which we shall call JnewY ðuÞ,
possessing the following properties: (a) It is written purely
in terms of asymptotic data. (b) It gives a supertranslation-
invariant total flux ΔJnewY ¼ JnewY ðþ∞Þ − JnewY ð−∞Þ such
that ΔJnewY ¼ ΔJDY for a system of massive point particles.
(c) The JnewY ð−∞Þ generate the rotation algebra. (d) When
the limit u → −∞ is well defined, in particular for sta-
tionary spacetimes, JnewY ð−∞Þ ¼ JBMS

Y ð−∞Þ ¼ JYð−∞Þ.
We shall make no attempt to justify our formula from any

principle. In particular, we shall not try to understand why
the Damour formula for angular momentum flux is the
correct one for radiation reaction computations. We refer
to [21] for a discussion on this point.
To begin with, we need some identities valid for any

velocity vector v and γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
,

DADBðn · vÞ ¼ −hABðγ þ n · vÞ; ð9Þ

DAðn · vÞDAðn · vÞ ¼ −½1þ ðn · vÞ2 þ 2γn · v'; ð10Þ

DBDA

!
1

n · v

"
¼ hABðγ þ n · vÞ

ðn · vÞ2
þ 2

DAðn · vÞDBðn · vÞ
ðn · vÞ3

;

ð11Þ

DADA

!
1

n · v

"
¼ −2

ðn · vÞ3
ð1þ γn · vÞ; ð12Þ

D2 logð−n · vÞ ¼ −1þ 1

ðn · vÞ2
: ð13Þ

The shear tensor obtained from Eqs. (4) and (8) is [12,21]
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CAB ¼ ð−2DADB þ hABD2Þ2G
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γI þ
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2
n · vI þ

1

2n · vI

"
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%
; ð14Þ

therefore,

DACAB ¼ −2G
XN

I¼1

mI

!
−3þ 1

ðn · vIÞ2
−

γI
n · vI

"
DBðn · vIÞ;

ð15Þ

and from this we can easily calculate DADBCAB,

DBDACAB ¼−4G
XN

I¼1

mI

$
4γIþ3n ·vIþ

1

ðn ·vIÞ3

%
: ð16Þ

The first two terms are essential so that the sum of all three
terms in the brackets has zero monopole and dipole
moments, as it can be checked explicitly.
We calculate next the Bondi mass aspect. For this we

need to compute guu in the Bondi gauge. In Minkowski
space and in the notations of Ref. [21] the metric is given by

gμν ¼ ημν − 4G
XN

I¼1

mIðv
μ
I v

ν
I þ 1

2 η
μνÞ

ΓIðxÞ
: ð17Þ

We need to make a coordinate transformation to write the
metric in the Bondi gauge. Metric (17) can be written in
terms of retarded time U ¼ t − ρ, radius ρ, and angular
coordinates θA, in which a useful expansion for the
functions Γ is

1

Γ
¼ HðθAÞ

ρ
þ KðU; θAÞ

ρ2
þO

!
1

ρ3

"
; ð18Þ

where HðθAÞ ¼ −1=ðn · vÞ and

KðU; θAÞ ¼ −
uð1þ γn · vÞ

ðn · vÞ3
þ hðθAÞ: ð19Þ

We consider a coordinate transformation from the original
coordinates U; ρ; θA to Bondi gauge coordinates u; r;ΘA of
the form

u¼UþδU; r¼ρþδρ; ΘA¼θAþδθA: ð20Þ

Now the mass aspect can be read from the following
equation:

guu ¼ gUU

!
1−

∂δU
∂u

"
2

þ2gUρ

!
1−

∂δU
∂u

"!
−
∂δρ
∂u

"
: ð21Þ

We have omitted subleading terms and other terms that do
not contribute to guu at order Oð1=rÞ and hence do not
change the mass aspect. Equation (21) can be simplified to

δm ¼ r∂uðδU þ δρÞ: ð22Þ

To find δρ and δU we use the Bondi gauge conditions and
the formulas for δU, δρ, and δθA given in [21]. The result is

δU¼ 2G
XN

I¼1

mI

$
−n ·vI logðrÞ−

u
r
1þ γIn ·vI

n ·vI
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!
1
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"%
;

δρ¼Gu
r
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−
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n ·vI

"
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From these equations and after some simplifications, we
find that δm is

δm ¼ G
XN

I¼1

mI

!
−

1

ðn · vIÞ3
þ 2γ2I − 1

n · vI

"
: ð24Þ

The Bondi mass aspect is then

mð−∞;ΘÞ ¼ −G
XN

I¼1

mI

ðn · vIÞ3
: ð25Þ

This equation coincides as it should with Eq. (5.16) of [6].
The relation between mass aspect and the double diver-
gence of the shear tensor is thus

mð−∞;ΘÞ ¼ 1

4
DADBCAB þmonopole and dipole terms:

ð26Þ

This equation motivates our proposal for a supertranslation-
invariant angular momentum flux. The key observation is
that all the coefficients with l > 1 in the expansion of
mðu;ΘÞ in spherical harmonics of the celestial sphere can
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be changed by soft radiation without any radiative loss of
energy. This is because the mass aspect obeys the equation

