
Vol.:(0123456789)1 3

Journal of Intelligent & Robotic Systems (2022) 106:1
https://doi.org/10.1007/s10846-022-01680-7

SHORT PAPER

Multi‑Phase Multi‑Objective Dexterous Manipulation with Adaptive
Hierarchical Curriculum

Lingfeng Tao1 · Jiucai Zhang2 · Xiaoli Zhang1 

Received: 18 August 2021 / Accepted: 20 June 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Dexterous manipulation tasks usually have multiple objectives. The priorities of these objectives may vary at different phases
of a manipulation task. Current methods do not consider the objective priority and its change during the task, making a robot
have a hard time or even fail to learn a good policy. In this work, we develop a novel Adaptive Hierarchical Curriculum to
guide the robot to learn manipulation tasks with multiple prioritized objectives. Our method determines the objective pri-
orities during the learning process and updates the learning sequence of the objectives to adapt to the changing priorities at
different phases. A smooth transition function is developed to mitigate the effects on the learning stability when updating
the learning sequence. The proposed method is validated in a multi-objective manipulation task with a JACO robot arm in
which the robot needs to manipulate a target with obstacles surrounded. The simulation and physical experiment results
show that the proposed method outperforms the baseline methods with a 92.5% success rate in 40 tests and on average takes
36.4% less time to finish the task.

Keywords  Multi-phase multi-objective manipulation · Adaptive curriculum · Objective priority · Robot learning

1  Introduction

Dexterous manipulation is essential to increase robots’ usa-
bility in assembly, healthcare, education, and living assis-
tance. These tasks typically need to be finished in multi-
ple phases, and each phase has multiple objectives [9, 10].
Although all phases usually share the same set of objec-
tives [25, 30], the priorities of objectives in each phase can
vary, which are critical to achieving the manipulation tasks’
efficiency and success rate. For example, an assembly task
usually has two phases: (1) approaching, (2) installation. All
phases share three objectives: (a) fast speed, (b) high preci-
sion, and (c) avoid the collision. In the first phase, the robot

picks up the assembly part and move to the target position.
The task objective with the top priority is to avoid touching
other parts, then try to move faster to minimize the execu-
tion time, and the lowest priority is to move precisely. In the
second phase, the robot reaches the target position and is
ready for installation, and now the priority order changes to
high precision to improve the installation quality, minimize
the execution time, and avoid touching other parts.

Existing research in the traditional control theory mainly
focuses on weighing multiple objectives to balance objec-
tives with optimization methods [13], which is computa-
tionally inefficient. Although deep reinforcement learning
(DRL) has been proven effective in enabling the robot to
conduct autonomous manipulation tasks intelligently [19],
the current reward formulation is usually a linear summation
of the reward components of objectives, which is implicit
and inefficient to learn the objective priorities, and causing
poor learning performance (i.e., take a long time to learn or
even fail to learn a correct policy). Furthermore, the current
reward mechanism is usually fixed through all phases. This
one-fix-all solution (i.e., using the same objective priority
for all phases) cannot ensure each phase’s local performance
to be optimal. Such solutions may lead to sub-optimal per-
formance as the reward is not customized for each phase of

 *	 Xiaoli Zhang
	 xlzhang@mines.edu

	 Lingfeng Tao
	 tao@mines.edu

	 Jiucai Zhang
	 zhangjiucai@gmail.com

1	 Colorado School of Mines, Intelligent Robotics and Systems
Lab, 1500 Illinois St, Golden, CO 80401, USA

2	 GAC R&D Center Silicon Valley, Sunnyvale, CA 94085,
USA

http://orcid.org/0000-0002-2949-4644
http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01680-7&domain=pdf

	 Journal of Intelligent & Robotic Systems (2022) 106:1

1 3

 1   Page 2 of 11

the task. As a result, the learning performance and learning
efficiency are usually limited in manipulation tasks where
multiple objectives exist.

In authors’ vision, the most appropriate approach to
achieve dexterous manipulation is Curriculum Learning
[14]. Curriculum learning (CL) is getting popular in the RL
domain to accelerate the training process by exploring how
objectives can be prioritized into a curriculum to mitigate
the difficulty of learning a problem from scratch. CL funda-
mentally provide a hierarchical sequence of objective, which
is usually ordered from easy to difficult. Existing CL meth-
ods focus on building generalizable, transferable curricula to
reduce the training efforts [17] in tasks like maze exploration
and chess. To the authors’ best knowledge, the study of CL
in dexterous manipulation has been rarely reported.

One potential problem when adopting CL in robotics
manipulation tasks is that the priority of multiple objec-
tives is shared across the whole process of the task once it is
determined. For a multi-phase manipulation task, share the
same curricula across phases cannot guarantee an optimal
task performance due to the objective priority difference in
each phase. How to use the CL methods in such multi-phase
tasks is an open problem.

In this work, we develop the Adaptive Hierarchical Cur-
riculum (AHC) by considering objective priorities and prior-
ity changes across phases. Our method’s novelty is that the
robot with AHC can utilize the experience when exploring
the environment to determine the objective priorities and
update the learning sequence of the objectives based on the
hierarchical curricula. The benefits include better learning
efficiency and higher task performance. In summary, the
main contributions of this work are as follow:

1)	 Propose Adaptive Hierarchical Curriculum to solve the
manipulation task in a DRL manner to enable the robot
to efficiently learn multiple objectives with different pri-
orities, which changes in different task phases.

2)	 Validate the AHC method and compare different objec-
tive priority determination methods (i.e., autonomously
determined dynamic objective priorities, empirically
defined dynamic objective priorities, fixed objective
priorities, and linear summation reward) in a multi-
objective manipulation task.

