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We introduce the idea of a dining club to the Kolkata Paise Restaurant Problem. In this problem,
N agents choose (randomly) amongN restaurants, but if multiple agents choose the same restaurant,
only one will eat. Agents in the dining club will coordinate their restaurant choice to avoid choice
collision and increase their probability of eating. We model the problem of deciding whether to
join the dining club as an evolutionary game and show that the strategy of joining the dining club
is evolutionarily stable. We then introduce an optimized member tax to those individuals in the
dining club, which is used to provide a safety net for those group members who don’t eat because of
collision with a non-dining club member. When non-dining club members are allowed to cheat and
share communal food within the dining club, we show that a new unstable fixed point emerges in
the dynamics. A bifurcation analysis is performed in this case. To conclude our theoretical study,
we then introduce evolutionary dynamics for the cheater population and study these dynamics.
Numerical experiments illustrate the behaviour of the system with more than one dining club and
show several potential areas for future research.

I. INTRODUCTION

The Kolkata Paise Restaurant Problem (KPRP) was first introduced in 2007 [1] during work on the Kolkata Paise
Hotel Problem. Since then, it has been studied extensively [1–17] in the econophysics literature. In its simplest form,
we assume N ≫ 1 agents will choose among N restaurants. Choice is governed by a distribution determined by an
implicit ranking of the restaurants. The ranking represents the payoff of eating at a given restaurant. If two or more
agents select the same restaurant, then the restaurant randomly chooses which agent to serve.

A broad overview of KPRP can be found in [3, 7, 11]. When all restaurants are ranked equally (i.e., have payoff 1)
and agents choose a restaurant at random, the expected payoff to each agent is easily seen to be approach 1− 1/e as
N → ∞. Using stochastic strategies and resource utilization models, the mean payoff can be increased to ∼ 0.8 [18].
Identifying strategies to improve on the uncoordinated outcome is a central problem in KPRP.

KPRP is an example of an anti-coordination game (such as Hawk-Dove) [19]. Other examples of this class of game
are minority games [20, 21] and the El Farol bar problem [22–25]. These types of games also emerge in models of
channel sharing in communications systems [26–28].

Learning in KPRP is considered in [12, 18, 29] with both classical and quantum learning considered in [12]. Quantum
versions of the problem are considered in [12, 15, 16] and its relevance to other areas of physical modelling are
considered in [8, 10, 14, 17] with phase transitions considered recently in [2, 9]. Distributed and coordinated solutions
to optimizing agent payoff are discussed in [4–6, 13].

In this paper, we use evolutionary game theory to study a group formation problem within the context of KPRP.
We assume that some subset of the population of N individuals forms a dining club. Individuals in the dining
club coordinate their actions and will choose distinct restaurants from each other, thus increasing the odds that any
individual within the dining club will eat. In this context, we show the following results:

1. When all restaurants are ranked equally, membership in the dining club is globally stable. That is, asymptotically
all players join the dining club (in the limit as N → ∞).

2. When the dining club taxes its members by collecting food for redistribution to those members who did not eat,
there is an optimal tax rate that ensures all members are equally well-fed.

3. When non-club members can choose to deceptively share in the communal food (freeload) of the dining club, a
new unstable fixed point emerges. The fixed point corresponding to a population where all members join the
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dining club remains stable, but is no longer globally stable. We characterize the basin of attraction in this case.
This effectively introduces a public goods game into the KPRP.

4. We then use numerical analysis to study the case where two dining clubs are active. We numerically illustrate
the existence of equilibrium surfaces where multiple dining clubs can exist simultaneously along with non-group
members as a result of group taxation (food sharing), cheating (freeloading), and cheating detection.

The remainder of this paper is organized as follows: In Section II, we analyse an evolutionary model of KPRP with
a dining club. We study resource distribution through taxation and cheating in Section III. Cheating is modelled
in an evolutionary context in Section IV. KPRP with multiple dynamic clubs is studied numerically in Section V.
Finally, in Section VI we present conclusions and future directions.

