
Research Article

Transportation Research Record

1–12

� National Academy of Sciences:

Transportation Research Board 2023

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/03611981231158639

journals.sagepub.com/home/trr

Freight Operational Characteristics
Mined from Anonymous Mobile Sensor
Data

Taslima Akter1 , Sarah Hernandez2 , and Pedro V. Camargo3

Abstract

Effective transportation performance measurement (TPM) benefits from ubiquitous transportation system monitoring
both spatially and temporally. In the context of freight-oriented TPM, traditional devices such as inductive loops, cameras,

manual counts, and so forth, may fail to provide comprehensive and high-resolution coverage, providing, for example,

only volume counts for a small subset of links across a large network with no indication of trip linkages. New sources of
big data from mobile sensors including on-board global positioning system (GPS) devices allow more comprehensive net-

work coverage and insights into trip chaining behaviors. However, to gain actionable insights into system performance

from large and noisy streams of mobile sensor data, it is necessary to mine it for relevant operational characteristics of
the trucks it represents. Such characteristics include stop locations, stop duration, stop time of day, trip length, and trip

duration. To address this methodological need, this paper presents three heuristic algorithms: ‘‘stop identification,’’ ‘‘path

identification,’’ and ‘‘trip identification.’’ To address the issue of determining relevant operational characteristics, a multi-
nomial logit (MNL) model approach is applied to determine the commodity carried based on the outputs of the heuristic

algorithms. The MNL model is novel in that it relates operational characteristics to commodity carried thus filling a criti-

cal data gap that currently limits the development of advanced freight forecasting models. The set of models developed in
this paper allow large-scale GPS data to be used for freight planning while maintaining levels of data anonymity that allow

such data to be shared with public agencies.
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Effective transportation performance measurement

(TPM) benefits from ubiquitous system coverage.

Because of the significant impact of trucking on the

economy, infrastructure, and environment, it is essential

that transportation agencies consider freight movements

in their TPM strategies. In the U.S., to ensure freight

needs are met, federal legislation (e.g., Fixing America’s

Surface Transportation [FAST] Act), mandates a process

of selecting performance measures, setting performance

targets, and establishing a freight plan that aligns with

the broad goal of improving the national highway freight

network to ensure economic competitiveness.

With the push toward more accurate and detailed

freight performance measurement and system planning,

there is an ever-increasing need to better understand and

measure freight truck movements at high levels of

temporal and spatial disaggregation (1). In the context of

freight-oriented TPM, traditional performance monitor-

ing devices such as inductive loops, cameras, manual

counts, and so forth, may fail to provide comprehensive,

high-resolution coverage of the transportation network.

For instance, fixed location devices such as inductive

loop detectors and cameras typically only provide vol-

ume and some vehicle classification data for the link on

which they are located and give no indication of trip
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linkages, for example, origin and destination, stop loca-

tions, and so forth. Acquiring the data needed for

system-wide TPM is a challenge for transportation agen-

cies and a special challenge of freight data when consid-

ering freight flows. Since freight operations are carried

out primarily by private entities (e.g., shippers, carriers,

and third-party logistics companies), operational data

defining vehicle movements is often not made readily

available for public consumption because of privacy

concerns.

New sources of big data from mobile sensors including

cell phones, electronic logging devices (ELDs) and global

positioning system (GPS) devices allow more universal

network coverage and, with that, the ability to gain

insights into trip chaining behaviors. Carrier collectives

have recently made available large streams of anon-

ymized GPS data (2). This GPS data typically contains

the timestamp, latitude and longitude position (e.g.,

ping), and point speed data for a sample of trucks oper-

ated by major freight carriers. All data about the carrier,

fleet operator, driver, cargo/commodity, and trip purpose

are removed from the data to protect privacy. Therefore,

the anonymized data must be mined to extract relevant

information for planning applications, such as stop loca-

tion/purpose, trip purpose, and commodity carried, while

maintaining the integrity of data-sharing agreements by

ensuring the data remains anonymous. In other words,

data mining should not reveal private information such

as company/fleet identification or name.

Freight activity insights derived from truck GPS data

have been applied in practice to support a variety of

freight planning efforts including freight forecasting

tools such as activity-based and truck touring models,

estimating origin-destination truck flows, improving the

estimation of freight performance measures, and ranking

roadway bottlenecks (3–10). Although these studies used

truck GPS data to develop and/or validate their forecast-

ing models, they did not explore methods to identify

underlying relationships between truck activity and com-

modity carried. Such a relationship is key in travel

demand forecasting models that rely on predictions of

commodity consumption and production trends using

economic forecasts.

To better link the estimation of commodity produc-

tion and consumption to freight flows, specifically truck

volumes, it is key to measure truck flows by commodity

carried. Uniquely, truck flows distinguished by commod-

ity carried provide deep insights into trip patterns and

can highlight potential sources of freight bottlenecks.

