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Abstract

Effective transportation performance measurement (TPM) benefits from ubiquitous transportation system monitoring
both spatially and temporally. In the context of freight-oriented TPM, traditional devices such as inductive loops, cameras,
manual counts, and so forth, may fail to provide comprehensive and high-resolution coverage, providing, for example,
only volume counts for a small subset of links across a large network with no indication of trip linkages. New sources of
big data from mobile sensors including on-board global positioning system (GPS) devices allow more comprehensive net-
work coverage and insights into trip chaining behaviors. However, to gain actionable insights into system performance
from large and noisy streams of mobile sensor data, it is necessary to mine it for relevant operational characteristics of
the trucks it represents. Such characteristics include stop locations, stop duration, stop time of day, trip length, and trip
duration. To address this methodological need, this paper presents three heuristic algorithms: “stop identification,” “path
identification,” and “trip identification.” To address the issue of determining relevant operational characteristics, a multi-
nomial logit (MNL) model approach is applied to determine the commodity carried based on the outputs of the heuristic
algorithms. The MNL model is novel in that it relates operational characteristics to commodity carried thus filling a criti-
cal data gap that currently limits the development of advanced freight forecasting models. The set of models developed in
this paper allow large-scale GPS data to be used for freight planning while maintaining levels of data anonymity that allow
such data to be shared with public agencies.
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temporal and spatial disaggregation (/). In the context of
freight-oriented TPM, traditional performance monitor-

Effective transportation performance measurement
(TPM) benefits from ubiquitous system coverage.

Because of the significant impact of trucking on the
economy, infrastructure, and environment, it is essential
that transportation agencies consider freight movements
in their TPM strategies. In the U.S., to ensure freight
needs are met, federal legislation (e.g., Fixing America’s
Surface Transportation [FAST] Act), mandates a process
of selecting performance measures, setting performance
targets, and establishing a freight plan that aligns with
the broad goal of improving the national highway freight
network to ensure economic competitiveness.

With the push toward more accurate and detailed
freight performance measurement and system planning,
there is an ever-increasing need to better understand and
measure freight truck movements at high levels of

ing devices such as inductive loops, cameras, manual
counts, and so forth, may fail to provide comprehensive,
high-resolution coverage of the transportation network.
For instance, fixed location devices such as inductive
loop detectors and cameras typically only provide vol-
ume and some vehicle classification data for the link on
which they are located and give no indication of trip
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linkages, for example, origin and destination, stop loca-
tions, and so forth. Acquiring the data needed for
system-wide TPM is a challenge for transportation agen-
cies and a special challenge of freight data when consid-
ering freight flows. Since freight operations are carried
out primarily by private entities (e.g., shippers, carriers,
and third-party logistics companies), operational data
defining vehicle movements is often not made readily
available for public consumption because of privacy
concerns.

New sources of big data from mobile sensors including
cell phones, electronic logging devices (ELDs) and global
positioning system (GPS) devices allow more universal
network coverage and, with that, the ability to gain
insights into trip chaining behaviors. Carrier collectives
have recently made available large streams of anon-
ymized GPS data (2). This GPS data typically contains
the timestamp, latitude and longitude position (e.g.,
ping), and point speed data for a sample of trucks oper-
ated by major freight carriers. All data about the carrier,
fleet operator, driver, cargo/commodity, and trip purpose
are removed from the data to protect privacy. Therefore,
the anonymized data must be mined to extract relevant
information for planning applications, such as stop loca-
tion/purpose, trip purpose, and commodity carried, while
maintaining the integrity of data-sharing agreements by
ensuring the data remains anonymous. In other words,
data mining should not reveal private information such
as company/fleet identification or name.

Freight activity insights derived from truck GPS data
have been applied in practice to support a variety of
freight planning efforts including freight forecasting
tools such as activity-based and truck touring models,
estimating origin-destination truck flows, improving the
estimation of freight performance measures, and ranking
roadway bottlenecks (3—70). Although these studies used
truck GPS data to develop and/or validate their forecast-
ing models, they did not explore methods to identify
underlying relationships between truck activity and com-
modity carried. Such a relationship is key in travel
demand forecasting models that rely on predictions of
commodity consumption and production trends using
economic forecasts.