II. MATHEMATICAL ANALYSIS

We first study KPRP with a single dining club. Let g be the size of the dining club and let n be the size of the
population not in the dining club. The total population is given by N = g + n. We compute the probability that an
individual eats. Consider an individual in the dining club. It is possible k individuals from the non-club members
will choose the same restaurant. The probability that k agents choose this restaurant, while the remaining non-club
agents choose a different restaurant is (︃

n+ g − 1

n+ g

)︃n−k (︃
1

n+ g

)︃k

.

Because each agent at the restaurant in question has an equal chance to eat, we must multiply this by (k + 1)−1

to obtain the probability of eating. Summing over all possible collisions between non-group members and a group
member yields the probability that an individual in the dining club eats with probability

pg(n, g) =

n∑︂
k=0

(︃
n

k

)︃(︃
n+ g − 1

n+ g

)︃n−k (︃
1

n+ g

)︃k
1

k + 1
,

We now compute the probability that a non-club member eats. Suppose k individuals from the non-club group
choose the same restaurant as this non-club individual. Assuming no dining club member also chooses this restaurant,
then k + 1 individuals arrive at the common restaurant and the individual eats with probability,

n

n+ g

1

k + 1

(︃
n+ g − 1

n+ g

)︃n−k−1 (︃
1

n+ g

)︃k

,

where the factor n/(n+ g) gives the probability that the individual does not choose the same restaurant as a dining
club member. On the other hand, if the individual chooses a restaurant that has been chosen by a dining club member,
then the probability that the individual eats is

g

n+ g

1

k + 2

(︃
n+ g − 1

n+ g

)︃n−k−1 (︃
1

n+ g

)︃k

.

Here the factor of g/(n+g) gives the probability of collision with a dining club member and (k+2)−1 appears because
dining club member is also competing for the restaurant. Summing over all the ways these k individuals can be chosen
from the n− 1 other non-club members gives

pn(n, g) =

n−1∑︂
k=0

(︃
n− 1

k

)︃(︃
n

n+ g

1

k + 1
+

g

n+ g

1

k + 2

)︃(︃
n+ g − 1

n+ g

)︃n−k−1 (︃
1

n+ g

)︃k

,

the probability that an arbitrary non dining club member eats.
If we assume g = αn and sum over k, then we can rewrite pg(n, g) in closed form as

pg(n, α) =

(︂
1− 1

αn+n

)︂n (︂
(α+ 1)n

(︂(︂
1

αn+n−1 + 1
)︂n

− 1
)︂
+ 1

)︂
n+ 1

.
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Likewise, pn(n, g) can be written as

pn(n, α) =

(︂
1− 1

αn+n

)︂n

n+ 1

{︃
α2n+ αn− α− n− 1−

[︃
(α+ 1)((α− 1)n− 1)

(︃
1

αn+ n− 1
+ 1

)︃n]︃}︃
.

If we compute the limit as n → ∞, this yields the asymptotic probabilities

pg(α) = lim
n→∞

pg(n, α) =
(︂
1− e−

1
α+1

)︂
(α+ 1), (1)

and

pn(α) = lim
n→∞

pn(n, α) = −α2 + e−
1

α+1
(︁
α2 + α− 1

)︁
+ 1. (2)

For the remainder of this section and the next, we assume an infinite population. While it was easier to work with
g = αn for the previous computation, for further analysis it is simpler to express g as a fraction of the total population.
Let

β =
g

n+ g
=

α

1 + α
.

Substituting

α =
β

1− β
. (3)

into Eqs. (1) and (2) yields the simplified forms,

pg(β) =
1− eβ−1

1− β
and

pn(β) =
−2eβ − eβ((β − 3)β + 1) + e

e(β − 1)2
.

A simple plot shows that pg(β) ≥ pn(β) for all β ∈ [0, 1], see Fig. 1.
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FIG. 1: A plot of pg(β) and pn(β) shows that it is always better for an individual to join the dining club than to
remain independent.