For long-haul trips, average trip length (ATL) varies by

commodity carried (11, 12). However, ATL is the only

trip characteristic available from most surveys, for exam-

ple, the Vehicle Inventory and Use Survey (VIUS) used

for freight analysis, and it is likely that other trip charac-

teristics vary by commodity carried (12). Unfortunately,

being a national inventory, VIUS does not cover daily

trip patterns, trip chains, or shorter trips resulting from

needs for rest breaks, fuel, and so forth. Therefore, it is

necessary to identify key freight operational characteris-

tics at smaller levels of geography (e.g., state, regional, or

county) that can be used for more comprehensive freight

planning.

To address the critical need for methods to extract

operational characteristics from mobile sensors data,

this study develops and combines three transferable

heuristic algorithms to identify stop characteristics and

trip characteristics from truck GPS data: (1) ‘‘stop

identification’’ to aggregate pings (latitude, longitude,

timestamp data points) into freight activity stops, that

is, pick-up/drop-off or rest stops, (2) ‘‘path identifica-

tion’’ to convert sparse pings into complete, fully con-

nected paths on a dense transportation network, and

(3) ‘‘trip identification’’ to extract operational charac-

teristics by combining results of stop-identification and

path-identification algorithms. The algorithms were

applied to a sample of 338 million GPS pings (e.g., lati-

tude, longitude, timestamp datapoints) collected from

major trucking companies through on-board GPS

units. The data represented 358,092 unique trucks dur-

ing an 8-week sample period in Arkansas (i.e., a state-

wide region). The dataset contains a unique but

anonymous truck ID so that location records for the

same truck can be grouped. The data does not contain

or describe key characteristics of the trucks such as

vehicle type, commodity carried, and purpose of travel.

Finally, to identify the operational characteristics that

can be linked to commodity carried, a multinomial

logit (MNL) model is applied. Application of these

approaches to mobile sensor data enables such sources

of big data to be used effectively for TPM while main-

taining the anonymity of those sources.

Background

This section reviews prior research focused on heuristic

approaches, methods, and models that were used to

extract freight operational characteristics from large

streams of truck GPS data.

Stop Identification

The premise of stop identification is to determine the

locations of potential activity-related stops (e.g., fuel

stops, rest stops, and pick-up/delivery for freight trucks)

within large streams of GPS data points (also known as

‘‘pings’’). Simple algorithms consider a stop to be the
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location where the vehicle’s instantaneous speed is

recorded as zero. Minor modifications may assume the

speed to be below a given threshold, say 3mph.

However, these simple approaches may overestimate the

number of stops made by a vehicle by not grouping con-

secutive (redundant) pings representing zero or low speed

into a single stop. In short, effective algorithms should

combine consecutive, low-speed pings into clusters,

determine the physical location of the stop within the

cluster, and calculate a stop duration considering all

pings in the cluster.

Existing stop-identification algorithms used geo-

graphic bounding boxes and rule-based approaches to

define stop clusters (5, 13–17). Greaves and Figliozzi

developed a stop-identification algorithm for commercial

vehicles and used the time difference between GPS-to-

satellite communications to determine if the vehicle was

stopped (13). The algorithm considered a time threshold

of 4min and a geographic distance threshold of around

20 ft (6m) to identify a stop. If a vehicle repositioned by

less than the defined threshold, regardless of the time

elapsed, they performed a manual inspection to check

whether it was a short stop. However, relying on manual

inspections is not feasible for a large dataset.

McCormack et al. identified delivery stops by defining a

threshold of 3min for dwell time (i.e., duration of a vehi-

cle’s engine as off or idle status) (14). To avoid redun-

dant GPS pings of an idle truck, their algorithm

removed data points where the distance between two

consecutive pings was less than 65 ft (about 20m).

Though this filtered out false trips, it removed data that

could be significant for deriving freight operational char-

acteristics such as service times (i.e., the time for a truck

to unload and start the next trip).

Holguı́n-Veras et al. used a mechanistic procedure to

identify freight activity stops from GPS data (15). The

driving pattern of freight trucks was the base of their

procedure. After implementing the approach in three

international case studies, they found that their approach

can identify freight activity stops with an average accu-

racy of 98.6% (15). Alho et al. compared different algo-

rithms used for stop-to-tour assignment and tour-type/

chain identification (16). For their stop-to-tour assign-

ment algorithm, they considered the ‘‘base’’ location of a

trip as the start/end of a tour. For tour-type/chain identi-

fication algorithms, they considered the predominant

tour-type identified for 1 day as well as the average num-

ber of stops per tour by stop type. After comparing their

algorithms in an international case study, they found

that the predictions of tours, tour types, and tour chain

types were dependent on the assumptions made and the

methods used for data processing (16).

