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Abstract
Dexterous manipulation tasks usually have multiple objectives. The priorities of these objectives may vary at different phases 
of a manipulation task. Current methods do not consider the objective priority and its change during the task, making a robot 
have a hard time or even fail to learn a good policy. In this work, we develop a novel Adaptive Hierarchical Curriculum to 
guide the robot to learn manipulation tasks with multiple prioritized objectives. Our method determines the objective pri-
orities during the learning process and updates the learning sequence of the objectives to adapt to the changing priorities at 
different phases. A smooth transition function is developed to mitigate the effects on the learning stability when updating 
the learning sequence. The proposed method is validated in a multi-objective manipulation task with a JACO robot arm in 
which the robot needs to manipulate a target with obstacles surrounded. The simulation and physical experiment results 
show that the proposed method outperforms the baseline methods with a 92.5% success rate in 40 tests and on average takes 
36.4% less time to finish the task.

Keywords  Multi-phase multi-objective manipulation · Adaptive curriculum · Objective priority · Robot learning

1  Introduction

Dexterous manipulation is essential to increase robots’ usa-
bility in assembly, healthcare, education, and living assis-
tance. These tasks typically need to be finished in multi-
ple phases, and each phase has multiple objectives [9, 10]. 
Although all phases usually share the same set of objec-
tives [25, 30], the priorities of objectives in each phase can 
vary, which are critical to achieving the manipulation tasks’ 
efficiency and success rate. For example, an assembly task 
usually has two phases: (1) approaching, (2) installation. All 
phases share three objectives: (a) fast speed, (b) high preci-
sion, and (c) avoid the collision. In the first phase, the robot 

picks up the assembly part and move to the target position. 
The task objective with the top priority is to avoid touching 
other parts, then try to move faster to minimize the execu-
tion time, and the lowest priority is to move precisely. In the 
second phase, the robot reaches the target position and is 
ready for installation, and now the priority order changes to 
high precision to improve the installation quality, minimize 
the execution time, and avoid touching other parts.

Existing research in the traditional control theory mainly 
focuses on weighing multiple objectives to balance objec-
tives with optimization methods [13], which is computa-
tionally inefficient. Although deep reinforcement learning 
(DRL) has been proven effective in enabling the robot to 
conduct autonomous manipulation tasks intelligently [19], 
the current reward formulation is usually a linear summation 
of the reward components of objectives, which is implicit 
and inefficient to learn the objective priorities, and causing 
poor learning performance (i.e., take a long time to learn or 
even fail to learn a correct policy). Furthermore, the current 
reward mechanism is usually fixed through all phases. This 
one-fix-all solution (i.e., using the same objective priority 
for all phases) cannot ensure each phase’s local performance 
to be optimal. Such solutions may lead to sub-optimal per-
formance as the reward is not customized for each phase of 
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the task. As a result, the learning performance and learning 
efficiency are usually limited in manipulation tasks where 
multiple objectives exist.

In authors’ vision, the most appropriate approach to 
achieve dexterous manipulation is Curriculum Learning 
[14]. Curriculum learning (CL) is getting popular in the RL 
domain to accelerate the training process by exploring how 
objectives can be prioritized into a curriculum to mitigate 
the difficulty of learning a problem from scratch. CL funda-
mentally provide a hierarchical sequence of objective, which 
is usually ordered from easy to difficult. Existing CL meth-
ods focus on building generalizable, transferable curricula to 
reduce the training efforts [17] in tasks like maze exploration 
and chess. To the authors’ best knowledge, the study of CL 
in dexterous manipulation has been rarely reported.

One potential problem when adopting CL in robotics 
manipulation tasks is that the priority of multiple objec-
tives is shared across the whole process of the task once it is 
determined. For a multi-phase manipulation task, share the 
same curricula across phases cannot guarantee an optimal 
task performance due to the objective priority difference in 
each phase. How to use the CL methods in such multi-phase 
tasks is an open problem.