To better link the estimation of commodity produc-
tion and consumption to freight flows, specifically truck
volumes, it is key to measure truck flows by commodity
carried. Uniquely, truck flows distinguished by commod-
ity carried provide deep insights into trip patterns and
can highlight potential sources of freight bottlenecks.
For long-haul trips, average trip length (ATL) varies by
commodity carried (//, 12). However, ATL is the only
trip characteristic available from most surveys, for exam-
ple, the Vehicle Inventory and Use Survey (VIUS) used

for freight analysis, and it is likely that other trip charac-
teristics vary by commodity carried (/2). Unfortunately,
being a national inventory, VIUS does not cover daily
trip patterns, trip chains, or shorter trips resulting from
needs for rest breaks, fuel, and so forth. Therefore, it is
necessary to identify key freight operational characteris-
tics at smaller levels of geography (e.g., state, regional, or
county) that can be used for more comprehensive freight
planning.

To address the critical need for methods to extract
operational characteristics from mobile sensors data,
this study develops and combines three transferable
heuristic algorithms to identify stop characteristics and
trip characteristics from truck GPS data: (1) “stop
identification” to aggregate pings (latitude, longitude,
timestamp data points) into freight activity stops, that
is, pick-up/drop-off or rest stops, (2) “path identifica-
tion” to convert sparse pings into complete, fully con-
nected paths on a dense transportation network, and
(3) “trip identification” to extract operational charac-
teristics by combining results of stop-identification and
path-identification algorithms. The algorithms were
applied to a sample of 338 million GPS pings (e.g., lati-
tude, longitude, timestamp datapoints) collected from
major trucking companies through on-board GPS
units. The data represented 358,092 unique trucks dur-
ing an 8-week sample period in Arkansas (i.e., a state-
wide region). The dataset contains a unique but
anonymous truck ID so that location records for the
same truck can be grouped. The data does not contain
or describe key characteristics of the trucks such as
vehicle type, commodity carried, and purpose of travel.
Finally, to identify the operational characteristics that
can be linked to commodity carried, a multinomial
logit (MNL) model is applied. Application of these
approaches to mobile sensor data enables such sources
of big data to be used effectively for TPM while main-
taining the anonymity of those sources.

Background

This section reviews prior research focused on heuristic
approaches, methods, and models that were used to
extract freight operational characteristics from large
streams of truck GPS data.

Stop Identification

The premise of stop identification is to determine the
locations of potential activity-related stops (e.g., fuel
stops, rest stops, and pick-up/delivery for freight trucks)
within large streams of GPS data points (also known as
“pings”). Simple algorithms consider a stop to be the
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location where the vehicle’s instantaneous speed is
recorded as zero. Minor modifications may assume the
speed to be below a given threshold, say 3 mph.
However, these simple approaches may overestimate the
number of stops made by a vehicle by not grouping con-
secutive (redundant) pings representing zero or low speed
into a single stop. In short, effective algorithms should
combine consecutive, low-speed pings into clusters,
determine the physical location of the stop within the
cluster, and calculate a stop duration considering all
pings in the cluster.

Existing stop-identification algorithms used geo-
graphic bounding boxes and rule-based approaches to
define stop clusters (5, 13—17). Greaves and Figliozzi
developed a stop-identification algorithm for commercial
vehicles and used the time difference between GPS-to-
satellite communications to determine if the vehicle was
stopped (/3). The algorithm considered a time threshold
of 4min and a geographic distance threshold of around
20 ft (6 m) to identify a stop. If a vehicle repositioned by
less than the defined threshold, regardless of the time
elapsed, they performed a manual inspection to check
whether it was a short stop. However, relying on manual
inspections is not feasible for a large dataset.
McCormack et al. identified delivery stops by defining a
threshold of 3 min for dwell time (i.e., duration of a vehi-
cle’s engine as off or idle status) (/4). To avoid redun-
dant GPS pings of an idle truck, their algorithm
removed data points where the distance between two
consecutive pings was less than 65ft (about 20m).
Though this filtered out false trips, it removed data that
could be significant for deriving freight operational char-
acteristics such as service times (i.e., the time for a truck
to unload and start the next trip).