In any realization of the KPRP, individuals will either eat or not eat a meal. Formally, an individual’s meal size is
either 0 or 1; i.e., the individual eats a complete meal or eats nothing. Since the KPRP describes a random process,
let Sg be a random variable denoting the meal size for an individual in the dining club, and let S be a random variable
denoting the meal size for a randomly chosen member of the entire population. These are both Bernoulli random
variables and the probability of eating pg(β) is now easily seen as the expected (average) meal size ⟨Sg⟩. Using this
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FIG. 2: (Left) The growth rate of r(t) is an unimodal positive function with zeros at β = 0 and β = 1. (Right) The
solution curve for β(t) assuming β(0) = 0.01.

interpretation, and equating expected meal size with fitness, we assume that the rate of change of the proportion β
is described by the replicator equation [30]

β̇ = β [pg(β)− p̄(β)] = β (⟨Sg⟩ − ⟨S⟩) . (4)

The population mean p̄(β) = ⟨S⟩ can be computed as

p̄(β) = ⟨S⟩ = αpg(α) + pn(α)

1 + α
,

and converted to an expression in β using Eqs. (1) to (3) as,

⟨S⟩ = p̄(β) = eβ−1(β − 1) + 1.

Let

r(β) = pg(β)− p̄(β) = ⟨Sg⟩ − ⟨S⟩ = 1− eβ−1

1− β
−
(︁
eβ−1(β − 1) + 1

)︁
,

be the growth rate of β. Then r(0) = 0 and we see that limβ→1 r(β) = 0. That is, Eq. (4) has two fixed points. From
Fig. 1, we must have r(β) > 0 for 0 < β < 1. This is illustrated in Fig. 2 (left). It follows that β(t) is described
by a non-logistic sigmoid, as shown in Fig. 2 (right). We conclude that the decision to join the dining club is an
evolutionarily stable strategy and the fixed point β = 1 is globally asymptotically stable while the fixed point β = 0
is asymptotically unstable.

III. SOCIAL SAFETY NETS AND DECEPTIVE FREE LOADING

Suppose the dining club imposes a food tax on its members at the rate κ ∈ [0, 1] so that if a diner is successful
in obtaining food, then he reserves κ × 100% of his meal to be shared with club members who choose a restaurant
that is occupied by an independent individual. If we assume these resources are pooled and then shared equally, the
expected meal size (normalized to the interval [0, 1]) available for a club member who cannot obtain food on his own
is given by

p̃g(β) =
gpg(β)κ

g − gpg(β)
=

pg(β)κ

1− pg(β)
. (5)

Note that sharing (for any value of κ) does not affect the expected meal size obtained by a group member, since we
have the expected meal size

⟨Sg⟩ = (1− κ)pg(β) + [1− pg(β)]
pg(β)κ

1− pg(β)
= pg(β). (6)
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We can construct a tax-rate that depends on β and ensures all participants in the dining club receive the same meal
size. Setting p̃g(β) = 1− κ and solving, we obtain:

κ∗ = 1− pg(β). (7)

Thus, as β increases, the tax decreases. As a result of Eq. (6), the right-hand-side of Eq. (4) remains unchanged and
the decision to join the dining club is still evolutionarily stable, even in the presence of sharing. That is β = 1 is still
globally asymptotically stable.

Suppose a proportion ϕ ∈ [0, 1] of the independent population that does not eat can deceptively pose as club
members, thereby sharing in the communally available food. In the presence of a food tax, the resulting decision to
join the dining club now becomes a public goods problem. Then the expected meal size to anyone receiving shared
food is given by

p̃g(β) =
κgpg(β)

n[1− pn(β)]ϕ+ [1− pg(β)]g
=

ακpg(β)

ϕ[1− pn(β)] + α[1− pg(β)]
,

where α is defined in terms of β in Eq. (3). Let Sn be the random variable denoting the expected meal size for an
independent member of the population. Then as a function of κ and ϕ,