In this work, we develop the Adaptive Hierarchical Cur-
riculum (AHC) by considering objective priorities and prior-
ity changes across phases. Our method’s novelty is that the 
robot with AHC can utilize the experience when exploring 
the environment to determine the objective priorities and 
update the learning sequence of the objectives based on the 
hierarchical curricula. The benefits include better learning 
efficiency and higher task performance. In summary, the 
main contributions of this work are as follow:

1)	 Propose Adaptive Hierarchical Curriculum to solve the 
manipulation task in a DRL manner to enable the robot 
to efficiently learn multiple objectives with different pri-
orities, which changes in different task phases.

2)	 Validate the AHC method and compare different objec-
tive priority determination methods (i.e., autonomously 
determined dynamic objective priorities, empirically 
defined dynamic objective priorities, fixed objective 
priorities, and linear summation reward) in a multi-
objective manipulation task.

2 � Related Work

2.1 � Traditional Manipulation Methods

Traditional non-learning control methods have tried to solve 
the manipulation task when multiple objectives need to be 
done. With a stochastic optimization procedure [13], the pri-
orities of each objective can be automatically determined as 

the task changes. The priorities are represented as param-
eterized weight functions to adjust the linear summation 
of the output (e.g., force or torque) [22]. These methods 
develop multiple controllers for multiple objective functions 
and adjust controller outputs’ contributions to take objec-
tive priorities into account. In contrast, our method allows 
the robot to use a single policy to embed the knowledge of 
objective priorities into the control strategies enabled by the 
DRL, which reduces the robot’s computational burden once 
the policy is learned.

2.2 � Learning‑Based Manipulation Methods

DRL has been proven promising to enable autonomous 
manipulation, but the learning efficiency has been a great 
challenge. In [20], a DRL method combined off-policy 
updates and parallel training to reduce the training time and 
enable a physical robot to complete a door opening task. 
Kalashnikov et al. [7] utilized the human demonstration to 
initialize the DRL policy to effectively reduce the training 
time to control the robot hand in a hammer usage task and 
an object relocation task. For a multi-objective manipulation 
task, Haarnoja et al. [4] studied the compositionality of soft 
Q-learning methods in a multi-policy and multi-Q-function 
setup, which provides a method to construct new policies 
composing learned skills to improve learning efficiency. 
Despite the progress of existing research, learning efficiency 
in multi-objective dexterous manipulation tasks is still an 
open problem due to the difficulty of providing sufficient 
information for the reward design.

2.3 � Curriculum Learning for Improved Learning 
Efficiency

Recent research proposes the CL method to improve the 
learning efficiency of RL training. CL seeks to speed up 
training by first training on a series of easier tasks and trans-
fer the policy to the target tasks with a selected sequence 
[14]. In [3], A reverse curriculum generation method was 
proposed to gradually learn to reach the goal from a set of 
start states increasingly far from the goal, which leads to 
efficient training on goal-oriented tasks. A graph-based cur-
riculum representation was proposed in [26] to automati-
cally decide the fixed learning sequence of the objectives 
within the threshold of time. An adaptive curriculum was 
implemented in [16] to update the reward function during 
the training continuously. However, the adaptation is based 
on the decision of domain experts. Approaches that can 
automatically adjust the task sequence are proposed in [6, 
15, 23], which enable the robot to adapt to the task prior-
ity change during learning. These approaches inspired the 
authors to adopt the automatic priority determination strat-
egy to robotic manipulation tasks.
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2.4 � Reward Shaping to Incorporate Domain 
Knowledge

A similar approach that changes the reward function is 
the reward shaping method, which provides the robot with 
an extra reward based on the domain knowledge during 
the learning process to redirect the training [18]. Earlier 
approaches like [2] consistently provide an additional reward 
to the robot based on the state’s potential. Later approaches 
start to discuss adaptive reward functions during the learn-
ing process. In [27], verbal feedback is used as an additional 
reward and occasionally provided to the robot when adapting 
to new conditions. A dynamic reward function with adjust-
able parameters is proposed in [5] to adjust the reward func-
tion based on experience. However, current dynamic reward 
functions typically use a linear summed reward, which does 
not contain a hierarchical structure to guide the robot to 
determine objective priorities.