Holguin-Veras et al. used a mechanistic procedure to
identify freight activity stops from GPS data (/5). The
driving pattern of freight trucks was the base of their
procedure. After implementing the approach in three
international case studies, they found that their approach
can identify freight activity stops with an average accu-
racy of 98.6% (15). Alho et al. compared different algo-
rithms used for stop-to-tour assignment and tour-type/
chain identification (/6). For their stop-to-tour assign-
ment algorithm, they considered the “base” location of a
trip as the start/end of a tour. For tour-type/chain identi-
fication algorithms, they considered the predominant
tour-type identified for 1 day as well as the average num-
ber of stops per tour by stop type. After comparing their
algorithms in an international case study, they found
that the predictions of tours, tour types, and tour chain
types were dependent on the assumptions made and the
methods used for data processing (/6).

The stop-identification algorithm developed by
Camargo et al. expanded on the abovementioned

research by using coverage and space-mean-speed (SMS)
in addition to dwell time to define a stop (5). After
grouping pings for which the travel speed between con-
secutive GPS records was less than 5mph (8 km/h), they
assessed the coverage of the set of pings. If a truck tra-
veled less than 0.5mi (about 800 m) between stops, pings
were combined to represent a single stop. The geometric
center of the stop cluster was defined as the stop loca-
tion. The stop-identification method developed by
Camargo et al. was used in this work with several
modifications to ensure transferability among datasets,
for example, metropolitan versus statewide spatial cover-

age (9).

Path Identification

Path identification, also known as map matching, refers
to the process of identifying the network link that corre-
sponds to each GPS ping (latitude, longitude, and time-
stamp data triples). Existing map-matching algorithms
were developed based on the premise of assigning the
pings to their closest network link and then connecting
disparate links via shortest-path-finding algorithms (5,
18, 19). Giovannini’s algorithm reconstructed routes
from low-sample-rate GPS data, for example, around
I mi between pings, using a Bayesian approach (/8).
Quddus and Washington developed a weight-based
shortest path and vehicle trajectory aided map-matching
algorithm to determine the network link corresponding
to each GPS ping based on proximity, among other fac-
tors, for a sparse road network (79).

With temporally sparse GPS data, simple matching of
the GPS ping to the closest link may not result in a com-
plete and connected path. For example, many network
links may be traversed between consecutive pings if the
pings are recorded only every 15min and a vehicle is tra-
veling at highway speeds of 55 mph; there would be gaps
when constructing the complete path of the truck from
origin to destination. Camargo et al. addressed this gap
by determining a fully connected complete path between
sparse pings by applying shortest-path algorithms (5).
The map-matching algorithm developed by Camargo
et al. was used in this paper with several modifications to
ensure route accuracy for a denser road network (3).

Freight Operational Characteristics from Mobile Sensor
Data

Identifying stops and routes from GPS data allows us to
compute network volumes and link/corridor speeds,
identify bottlenecks, and estimate many other perfor-
mance metrics for TPM. For freight-oriented TPM, it is
also important to differentiate performance measures by
operational characteristics such as trip type (e.g., long-
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haul and short-haul trip), stop and trip purpose (e.g.,
rest, pick-up delivery, pass through), and industry served
to enhance our understanding of economic impacts tied
to freight movements.