2 � Related Work

2.1 � Traditional Manipulation Methods

Traditional non-learning control methods have tried to solve
the manipulation task when multiple objectives need to be
done. With a stochastic optimization procedure [13], the pri-
orities of each objective can be automatically determined as

the task changes. The priorities are represented as param-
eterized weight functions to adjust the linear summation
of the output (e.g., force or torque) [22]. These methods
develop multiple controllers for multiple objective functions
and adjust controller outputs’ contributions to take objec-
tive priorities into account. In contrast, our method allows
the robot to use a single policy to embed the knowledge of
objective priorities into the control strategies enabled by the
DRL, which reduces the robot’s computational burden once
the policy is learned.

2.2 � Learning‑Based Manipulation Methods

DRL has been proven promising to enable autonomous
manipulation, but the learning efficiency has been a great
challenge. In [20], a DRL method combined off-policy
updates and parallel training to reduce the training time and
enable a physical robot to complete a door opening task.
Kalashnikov et al. [7] utilized the human demonstration to
initialize the DRL policy to effectively reduce the training
time to control the robot hand in a hammer usage task and
an object relocation task. For a multi-objective manipulation
task, Haarnoja et al. [4] studied the compositionality of soft
Q-learning methods in a multi-policy and multi-Q-function
setup, which provides a method to construct new policies
composing learned skills to improve learning efficiency.
Despite the progress of existing research, learning efficiency
in multi-objective dexterous manipulation tasks is still an
open problem due to the difficulty of providing sufficient
information for the reward design.

2.3 � Curriculum Learning for Improved Learning
Efficiency

Recent research proposes the CL method to improve the
learning efficiency of RL training. CL seeks to speed up
training by first training on a series of easier tasks and trans-
fer the policy to the target tasks with a selected sequence
[14]. In [3], A reverse curriculum generation method was
proposed to gradually learn to reach the goal from a set of
start states increasingly far from the goal, which leads to
efficient training on goal-oriented tasks. A graph-based cur-
riculum representation was proposed in [26] to automati-
cally decide the fixed learning sequence of the objectives
within the threshold of time. An adaptive curriculum was
implemented in [16] to update the reward function during
the training continuously. However, the adaptation is based
on the decision of domain experts. Approaches that can
automatically adjust the task sequence are proposed in [6,
15, 23], which enable the robot to adapt to the task prior-
ity change during learning. These approaches inspired the
authors to adopt the automatic priority determination strat-
egy to robotic manipulation tasks.

Journal of Intelligent & Robotic Systems (2022) 106:1 	

1 3

Page 3 of 11  1

2.4 � Reward Shaping to Incorporate Domain
Knowledge

A similar approach that changes the reward function is
the reward shaping method, which provides the robot with
an extra reward based on the domain knowledge during
the learning process to redirect the training [18]. Earlier
approaches like [2] consistently provide an additional reward
to the robot based on the state’s potential. Later approaches
start to discuss adaptive reward functions during the learn-
ing process. In [27], verbal feedback is used as an additional
reward and occasionally provided to the robot when adapting
to new conditions. A dynamic reward function with adjust-
able parameters is proposed in [5] to adjust the reward func-
tion based on experience. However, current dynamic reward
functions typically use a linear summed reward, which does
not contain a hierarchical structure to guide the robot to
determine objective priorities.

3 � Methodology

3.1 � Model Structure

We model the manipulation task as an RL problem that fol-
lows the MDP [1]. The MDP is defined as a tuple {S,A,R, �} ,
where s ∈ S is the state of the environment, a ∈ A is the set
of actions. R

(
s′|s, a

)
 is the reward function to give the reward

after the transition from state s to state s′ with action a . γ
is a discount factor. A policy π(s,𝜃) specifies the action for
state s. 𝜃 is the policy network parameters. To find 𝜃, Proxi-
mal Policy Optimization (PPO) algorithm [24] is adopted.
It is a model-free, online, on-policy reinforcement learning
algorithm. The PPO algorithm is a type of stochastic policy
gradient descent approach that alternates between sampling
data through environment interaction and optimizing a clip-
ping surrogate objective function. To estimate the policy
and value function, a PPO agent maintains two deep neural
networks (DNN): 1) an actor π(s,𝜃), with parameters 𝜃, takes
observation s and returns the action command, 2) a critic V
(s,ϕ), with parameters ϕ, takes observation s and returns
the corresponding expectation of the discounted long-term
reward. When training is complete, the trained optimal
policy is stored in actor π∗(s,𝜃). DNN helps the DRL agent
generalize knowledge from the observation instead of stor-
ing and looking up every state in traditional RL, reducing
computational cost in tasks with large state and action space
like robot control tasks. Compared to other DRL methods,
PPO balances ease of implementation, sample complexity,
and ease of tuning.

The curricula (reward function) is the design target of
AHC. The task objectives and the task phases can be heu-
ristically defined by the developers based on empirical

knowledge and human perception. However, it is challenging
for human experts to define appropriate curricula for each
phase due to individual experience and bias. Thus, the robot
should determine the priorities of objectives and generate
curricula based on its own experience. For each objective,
a reward component fi is defined, where i = 1,2,...,N. N is
the total number of the task’s objectives. Each objective can
only have one priority level, denoted as j, where j = 1,2,...,N.
The priority level follows a descending manner as j increases
(i.e., the objective with level 1 has the highest priority). The
phases of the task are denoted as k = 1,2,...,K. K is the num-
ber of phases. The hierarchical curricula ℝk for phase k is
constructed with all reward components, which is introduced
in the following section.