3 � Methodology

3.1 � Model Structure

We model the manipulation task as an RL problem that fol-
lows the MDP [1]. The MDP is defined as a tuple {S,A,R, �} , 
where s ∈ S is the state of the environment, a ∈ A is the set 
of actions. R

(
s′|s, a

)
 is the reward function to give the reward 

after the transition from state s to state s′ with action a . γ 
is a discount factor. A policy π(s,𝜃) specifies the action for 
state s. 𝜃 is the policy network parameters. To find 𝜃, Proxi-
mal Policy Optimization (PPO) algorithm [24] is adopted. 
It is a model-free, online, on-policy reinforcement learning 
algorithm. The PPO algorithm is a type of stochastic policy 
gradient descent approach that alternates between sampling 
data through environment interaction and optimizing a clip-
ping surrogate objective function. To estimate the policy 
and value function, a PPO agent maintains two deep neural 
networks (DNN): 1) an actor π(s,𝜃), with parameters 𝜃, takes 
observation s and returns the action command, 2) a critic V 
(s,ϕ), with parameters ϕ, takes observation s and returns 
the corresponding expectation of the discounted long-term 
reward. When training is complete, the trained optimal 
policy is stored in actor π∗(s,𝜃). DNN helps the DRL agent 
generalize knowledge from the observation instead of stor-
ing and looking up every state in traditional RL, reducing 
computational cost in tasks with large state and action space 
like robot control tasks. Compared to other DRL methods, 
PPO balances ease of implementation, sample complexity, 
and ease of tuning.

The curricula (reward function) is the design target of 
AHC. The task objectives and the task phases can be heu-
ristically defined by the developers based on empirical 

knowledge and human perception. However, it is challenging 
for human experts to define appropriate curricula for each 
phase due to individual experience and bias. Thus, the robot 
should determine the priorities of objectives and generate 
curricula based on its own experience. For each objective, 
a reward component fi is defined, where i = 1,2,...,N. N is 
the total number of the task’s objectives. Each objective can 
only have one priority level, denoted as j, where j = 1,2,...,N. 
The priority level follows a descending manner as j increases 
(i.e., the objective with level 1 has the highest priority). The 
phases of the task are denoted as k = 1,2,...,K. K is the num-
ber of phases. The hierarchical curricula ℝk for phase k is 
constructed with all reward components, which is introduced 
in the following section.

3.2 � Hierarchical Curricula for Each Phase

The learning sequence of the hierarchical curricula in a phase k 
follows the same descending order as the objective priorities, 
which means the objectives with higher priorities are first 
learned. We define the curricula ℝk =

[
Rk
1
, ...Rk

j
, ...Rk

N

]
 , which 

is a piecewise reward function based on the hierarchy. Similar 
strategies of designing piecewise reward functions can be found 
in [11, 32]. Rk

j
 is the curriculum (reward function) for curriculum 

level j (the same with objective priorities), which is computed 
as:

where fi|m is the reward component for objective i with pri-
ority m . When the robot finishes learning a curriculum level 
j with a reward Rk

j
 , it will learn the next curriculum level by 

moving to the next reward component Rk
j+1

 . Such a reward 
function updating mechanism can be considered a reward 
shaping approach [18, 31] based on the objective priorities. 
In this work, the criterion of finish learning the curriculum 
level j in phase k is to check if the variance of the cumulative 
reward 

∑
Rk
j
 for curriculum level j in the past 10 training 

episodes has converged to a threshold, which is empirically 
defined based on the actual reward function.

In practice, the above learning sequence is not strong 
enough to avoid interference with the higher-level priorities 
while learning the lower-level priorities (e.g., alter the previ-
ously learned policy). Thus, the learning process is subject 
to a hard priority constraint to avoid this interference. The 
criterion is that the reward components of learned higher-
level objectives become constraints for the following epi-
sodes to avoid interference between curriculum levels. When 
learning an objective with curriculum level j , we define the 
constraints as:

(1)
Rk
j
=

j∑

m=1

fi|m

j = 1, 2, ...,N
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where threshold τj− 1 is the average of the episode reward ∑
Rk
j−1

 in the last 10 episodes. When Eq. 2 is violated, the 
current episode is terminated, and the collected experience 
of the current episode will not be saved in the experience 
pool. To prevent the constraint from being violated with the 
same agent, the policy will be updated with randomly sam-
pled trajectories from the old experience. Then the next epi-
sode will start.