Yang et al. characterized freight delivery stops from
other types of stops using GPS data and a support vector
machine (SVM) method (20). An SVM is a machine
learning method commonly used as a pattern classifier.
An SVM represents training data in a transformed fea-
ture space so that the points can be separated by a hyper-
plane with the largest margin separating a pair of classes.
Test data are then mapped into the same space and pre-
dicted to belong to one side of the separating hyperplane.
Three parameters, for example, stop duration, the dis-
tance to the center of the city, and the binary distance to
a stop’s closest bottleneck, served as input features of the
SVM and produced minimal error of 0.2% (20). Based
on trip length and number of trips derived from truck
GPS data, Zanjani et al. distinguished light-duty local
delivery trucks from long-haul operations using heuristic
approaches (6). A local delivery truck was characterized
as making more than five trips per day, none more than
100mi in length. In combination with a driver survey,
Jing analyzed stop purpose, stop duration, and stop time
of day (21). Her study found four types of overnight,
urban truck tours: one pick-up followed by one delivery,
multiple consecutive pick-ups followed by one delivery,
one pick-up followed by multiple consecutive deliveries,
and multiple consecutive pick-ups followed by consecu-
tive deliveries. Akter and Hernandez developed a super-
vised machine learning model to predict industry groups
from anonymous GPS data (22). Their model allows
large streams of truck movement data to be leveraged
for freight travel demand forecasting.

None of the studies mentioned above were aimed at
identifying or deriving freight operational characteristics
that distinguish freight daily activity patterns by com-
modity carried or industry served. Knowledge of industry
served can be used to estimate economic impacts associ-
ated with performance measurements, prioritize critical
freight corridors according to key industries, and relate
changes in economic conditions to transportation system
performance. This paper relates operational characteris-
tics defined from stop- and path-identification algorithms
to trip type, stop and trip purpose, industry-associated
trip chaining, or activity patterns.

Methodology

The methodology consists of four key approaches: (1)
establishing consistency and relevancy of GPS data to
improve algorithm performance, (2) modification of
stop- and path-identification algorithms, (3) derivation
of truck operational characteristics, and (4) development

of an MNL model to distinguish trucks by industry
served.

Data Consistency and Relevancy

Most commonly used truck GPS data sources require
preprocessing to remove noise and other inconsistencies
(5). Considering large-scale data, it is not possible to
manually remove inconsistent records. Therefore, this
paper presents an algorithmic data validation approach
to improve data consistency and relevancy. The “consis-
tency and relevancy” (CR) approach identifies a com-
plete truck record for input into the stop-identification
and path-identification algorithms. Complete truck
records were defined as those that represented an over-
the-road truck movement with logical start and end posi-
tions, speeds, and accelerations.

The CR algorithm identified the inconsistent truck
trajectories and flagged those records for further analy-
sis. First, the acceleration/deceleration rate of each truck
for each pair of consecutive pings was calculated and
pings that produced acceleration/deceleration rates
above a predefined threshold of 2.24 ft/s?, corresponding
to 85th percentile average acceleration rate of heavy
trucks, were removed (23). Next, the total number of
pings corresponding to each truck record was calculated
and truck records that had fewer pings than the thresh-
old count (p.ouns) Were removed. Then, the SMS and
travel time between each consecutive pair of pings were
calculated. Truck records were removed when the calcu-
lated SMS exceeded the speed limit (s,,,,,) for a threshold
time (,,4x). Lastly, the geographic coverage area for each
truck was calculated and any truck records that had a
smaller geographic coverage area than the threshold area
(¢max) Were removed. Geographic coverage was defined
as the diagonal of the rectangular bounding box that sur-
rounds all pings of a truck (5). The algorithm flagged
and removed 11% of the truck records so that the final
dataset included about 300,000 unique truck records.