⟨Sg⟩ = (1− κ)pg(β) + [1− pg(β)]
ακpg(β)

α[1− pg(β)] + [1− pn(β)]ϕ
and (8)

⟨Sn⟩ = pn(β) + [1− pn(β)]ϕ
ακpg(β)

α[1− pg(β)] + [1− pn(β)]ϕ
. (9)

It is possible but unwieldy to compute r(β, ϕ) = ⟨Sg⟩ − ⟨S⟩ using the expected meal size with deception rate ϕ and
group size β. Plotting sample curves for r(β, ϕ) shows that the growth rate now changes sign at some value β(ϕ); see
Fig. 3 (left). As a consequence of this, the replicator equation for β is given by
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FIG. 3: (Left) The rate function r(β, ϕ) for varying values of ϕ shows that r(t) changes sign as a function of β.
(Right) The solution curve for β∗ as a function of ϕ so that r(β∗, ϕ) = 0.

β̇ = β (⟨Sg⟩ − ⟨S⟩) .

These dynamics exhibit a new unstable equilibrium point, illustrating a bifurcation in parameter ϕ with numerically
computed bifurcation diagram shown in Fig. 3 (right). An example solution flow (for various initial conditions) is
shown in Fig. 4. We can compute β∗ ≈ 0.577 for ϕ = 1. This is particularly interesting because we have essentially
constructed a public goods problem in which joining the dining club enforces a taxation rate of κ = 1− pg(β) on the
members, who are then guaranteed (the public good of) a meal each day. The presence of freeloaders destabilizes the
group formation process, but does not guarantee that a group cannot form. Since β∗(ϕ) is monotonically increasing,
it follows that if ϕ grows slowly enough so that at any time β(t) > β∗[ϕ(t)], then the dining club will grow to include
the entire population. If β(t) < β∗[ϕ(t)], then the dining club collapses. We impose an evolutionary dynamic on the
freeloaders in the next section to study this effect.
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FIG. 4: Here ϕ = 0.1 and we show the instability of the interior fixed point. With β(0) > β∗ all members of the
population are eventually driven to join the dining club. If β(0) < β∗, the dining club fails as a result of freeloading.

IV. EVOLVING FREELOADERS

If we divide the population into three groups, dining club members (g), non-dining club freeloaders (f) and non-
dining club non-freeloaders (h), we can construct an evolutionary dynamic for the freeloaders. Let χ be the proportion
of the population that is not in the dining club and will freeload (cheating) and η = 1− β − χ to be the proportion
of the population that is not in the dining club and not freeloading (honest). Then the population of freeloaders is
χ(n+ αn). The expected meal size to any agent accepting communal food is then

κgpg(β)

g[1− pg(β)] + [1− pn(β)]χ(n+ αn)
=

καpg(β)

α[1− pg(β)] + [1− pn(β)]χ(1 + α)
=

καpg(β)

α[1− pg(β)] + [1− pn(β)]χ(1− β)−1
. (10)

Let Sg be as before, and let Sf be the random variable denoting the meal size for an individual in the freeloading
group and Sh be the random variable denoting meal size for an individual from the non-freeloading non-dining club
group. It follows from Eqs. (8) to (10) that

⟨Sg⟩ = (1− κ)pg(β) + [1− pg(β)]
ακpg(β)

α[1− pg(β)] + [1− pn(β)]χ(1− β)−1
,

⟨Sf ⟩ = pn(β) + [1− pn(β)]
ακpg(β)

α[1− pg(β)] + [1− pn(β)]χ(1− β)−1
, and

⟨Sh⟩ = pn(β).

Here, we have replaced ϕ with its definition in terms of χ and β. Employing the same reasoning we used to obtain
Eq. (4), we can construct replicator equations for proportions β, χ and η.

The population mean meal size is

⟨S⟩ = χ ⟨Sf ⟩+ β ⟨Sg⟩+ η ⟨Sh⟩ .