3.3 � Determination of Objective Priorities in Each 
Phase

The goal of this section is to find the optimal hierarchi-
cal curricula for each phase. That is, to determine the 
priority of each objective. During the training, the robot 
is expected to explore all the phases of a given task and 
find the priorities and changes across different phases. 
However, at the start of the training, a single episode 
may not complete all the phases. One episode may end 
in an intermediate phase of the task due to failure or mis-
take. The robot needs sufficient information to determine 
objective priorities for a specific phase. We defined that 
the objective priorities for a phase can be determined and 
updated only when that phase is explored for P times, 
and P is the empirically defined threshold. Specifically, 
we count the number of times ek that the robot visits a 
phase k, if ek ≥ P, the robot will determine the objective 
priorities of phase k based on the collected information. 
Before the priority determination, the robot will use a 
linear summed curricula of all reward components to 
guide its exploration.

In this work, we define the objective with a higher abso-
lute average reward should be learned first, which means 
the corresponding objective is easier than others to collect 
reward no matter it is positive or negative. This strategy 
is based on traditional curriculum learning, where the cur-
riculum can benefit when the training is ordered easy to dif-
ficult. In this work, the difficulty of an objective is defined 
as how hard to collect rewards. There can be other strategies 
to determine the objective priorities, such as the objectives 
with the least collected rewards should be learned first (dif-
ficult to easy), or the objectives with the lowest absolute 
rewards should be learned first (encourage exploration). We 
will study the effects of different strategies in future work.

We calculate the average episode reward of each 
objective:

(2)
∑

Rk
j−1

≥ �j−1

(3)r̃k
i
=

1

P

P∑

p=1

Rk
i,p

where Rk
i,p

=
∑

fi�k, p is the episode reward for objective i in 
phase k at episode p . The priorities for the objectives are 
updated by sorting the average cumulative rewards. To 
ensure the sorting operation’s veracity, the magnitude of the 
reward components should be consistent along the time hori-
zon, which means that the reward components need to be 
normalized or be defined with the same principles. The 
details of the defined reward components in this work are 
shown in the next section. Then, we extract the index of the 
sorted absolute average episode reward for each objective:

where Ik
j
 is the index of the r̃k

i
 . Finally, the reward component 

of the priority j is assigned as fIj . That is:

We assume that the hierarchy will converge to a single 
optimal hierarchy for each phase with the defined strategy 
as the training goes on.

3.4 � Smooth Transition of Reward Hierarchy 
across Phases

When the robot needs to adapt to the dynamic objective 
priorities in different phases, the current phase’s curricula 
transits to a different one in the next phase. A smooth tran-
sition function is designed by continuously updating the 
curricula from one to another. It can mitigate the negative 
impact on the policy performance when curricula changes. 
For easy modification and symmetrical transition, monotoni-
cally bounded functions are better choices. In this work, we 
choose a tanh function as the smooth transition function:

where x is the identification state input such as position or 
time. Then the curriculum becomes:

where i′ is the updated objective index with priority level 
j after the phase change, i is the previous objective index 
with priority j before the phase change. α is the adjustable 
parameter to control the slope and range of the smooth 
function. In this work, α is 1. δ is the threshold of the tran-
sition period between phases, which can be empirically 
defined. It should be noted that δ is small enough com-
pared to the whole state space so that the smooth transition 

(4)

[
Ik
1
, ...Ik

j
, ...Ik

N

]
= Index

[
sorthigh→low|r̃ki |

]

j = 1, 2, ...,N

(5)fi|j = fIj |j

(6)tanh(x) =
e2x − 1

e2x + 1

(7)

Rk
j
=

�∑j

m=1
fi�m

�
1

2
tanh(𝛼x)

�
+
∑j

m=1
fi� �m

�
1

2
tanh(𝛼x)

�
, if x ≤ 𝛿

∑j

m=1
fi�m, if x > 𝛿
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has minimal influence on the constraint identification and 
policy updating. x is calculated as:

x the Euclidean distance between the current state st and the 
predefined phase boundary b(k,k + 1) between phase k and 
phase k + 1.