Stop- and Path-Identification Algorithms

The stop-identification algorithm developed in this paper
was modified from Camargo et al. (5). Camargo et al.
calibrated and validated their algorithm using truck GPS
data from a metropolitan area of approximately 9,000 sq.
mi (5). Comparatively, the study area of this paper
encompasses the state of Arkansas, U.S., an area of
approximately 53,000sq. mi. In addition to the increase
in geographic scale, there are complexities related to
freight activity that require specific modifications to the
original algorithm developed by Camargo et al. (5).
Therefore, the values of the algorithm parameters were
tailored to the Arkansas GPS data to identify stops more
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Table I. Parameter Values for the Stop-ldentification Algorithm

Stop parameters Original value Modified value

Speed 5 mph (8 km/h) 3 mph (4.8 km/h)
Time 5min (3005s) 5min (3005s)
Coverage area 0.5 mi (0.8 km) 0.2 mi (0.3 km)

accurately. Table 1 juxtaposes the original and modified
parameter values for the stop-identification algorithm.
To arrive at the adjusted values, the following was done.
Stop identification was applied to all sample periods
(358,902 trucks) using the original parameter values.
Then, truck records were sampled for manual verifica-
tion of the identified “stops.” Stops identified through
the algorithm were verified by comparing with Google
Earth satellite imagery that showed business names,
parking facilities, and so forth, and adjustments were
made to the parameters such that identified stops were at
reasonable locations in relation to land use.

Stops were extracted from the set of valid truck
records identified through the CR algorithm. The stop-
identification algorithm calculated the SMS (s;) between
consecutive pings (p;.; and p;). If the SMS was less than a
defined threshold speed (s,,i,) (i.€., 3mph, as used in this
paper) for at least a threshold time (#,,,) (i.e., Smin, as
used in this paper), the algorithm continued by calculat-
ing the speed between the next pair of consecutive pings.
Next, a series of the pings that passed the speed and time
Criteria, {pj, Dj+ 15---5PJ | Sjg Smin AND t.l'z tmin} were col-
lected. Next, the total stop coverage (c7) and the total
stop duration (f7o) for all consecutive pings from the
series were calculated (Equations 1 and 3). If the total
coverage for the series of the pings was less than ¢,y
(i.e., 0.2mi, as used in this paper), then the series was
considered as a stop cluster (Q) (Equation 2). Although
Camargo et al. specified the geographical center of the
stop cluster (Q) as the stop location of the cluster, in this
paper it was noted that the geographical center could be
incorrect occasionally (e.g., in the middle of a road) (5).
Therefore, the first identified stop’s location (/;) was used
as the stop location for the stop cluster (Q). Ultimately,
the algorithm produces a set of stop locations (i.e., pick-
up/delivery stops, rest or fuel stops) along with stop time
of day, stop duration, and stop coverage for each truck
record.

cr = geographical coverage of all consecutive stops

(1)

0= {pjapj+ 1> DI | €1 < Cax } (2)
J

l‘TQ:Zl‘j ;VjegQ (3)

j=1

where

¢y = diagonal of the rectangular bounding box that
surrounds all consecutive stops,

QO = a stop cluster of consecutive stop pings,

p; = GPS pings, wherej = 1, ..., J,

t; = calculated travel time from current (p;) and previ-
ous (p;.;) timestamp, where j = 1, ..., J,

1o = total stop duration for a series of consecutive
stops, Q.

The path-identification algorithm identified the set
of links that comprised the complete path between con-
secutive pings. Because of the temporal coarseness of
the GPS pings and the density of the network links, this
was a critical step in determining truck volumes along
each link of the transportation network. For example,
trucks traveling at 60 mph traverse many links between
pings, especially when links can be as short as 0.1 mi.
Thus, simply matching pings to nearby links does
not produce a connected path. Instead, a path-
identification algorithm was created to reconstruct the
complete and connected series of links from the ping
data. Because of the temporal coarseness of the GPS
pings and the density of the network links, this was a
critical step in determining, at the aggregate level, the
volume of trucks along each link in the network and, at
the disaggregate level, the accurate distance and travel
time for each truck record.