The dynamics of η (the non-freeloading, non-dining club group) are extraneous, and we can focus on the two-
dimensional system

β̇ = β (⟨Sg⟩ − ⟨S⟩)
χ̇ = χ (⟨Sf ⟩ − ⟨S⟩) ,

which do not depend on the value of η. Fig. 5 shows the dynamics of this evolutionary system. It is straightforward
to compute that when β = 0, then ⟨Sg⟩ − ⟨S⟩ = ⟨Sf ⟩ − ⟨S⟩ = 0 for all values of χ ∈ [0, 1]. Thus, the dynamics freeze
on the left boundary of the simplex

∆2 =
{︁
(β, χ) ∈ R2 : β + χ ≤ 1, β ≥ 0, χ ≥ 0

}︁
.
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FIG. 5: A phase portrait of the two-dimensional system showing the dynamics of (β, χ). The red curve shows a
numerically computed boundary between the basin of attraction of (β, χ) = (1, 0) and (β, χ) = (0, 1).

There is a single hyperbolic saddle on the boundary of ∆2 that can be numerically computed as (β, χ) ≈ (0.578, 0.422).
The two boundary equilibria (β, χ) = (1, 0) and (β, χ) = (0, 1) are both locally asymptotically stable. Thus, the long-
run population behaviour is dependent on the initial conditions. We can numerically construct a curve of initial
conditions showing this dichotomous behaviour. This is shown in Fig. 6 and as the red curve in Fig. 5. As β0
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Dining Club Stable
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FIG. 6: (Right) Numerically computed curve showing the boundary between the stable and unstable dining club
strategy for varying initial conditions.

approaches β∗ ≈ 0.578 corresponding to equilibrium point for ϕ = 1, the curve stops because χ0 would need to lie
outside the simplex to cause the dining club to collapse. It is interesting to note that the phase portrait illustrates
trajectories in which both β and χ are increasing up to a point, followed by either the collapse of the dining club
(while χ continues to increase) or the collapse of the freeloading group, as all population members join the dining
club (and β continues to increase).

V. NUMERICAL RESULTS ON MULTIPLE DINING CLUBS

We now consider KPRP with two dining clubs. We model three groups of agents G1, G2 and F , denoting the
populations in dining club one and dining club two and the population in neither club, respectively. We estimate
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⟨Sg1⟩, ⟨Sg2⟩ and ⟨Sf ⟩ using Monte Carlo simulation. This Monte Carlo simulation is then embedded into a larger
dynamic process for updating the groups.

In the Monte Carlo simulation, the free agent group acts normally, choosing a restaurant randomly. The members
of the dining clubs also choose restaurants randomly, but with the constraint that no two agents in a dining club
may choose the same restaurant. Since we are studying this system numerically, we introduce two kinds of taxation
policies:

1. Policy I: We assume a given tax rate κ with no redistribution; i.e., the tax goes to maintain the dining club in
some form.

2. Policy II: Agents within the dining club are taxed at a rate κ given by Eq. (7), and food is redistributed to
club members who did not initially eat (and possibly to freeloaders). Freeloaders are the free agents who did
not get food that day. They will randomly choose a dining club to eat in if they do not get food on a given day
with a probability 1. That is, we assume ϕ = 1. We also introduce a probability ρ that such cheaters will be
caught. If a freeloader is caught, their food is not redistributed and becomes waste. So from the stand point of
the restaurant, the wasted food is still food served, but instead of it benefiting agents it is discarded because
the freeloader is caught.