3.2 � Hierarchical Curricula for Each Phase

The learning sequence of the hierarchical curricula in a phase k
follows the same descending order as the objective priorities,
which means the objectives with higher priorities are first
learned. We define the curricula ℝk =

[
Rk
1
, ...Rk

j
, ...Rk

N

]
 , which

is a piecewise reward function based on the hierarchy. Similar
strategies of designing piecewise reward functions can be found
in [11, 32]. Rk

j
 is the curriculum (reward function) for curriculum

level j (the same with objective priorities), which is computed
as:

where fi|m is the reward component for objective i with pri-
ority m . When the robot finishes learning a curriculum level
j with a reward Rk

j
 , it will learn the next curriculum level by

moving to the next reward component Rk
j+1

 . Such a reward
function updating mechanism can be considered a reward
shaping approach [18, 31] based on the objective priorities.
In this work, the criterion of finish learning the curriculum
level j in phase k is to check if the variance of the cumulative
reward

∑
Rk
j
 for curriculum level j in the past 10 training

episodes has converged to a threshold, which is empirically
defined based on the actual reward function.

In practice, the above learning sequence is not strong
enough to avoid interference with the higher-level priorities
while learning the lower-level priorities (e.g., alter the previ-
ously learned policy). Thus, the learning process is subject
to a hard priority constraint to avoid this interference. The
criterion is that the reward components of learned higher-
level objectives become constraints for the following epi-
sodes to avoid interference between curriculum levels. When
learning an objective with curriculum level j , we define the
constraints as:

(1)
Rk
j
=

j∑

m=1

fi|m

j = 1, 2, ...,N

	 Journal of Intelligent & Robotic Systems (2022) 106:1

1 3

 1   Page 4 of 11

where threshold τj− 1 is the average of the episode reward ∑
Rk
j−1

 in the last 10 episodes. When Eq. 2 is violated, the
current episode is terminated, and the collected experience
of the current episode will not be saved in the experience
pool. To prevent the constraint from being violated with the
same agent, the policy will be updated with randomly sam-
pled trajectories from the old experience. Then the next epi-
sode will start.

3.3 � Determination of Objective Priorities in Each
Phase

The goal of this section is to find the optimal hierarchi-
cal curricula for each phase. That is, to determine the
priority of each objective. During the training, the robot
is expected to explore all the phases of a given task and
find the priorities and changes across different phases.
However, at the start of the training, a single episode
may not complete all the phases. One episode may end
in an intermediate phase of the task due to failure or mis-
take. The robot needs sufficient information to determine
objective priorities for a specific phase. We defined that
the objective priorities for a phase can be determined and
updated only when that phase is explored for P times,
and P is the empirically defined threshold. Specifically,
we count the number of times ek that the robot visits a
phase k, if ek ≥ P, the robot will determine the objective
priorities of phase k based on the collected information.
Before the priority determination, the robot will use a
linear summed curricula of all reward components to
guide its exploration.

In this work, we define the objective with a higher abso-
lute average reward should be learned first, which means
the corresponding objective is easier than others to collect
reward no matter it is positive or negative. This strategy
is based on traditional curriculum learning, where the cur-
riculum can benefit when the training is ordered easy to dif-
ficult. In this work, the difficulty of an objective is defined
as how hard to collect rewards. There can be other strategies
to determine the objective priorities, such as the objectives
with the least collected rewards should be learned first (dif-
ficult to easy), or the objectives with the lowest absolute
rewards should be learned first (encourage exploration). We
will study the effects of different strategies in future work.

We calculate the average episode reward of each
objective:

(2)
∑

Rk
j−1

≥ �j−1

(3)r̃k
i
=

1

P

P∑

p=1

Rk
i,p

where Rk
i,p

=
∑

fi�k, p is the episode reward for objective i in
phase k at episode p . The priorities for the objectives are
updated by sorting the average cumulative rewards. To
ensure the sorting operation’s veracity, the magnitude of the
reward components should be consistent along the time hori-
zon, which means that the reward components need to be
normalized or be defined with the same principles. The
details of the defined reward components in this work are
shown in the next section. Then, we extract the index of the
sorted absolute average episode reward for each objective:

where Ik
j
 is the index of the r̃k

i
 . Finally, the reward component

of the priority j is assigned as fIj . That is:

We assume that the hierarchy will converge to a single
optimal hierarchy for each phase with the defined strategy
as the training goes on.

3.4 � Smooth Transition of Reward Hierarchy
across Phases

When the robot needs to adapt to the dynamic objective
priorities in different phases, the current phase’s curricula
transits to a different one in the next phase. A smooth tran-
sition function is designed by continuously updating the
curricula from one to another. It can mitigate the negative
impact on the policy performance when curricula changes.
For easy modification and symmetrical transition, monotoni-
cally bounded functions are better choices. In this work, we
choose a tanh function as the smooth transition function:

where x is the identification state input such as position or
time. Then the curriculum becomes:

where i′ is the updated objective index with priority level
j after the phase change, i is the previous objective index
with priority j before the phase change. α is the adjustable
parameter to control the slope and range of the smooth
function. In this work, α is 1. δ is the threshold of the tran-
sition period between phases, which can be empirically
defined. It should be noted that δ is small enough com-
pared to the whole state space so that the smooth transition

(4)

[
Ik
1
, ...Ik

j
, ...Ik

N

]
= Index

[
sorthigh→low|r̃ki |

]

j = 1, 2, ...,N

(5)fi|j = fIj |j

(6)tanh(x) =
e2x − 1

e2x + 1

(7)

Rk
j
=

�∑j

m=1
fi�m

�
1

2
tanh(𝛼x)

�
+
∑j

m=1
fi� �m

�
1

2
tanh(𝛼x)

�
, if x ≤ 𝛿

∑j

m=1
fi�m, if x > 𝛿

Journal of Intelligent & Robotic Systems (2022) 106:1 	

1 3

Page 5 of 11  1

has minimal influence on the constraint identification and
policy updating. x is calculated as:

x the Euclidean distance between the current state st and the
predefined phase boundary b(k,k + 1) between phase k and
phase k + 1.