First, a spatial buffer (b) was created around each net-
work link (r;) and a graph was created. Next, likely links
related to each GPS ping (p;) were selected using the buf-
fer. The link buffer helped to account for small, inherent
inaccuracies in the GPS ping positions. After identifying
likely links, the algorithm computed the path between
vertices in the graph by discounting the cost of traversing
those links. The link cost (i.e., travel time was used in
this study) calculation for using those routes is shown in
Equations 4, 5, and 6. Thus, a complete but shortest path
for each truck can be estimated (Figure 1). Among three
alternatives shown as feasible paths in Figure 1, the
path-identification algorithm will choose the path that
has the lowest link cost (i.c., travel time). If link cost for
the 1st, 2nd, and 3rd alternatives are 5, 10, and 7 min,
respectively, the algorithm will choose the Ist alternative
as the final path. Like the stop-identification algorithm,
modifiable parameters (i.e., buffer distance and link cost)
for the path-identification algorithm were modified from
Camargo et al. (Table 2) (5). A free-flow travel time, cal-
culated from the posted speed limit and road distance,
was used as the link cost in this study. Other variables
(e.g., time of day, volume, capacity) that may affect
travel time and cause road congestion were not consid-
ered in this algorithm. The link cost calculation for using
those routes is shown in Equations 4, 5, and 6. Thus, a
complete but shortest path for each truck can be
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Figure |. Shortest path considering travel times.

Table 2. Parameter Values for the Path-ldentification Algorithm

Stop parameters Original value Modified value

Link buffer
Cost parameters

1,654 ft 36 ft
Link length Travel time

estimated (Figure 1). The complete path can be a combi-
nation of highways and local roads.

We performed a sensitivity analysis for various thresh-
old settings for speed, stop duration, and stop coverage by
manually observing a set of truck records with diverse driv-
ing behaviors and determining at what threshold values
most stops were reasonably captured by the algorithm.
The threshold values are context-sensitive and, although
they were informed by prior work, each parameter was
tuned to the specific geography and land use characteristics
of the study area (e.g., Arkansas). To validate the path-
identification algorithm, a statistical verification procedure
was developed and applied to a random sample of truck
records. First, a buffer was created around the links found
to be part of the complete path of a truck resulting from
the path-identification algorithm. Next, the number of
GPS pings for that truck contained within the link buffer
was found. Then, the percentage of pings matched to a net-
work link along the complete path was calculated. This
value was referred to as the “path identification accuracy.”
This value represents the ability of the algorithm to capture
the complete path of the truck. A path identification accu-
racy close to 100% is ideal. The path-identification algo-
rithm with the modifications described in the previous
sections has an average path identification accuracy of
87% for Arkansas (Table 3).

Table 3. Path Identification Accuracy for Sample Period in
Arkansas

Sample period Accuracy (%)

February 88
May 87
August/September 87
November 86

Ist Alternative: A — D — B Li=t+t (4

2nd Alternative: A — B
3rd Alternative: A — C — B

L] =1 (5)
Ly=1t + 1 (6)

where
L; = link cost for path 1 using interstates,
L; = link cost for path 2 using local roads, and
L, = link cost for path 3 using highways.

Derivation of Truck Operational Characteristics

The stop-identification algorithm identified sequential
stops, and defined stops based on time, duration, and
location. The path-identification algorithm reconstructed
a path as a set of fully connected links defined by link
identification number and timestamp. To derive opera-
tional characteristics, an algorithm was developed to
merge results of the stop identification and path identifi-
cation (see figures in the Appendix).

First, a serial number, s;, was created for each stop of
a truck based on the stop timestamp, ¢ (i.e., time and
date). Next, each pair of consecutive stops (s; and s; 1 ;)
were classified as a trip, m;, that started with stop s; and
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Table 4. Example Results of Trip-ldentification Algorithm

Stop time Stop Stop Road Travel Travel Road functional

Trip ID Stop pair of day duration location Road ID length time speed class
m {s1, s2} tod,, dg; I, r I t.» Sr2 Interstate

rp I t3 S3 Interstate

r3 I3 tq Srq Interstate
mjp {Sz, 53} tOdsz dsZ IsZ rq Ir4 ts S5 nghway
m3 {53, 54} tods dg3 ls3 rs lrs e Sr6 Highway

re le t, Sel Local

ended with stop s; + ;. Thus, each trip was enveloped by
two stops, that is, origin and destination. Stop informa-
tion (i.e., stop time of day, stop duration, and stop loca-
tion) of the origin stop were added to each trip.

