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The angular momentum radiated in gravitational scattering can be changed by performing a super-
translation of the asymptotic metric, i.e., by adding radiation with infinite wavelength to the metric. This
puzzling property can be avoided by adopting a supertranslation-invariant definition of the angular
momentum flux in general relativity. Definitions currently available in the literature cannot reproduce the
flux necessary to obtain the correct radiation reaction effects in gravitational scattering. They also disagree
with computations of the flux performed using scattering amplitudes and soft-graviton theorems. In this
Letter, we provide a new supertranslation-invariant definition of the angular momentum flux in
gravitational scattering that uses only asymptotic metric data and reproduces the flux necessary to obtain

the correct radiation reaction effects.
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Gravitational scattering produces radiation that carries
away energy, momentum, and angular momentum. These
quantities can be defined rigorously using the formalism
developed in [1-4]. They are computed at future null
infinity Z* in Bondi-Sachs coordinates
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where the mass aspect m(®,u) is a scalar, the angular
momentum aspect N,(®,u) is a vector, and the shear
Cap(0®,u) is a symmetric and traceless tensor. All these
quantities are defined on the celestial sphere with coordi-
nates ®, and round metric h,4p and also depend on the
retarded time u. The dots in (1) denote subdominant terms in
1/r. The coordinate system in Eq. (1) is left invariant by the
asymptotic symmetries u — u + f(®), called supertransla-
tions [2]. Energy and angular momentum are defined in
terms of m, N4, and the three Killing vectors Y4 of the
celestial sphere [2]

E(u) :ﬁ/cﬂ@\/ﬁm(@, u),

Jy(u) :% / dPOVIYAN,(0.u).  (2)
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By definition, the Killing vectors obey D,Yg + DY, = 0.
When it is well defined, the total energy flux AE =
E(+00) — E(—o0) is invariant under supertranslations,
while the angular momentum flux AJy = Jy(+o0)—
Jy(—o0) is not, as first noticed in [5].

Supertranslation-invariant definitions of the angular
momentum flux for finitely radiating systems were given
in [6] and later, independently, in [7,8]. A definition of the
angular momentum flux in terms of bulk integrals of soft-
graviton dressed canonical degrees of freedom was given
in [9]. All these definitions coincide and amount to a
simple prescription: replace N,(u,®) in Eq. (2) with
Na(u,0) —2m(u,®)D,C(0),

1

JBMS —
o (u) 872G

/ dPOVRYAN 4(0,u) —2m(u,0)D,C(O)].

(3)

The superscript “BMS” denotes supertranslation-invariant
quantities. The change in angular momentum flux implied
by this prescription cannot be reabsorbed in a local
redefinition of N, because it uses the boundary graviton
C, which is defined at u = —oo by

lim Cyp(u,04) =-2D,DC(®") + hyzD>*C(0®4). (4)

u——0o0

The angular momentum flux AJEMS can be written also as a
3D integral over future null infinity [9,10]. Assuming that
the only massless field relevant to the scattering is the
graviton, we find
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The non-supertranslation-invariant definition of AJy given
in Eq. (2) is the same, except for the replacement
Cap = Cyp.

Equation (5) is a natural but not unigue definition of the
angular momentum flux. When the radiating system
reverts back to empty space, it defines an angular
momentum that, together with translations and with the
definition of boosts given in [9], generates the Poincaré
algebra by Poisson brackets and coincides with the usual
definition of angular momentum for boosted Kerr black
holes and Minkowski space [9]. Reference [11] proves
that it is also cross section continuous. All would be well if
it were not for a fly in the ointment, namely, the
contribution of radiation reaction to gravitational scatter-
ing. It first appears at third post-Minkowskian, O(G?)
order and has been computed by Damour in [12] using
linear response theory [13]. The computation has been
confirmed by several independent computations used by
various groups using different methods [14-18]. The
linear response theory requires AJy to be O(G?), but
the lowest order at which the Bondi news N,z can be
nonzero is O(G?), so Eq. (5) implies AJEMS = O(G?).
Clearly, the angular momentum flux computed in [12] and
derived by different methods in [19,20] is not the BMS-
invariant one. It is instead the non-BMS-invariant
expression computed using (2) in a particular BMS
frame [21]. The special frame is defined perturbatively
in G in terms of the initial scattering data, namely, the
energies and momenta of the incoming particles [21]. In
that frame, the boundary graviton C(®) is nonzero and is
also defined in terms of particle energy and momenta. It
was computed explicitly in [21] and is implicitly given
in [19,20] (see also [22]). Because the BMS-invariant
angular momentum in (5) precisely subtracts C(@®), it
differs from the one used in [12,19,20]. The explicit
relation between the flux used by Damour, which we shall
call AJP, and the BMS-invariant one AJEMS is

1

AJ?:AJEMS+n/d2®\/ﬁYAAm(®)DAﬁ(p,®). (7)
. P

Here Am(®) = m(+c0,0) —m(—00,0), while p(p.0)

is the boundary graviton computed in [21]. These

notations make clear that § is a function of the » initial
four-momenta of the initial particles p = (py, ..., py).