∂um ¼ 1

4
DADBNAB − Tuu: ð27Þ

When no hard radiation is present, Tuu ¼ 0 so Eq. (27)
becomes

mðþ∞;ΘÞ−mð−∞;ΘÞ¼ 1

4
DADBCABðþ∞;ΘÞ

−
1

4
DADBCABð−∞;ΘÞ; ð28Þ

whose right-hand side has no l ¼ 0, 1 components by
construction. Equation (26) shows that soft gravitational
reaction can make both the shear and the l > 1 harmonics
of the mass aspect used in the computation of ΔJDY vanish
simultaneously without producing any hard radiation
(Tuu ¼ 0), in particular, without radiating out any energy.
We will take this as the key hint to define the specific
boundary graviton to use in the definition of an angular
momentum obeying the properties (a)–(d) listed above.
The most direct and physically motivated procedure to

define a preferred boundary graviton would have been
to characterize it in terms of initial data at past null infinity
I− by requiring that no incoming radiation crosses I−. To
extract data at future null infinity Iþ one would need to
solve the scattering problem of a matter-gravity coupled
system. This is too tall an order, so we choose instead to
select the preferred boundary graviton by demanding that it
satisfies Eq. (26). This definition guarantees that Eq. (28)
can be satisfied with CABðþ∞;ΘÞ ¼ 0 and mðþ∞;ΘÞ
equal to only a monopole plus dipole term without any
l > 1 harmonic. Instead of adding a term to the BMS-
invariant angular momentum flux, we could have defined
the flux ΔJY in a specific BMS frame. Our construction is
equivalent to selecting such BMS frame by requiring that
the shear of a system whose mass aspect at u ¼ −∞
contains no harmonics higher than l ¼ 1 vanishes,

mð−∞;ΘÞ ¼ cþ
X1

m¼−1
cmY1mðΘÞ ⇒ CABð−∞;ΘÞ ¼ 0:

ð29Þ

Equation (4) plus the requirement that the initial shear
vanishes when the mass aspect has no dipoles higher than
l ¼ 1 (i.e., that all higher moments in the mass aspect and
in the shear can be radiated away without radiating energy)
implies CABð−∞Þ ¼ ðhABD2 − 2DADBÞC, with C given by

−ð2þD2ÞD2C ¼ DADBCAB ¼ 4mð−∞;ΘÞ
þmonopole and dipole terms: ð30Þ

Expanding both C and m in spherical harmonics, we
find an explicit formula relating their angular coefficients,

lð1 − l2Þðlþ 2ÞClm ¼ 4mlm; ∀ l > 1: ð31Þ

We set the undefined coefficients C0 ¼ C1(1 ¼ C10 ¼ 0.
Finally, our definition of a new angular momentum is

JnewY ðuÞ ¼ JBMS
Y ðuÞ þ VYðuÞ;

VYðuÞ ¼
1

4πG

Z
d2Θ

ffiffiffi
h

p
YAmðu;ΘÞDACðΘÞ; ð32Þ

with C defined in Eq. (31).
This definition obeys property (a) by construction. To

check (b) we compute

ΔJnewY ¼ ΔJBMS
Y þ 1

4πG

Z
d2Θ

ffiffiffi
h

p
YAΔmðΘÞDACðΘÞ;

ð33Þ

which obviously coincides with ΔJDY in Eq. (7) when
C ¼ β. Since the Bondi mass aspect is a scalar under
rotation of the celestial sphere, the new term VYðuÞ in (32)
transforms as a vector. Moreover, at u ¼ −∞, VYð−∞Þ
and VXð−∞Þ commute for arbitrary rotations X, Y;
hence, ½JBMS

Y ð−∞Þ þ VYð−∞Þ; JBMS
X ð−∞Þ þ VXð−∞Þ' ¼

JBMS
½Y;X'ð−∞Þ þ 2V ½Y;X'ð−∞Þ. So property (c) is true if

VYð−∞Þ ¼ 0, that is, if VYð−∞Þ satisfies property (d).
Finally, to check property (d), we notice first that the
operator YADA acts as an infinitesimal rotation on any
scalar function, so it maps an lth spherical harmonic into a
linear combination of harmonics with the same l. Since
Cl ¼ 0 for l ¼ 0, 1, the l ¼ 0, 1 harmonics of mðu;ΘÞ do
not contribute to Eq. (32). This allows us to substitute
mð−∞Þ → −ð2þD2ÞD2C=4 in (32), evaluate it at
u ¼ −∞, and find

JnewY ð−∞Þ ¼ JBMS
Y ð−∞Þ

−
1

16πG

Z
d2Θ

ffiffiffi
h

p
YA½ð2þD2ÞD2C'DAC:

ð34Þ

The last term vanishes, as it can be proven by expanding C
in spherical harmonics C ¼

P
l C

l and using again that
YADA is a rotation, so
Z

d2Θ
ffiffiffi
h

p
YA½ð2þD2ÞD2C'DAC

¼
X

l

lðl2 − 1Þðlþ 2Þ
Z

d2Θ
ffiffiffi
h

p
YAClDACl

¼ 1

2
lðl2 − 1Þðlþ 2Þ

Z
d2Θ

ffiffiffi
h

p
YADAðClÞ2 ¼ 0: ð35Þ

In the last step, we integrated by parts and used DAYA ¼ 0.
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