However, some trips were not bounded by stops.
This occurs when a portion of the trip or a stop is out-
side the boundary of the data sample. For example, for
the sample used in this study, only pings within the
Arkansas state boundary plus a 10mi buffer (study
area) were available. If a truck had a stop outside the
study area, then it is not possible to observe that stop in
the data sample. Likewise, it is not possible to observe
the remainder of a trip outside the study area. These
“open-ended” trips were still considered by bounding
the trip by the state boundary, for example, the trip is
defined from stop location to the state border and vice
versa.

Secondly, path information (e.g., travel length, travel
time, speed, and road link characteristics) was combined
with stop information for each truck (example in Table
4). To combine path and stop data for each truck, the
timestamp (#;) associated with usage of road (r;) was
compared with the stop timestamps (¢;) for trip (m;) such
that #; is greater than ¢; and smaller than ¢ ; ;. Later, trip
length and trip duration are calculated from the com-
bined table (Equations 7 and 8).

n
To= > i (7)

k=1

Ly = Y I (8)

k=1

where

T, = trip duration for trip m1;,

t,, = travel time for crossing a road link ry,

n = number of road links in trip m;,

Ly, = trip length for trip m;, and

I, = length of road link 7.

By merging the stop and path identification results,
trip chains can be observed, and thus freight operational

Table 5. Operational Characteristics by Group and Type

Feature group Features Variable type

Stop duration 1) Less than 30 min Discrete

2) 30 min to 8h

3) More than 8h

4) Less than 30 mi

5) 30 mi to 100 mi

6) More than 100 mi

7) Less than | h

8) Ihto4h

9) More than 4h

10) Proportion of daytime stops
(6a.m. to 6 p.m.) to all stops

I'l) Proportion of night-time
stops (midnight to 6a.m.
and 6 p.m. to midnight) to all
stops

12) Total number of stops
in a day

Trip length Discrete

Trip duration Discrete
Continuous

Time of day

Daily stop Discrete

characteristics can be derived. Based on a review of the
literature and the available data, 12 operational charac-
teristics can be defined which can be aggregated into five
groups (Table 5). First, stops are categorized based on
stop duration into three categories: less than 30min,
30min to 8 h, and more than 8 h. These ranges coincide
with hours of service (HOS) regulations for required rest
breaks (24). For trip length and duration, trips are cate-
gorized based on general breakpoints found in the litera-
ture defining long and short haul trips. Time of day and
total number of daily stops are also considered as impor-
tant operational characteristics.

Development of a Multinomial Logit (MNL) Model

An MNL model was estimated to define associations
between operational characteristics and the probability
that a truck was transporting a certain commodity. The
resulting model allows for the prediction of the commod-
ity carried by a truck, as it is assumed that the observed
stop and trip characteristics are, in part, the result of the
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Figure 2. Prediction of carried commodity of a truck.

commodity being transported. Thus, the probability of a
truck transporting commodity i can be calculated as:

P(\C,) = P, (Uy = Uy), Vj € C, 9)

where

U = utility of the given alternative, and

C, = {farm products, manufacturing, mining, chemi-
cals, miscellaneous mixed, and pass-through}.

In this interpretation, the “utility” of alternative i can
be calculated based on the stop and trip characteristics
as:

l-/i = Binxin + Ein (10)

where

U;, = estimated “utility” of alternative (commodity) 7
for driver/truck n,

X;, = observed stop and trip characteristics,

B, = vector of coefficients of the variables, and

€;; = random component, for example, unobserved or
unmeasurable.

Under the assumption of the MNL model and based
on the principle of utility maximization, the choice prob-
ability for alternative i can be calculated as:

eVin

PO e
jeCn

, for all i in j, (11)

where
Vin = Binxin
(All other terms previously defined.)

MNL Model Specification. A total of 11 of the 12 opera-
tional characteristics derived from the trip-identification
algorithm were used (Table 5). To avoid multicollinear-
ity, the “proportion of night-time stops” parameter was
not included in the model.