The stop-identification algorithm developed by

Camargo et al. expanded on the abovementioned

research by using coverage and space-mean-speed (SMS)

in addition to dwell time to define a stop (5). After

grouping pings for which the travel speed between con-

secutive GPS records was less than 5mph (8 km/h), they

assessed the coverage of the set of pings. If a truck tra-

veled less than 0.5mi (about 800m) between stops, pings

were combined to represent a single stop. The geometric

center of the stop cluster was defined as the stop loca-

tion. The stop-identification method developed by

Camargo et al. was used in this work with several

modifications to ensure transferability among datasets,

for example, metropolitan versus statewide spatial cover-

age (5).

Path Identification

Path identification, also known as map matching, refers

to the process of identifying the network link that corre-

sponds to each GPS ping (latitude, longitude, and time-

stamp data triples). Existing map-matching algorithms

were developed based on the premise of assigning the

pings to their closest network link and then connecting

disparate links via shortest-path-finding algorithms (5,

18, 19). Giovannini’s algorithm reconstructed routes

from low-sample-rate GPS data, for example, around

1mi between pings, using a Bayesian approach (18).

Quddus and Washington developed a weight-based

shortest path and vehicle trajectory aided map-matching

algorithm to determine the network link corresponding

to each GPS ping based on proximity, among other fac-

tors, for a sparse road network (19).

With temporally sparse GPS data, simple matching of

the GPS ping to the closest link may not result in a com-

plete and connected path. For example, many network

links may be traversed between consecutive pings if the

pings are recorded only every 15min and a vehicle is tra-

veling at highway speeds of 55mph; there would be gaps

when constructing the complete path of the truck from

origin to destination. Camargo et al. addressed this gap

by determining a fully connected complete path between

sparse pings by applying shortest-path algorithms (5).

The map-matching algorithm developed by Camargo

et al. was used in this paper with several modifications to

ensure route accuracy for a denser road network (5).

Freight Operational Characteristics from Mobile Sensor
Data

Identifying stops and routes from GPS data allows us to

compute network volumes and link/corridor speeds,

identify bottlenecks, and estimate many other perfor-

mance metrics for TPM. For freight-oriented TPM, it is

also important to differentiate performance measures by

operational characteristics such as trip type (e.g., long-
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haul and short-haul trip), stop and trip purpose (e.g.,

rest, pick-up delivery, pass through), and industry served

to enhance our understanding of economic impacts tied

to freight movements.

Yang et al. characterized freight delivery stops from

other types of stops using GPS data and a support vector

machine (SVM) method (20). An SVM is a machine

learning method commonly used as a pattern classifier.

An SVM represents training data in a transformed fea-

ture space so that the points can be separated by a hyper-

plane with the largest margin separating a pair of classes.

Test data are then mapped into the same space and pre-

dicted to belong to one side of the separating hyperplane.

Three parameters, for example, stop duration, the dis-

tance to the center of the city, and the binary distance to

a stop’s closest bottleneck, served as input features of the

SVM and produced minimal error of 0.2% (20). Based

on trip length and number of trips derived from truck

GPS data, Zanjani et al. distinguished light-duty local

delivery trucks from long-haul operations using heuristic

approaches (6). A local delivery truck was characterized

as making more than five trips per day, none more than

100mi in length. In combination with a driver survey,

Jing analyzed stop purpose, stop duration, and stop time

of day (21). Her study found four types of overnight,

urban truck tours: one pick-up followed by one delivery,

multiple consecutive pick-ups followed by one delivery,

one pick-up followed by multiple consecutive deliveries,

and multiple consecutive pick-ups followed by consecu-

tive deliveries. Akter and Hernandez developed a super-

vised machine learning model to predict industry groups

from anonymous GPS data (22). Their model allows

large streams of truck movement data to be leveraged

for freight travel demand forecasting.

None of the studies mentioned above were aimed at

identifying or deriving freight operational characteristics

that distinguish freight daily activity patterns by com-

modity carried or industry served. Knowledge of industry

served can be used to estimate economic impacts associ-

ated with performance measurements, prioritize critical

freight corridors according to key industries, and relate

changes in economic conditions to transportation system

performance. This paper relates operational characteris-

tics defined from stop- and path-identification algorithms

to trip type, stop and trip purpose, industry-associated

trip chaining, or activity patterns.

Methodology

The methodology consists of four key approaches: (1)

establishing consistency and relevancy of GPS data to

improve algorithm performance, (2) modification of

stop- and path-identification algorithms, (3) derivation

of truck operational characteristics, and (4) development

of an MNL model to distinguish trucks by industry

served.

Data Consistency and Relevancy

Most commonly used truck GPS data sources require

preprocessing to remove noise and other inconsistencies

(5). Considering large-scale data, it is not possible to

manually remove inconsistent records. Therefore, this

paper presents an algorithmic data validation approach

to improve data consistency and relevancy. The ‘‘consis-

tency and relevancy’’ (CR) approach identifies a com-

plete truck record for input into the stop-identification

and path-identification algorithms. Complete truck

records were defined as those that represented an over-

the-road truck movement with logical start and end posi-

tions, speeds, and accelerations.