4 � Experiments

The experiment was first implemented in a simulated envi-
ronment using V-REP [21] and a physical environment.
Specifically, the task environment contains a JACO arm
[12] with a cylindroid end effector attached to the end
joint (Fig. 2, in the physical environment, the JACO arm
just keeps its hand close for simplicity). The JACO arm
system is composed of six inter-linked segments and five
motors. It has six degrees of freedom (DOF), which refers
to three DOF 6 movements in three-dimensional space
(up, down, left, right, back, and forth) and three DOF,
six movements of JACO’s wrist (abduction, adduction,
flexion, extension, pronation, and supination). The JACO
arm has lightweight, durable materials, low power con-
sumption, and a user-friendly interface, making it suitable
for robotic research in the laboratory environment. In the
experiment, the JACO arm is placed next to a table. The
target is a cube (the length of the side is 0.2 m) on the top
of the table and located at the center. The other objects on
the table are obstacles. The robot’s task is to use the end
effector to push the target off the table without touching
the obstacles. Three objectives are defined to be satisfied
by the robot for optimal performance. The corresponding
reward components are constructed in a binary form to
ensure the consistency of sorting operation in eq. 4. To
account for the state-action transition of the RL setting,
the JACO arm works step by step with a step size of 0.05s.
In each step, the JACO arm executes an action, moves to
the next state, and receives a reward based on the reward
function.

(1)	 Avoid obstacles:

where Vobstacle is the absolute velocity of obstacles.
The function returns a penalty -1 if the robot or target
touches any of the obstacles. Otherwise, it returns 1.

(2)	 Manipulation:

(8)x =

√∑[
st − b(k, k + 1)

]2

(9)f1 =

�
−1, if

∑
Vobstacle ≥ 0

1, if
∑

Vobstacle = 0

where d is the distance of the target from the starting
point, l is the distance between the end effector and
the target center. The if statement compares d and l in
current time step t and last time step t − 1. Overall, f2
encourages the robot to approach and push the target
away from the initial position until it falls.

(3)	 Minimize the execution time:

where v is the absolute velocity of the end effector. The
if statement compares v in current time step t and last
time step t − 1. This component encourages the robot
to act quickly towards the target.

The constructed reward functions evaluate the task per-
formance according to the robot’s interaction with the envi-
ronment, including the JACO arm and the end effector. The
movement of the JACO arm and the end effector is a cumula-
tive result of all joints. Thus, the PPO algorithm will learn a
policy that distributively controls the JACO’s joints to com-
plete the desired movement which satisfies the task objec-
tives by maximizing the total reward. In this work, the action
space includes the first five joints of the JACO arm. Each
joint works in position control mode (rotation angle) and
takes an incremental command from three possible actions
[-0.01, 0, 0.01] rad. Such setup ensures the control of the
JACO will not exceed the maximum power limit (10A) and
the maximum linear arm speed (15cm/s). The state observa-
tion includes the joint angle, target position, target velocity,
obstacle position, obstacle velocity, and the action of the last
time step. The PPO policy observes the state in each time
step and outputs the action in a vector containing the five
joints’ target positions. The JACO arm will then simultane-
ously actuate the motors to control the effector to reach the
target positions. All five joints are constrained to: 1) avoid
damaging the robot such as hitting the table, 2) accelerate
training by limiting the work space above the table. Each
episode was set to 60 seconds to offer the robot enough time
to explore the environment and finish the task. The deep
neural network of the PPO agent has three fully connected
layers, and each layer has 100 neurons. The network has
one additional fully connected layer than the original PPO
agent, and each layer has a few more neurons to handle the
manipulation task. The hyper-parameters of PPO algorithms
and AHC are presented in Table 1. The clip factor improves
training stability by limiting the size of the policy change at
each step with a clipped surrogate objective function. When

(10)f2 =

{
−1, if (d − l)t ≤ (d − l)t−1

1, if (d − l)t > (d − l)t−1

(11)f3 =

{
−1, if vt < vt−1

1, if vt ≥ vt−1

	 Journal of Intelligent & Robotic Systems (2022) 106:1

1 3

 1   Page 6 of 11

computing the discounted sum of temporal difference errors,
the Generalized Advantage Estimator (GAE) is a smoothing
factor. The chosen of clip factor and GAE factor follows the
default setup of the original PPO algorithm. The discount
factor is set to 0.995 to constraint the cumulative reward
to a finite horizon. The learning rate is set to 0.001, which
must be considerably small to avoid large deviations during
the parameter update process [28, 29]. The epoch number
is set to 3 to utilize the latest experiences. Adam [8] opti-
mizer was used for training the network. The experience
horizon and mini-batch size is tuned based on the time steps
of each episode. The sample time for the simulation is set
to 0.05s because the simulated robot can execute the action

Fig. 1   A manipulation task with
three phases: (1) approach; (2)
pre-manipulate; (3) manipu-
late. Three task objectives
are defined: avoid obstacles
(o1); minimize the execution
time (o2); manipulate (o3).
The objective priorities are
expected to change in different
phases. While a current reward
mechanism usually uses linear
summation, which is inefficient
to learn and hard to find a good
policy. In addition, the robot
should determine the objective
priorities during the learning
process to improve its learning
efficiency and policy perfor-
mance

Robot

Target

Obstacle

Phase 1, Approach

Phase 2,

Pre-manipulate

Phase 3 Manipulate

Linear Summation (Current)

Auto Determine Priorities (Ours)

Higher Learning Efficiency

Better Task Performance

3
2
1

1

2

3

3

2

1

P
ri

o
ri

ti
es

P
ri

o
ri

ti
es

Phase 1 Phase 2 Phase 3

Fig. 2   Experiment setup. A
JACO robot arm is attached
with a cylindroid end effector
next to a table. The target is a
cube that is located at the center
top of the table, the others as
obstacles. The task is to push
the target off the table and
avoid touching the obstacles.
The physical environment has
a similar setup to mimic the
simulation environment

(a) Simulation (b) Physical Experiment

Table 1   Hyper-Parameters for
PPO Algorithm and AHC

Parameter Value

Discount Factor (γ) 0.995
Experience Horizon 128
Entropy Loss Weight 0.02
Clip Factor 0.05
GAE Factor 0.95
Sample Time 0.05
Mini-Batch Size 64
Learning Rate 0.001
Number of Epoch 3
P 50
δ 0.05

Journal of Intelligent & Robotic Systems (2022) 106:1 	

1 3

Page 7 of 11  1

faster than the physical robot. After the training is finished in
simulation, the trained policy was transferred to the physical
environment for the test. The sample time was extended to
0.5s for the physical JACO arm to complete the action.