4 � Experiments

The experiment was first implemented in a simulated envi-
ronment using V-REP [21] and a physical environment. 
Specifically, the task environment contains a JACO arm 
[12] with a cylindroid end effector attached to the end 
joint (Fig. 2, in the physical environment, the JACO arm 
just keeps its hand close for simplicity). The JACO arm 
system is composed of six inter-linked segments and five 
motors. It has six degrees of freedom (DOF), which refers 
to three DOF 6 movements in three-dimensional space 
(up, down, left, right, back, and forth) and three DOF, 
six movements of JACO’s wrist (abduction, adduction, 
flexion, extension, pronation, and supination). The JACO 
arm has lightweight, durable materials, low power con-
sumption, and a user-friendly interface, making it suitable 
for robotic research in the laboratory environment. In the 
experiment, the JACO arm is placed next to a table. The 
target is a cube (the length of the side is 0.2 m) on the top 
of the table and located at the center. The other objects on 
the table are obstacles. The robot’s task is to use the end 
effector to push the target off the table without touching 
the obstacles. Three objectives are defined to be satisfied 
by the robot for optimal performance. The corresponding 
reward components are constructed in a binary form to 
ensure the consistency of sorting operation in eq. 4. To 
account for the state-action transition of the RL setting, 
the JACO arm works step by step with a step size of 0.05s. 
In each step, the JACO arm executes an action, moves to 
the next state, and receives a reward based on the reward 
function.

(1)	 Avoid obstacles:

where Vobstacle is the absolute velocity of obstacles. 
The function returns a penalty -1 if the robot or target 
touches any of the obstacles. Otherwise, it returns 1.

(2)	 Manipulation:

(8)x =

√∑[
st − b(k, k + 1)

]2

(9)f1 =

�
−1, if

∑
Vobstacle ≥ 0

1, if
∑

Vobstacle = 0

where d is the distance of the target from the starting 
point, l is the distance between the end effector and 
the target center. The if statement compares d and l in 
current time step t and last time step t − 1. Overall, f2 
encourages the robot to approach and push the target 
away from the initial position until it falls.

(3)	 Minimize the execution time:

where v is the absolute velocity of the end effector. The 
if statement compares v in current time step t and last 
time step t − 1. This component encourages the robot 
to act quickly towards the target.

The constructed reward functions evaluate the task per-
formance according to the robot’s interaction with the envi-
ronment, including the JACO arm and the end effector. The 
movement of the JACO arm and the end effector is a cumula-
tive result of all joints. Thus, the PPO algorithm will learn a 
policy that distributively controls the JACO’s joints to com-
plete the desired movement which satisfies the task objec-
tives by maximizing the total reward. In this work, the action 
space includes the first five joints of the JACO arm. Each 
joint works in position control mode (rotation angle) and 
takes an incremental command from three possible actions 
[-0.01, 0, 0.01] rad. Such setup ensures the control of the 
JACO will not exceed the maximum power limit (10A) and 
the maximum linear arm speed (15cm/s). The state observa-
tion includes the joint angle, target position, target velocity, 
obstacle position, obstacle velocity, and the action of the last 
time step. The PPO policy observes the state in each time 
step and outputs the action in a vector containing the five 
joints’ target positions. The JACO arm will then simultane-
ously actuate the motors to control the effector to reach the 
target positions. All five joints are constrained to: 1) avoid 
damaging the robot such as hitting the table, 2) accelerate 
training by limiting the work space above the table. Each 
episode was set to 60 seconds to offer the robot enough time 
to explore the environment and finish the task. The deep 
neural network of the PPO agent has three fully connected 
layers, and each layer has 100 neurons. The network has 
one additional fully connected layer than the original PPO 
agent, and each layer has a few more neurons to handle the 
manipulation task. The hyper-parameters of PPO algorithms 
and AHC are presented in Table 1. The clip factor improves 
training stability by limiting the size of the policy change at 
each step with a clipped surrogate objective function. When 