The CR algorithm identified the inconsistent truck

trajectories and flagged those records for further analy-

sis. First, the acceleration/deceleration rate of each truck

for each pair of consecutive pings was calculated and

pings that produced acceleration/deceleration rates

above a predefined threshold of 2.24 ft/s2, corresponding

to 85th percentile average acceleration rate of heavy

trucks, were removed (23). Next, the total number of

pings corresponding to each truck record was calculated

and truck records that had fewer pings than the thresh-

old count (pcount) were removed. Then, the SMS and

travel time between each consecutive pair of pings were

calculated. Truck records were removed when the calcu-

lated SMS exceeded the speed limit (smax) for a threshold

time (tmax). Lastly, the geographic coverage area for each

truck was calculated and any truck records that had a

smaller geographic coverage area than the threshold area

(cmax) were removed. Geographic coverage was defined

as the diagonal of the rectangular bounding box that sur-

rounds all pings of a truck (5). The algorithm flagged

and removed 11% of the truck records so that the final

dataset included about 300,000 unique truck records.

Stop- and Path-Identification Algorithms

The stop-identification algorithm developed in this paper

was modified from Camargo et al. (5). Camargo et al.

calibrated and validated their algorithm using truck GPS

data from a metropolitan area of approximately 9,000 sq.

mi (5). Comparatively, the study area of this paper

encompasses the state of Arkansas, U.S., an area of

approximately 53,000 sq.mi. In addition to the increase

in geographic scale, there are complexities related to

freight activity that require specific modifications to the

original algorithm developed by Camargo et al. (5).

Therefore, the values of the algorithm parameters were

tailored to the Arkansas GPS data to identify stops more
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accurately. Table 1 juxtaposes the original and modified

parameter values for the stop-identification algorithm.

To arrive at the adjusted values, the following was done.

Stop identification was applied to all sample periods

(358,902 trucks) using the original parameter values.

Then, truck records were sampled for manual verifica-

tion of the identified ‘‘stops.’’ Stops identified through

the algorithm were verified by comparing with Google

Earth satellite imagery that showed business names,

parking facilities, and so forth, and adjustments were

made to the parameters such that identified stops were at

reasonable locations in relation to land use.

Stops were extracted from the set of valid truck

records identified through the CR algorithm. The stop-

identification algorithm calculated the SMS (sj) between

consecutive pings (pj-1 and pj). If the SMS was less than a

defined threshold speed (smin) (i.e., 3mph, as used in this

paper) for at least a threshold time (tmin) (i.e., 5min, as

used in this paper), the algorithm continued by calculat-

ing the speed between the next pair of consecutive pings.

Next, a series of the pings that passed the speed and time

criteria, {pj, pj+ 1,.,pJ | sjł smin AND tjø tmin} were col-

lected. Next, the total stop coverage (cT) and the total

stop duration (tTQ) for all consecutive pings from the

series were calculated (Equations 1 and 3). If the total

coverage for the series of the pings was less than cmax

(i.e., 0.2mi, as used in this paper), then the series was

considered as a stop cluster (Q) (Equation 2). Although

Camargo et al. specified the geographical center of the

stop cluster (Q) as the stop location of the cluster, in this

paper it was noted that the geographical center could be

incorrect occasionally (e.g., in the middle of a road) (5).

Therefore, the first identified stop’s location (lj) was used

as the stop location for the stop cluster (Q). Ultimately,

the algorithm produces a set of stop locations (i.e., pick-

up/delivery stops, rest or fuel stops) along with stop time

of day, stop duration, and stop coverage for each truck

record.

cT =geographical coverage of all consecutive stops

ð1Þ

Q= fpj, pj+ 1, ::, pJ j cT\ cmax g ð2Þ

tTQ=
X

J

j= 1

tj ; 8 j 2 Q ð3Þ

where

cT=diagonal of the rectangular bounding box that

surrounds all consecutive stops,

Q=a stop cluster of consecutive stop pings,

pj=GPS pings, where j = 1, ., J,

tj=calculated travel time from current (pj) and previ-

ous (pj-1) timestamp, where j=1, ., J,

tTQ=total stop duration for a series of consecutive

stops, Q.

The path-identification algorithm identified the set

of links that comprised the complete path between con-

secutive pings. Because of the temporal coarseness of

the GPS pings and the density of the network links, this

was a critical step in determining truck volumes along

each link of the transportation network. For example,

trucks traveling at 60mph traverse many links between

pings, especially when links can be as short as 0.1mi.