Based on the task environment, three phases are defined
in spatial order (Fig. 1), and each phase covers a portion of
the 3D task space. The phase identification is based on the
position of the end effector. The first phase starts from the
initial position and covers all the space outside of the obsta-
cles’ boundary. The second phase encompass the obstacles
before touching the target cube. The top boundary of the sec-
ond phase is 0.05m higher than the top surface of obstacles.
The third phase is a cubic space around the target, whose
side length is 0.25m.

Three other curricula are designed to evaluate the AHC
method’s performance. The first curricula are empirically
defined (denoted as MHC), shown in Fig. 3b, with a differ-
ent hierarchy in each phase. The second curricula are the
same as the first one but without smooth transition func-
tion (denoted as MHC/NT), shown in Fig. 3c with different

hierarchies in each phase. The third curricula use a fixed
hierarchy across phases (denoted as FHC), shown in Fig. 3d.
The baseline curricula use an equally weighted linear sum-
mation (denoted as LS), shown in Fig. 3e.

5 � Results and Discussion

Figure 3a shows the learned objective priorities with AHC for
each phase. All methods are trained 300 episodes 5 times. Fig-
ure 4 shows the normalized average reward and the standard
deviation boundary during the training progress. It shows that
the AHC method outperformed the other three methods. MHC
converged faster than MHC/NT, which means the smooth transi-
tion function did contribute to the training. For AHC, the cur-
ricula for the three phases are determined after 50 episodes, 142
episodes, and 209 episodes. In phase 1, the convergence for the
first 2 objectives occurred after 62 episodes, 113 episodes. In
phase 2, the convergence for the first 2 objectives occurred after
161 episodes, 194 episodes. For phase 3, the convergence for
the first 2 objectives occurred after 223 episodes, 261 episodes.
The learning behavior shows that the objective with the top pri-
ority converges the fastest. The curricula for the next phase is
usually determined after the second objective of the last phase
converged.

The visualizations of the learned policies are shown in
Figs. 5, 6 and 7. Each policy presents 6 screenshots show the
critical moments in the task. Table 2 shows the performance
statistics of the best performed trained policies. Comparing to
MHC and MHC/NT, AHC determined different objective priori-
ties in phase 1 and phase 2, shown in Fig. 3. In the experiment,
the priority determination strategy is to learn the objective with
a higher average reward. In phase 1, the robot can never touch

P
ri

o
ri

ty
 L

ev
el

3

2

1

Minimize time Avoid Obstacles Manipulate

(b) MHC

(d) FHC

P
ri

o
ri

ty
 L

ev
el

P
ri

o
ri

ty
 L

ev
el

3

2

1

3

2

1

(a) AHC

P
ri

o
ri

ty
 L

ev
el

3

2

1
Phase 1 Phase 2 Phase 3

(e) LS

P
ri

o
ri

ty
 L

ev
el

3

2

1

(c) MHC/NT

Fig. 3   a AHC: the objective priorities for each phase are determined
by the robot. b MHC: the tasks priorities and their change for each
phase are empirically defined. c MHC/NT: the tasks priorities are the
same with MHC but without smooth transition. d FHC: the objective
priorities are empirically defined and fixed. e LS: the reward is lin-
early summed

0 50 100 150 200 250 300

Episode Number

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

al
iz

ed
 A

v
er

ag
e

R
ew

ar
d

Training Progress
AHC

MHC

MHC/NT

FHC

LS

Fig. 4   Comparison of the learning progress for all the tested methods.
All methods are trained 300 episodes 5 times

	 Journal of Intelligent & Robotic Systems (2022) 106:1

1 3

 1   Page 8 of 11

an obstacle, so the reward received for this objective is always
the highest. Thus, avoid obstacles became the top priority. For
phase 2, minimize time became the top priority. One possible
explanation is that the robot spent more time adjusting its pose
to prepare for manipulation, which brings a large penalty in
execution time. Thus, the robot tried to transit to phase 3 at a
faster speed to manipulate the target. The determined objective
priorities are different from AHC and MHC (and MHC/NT).
Our interpretation is that the priorities determined by AHC
are optimal for learning the task, while the empirically defined

objective priorities in MHC and MHC/NT match human devel-
opers’ performance expectations, but it is sub-optimal for the
robot to learn. FHC had difficulty maintaining the performance
as the shared curricula cannot achieve local optimal for each
phase. The robot with the LS method struggled to find the policy
due to the implicit priority information. The results of AHC,
MHC and MHC/NT in Table 2 prove that dynamically updat-
ing the objective priorities can effectively improve the learning
efficiency and learning outcomes. Specifically, AHC achieved
the best performance in objectives 1 and 3. For objective 2, the
performances of AHC, MHC and MHC/NT are similar because
they learned similar policies. The detailed performance statistics
of the trained policies in different phases are shown in Table 3,
which is included in the Appendix section.