(10)f2 =

{
−1, if (d − l)t ≤ (d − l)t−1

1, if (d − l)t > (d − l)t−1

(11)f3 =

{
−1, if vt < vt−1

1, if vt ≥ vt−1
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computing the discounted sum of temporal difference errors, 
the Generalized Advantage Estimator (GAE) is a smoothing 
factor. The chosen of clip factor and GAE factor follows the 
default setup of the original PPO algorithm. The discount 
factor is set to 0.995 to constraint the cumulative reward 
to a finite horizon. The learning rate is set to 0.001, which 
must be considerably small to avoid large deviations during 
the parameter update process [28, 29]. The epoch number 
is set to 3 to utilize the latest experiences. Adam [8] opti-
mizer was used for training the network. The experience 
horizon and mini-batch size is tuned based on the time steps 
of each episode. The sample time for the simulation is set 
to 0.05s because the simulated robot can execute the action 

Fig. 1   A manipulation task with 
three phases: (1) approach; (2) 
pre-manipulate; (3) manipu-
late. Three task objectives 
are defined: avoid obstacles 
(o1); minimize the execution 
time (o2); manipulate (o3). 
The objective priorities are 
expected to change in different 
phases. While a current reward 
mechanism usually uses linear 
summation, which is inefficient 
to learn and hard to find a good 
policy. In addition, the robot 
should determine the objective 
priorities during the learning 
process to improve its learning 
efficiency and policy perfor-
mance

Robot

Target

Obstacle

Phase 1, Approach

Phase 2,

Pre-manipulate

Phase 3 Manipulate

Linear Summation (Current)

Auto Determine Priorities (Ours)

Higher Learning Efficiency

Better Task Performance

3
2
1

1

2

3

3

2

1

P
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o
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ti
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P
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o
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es

Phase 1 Phase 2 Phase 3

Fig. 2   Experiment setup. A 
JACO robot arm is attached 
with a cylindroid end effector 
next to a table. The target is a 
cube that is located at the center 
top of the table, the others as 
obstacles. The task is to push 
the target off the table and 
avoid touching the obstacles. 
The physical environment has 
a similar setup to mimic the 
simulation environment

(a) Simulation (b) Physical Experiment

Table 1   Hyper-Parameters for 
PPO Algorithm and AHC

Parameter Value

Discount Factor (γ) 0.995
Experience Horizon 128
Entropy Loss Weight 0.02
Clip Factor 0.05
GAE Factor 0.95
Sample Time 0.05
Mini-Batch Size 64
Learning Rate 0.001
Number of Epoch 3
P 50
δ 0.05
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faster than the physical robot. After the training is finished in 
simulation, the trained policy was transferred to the physical 
environment for the test. The sample time was extended to 
0.5s for the physical JACO arm to complete the action.

Based on the task environment, three phases are defined 
in spatial order (Fig. 1), and each phase covers a portion of 
the 3D task space. The phase identification is based on the 
position of the end effector. The first phase starts from the 
initial position and covers all the space outside of the obsta-
cles’ boundary. The second phase encompass the obstacles 
before touching the target cube. The top boundary of the sec-
ond phase is 0.05m higher than the top surface of obstacles. 
The third phase is a cubic space around the target, whose 
side length is 0.25m.

Three other curricula are designed to evaluate the AHC 
method’s performance. The first curricula are empirically 
defined (denoted as MHC), shown in Fig. 3b, with a differ-
ent hierarchy in each phase. The second curricula are the 
same as the first one but without smooth transition func-
tion (denoted as MHC/NT), shown in Fig. 3c with different 

hierarchies in each phase. The third curricula use a fixed 
hierarchy across phases (denoted as FHC), shown in Fig. 3d. 
The baseline curricula use an equally weighted linear sum-
mation (denoted as LS), shown in Fig. 3e.