Thus, simply matching pings to nearby links does

not produce a connected path. Instead, a path-

identification algorithm was created to reconstruct the

complete and connected series of links from the ping

data. Because of the temporal coarseness of the GPS

pings and the density of the network links, this was a

critical step in determining, at the aggregate level, the

volume of trucks along each link in the network and, at

the disaggregate level, the accurate distance and travel

time for each truck record.

First, a spatial buffer (b) was created around each net-

work link (rl) and a graph was created. Next, likely links

related to each GPS ping (pj) were selected using the buf-

fer. The link buffer helped to account for small, inherent

inaccuracies in the GPS ping positions. After identifying

likely links, the algorithm computed the path between

vertices in the graph by discounting the cost of traversing

those links. The link cost (i.e., travel time was used in

this study) calculation for using those routes is shown in

Equations 4, 5, and 6. Thus, a complete but shortest path

for each truck can be estimated (Figure 1). Among three

alternatives shown as feasible paths in Figure 1, the

path-identification algorithm will choose the path that

has the lowest link cost (i.e., travel time). If link cost for

the 1st, 2nd, and 3rd alternatives are 5, 10, and 7min,

respectively, the algorithm will choose the 1st alternative

as the final path. Like the stop-identification algorithm,

modifiable parameters (i.e., buffer distance and link cost)

for the path-identification algorithm were modified from

Camargo et al. (Table 2) (5). A free-flow travel time, cal-

culated from the posted speed limit and road distance,

was used as the link cost in this study. Other variables

(e.g., time of day, volume, capacity) that may affect

travel time and cause road congestion were not consid-

ered in this algorithm. The link cost calculation for using

those routes is shown in Equations 4, 5, and 6. Thus, a

complete but shortest path for each truck can be

Table 1. Parameter Values for the Stop-Identification Algorithm

Stop parameters Original value Modified value

Speed 5mph (8 km/h) 3mph (4.8 km/h)
Time 5min (300 s) 5min (300 s)
Coverage area 0.5mi (0.8 km) 0.2mi (0.3 km)
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estimated (Figure 1). The complete path can be a combi-

nation of highways and local roads.

We performed a sensitivity analysis for various thresh-

old settings for speed, stop duration, and stop coverage by

manually observing a set of truck records with diverse driv-

ing behaviors and determining at what threshold values

most stops were reasonably captured by the algorithm.

The threshold values are context-sensitive and, although

they were informed by prior work, each parameter was

tuned to the specific geography and land use characteristics

of the study area (e.g., Arkansas). To validate the path-

identification algorithm, a statistical verification procedure

was developed and applied to a random sample of truck

records. First, a buffer was created around the links found

to be part of the complete path of a truck resulting from

the path-identification algorithm. Next, the number of

GPS pings for that truck contained within the link buffer

was found. Then, the percentage of pings matched to a net-

work link along the complete path was calculated. This

value was referred to as the ‘‘path identification accuracy.’’

This value represents the ability of the algorithm to capture

the complete path of the truck. A path identification accu-

racy close to 100% is ideal. The path-identification algo-

rithm with the modifications described in the previous

sections has an average path identification accuracy of

87% for Arkansas (Table 3).

1st Alternative: A ! D ! B Li = t1 + t2 ð4Þ

2nd Alternative: A ! B Ll = t3 ð5Þ

3rd Alternative: A ! C ! B Lh = t4 + t5 ð6Þ

where

Li=link cost for path 1 using interstates,

Ll=link cost for path 2 using local roads, and

Lh=link cost for path 3 using highways.

Derivation of Truck Operational Characteristics

The stop-identification algorithm identified sequential

stops, and defined stops based on time, duration, and

location. The path-identification algorithm reconstructed

a path as a set of fully connected links defined by link

identification number and timestamp. To derive opera-

tional characteristics, an algorithm was developed to

merge results of the stop identification and path identifi-

cation (see figures in the Appendix).

First, a serial number, sj, was created for each stop of

a truck based on the stop timestamp, tj (i.e., time and

date). Next, each pair of consecutive stops (sj and sj+ 1)

were classified as a trip, mj, that started with stop sj and

Table 2. Parameter Values for the Path-Identification Algorithm

Stop parameters Original value Modified value

Link buffer 1,654 ft 36 ft
Cost parameters Link length Travel time

Figure 1. Shortest path considering travel times.

Table 3. Path Identification Accuracy for Sample Period in

Arkansas

Sample period Accuracy (%)

February 88
May 87
August/September 87
November 86

6 Transportation Research Record 00(0)



ended with stop sj+ 1. Thus, each trip was enveloped by

two stops, that is, origin and destination. Stop informa-

tion (i.e., stop time of day, stop duration, and stop loca-

tion) of the origin stop were added to each trip.

However, some trips were not bounded by stops.