The policy evaluation shows that different curricula can
result in different robot behaviors, and such behaviors are
consistent in multiple training, which means the learned
behaviors are not dependent on the random exploration
in early training. For the designed task, it is not easy to
manipulate the target in any direction due to the end effec-
tor’s cylindrical shape. Any inappropriate contact may
move the target to an uncomfortable position, like rotate

Table 2   Performance Statistics over 40 Evaluations

Method S∗ S Rate Touch
Obsta-
cles

Time (s) Cube Travel Length
(m)

AHC 37 92.5% 2 3.8 ± 0.3 0.5103 ± 0.0032
MHC 34 85% 5 4.4 ± 0.6 0.5148 ± 0.0024
MHC/NT 31 77.5% 9 4.7 ± 0.4 0.5125 ± 0.0029
FHC 30 75% 36 6.5 ± 1.3 0.5274 ± 0.0153
LS 4 10% 39 8.3 ± 1.1 0.2442 ± 0.0219

Phase 1, Approach Phase 2, Pre-manipulate Phase 3, Manipulate target

Fig. 5   Visualization of the AHC policy that has learned to push the
target cube down the table and avoid touching the obstacles. Neces-
sary magnified side views of the end-effector are included on the top-
left corner of some keyframes to show the dexterity of the manipu-
lation and how the robot achieve the objectives in each phases. The
robot learned to approach the target from the right side, adjust the

end-effector pose to prepare for manipulation, and then push the tar-
get down the table. The policies learned with the MHC method and
MHC/NT method have similar behaviors but with a longer training
time and worse task performance, as shown in Table I. For simplicity,
the visualizations for MHC and MHCNT are not shown

t1 t2 t3 t4 t5 t6

Fig. 6   Visualization of the FHC policy. The robot approached the tar-
get from the left side, then adjusted the pose and pushed down the
target. Its behavior (i.e., approaching the target from the left side) is

different from AHC and MHC, which has a higher chance to touch an
obstacle and knocked it off

Journal of Intelligent & Robotic Systems (2022) 106:1 	

1 3

Page 9 of 11  1

the target or push it away. The robot with the AHC learned
that it should approach the target’s side to align the end
effector horizontally to maximize the contact surface and
maintain stable contact points, as shown in Fig. 5. The
robot also learned that approaching the right side of the
target may achieve better performance even though the left
side seems easier because there are fewer obstacles than
the other side. Furthermore, the robot knows to slow down
the action and make fine motion adjustments to contact the
target. Finally, the robot manipulates the target faster as
it already learned that push to the left has less chance to
touch obstacles. The robot with the MHC and MHC/NT
methods learned similar behaviors because the empirically
defined objective priorities are near-optimal. The robot
with FHC learned different behaviors to push the target
to the right, as shown in Fig. 6. It can complete the task
but has a higher chance to touch the obstacles. It is due
to the fixed hierarchy cannot appropriately describe the
objective priorities for all phases. As a result, the robot
may only learn the top priority of the fixed hierarchy to
push off the target but did not thoroughly learn the other
two objectives. The LS method shown in Fig. 7 puts the
robot’s burden on finding the objective priorities during
the learning process because the linear summed reward is
abstract and implicit, which does not provide the informa-
tion of objective priorities. As a result, the robot failed to
find a stable policy in the learning process.

In this work, we focus on validating the proposed AHC
approach in manipulation tasks involving multiple phases
and objectives. Although the priority of objectives can be
autonomously determined, to reduce implementation effort
in the experiment, the number of the phases and phase tran-
sition time are empirically defined by domain experts. Thus,
the designed phases and phase transition time may not be
optimal and can be biased by individual knowledge. Our
future work will study the autonomous phase recognition
methods and task decomposition methods which can be inte-
grated into AHC to increase the autonomy and intelligence
of the robot in a manipulation task.

6 � Conclusion

This work proposes an Adaptive Hierarchical Reward Mecha-
nism method to help the robot determine and adapt to the objec-
tive priority changes while learning a multi-objective manipula-
tion task. The experiment results show that different objective
priorities can greatly affect the robot’s performance. In a multi-
objective manipulation task, it is essential to enable the robot
to recognize the appropriate learning sequence of the multiple
objectives and adapt to them for better task performance during
the manipulation process. Our future work will focus on improv-
ing the autonomy and intelligence of the robot with automatic
phase segmentation task decomposition.

Appendix:

Table 3 shows the performance statistics of the trained poli-
cies across the three phases over 40 evaluations, including
the number of times that the robot touched obstacles, aver-
age time consumption in each phase, and the average nor-
malized reward in each phase. LS is not included because it
has no phases during the training.

t1 t2 t3 t4 t5 t6

Fig. 7   Visualization of the LS policy. The robot approached the target from the top side. The end effector touched the target while it was adjust-
ing pose, then caused the target to rotate before manipulating. As a result, the manipulation difficulty increased, and the robot failed the task

Table 3   Performance Statistics across Phases over 40 Evaluations

Method Phase Touch
Obstacles

Time (s) Normalized Reward

AHC I 0 0.9 ± 0.2 0.13 ± 0.08
II 1 1.3 ± 0.3 0.29 ± 0.13
III 1 1.4 ± 0.1 0.62 ± 0.21

MHC I 0 1.2 ± 0.3 0.12 ± 0.04
II 4 1.9 ± 0.3 0.25 ± 0.09
III 1 1.5 ± 0.2 0.60 ± 0.16

MHC/NT I 0 1.3 ± 0.3 0.15 ± 0.07
II 7 2.1 ± 0.2 0.21 ± 0.11
III 2 1.4 ± 0.4 0.52 ± 0.16

FHC I 0 0.7 ± 0.2 0.19 ± 0.05
II 5 1.7 ± 0.4 0.27 ± 0.08
III 31 5.8 ± 1.3 0.37 ± 0.17

	 Journal of Intelligent & Robotic Systems (2022) 106:1

1 3

 1   Page 10 of 11

Author Contributions  All authors contributed to the study conception
and design. The first manuscript was written by Lingfeng Tao. Dr. Jiu-
cai Zhang and Dr. Xiaoli Zhang provided comments and edits towards
the creation of the final manuscript.

Funding  This material is based on work supported by the US NSF
under grant 1652454 and 2114464. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the National Science
Foundation.

Data Availability  Not applicable.

Code Availability  Not applicable.