+00 1 . 1 n
du / d2®\/ZYA (@) |:2 CABDcNBC - 4DB(CBCNCA):| s (5)

I
Explicitly [21], the metric is written as g,, = 1, + 69,
89, = O(G), the signature is mostly plus, and

B(p.O) = ZZGmI(” -vy) log(—n - vy). (8)

Here n - v = n*v*n,,, vy is the four-velocity of the Ith
particle, m; is its mass, and n* = (1,n'), x' = rn’, and

3 n'n' = 1. Notice that the sign of f in (8) is the
opposite of Ref. [21] because for us f is the boundary
graviton, while for [21] it is the supertranslation that sets
the shear to zero.

The angular momentum flux AJ% is BMS invariant by
construction since it is computed in a specific BMS
frame, but it is not defined in terms of the true, BMS-
independent asymptotic degrees of freedom N,z(u, ®)
and m(u, ©).

The purpose of this Letter is to present a new formula for
the angular momentum, which we shall call J}™(u),
possessing the following properties: (a) It is written purely
in terms of asymptotic data. (b) It gives a supertranslation-
invariant total flux AJ}Y = J}*V(400) — JJ"(—00) such
that AJ3Y = AJ® for a system of massive point particles.
(c) The J}¥(—oo0) generate the rotation algebra. (d) When
the limit u - —oo is well defined, in particular for sta-
tionary spacetimes, J1%(—c0) = JEMS(—00) = Jy(~00).

We shall make no attempt to justify our formula from any
principle. In particular, we shall not try to understand why
the Damour formula for angular momentum flux is the
correct one for radiation reaction computations. We refer
to [21] for a discussion on this point.

To begin with, we need some identities valid for any
velocity vector v and y = 1/V'1 — 2,

DyDy(n-v) = =hyp(y +n-v), 9)
Dy(n-v)DA(n-v) = [l + (n-v)*+2yn-v], (10)

DBDA< 1 >:hAB(}’+n‘U)+2DA(H'Z))DB(H-1))

(n-v)? (n-v)* ’
(11)
Dzlog(—nv) :—l+ﬁ (13)

The shear tensor obtained from Egs. (4) and (8) is [12,21]
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and from this we can easily calculate DADBC g,

N
1
DBDACAB:—4G m] |:47/1+3n1)]+73:| (16)
=1 (n-vy)

The first two terms are essential so that the sum of all three
terms in the brackets has zero monopole and dipole
moments, as it can be checked explicitly.

We calculate next the Bondi mass aspect. For this we
need to compute g,, in the Bondi gauge. In Minkowski
space and in the notations of Ref. [21] the metric is given by

N Hov 1, uv
my(vpvy +31n")
P R Teh Y R AR L

Iy (x)

I=1

(17)

We need to make a coordinate transformation to write the
metric in the Bondi gauge. Metric (17) can be written in
terms of retarded time U = t — p, radius p, and angular
coordinates @4, in which a useful expansion for the
functions I' is

1 H@®Y) KU 1
P, +O<p3>, (18)

where H(64) = —1/(n - v) and

u(l+yn-v)
(n-v)?

K(U.6%) = - L @Y. (19)

We consider a coordinate transformation from the original
coordinates U, p, #* to Bondi gauge coordinates u, r, @ of
the form

u=U+8U, r=p+dp, O'=0'+s0". (20)
Now the mass aspect can be read from the following
equation:

D,(n-v;)Dg(n- vz)] ’ (14)

n-uvy

[
05U\ 2 osU\ [ 98p

= 1-—2) +2g5, ([ 1-=—)(-=£). (21

Yuu gUU( ou > + gU/)< ou ) < au> ( )

We have omitted subleading terms and other terms that do
not contribute to g,, at order O(1/r) and hence do not
change the mass aspect. Equation (21) can be simplified to

ém = rd,(6U + 8p). (22)

To find dp and 6U we use the Bondi gauge conditions and
the formulas for U, 8p, and 5¢* given in [21]. The result is

ul+ym-v;
r n-vy

N
oU = ZGZm, [—n -vy log(r) —
=1

Gul~ m
op=—o 412((1+y1n-11,)(3n~v,+4y1)
ro4= (n-vy)
+1+71”'01_(2+}’1”'U1)[1"’271”‘”1‘*‘(”'”1)2}
n-v, n-v, '

(23)

From these equations and after some simplifications, we
find that om is

5m:GZN:m1— L 2=y
=1 (n-v)* n-vy

The Bondi mass aspect is then

ny

=1 (n : U1>3 '