This occurs when a portion of the trip or a stop is out-

side the boundary of the data sample. For example, for

the sample used in this study, only pings within the

Arkansas state boundary plus a 10mi buffer (study

area) were available. If a truck had a stop outside the

study area, then it is not possible to observe that stop in

the data sample. Likewise, it is not possible to observe

the remainder of a trip outside the study area. These

‘‘open-ended’’ trips were still considered by bounding

the trip by the state boundary, for example, the trip is

defined from stop location to the state border and vice

versa.

Secondly, path information (e.g., travel length, travel

time, speed, and road link characteristics) was combined

with stop information for each truck (example in Table

4). To combine path and stop data for each truck, the

timestamp (tk) associated with usage of road (rk) was

compared with the stop timestamps (tj) for trip (mj) such

that tk is greater than tj and smaller than tj+ 1. Later, trip

length and trip duration are calculated from the com-

bined table (Equations 7 and 8).

Tmj
=

X

n

k= 1

trk ð7Þ

Lmj
=

X

n

k= 1

lrk ð8Þ

where

Tmj
=trip duration for trip mj,

trk =travel time for crossing a road link rk,

n=number of road links in trip mj,

Lmj
=trip length for trip mj, and

lrk =length of road link rk.

By merging the stop and path identification results,

trip chains can be observed, and thus freight operational

characteristics can be derived. Based on a review of the

literature and the available data, 12 operational charac-

teristics can be defined which can be aggregated into five

groups (Table 5). First, stops are categorized based on

stop duration into three categories: less than 30min,

30min to 8 h, and more than 8 h. These ranges coincide

with hours of service (HOS) regulations for required rest

breaks (24). For trip length and duration, trips are cate-

gorized based on general breakpoints found in the litera-

ture defining long and short haul trips. Time of day and

total number of daily stops are also considered as impor-

tant operational characteristics.

Development of a Multinomial Logit (MNL) Model

An MNL model was estimated to define associations

between operational characteristics and the probability

that a truck was transporting a certain commodity. The

resulting model allows for the prediction of the commod-

ity carried by a truck, as it is assumed that the observed

stop and trip characteristics are, in part, the result of the

Table 4. Example Results of Trip-Identification Algorithm

Trip ID Stop pair
Stop time
of day

Stop
duration

Stop
location Road ID

Road
length

Travel
time

Travel
speed

Road functional
class

m1 {s1, s2} tods1 ds1 ls1 r1 lr1 tr2 sr2 Interstate
r2 lr2 tr3 sr3 Interstate
r3 lr3 tr4 sr4 Interstate

m2 {s2, s3} tods2 ds2 ls2 r4 lr4 tr5 sr5 Highway
m3 {s3, s4} tods3 ds3 ls3 r5 lr5 tr6 sr6 Highway

r6 lr6 tr1 sr1 Local

Table 5. Operational Characteristics by Group and Type

Feature group Features Variable type

Stop duration 1) Less than 30min
2) 30min to 8 h
3) More than 8 h

Discrete

Trip length 4) Less than 30mi
5) 30mi to 100mi
6) More than 100mi

Discrete

Trip duration 7) Less than 1 h
8) 1 h to 4 h
9) More than 4 h

Discrete

Time of day 10) Proportion of daytime stops
(6 a.m. to 6 p.m.) to all stops

11) Proportion of night-time
stops (midnight to 6 a.m.
and 6 p.m. to midnight) to all
stops

Continuous

Daily stop 12) Total number of stops
in a day

Discrete
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commodity being transported. Thus, the probability of a

truck transporting commodity i can be calculated as:

P inCnð Þ= Pr Uin ø Ujn

� �

, 8j 2 Cn ð9Þ

where

U=utility of the given alternative, and

Cn={farm products, manufacturing, mining, chemi-

cals, miscellaneous mixed, and pass-through}.

In this interpretation, the ‘‘utility’’ of alternative i can

be calculated based on the stop and trip characteristics

as:

Uin= binxin + ein ð10Þ

where

Uin=estimated ‘‘utility’’ of alternative (commodity) i

for driver/truck n,

xin=observed stop and trip characteristics,

bin=vector of coefficients of the variables, and

ein=random component, for example, unobserved or

unmeasurable.

Under the assumption of the MNL model and based

on the principle of utility maximization, the choice prob-

ability for alternative i can be calculated as:

Pn ið Þ=
eVin

P

j2Cn e
Vjn

, for all i in jn ð11Þ

where

Vin=binxin
(All other terms previously defined.)

MNL Model Specification. A total of 11 of the 12 opera-

tional characteristics derived from the trip-identification

algorithm were used (Table 5). To avoid multicollinear-

ity, the ‘‘proportion of night-time stops’’ parameter was

not included in the model.

Five commodity classes were considered in the model:

� manufactured goods
� farm products
� mining materials
� chemicals
� miscellaneous mixed

Additionally, ‘‘pass-through’’ trucks were considered

as a ‘‘commodity.’’ This was a necessary addition, as

pass-through trucks represent unique operational beha-

viors that are not tied to specific commodities but are,

nonetheless, included in the data sample because of only

partial observation of the trip chain within the state

boundary. The commodity category ‘‘farm products’’

was chosen as the base category.