Declarations 

Ethics Approval  Ethical approval was waived by the local Ethics Com-
mittee of Colorado Schoolof Mines in view of the retrospective nature
of the study and all the proceduresbeing performed were part of the
routine care.

Consents to Participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Consents for Publication  The participants have consented to the sub-
mission of the case report to the journal.

Conflict of Interests  Not applicable.

References

	 1.	 Bellman, R.: A markovian decision process. J Appl Math Mech.
6(5), 679–684 (1957)

	 2.	 Devlin, S., Kudenko, D., Grześ, M.: An empirical study of poten-
tial-based reward shaping and advice in complex, multi-agent
systems. Adv. Complex Syst. 14(2), 251–278 (2011)

	 3.	 Florensa, C., Held, D., Wulfmeier, M., Zhang, M., Abbeel, P.:
Reverse curriculum generation for reinforcement learning. In:
Conference on robot learning, pp. 482–495. PMLR (2017)

	 4.	 Haarnoja, T., Pong, V., Zhou, A., Dalal, M., Abbeel, P., Levine,
S.: Composable deep reinforcement learning for robotic manipu-
lation. In: 2018 IEEE international conference on robotics and
automation (ICRA), pp. 6244–6251. IEEE (2018)

	 5.	 Hu, Z., Kaifang, W., Gao, X., Zhai, Y.: A dynamic adjusting
reward function method for deep reinforcement learning with
adjustable parameters. Math Probl. Eng. 1–10 (2019). https://​doi.​
org/​10.​1155/​2019/​76194​83

	 6.	 Jain V, Tulabandhula T (2017) Faster Reinforcement learning
using active simulators. CoRR. abs/1703.07853. http://​arxiv.​org/​
abs/​1703.​07853

	 7.	 Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke,
V., et al.: Scalable deep reinforcement learning for vision-based
robotic manipulation. In: Conference on robot learning, pp.
651–673. PMLR (2018)

	 8.	 Kingma, D.P., Ba, J.: Adam: a method for stochastic optimiza-
tion. In: Bengio, Y., LeCun, Y. (eds.) 2015 3rd International
Conference on Learning Representations, (ICLR). Conference
Track Proceedings, San Diego (2015). http://​arxiv.​org/​abs/​1412.​
6980

	 9.	 Kroemer, O., Daniel, C., Neumann, G., Van Hoof, H., Herke, G.,
Peters, J.: Towards learning hierarchical skills for multi-phase
manipulation tasks. In: 2015 IEEE international conference on
robotics and automation (ICRA), pp. 1503–1510. IEEE (2015)

	10.	 Kroemer, O., Van Hoof, H., Neumann, G., Peters, J.: Learning to
predict phases of manipulation tasks as hidden states. In: 2014
IEEE International Conference on Robotics and Automation
(ICRA), pp. 4009–4014. IEEE (2014)

	11.	 Luo, Y., Dong, K., Zhao, L., Sun, Z., Zhou, C., Song, B.: Bal-
ance between efficient and effective learning: Dense2sparse
reward shaping for robot manipulation with environment uncer-
tainty. arXiv preprint arXiv:2003.02740. (2020)

	12.	 Maheu, V., Archambault, P.S., Frappier, J., Routhier, F.: Eval-
uation of the JACO robotic arm: Clinico-economic study for
powered wheelchair users with upper-extremity disabilities. In:
2011 IEEE international conference on rehabilitation robotics,
pp. 1–5. IEEE (2011)

	13.	 Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J.,
Ivaldi, S.: Learning soft task priorities for control of redundant
robots. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 21–226. IEEE (2016)

	14.	 Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M.E.,
Stone, P.: Curriculum learning for reinforcement learning
domains: a framework and survey. CoRR. abs/2003.04960
(2020) https://​arxiv.​org/​abs/​2003.​04960

	15.	 Narvekar, S., Sinapov, J., Stone, P.: Autonomous task sequenc-
ing for customized curriculum design in reinforcement learning,
pp. 2536–2542 (2017) IJCAI

	16.	 Narvekar, S., Stone, P.: Learning curriculum policies for rein-
forcement learning. CoRR. abs/1812.00285 (2018) http://​arxiv.​
org/​abs/​1812.​00285

	17.	 Narvekar, S., Stone, P.: Generalizing curricula for reinforcement
learning. In: 2020 4th lifelong machine learning workshop at
ICML (2020) https://​openr​eview.​net/​forum?​id=​7YCys​i_​070N

	18.	 Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under
reward transformations: Theory and application to reward shap-
ing. Icml. 99, 278–287 (1999)

	19.	 Nguyen, H., La, H.: Review of deep reinforcement learning for
robot manipulation. In: 2019 Third IEEE International Confer-
ence on Robotic Computing (IRC), pp. 590–595. IEEE (2019)

	20.	 Popov, I., Heess, N., Lillicrap, T.P., Hafner, R., Barth-Maron,
G., Vecerik, M., Lampe, T., Tassa, Y., Erez, T., Riedmiller,
M.A.: Data-efficient deep reinforcement learning for dexterous
manipulation. CoRR. abs/1704.03073 (2017) http://​arxiv.​org/​
abs/​1704.​03073

	21.	 Rohmer, E., Singh, S.S.P., Freese, M.: V-REP: A versatile
and scalable robot simulation framework. In: 2013 IEEE/RSJ
international conference on intelligent robots and systems, pp.
1321–1326. IEEE (2013)

	22.	 Salini, J., Padois, V., Bidaud, P.: Synthesis of complex human-
oid whole-body behavior: A focus on sequencing and tasks tran-
sitions. In: 2011 IEEE international conference on robotics and
automation, pp. 1283–1290. IEEE (2011)

	23.	 Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experi-
ence replay. In: Bengio, Y., Lecun, Y. (eds.) 2016 4th International
Conference on Learning Representations, (ICLR). Conference
Track Proceedings, San Juan (2016) http://​arxiv.​org/​abs/​1511.​05952