In the dynamic model that follows, we refer to the process of simulating groups eating over several days by the
function MonteCarlo(F ,G1,G2, κ, ρ). The system dynamics of our simulation are then described by the following
steps:

1: Input: F , G1, G2.
2: while There is at least one agent in each group do
3: Compute (⟨Sg1⟩ , ⟨Sg2⟩ , ⟨Sf ⟩) = MonteCarlo(F ,G1,G2, κ, ϕ).
4: Set P = F ∪ G1 ∪ G2.
5: Choose two agents i and j at random from P.
6: Let Group(i) (resp. Group(j)) be the group to which i (resp. j) belongs.
7: Let pi (resp. pj) be the probability that i (resp. j) eats.
8: if pi > pj then
9: Move j to Group(i)

10: else if pj > pi then
11: Move i to Group(j)
12: end if
13: Remove i and j from P.
14: if |P| > 1 then
15: goto 5
16: else
17: goto 3
18: end if
19: end while

It is clear in the dynamics simulated by this model, there are three equilibria corresponding to the cases when all
agents are in F or G1 or G2. Example trajectories produced by the simulation are shown in Fig. 7 for three initial
conditions. Let ⟨Sg1⟩, ⟨Sg2⟩ and ⟨Sf ⟩ be the mean meal size of an individual in the three groups. We can show
empirically that in a no-tax situation, the expected meal size (probability of eating) approaches 1, just as it does in
the single dining club case. See Fig. 2 (right). To generate Fig. 8, we initialized each dining club with 100 members
and 100 non-club members. We used the Monte Carlo algorithm to simulate 300 trajectories for the group sizes and
recorded the empirical probability of eating (expected meal size) over time. In Fig. 8, we show the expected meal
size (with 95% confidence interval) as a function of time for the instances when Dining Club 1 (or 2) was dominant
as well as the population mean meal size. Just as in the single dining club case, restaurant utilization (mean meal
size) approaches 1. We explore the effect tax rate and initial condition has on long-run behavior of the system in the
subsequent experimental results.

In a situation with adaptive taxation (see Eq. (7)), the two dining clubs can stabilize in size (when started with
identical memberships) and the result is a probability of eating that is higher than 1− e−1 but not exactly 1, as the
two groups compete for common resources. This is illustrated in Fig. 9.
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Initial Population (34, 33, 33) Initial Population (40, 50, 10) Initial Population (90, 5, 5)

FIG. 7: (Left) Two example trajectories starting with 34 non-group members, 33 members in group 1 and 33
members in group 2. (Middle) Two example trajectories starting with 40 non-group members, 50 members in group
1 and 10 members in group 2. (Right) Two example trajectories starting with 90 non-group members, 5 members in

group 1 and 5 members in group 2. When the two dining clubs start with the same number of individuals, the
population will randomly evolve so that one club is dominant (assuming no taxation and food redistribution)

0 2 4 6 8
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time (Epoch)

P
ro
ba
bi
lit
y
of
E
at
in
g
(U
til
iz
at
io
n)

〈Sg1〉 (when Dominant)

〈Sg2〉 (when Dominant) 〈S〉

FIG. 8: In a Monte Carlo simulation, there is a 50% chance that either of the dining clubs will become the dominant
group. Here, we show that the dominant group always approaches a probability of 1 of eating and hence so does the

entire population.

A. Simulation Results

For each simulation, we divide 100 agents into F , G1 and G2. To construct an approximation for the basins of
attraction for the three equilibrium populations, we ran the simulation using 1,000 replications and simulated each
possible (discrete) starting population size for |F|, |G1| and |G2|.
a. Tax Policy I: We explore the effect of varying κ (the tax rate) from 0.05 to 0.15. Both clubs use the same

tax rate. However, they begin with different proportions of the population. To manage simulation time, we executed
the while loop at most, 10,000 times. If all players had not joined a single community by then, we declared this a
failed run, suggesting slow convergence from this initial condition. The outcome of almost all experiments resulted
in a dominant group (either free agents or dinning clubs) being formed. This is illustrated in Fig. 10. Let β1 and β2

be the proportion of the population in dining clubs one and two, respectively, and let ν = 1 − β1 − β2 be the free
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FIG. 9: An example run in which the non-club member population goes to zero and the two clubs maintain
relatively stable populations over time. (Initial group sizes are |F| = 30, |G1 = 35|, |G2| = 35. Final groups size at

the end of the simulation are |G1 = 49|, |G2| = 51.