MNL Model Estimation. Labeled data is needed to estimate

the MNL model. In this application, labeled data refers

to assigning a commodity carried to each observed truck

trip contained in the GPS sample. To do this, a ‘‘ground

truth’’ dataset was created using manual processes and

comprised 2,064 truck trips. The assumption of commod-

ity carried was based on a detailed examination of the

truck trip and stops against aerial images depicting busi-

ness and land uses, for example, Google Satellite images,

along with North American Industry Classification

System (NAICS) codes identified for the businesses

where the stops were located (Figure 2). NAICS codes

are adopted by the U.S. federal statistical agencies to

classify business establishments. When manual observa-

tion of the business type could not fully distinguish the

possible commodity carried, the NAICS code was refer-

enced. For example, a business coded as NAICS 31-33

was considered ‘‘manufactured goods’’ while those classi-

fied as NAICS 339000 were identified as ‘‘miscellaneous

mixed.’’ Five commodity groups were clearly

Figure 2. Prediction of carried commodity of a truck.
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distinguishable in the data. To be clear, this is a required

procedure for model development and not part of the

proposed classification algorithm. Using this approach,

the anonymity of the data is still maintained.

Commodity groups were treated as the dependent vari-

ables and operational characteristics were treated as the

independent variables of the MNL model.

Maximum likelihood estimation (MLE) was used to

estimate the coefficients of the MNL model (25, 26). At

the 95% confidence level, stop duration, trip length, trip

duration, stop time of day, and total number of daily

stops were found to be significant parameters in predict-

ing commodity carried (Table 6). The model data was

split 75% for training and 25% for testing using the stra-

tified random sampling with stratification based on com-

modity group. The overall accuracy of the model in

relation to the correct classification rate (CCR) was 61%

for the training data and 57% for the test data. The CCR

is the ratio of the correctly classified responses to the total

number of responses (Equation 12). This is also referred

to as ‘‘recall’’ (Equation 12). CCR ranges from 79% for

manufacturing to 0% for pass-through and is generally

correlated with the volume of samples (Table 7). Since

the model output could be used to predict the volume of

each commodity group, we also present the volume accu-

racy of the classifications. Volume accuracy for each

commodity group (i) is expressed as the difference in

predicted and actual volume relative to the actual volume

(Equation 13, all terms defined in Table 7).

CCRi = 100%3
Pi

V i
A

ð12Þ

Volume Accuracyi = 100%�
V i
A � V i

P

�

�

�

�

V i
A

ð13Þ

Discussion

Knowing the commodity carried by a truck provides

insight into its operational characteristics, for example,

number of stops, trip length, and time of day travel pat-

terns. Conversely, knowledge of operational characteris-

tics can be used to understand the commodity carried by

a truck. Because operational characteristics can be

derived from GPS data, but commodity carried cannot

be observed, the approach explained in this paper was to

use heuristic methods to derive operational characteris-

tics from GPS data and then relate those characteristics

to commodity carried via an MNL model.

According to the estimation results, stop time of day,

stop duration, trip length, and trip duration are found to

be significant operational characteristics predictive of

commodity carried. For instance, the model estimates

that if the number of short break (less than 30min)

Table 6. Change in Operational Characteristics Based on Commodity Groups

Features Commodity groups

Group Description
Manufactured

goods
Farm

products
Mining

materials Chemicals Misc. mixed Pass-through

Stop duration
Short break Less than 30min 0.01 20.25*** 20.18*** 20.07 0.46*** 0.03
Pick-up/delivery 30min to 8 h 0.05 20.02 0.18*** 20.40*** 0.07 0.12
Long rest break More than 8 h 0.47*** 0.19* 0.52*** 0.22 20.51** 20.88***

Trip length
Short trip length Less than 30mi 0.38*** 0.41*** 0.27*** 21.37*** 0.16 0.15
Medium trip length 30mi to 100mi 0.23*** 0.48*** 0.52*** 20.41** 20.21 20.60**
Long trip length More than 100mi 20.08 20.97*** 20.28*** 1.53*** 0.08 20.28

Trip duration
Short-trip duration Less than 1 h 20.44*** 20.02 20.08 1.40*** 20.55*** 20.32
Medium-trip duration 1 h to 4 h 0.29*** 0.57*** 0.44*** 20.47*** 20.35*** 20.48**
Long-trip duration More than 4 h 0.67*** 20.64** 0.15 21.18*** 0.93*** 0.06

Time of day
Daytime hours 6 a.m. to 6 p.m. 1.39*** 0.28 20.72*** 20.23 20.16 20.57

Daily stop
Total stops Total number of

stops in a day
0.02*** 20.02*** 0.00 20.04*** 0.01 0.02***

Log-likelihood: 21,993.31.