	24.	 Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Kli-
mov, O.: Proximal policy optimization algorithms. CoRR.
abs/1707.06347 (2017) http://​arxiv.​org/​abs/​1707.​06347

	25.	 Sharma, M., Liang, J., Zhao, J., LaGrassa, A., Kroemer, O.:
Learning to compose hierarchical object-centric controllers for
robotic manipulation. CoRR. abs/2011.04627 (2020) https://​
arxiv.​org/​abs/​2011.​04627

	26.	 Da Silva, F.L., Da Costa, L., Reali, A.H.: Object-oriented cur-
riculum generation for reinforcement learning. In: Proceedings

https://doi.org/10.1155/2019/7619483
https://doi.org/10.1155/2019/7619483
http://arxiv.org/abs/1703.07853
http://arxiv.org/abs/1703.07853
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2003.04960
http://arxiv.org/abs/1812.00285
http://arxiv.org/abs/1812.00285
https://openreview.net/forum?id=7YCysi%5C_070N
http://arxiv.org/abs/1704.03073
http://arxiv.org/abs/1704.03073
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2011.04627
https://arxiv.org/abs/2011.04627

Journal of Intelligent & Robotic Systems (2022) 106:1 	

1 3

Page 11 of 11  1

of the 17th international conference on autonomous agents and
multiagent systems, pp. 1026–1034 (2018)

	27.	 Tenorio-Gonzalez, A.C., Morales, E.F., Villasenor-Pineda, L.:
Dynamic reward shaping: training a robot by voice. In: Ibero-
American conference on artificial intelligence, pp. 483–492.
Springer (2010)

	28.	 Tutsoy, O., Barkana, D.E., Tugal, H.: Design of a completely
model free adaptive control in the presence of parametric, non-
parametric uncertainties and random control signal delay. ISA
Trans. 76, 67–77 (2018)

	29.	 Tutsoy, O., Erol Barkana, D., Sule, C.: Learning to balance an
NAO robot using reinforcement learning with symbolic inverse
kinematic. Trans. Inst. Meas. Control. 39(11), 1735–1748 (2017)

	30.	 Veiga, F., Akrour, R., Peters, J.: Hierarchical tactile-based con-
trol decomposition of dexterous in-hand manipulation tasks. Front
Robot AI. 7. https://​www.​front​iersin.​org/​artic​le/​10.​3389/​frobt.​
2020.​521448, (2020). https://​doi.​org/​10.​3389/​frobt.​2020.​521448

	31.	 Zhang, D., Bailey, C.P.: Obstacle avoidance and navigation uti-
lizing reinforcement learning with reward shaping. In: Pham, T.,
Solomon, L., Rainey, K. (eds.) Artificial intelligence and machine
learning for multi-domain operations applications II, vol. 11413,
pp. 500–506. International Society for Optics and Photonics
(SPIE) (2020). https://​doi.​org/​10.​1117/​12.​25582​12

	32.	 Zhu, Y., Wang, Z., Merel, J., Rusu, A.A., Erez, T., Cabi, S., Tun-
yasuvunakool, S., Kramár, J., Hadsell, R., de Freitas, N., Heess,
N.: Reinforcement and imitation learning for diverse visuomotor
skills. CoRR. abs/1802.09564 (2018) http://​arxiv.​org/​abs/​1802.​
09564

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Lingfeng Tao  received B.S. degrees in both Mechanical Engineering
and Aerospace Engineering from SUNY, University at Buffalo in 2017,
an M.S. degree in Mechanical Engineering from University of Pitts-
burgh in 2018. He is currently a Ph.D. candidate in the Department of
Mechanical Engineering at Colorado School of Mines in Golden, CO,
USA. His research interests include human-robot interaction and coop-
eration, reinforcement learning, shared control, and telemanipulation.

Jiucai Zhang  is a chief architect at GAC R&D Center in Silicon Val-
ley. He got his Ph.D. in computer engineering from the University of
Nebraska Lincoln in 2011. His research focuses on machine learning,
autonomous vehicles, and smart mobility. Prior to joining GAC R&D
Center in Silicon Valley, he designed and developed algorithms and
software for smart mobility and connected autonomous electric vehi-
cles at National Renewable Energy Laboratory, General Electric and
A123 Systems, Inc.

Xiaoli Zhang   received a B.S. degree in Mechanical and Automa-
tion Engineering and an M.S. degree in Mechatronics Engineering
from Xi’an Jiaotong University in Xi’an, China, in 2003 and 2006,
respectively, and a Ph.D. degree in Biomedical Engineering from the
University of Nebraska-Lincoln in Lincoln, NE, USA, in 2009. She
is currently an Associate Professor with the Department of Mechani-
cal Engineering at Colorado School of Mines in Golden, CO, USA.
Her research interests include intelligent human–robot interaction and
cooperation, human intention awareness, data-driven modeling, predic-
tion, and control.

https://www.frontiersin.org/article/10.3389/frobt.2020.521448
https://www.frontiersin.org/article/10.3389/frobt.2020.521448
https://doi.org/10.3389/frobt.2020.521448
https://doi.org/10.1117/12.2558212
http://arxiv.org/abs/1802.09564
http://arxiv.org/abs/1802.09564

	Multi-Phase Multi-Objective Dexterous Manipulation with Adaptive Hierarchical Curriculum
	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Manipulation Methods
	2.2 Learning-Based Manipulation Methods
	2.3 Curriculum Learning for Improved Learning Efficiency
	2.4 Reward Shaping to Incorporate Domain Knowledge

	3 Methodology
	3.1 Model Structure
	3.2 Hierarchical Curricula for Each Phase
	3.3 Determination of Objective Priorities in Each Phase
	3.4 Smooth Transition of Reward Hierarchy across Phases

	4 Experiments
	5 Results and Discussion
	6 Conclusion
	References