group proportion. Then the dynamics can be projected to the two-dimensional unit simplex ∆2 embedded in R3 with
coordinates (β1, β2, η). When the simulation converges, we can determine the ω-limit set of trajectories leaving (near)
an initial condition (β0

1 , β
0
2 , η

0). Fig. 10 shows that the size of the tax rate κ is correlated with the size of the basin of
attraction for the free agent group. The dynamics roughly partition the simplex into three basins of attraction, with
the basins of attraction for the two dining clubs exhibiting symmetry as expected. On the boundaries of these regions,
we expect unstable coexistence of multiple groups would be possible. This is qualitatively similar to the unstable
fixed point identified in Fig. 4.

b. Tax Policy II: In a second set of experiments, we allow freeloading but assume the freeloader may be caught
with probability ρ. When this occurs, the food that the freeloader was supposed to is not redistributed and goes to
waste. We let ρ vary between 0 and 1 and used Eq. (7) to set the tax policy. The cheating probability was fixed at
ϕ = 1. As before, both clubs shared the same tax rate and we executed the while loop at most, 10,000 times. If all
players had not joined a single community by then, we declared this a failed run, suggesting slow convergence from
this initial condition. Basins of attraction for various fixed points are shown in Fig. 11. It is interesting to notice that
there are a substantial number of failed cases between the clubs. This suggests an area of slow dynamics and possibly
the existence of a slow manifold. Constructing a mathematical model of this scenario is an area reserved for future
work, since it is unclear exactly how the dynamics are changing in this region.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we studied the Kolkata Paise Restaurant Problem (KPRP) with dining clubs. Agents in a dining club
mutually agree to visit separate restaurants, thereby increasing the probability that they eat (obtain a resource). An
evolutionary game model was formulated describing the choice to join the dining club. We showed that joining the
dining club is an evolutionarily stable strategy, even when members are taxed (in food) and resources are distributed.
When cheating was introduced to the non-dining club members, i.e. the non-dining club members could deceptively
benefit from the communal food collected by the dining club, a new unstable fixed point appears. We analysed this
bifurcation as well as the decision to cheat using the resulting replicator dynamic. Numeric experiments on two dining
clubs show that the behaviour in this case is similar to the case with one dining club, but may exhibit richer dynamics.

There are several directions for future research. Studying the theoretical properties of two (or more) dining clubs
is clearly of interest. Adding many groups (i.e., so that the number of groups is a proportion of the number of
players) might lead to unexpected phenomena. Also, allowing groups to compete for membership (by varying tax
rates) might create interesting dynamics. As part of this research, investigation of the dynamics on the boundary
both in theory and through numeric simulation would be of interest. Exploring multiple dining clubs with a spatial
component might also lead to interesting results. If we introduce a diffusion component to the evolutionay dynamic
with multiple groups, we should expect to see travelling wave solutions spreading out from the group origin points,
as in the Fisher-KPP equation [31–33]. However, how these waves interact when multiple equivalent clubs meet is
unclear. In two dimensions, it may lead to fractal geometry, like that seen in compact Apollonian packing. In this



11

(a) κ = 0.05 (b) κ = 0.07

(c) κ = 0.1 (d) κ = 0.15

(e) κ = 0.2

free agents group 1 group 2 convergence failure

FIG. 10: Basins of attraction for various tax rates are shown in a ternary plot. The different colours indicate where
the model converges from the given starting point.

case, characterizing the resulting spatial structures would be of great interest. A final area of future research would
be to investigate the effect of taxing cheaters who are caught, thus allowing them to eat, but discouraging them from
cheating. Determining the impact on the basins of attraction in this case would be the primary research objective.
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free agents group 1 group 2 convergence failure

FIG. 11: (Left) We show the basins of attraction when the probability that a cheater is caught is set at 0.5. (Right)
Basins of attraction when the probability that a cheater is caught is 1.
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