Note: Misc. = miscellaneous.
*significant at 90% confidence level;
**significant at 95% confidence level;
***significant at 99% confidence level.
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increases by one, the log-odds of carrying miscellaneous

mixed goods will increase by 0.46 and the log-odds of car-

rying farm products will decrease by 0.25. It also indicates

that the probability of carrying miscellaneous mixed com-

modity will increase by 55% while the probability of carry-

ing farm products will decrease by 24%. This denotes that

trucks carrying miscellaneous mixed products have higher

number of short breaks compared with trucks carrying

farm products, which follows intuition that trucks carrying

miscellaneous mixed goods are making stops at many dif-

ferent establishments in a less-than-truckload fashion. The

model also estimates that, if the number of short trips (less

than 30mi) increases by one, the log-odds of carrying farm

products will increase by 0.41, while the log-odds of carry-

ing chemicals will decrease by 1.37. In other words, the

probability of that truck carrying farm products will

increase by 31% while the probability of it carrying chemi-

cals will decrease by 78%. It indicates that trucks carrying

farm products have a higher number of short-length trips

compared with trucks carrying chemicals. This can be

intuitively supported by noting that farm products include

transporting animal feed from local producers to farms, as

well as live animals to local processing plants.

Additionally, the model finds that the stop time of day fac-

tor is positively significant for manufactured products and

negatively significant for mining materials. It indicates that

trucks carrying manufactured products have a higher

number of stops during daytime (6 a.m. to 6p.m.) com-

pared with trucks carrying mining materials. Again, this

reflects intuition, in that manufactured product deliveries

must follow daily operating hours of factories and stores.

The data used in this work represents a sample of

trucks covering a statewide region. On average, this sam-

ple represents approximately 10% to 15% of the total

population of trucks. From that sample, we manually

identified the industry of 1,584 trucks to train our model

(75%) and 516 trucks to test the model (25%). This is a

common split of training and test data for machine

learning applications. Further, we use stratified random

sampling with stratification based on commodity group

to ensure the training and testing data are representative

of the larger population of trucks. It can be argued that

more training data will result in a stronger model while

more testing data can better show how performance var-

ies by class. However, the approach taken in this paper

to gather labeled samples required a manual, time-

consuming process and thus was restricted to 2,064

trucks. There is no known data set in the public space

that links commodity carried to GPS record and, thus, it

is a challenge to gather labeled training instances for

model development. For future expansion of this work,

researchers can partner with trucking companies to

potentially gather paired commodity and truck move-

ment data for model-training purposes.T
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Conclusion

Although big data such as that from GPS is increasingly

plentiful, without efficient heuristic methods to extract

relevant performance measures it is not possible to fully

leverage this valuable data source. Methods to derive stop

duration, trip length, trip duration, and stop time of day

allow us to identify freight activity patterns from big data

sources and to link those patterns to commodity carried.

While deriving operational characteristics from big data

allows us to develop more ubiquitous transportation per-

formance metrics, the link between operational character-

istics and commodity carried serves as critical input for

freight demand forecasting that hinges on economic fore-

casts of commodity production and consumption (11).

The methodology presented in this paper consists of

spatial heuristics to identify stop clusters and complete

paths of individual trucks from timestamped latitude-

longitude points gathered from GPS devices on board

trucks. After deriving stop and path, trip chains—for

example, sequences of stops and trips—can be observed.

Statistical approaches, namely MNL models, were

employed to determine how operational characteristics

such as stop time of day and duration, relate to com-

modity carried. The MNL model identified that stop

duration, number of total daily stops, stop time of day,

trip length, and trip duration were significant character-

istics that could be used to predict commodity carried.

Although the CCR of the predictions is 57%, and sev-

eral of the commodity class predictions are above 40%,

the pseudo-R-squared of the estimated MNL model of

29%, a general description of the goodness of fit, indi-

cates that there is a room for improvement. This can be

attributed to several factors. First, MNL estimation

assumes a linear-in-parameters specification such that

operational characteristics should be linearly related to

commodity carried. This assumption may not hold true.

Advanced machine learning methods such as K-means

clustering, random forest, and SVM models can better

identify patterns, especially non-linear patterns, from

large and noisy data like GPS pings (27). Therefore,

machine learning models are likely more appropriate for

this application but would require more ground truth

(training data). Second, MNL specification requires a

complete choice set to be specified. This paper considered

only five commodity groups plus a sixth group represent-

ing pass-through movements. This is not a complete

choice set but was limited by data ground truth proce-

dures necessary to maintain confidence in the labeled

data. Future work should expand the set of commodities

which should also improve cross-classification errors.

The results of this paper can guide public sector engi-

neers and planners to achieve the TPM goal-setting

initiatives and requirements set forth in federal transpor-

tation legislation.
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