NE

m(—o0,0) = -G

(25)

This equation coincides as it should with Eq. (5.16) of [6].
The relation between mass aspect and the double diver-
gence of the shear tensor is thus

1
m(—0,0) = ZDADBCAB + monopole and dipole terms.
(26)

This equation motivates our proposal for a supertranslation-
invariant angular momentum flux. The key observation is
that all the coefficients with [ > 1 in the expansion of
m(u, ®) in spherical harmonics of the celestial sphere can
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be changed by soft radiation without any radiative loss of
energy. This is because the mass aspect obeys the equation

1
aum = ZDADBNAB - Tuu. (27)

When no hard radiation is present, T, = 0 so Eq. (27)
becomes

1
m(+00,®) — m(—oo,@) :ZDADBCAB(+OO,®)

1
—ZDADBCAB(—OO,®), (28)

whose right-hand side has no /=0, 1 components by
construction. Equation (26) shows that soft gravitational
reaction can make both the shear and the / > 1 harmonics
of the mass aspect used in the computation of AJY vanish
simultaneously without producing any hard radiation
(T, = 0), in particular, without radiating out any energy.
We will take this as the key hint to define the specific
boundary graviton to use in the definition of an angular
momentum obeying the properties (a)—(d) listed above.
The most direct and physically motivated procedure to
define a preferred boundary graviton would have been
to characterize it in terms of initial data at past null infinity
7~ by requiring that no incoming radiation crosses Z~. To
extract data at future null infinity Z* one would need to
solve the scattering problem of a matter-gravity coupled
system. This is too tall an order, so we choose instead to
select the preferred boundary graviton by demanding that it
satisfies Eq. (26). This definition guarantees that Eq. (28)
can be satisfied with Cyp(+00,0) =0 and m(+0,0)
equal to only a monopole plus dipole term without any
[ > 1 harmonic. Instead of adding a term to the BMS-
invariant angular momentum flux, we could have defined
the flux AJy in a specific BMS frame. Our construction is
equivalent to selecting such BMS frame by requiring that
the shear of a system whose mass aspect at u = —oo
contains no harmonics higher than / = 1 vanishes,

1
m(=00,0) =c+ Y ;¥ 1,(0) = Cyp(~0.0) = 0.

m=—1

(29)

Equation (4) plus the requirement that the initial shear
vanishes when the mass aspect has no dipoles higher than
[ =1 (i.e., that all higher moments in the mass aspect and
in the shear can be radiated away without radiating energy)
implies CAB(—OO) = (hABD2 - 2DADB)C, with C giVeIl by

—(2+ D?)D*C = DAD®C,5 = 4m(—c0,0)
-+ monopole and dipole terms. (30)

Expanding both C and m in spherical harmonics, we
find an explicit formula relating their angular coefficients,

(1=-2)(1+2)Cpy = 4my,, Y I>1. (31)

We set the undefined coefficients Cqy = Cj; = Cyo = 0.
Finally, our definition of a new angular momentum is

Ty (u) = Ty (u) + Vy (u),

Vy(u) :ﬁ / POVhY m(u,0)D,C(®),  (32)

with C defined in Eq. (31).
This definition obeys property (a) by construction. To
check (b) we compute

1
AT = ATEMS 4 m/ OVhY Am(®)D,C(O),
TT

(33)

which obviously coincides with AJ? in Eq. (7) when
C = p. Since the Bondi mass aspect is a scalar under
rotation of the celestial sphere, the new term Vy(u) in (32)
transforms as a vector. Moreover, at u = —oo, Vy(—o0)
and Vy(—oo0) commute for arbitrary rotations X, Y;
hence, [J8MS(—c0) + Vy(—0), JBMS(—00) + Vy(—0)] =
JFYIf’;S](—oo)vLZV[y,X](—oo). So property (c) is true if
Vy(—o0) =0, that is, if Vy(—oo) satisfies property (d).
Finally, to check property (d), we notice first that the
operator YAD, acts as an infinitesimal rotation on any
scalar function, so it maps an /th spherical harmonic into a
linear combination of harmonics with the same /. Since
C,=0forl=0,1,the /=0, 1 harmonics of m(u,®) do
not contribute to Eq. (32). This allows us to substitute
m(—o0) = —(2+ D?)D?C/4 in (32), evaluate it at
u = —oo, and find

T (—o0) = IS (o)

1

2 A 2 2
|4 OVhYA[(2 + D*)DC|D,C.

(34)

The last term vanishes, as it can be proven by expanding C
in spherical harmonics C = Y, C’ and using again that
YAD, is a rotation, so

/ d*©VhY*[(2 + D*)D*C|D,C
—Sue-1)(+2) / POVRYACID,,C!
= %1(12 —1)(+2) / d*OVhYAD,(C)* =0.  (35)

In the last step, we integrated by parts and used D, Y4 = 0.
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