5 � Results and Discussion

Figure 3a shows the learned objective priorities with AHC for 
each phase. All methods are trained 300 episodes 5 times. Fig-
ure 4 shows the normalized average reward and the standard 
deviation boundary during the training progress. It shows that 
the AHC method outperformed the other three methods. MHC 
converged faster than MHC/NT, which means the smooth transi-
tion function did contribute to the training. For AHC, the cur-
ricula for the three phases are determined after 50 episodes, 142 
episodes, and 209 episodes. In phase 1, the convergence for the 
first 2 objectives occurred after 62 episodes, 113 episodes. In 
phase 2, the convergence for the first 2 objectives occurred after 
161 episodes, 194 episodes. For phase 3, the convergence for 
the first 2 objectives occurred after 223 episodes, 261 episodes. 
The learning behavior shows that the objective with the top pri-
ority converges the fastest. The curricula for the next phase is 
usually determined after the second objective of the last phase 
converged.

The visualizations of the learned policies are shown in 
Figs. 5, 6 and 7. Each policy presents 6 screenshots show the 
critical moments in the task. Table 2 shows the performance 
statistics of the best performed trained policies. Comparing to 
MHC and MHC/NT, AHC determined different objective priori-
ties in phase 1 and phase 2, shown in Fig. 3. In the experiment, 
the priority determination strategy is to learn the objective with 
a higher average reward. In phase 1, the robot can never touch 
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an obstacle, so the reward received for this objective is always 
the highest. Thus, avoid obstacles became the top priority. For 
phase 2, minimize time became the top priority. One possible 
explanation is that the robot spent more time adjusting its pose 
to prepare for manipulation, which brings a large penalty in 
execution time. Thus, the robot tried to transit to phase 3 at a 
faster speed to manipulate the target. The determined objective 
priorities are different from AHC and MHC (and MHC/NT). 
Our interpretation is that the priorities determined by AHC 
are optimal for learning the task, while the empirically defined 

objective priorities in MHC and MHC/NT match human devel-
opers’ performance expectations, but it is sub-optimal for the 
robot to learn. FHC had difficulty maintaining the performance 
as the shared curricula cannot achieve local optimal for each 
phase. The robot with the LS method struggled to find the policy 
due to the implicit priority information. The results of AHC, 
MHC and MHC/NT in Table 2 prove that dynamically updat-
ing the objective priorities can effectively improve the learning 
efficiency and learning outcomes. Specifically, AHC achieved 
the best performance in objectives 1 and 3. For objective 2, the 
performances of AHC, MHC and MHC/NT are similar because 
they learned similar policies. The detailed performance statistics 
of the trained policies in different phases are shown in Table 3, 
which is included in the Appendix section.

The policy evaluation shows that different curricula can 
result in different robot behaviors, and such behaviors are 
consistent in multiple training, which means the learned 
behaviors are not dependent on the random exploration 
in early training. For the designed task, it is not easy to 
manipulate the target in any direction due to the end effec-
tor’s cylindrical shape. Any inappropriate contact may 
move the target to an uncomfortable position, like rotate 

Table 2   Performance Statistics over 40 Evaluations

Method S∗ S Rate Touch 
Obsta-
cles

Time (s) Cube Travel Length 
(m)

AHC 37 92.5% 2 3.8 ± 0.3 0.5103 ± 0.0032 
MHC 34 85% 5 4.4 ± 0.6 0.5148 ± 0.0024 
MHC/NT 31 77.5% 9 4.7 ± 0.4 0.5125 ± 0.0029 
FHC 30 75% 36 6.5 ± 1.3 0.5274 ± 0.0153 
LS 4 10% 39 8.3 ± 1.1 0.2442 ± 0.0219 

Phase 1, Approach Phase 2, Pre-manipulate Phase 3, Manipulate target

Fig. 5   Visualization of the AHC policy that has learned to push the 
target cube down the table and avoid touching the obstacles. Neces-
sary magnified side views of the end-effector are included on the top-
left corner of some keyframes to show the dexterity of the manipu-
lation and how the robot achieve the objectives in each phases. The 
robot learned to approach the target from the right side, adjust the 

end-effector pose to prepare for manipulation, and then push the tar-
get down the table. The policies learned with the MHC method and 
MHC/NT method have similar behaviors but with a longer training 
time and worse task performance, as shown in Table I. For simplicity, 
the visualizations for MHC and MHCNT are not shown

t1 t2 t3 t4 t5 t6

Fig. 6   Visualization of the FHC policy. The robot approached the tar-
get from the left side, then adjusted the pose and pushed down the 
target. Its behavior (i.e., approaching the target from the left side) is 

different from AHC and MHC, which has a higher chance to touch an 
obstacle and knocked it off
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the target or push it away. The robot with the AHC learned 
that it should approach the target’s side to align the end 
effector horizontally to maximize the contact surface and 
maintain stable contact points, as shown in Fig. 5. The 
robot also learned that approaching the right side of the 
target may achieve better performance even though the left 
side seems easier because there are fewer obstacles than 
the other side. Furthermore, the robot knows to slow down 
the action and make fine motion adjustments to contact the 
target. Finally, the robot manipulates the target faster as 
it already learned that push to the left has less chance to 
touch obstacles. The robot with the MHC and MHC/NT 
methods learned similar behaviors because the empirically 
defined objective priorities are near-optimal. The robot 
with FHC learned different behaviors to push the target 
to the right, as shown in Fig. 6. It can complete the task 
but has a higher chance to touch the obstacles. It is due 
to the fixed hierarchy cannot appropriately describe the 
objective priorities for all phases. As a result, the robot 
may only learn the top priority of the fixed hierarchy to 
push off the target but did not thoroughly learn the other 
two objectives. The LS method shown in Fig. 7 puts the 
robot’s burden on finding the objective priorities during 
the learning process because the linear summed reward is 
abstract and implicit, which does not provide the informa-
tion of objective priorities. As a result, the robot failed to 
find a stable policy in the learning process.

In this work, we focus on validating the proposed AHC 
approach in manipulation tasks involving multiple phases 
and objectives. Although the priority of objectives can be 
autonomously determined, to reduce implementation effort 
in the experiment, the number of the phases and phase tran-
sition time are empirically defined by domain experts. Thus, 
the designed phases and phase transition time may not be 
optimal and can be biased by individual knowledge. Our 
future work will study the autonomous phase recognition 
methods and task decomposition methods which can be inte-
grated into AHC to increase the autonomy and intelligence 
of the robot in a manipulation task.

6 � Conclusion

This work proposes an Adaptive Hierarchical Reward Mecha-
nism method to help the robot determine and adapt to the objec-
tive priority changes while learning a multi-objective manipula-
tion task. The experiment results show that different objective 
priorities can greatly affect the robot’s performance. In a multi-
objective manipulation task, it is essential to enable the robot 
to recognize the appropriate learning sequence of the multiple 
objectives and adapt to them for better task performance during 
the manipulation process. Our future work will focus on improv-
ing the autonomy and intelligence of the robot with automatic 
phase segmentation task decomposition.

Appendix:

Table 3 shows the performance statistics of the trained poli-
cies across the three phases over 40 evaluations, including 
the number of times that the robot touched obstacles, aver-
age time consumption in each phase, and the average nor-
malized reward in each phase. LS is not included because it 
has no phases during the training.

t1 t2 t3 t4 t5 t6

Fig. 7   Visualization of the LS policy. The robot approached the target from the top side. The end effector touched the target while it was adjust-
ing pose, then caused the target to rotate before manipulating. As a result, the manipulation difficulty increased, and the robot failed the task

Table 3   Performance Statistics across Phases over 40 Evaluations

Method Phase Touch 
Obstacles

Time (s) Normalized Reward

AHC I 0 0.9 ± 0.2 0.13 ± 0.08 
II 1 1.3 ± 0.3 0.29 ± 0.13 
III 1 1.4 ± 0.1 0.62 ± 0.21 

MHC I 0 1.2 ± 0.3 0.12 ± 0.04 
II 4 1.9 ± 0.3 0.25 ± 0.09 
III 1 1.5 ± 0.2 0.60 ± 0.16 

MHC/NT I 0 1.3 ± 0.3 0.15 ± 0.07 
II 7 2.1 ± 0.2 0.21 ± 0.11 
III 2 1.4 ± 0.4 0.52 ± 0.16 

FHC I 0 0.7 ± 0.2 0.19 ± 0.05 
II 5 1.7 ± 0.4 0.27 ± 0.08 
III 31 5.8 ± 1.3 0.37 ± 0.17 
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