Five commodity classes were considered in the model:

manufactured goods
farm products
mining materials
chemicals
miscellaneous mixed

Additionally, “pass-through” trucks were considered
as a “commodity.” This was a necessary addition, as
pass-through trucks represent unique operational beha-
viors that are not tied to specific commodities but are,
nonetheless, included in the data sample because of only
partial observation of the trip chain within the state
boundary. The commodity category “farm products”
was chosen as the base category.

MNL Model Estimation. Labeled data is needed to estimate
the MNL model. In this application, labeled data refers
to assigning a commodity carried to each observed truck
trip contained in the GPS sample. To do this, a “ground
truth” dataset was created using manual processes and
comprised 2,064 truck trips. The assumption of commod-
ity carried was based on a detailed examination of the
truck trip and stops against aerial images depicting busi-
ness and land uses, for example, Google Satellite images,
along with North American Industry Classification
System (NAICS) codes identified for the businesses
where the stops were located (Figure 2). NAICS codes
are adopted by the U.S. federal statistical agencies to
classify business establishments. When manual observa-
tion of the business type could not fully distinguish the
possible commodity carried, the NAICS code was refer-
enced. For example, a business coded as NAICS 31-33
was considered “manufactured goods” while those classi-
fied as NAICS 339000 were identified as “miscellaneous
mixed.” Five commodity groups were clearly
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Table 6. Change in Operational Characteristics Based on Commodity Groups
Features Commodity groups
Manufactured Farm Mining
Group Description goods products materials Chemicals  Misc. mixed  Pass-through
Stop duration
Short break Less than 30 min 0.01 —025%**  —0Q.18*¥**  —0.07 0.46%** 0.03
Pick-up/delivery 30 min to 8h 0.05 —0.02 0.18%**  —0.40%** 0.07 0.12
Long rest break More than 8 h 0.47%%* 0.19* 0.52%** 0.22 —0.51** —0.88***
Trip length
Short trip length Less than 30 mi 0.38*** 0.41%** 0.27***  —| 37*** 0.16 0.15
Medium trip length 30 mi to 100 mi 0.23%%* 0.48%** 0.52%**  —0.4]** —0.21 —0.60%*
Long trip length More than 100 mi —0.08 —0.97*%*%  —0.28%** | .53%** 0.08 —0.28
Trip duration
Short-trip duration Less than | h —0.44*#* —0.02 —0.08 |.40%** —0.55%** —0.32
Medium-trip duration |l hto 4h 0.29%** 0.57%*x* 0.44%**  —0.47*** —0.35%** —0.48**
Long-trip duration More than 4 h 0.67*** —0.64** 0.15 — . 1g*** 0.93*** 0.06
Time of day
Daytime hours 6a.m. to 6 p.m. 1.39%** 0.28 —0.72%**  —0.23 —0.16 —0.57
Daily stop
Total stops Total number of 0.027%%** —0.02%** 0.00 —0.04#** 0.0l 0.02%**

stops in a day
Log-likelihood: —1,993.31.

Note: Misc. = miscellaneous.
*significant at 90% confidence level;
**signiﬁcanc at 95% confidence level;
***significant at 99% confidence level.

distinguishable in the data. To be clear, this is a required
procedure for model development and not part of the
proposed classification algorithm. Using this approach,
the anonymity of the data is still maintained.
Commodity groups were treated as the dependent vari-
ables and operational characteristics were treated as the
independent variables of the MNL model.

Maximum likelihood estimation (MLE) was used to
estimate the coefficients of the MNL model (25, 26). At
the 95% confidence level, stop duration, trip length, trip
duration, stop time of day, and total number of daily
stops were found to be significant parameters in predict-
ing commodity carried (Table 6). The model data was
split 75% for training and 25% for testing using the stra-
tified random sampling with stratification based on com-
modity group. The overall accuracy of the model in
relation to the correct classification rate (CCR) was 61%
for the training data and 57% for the test data. The CCR
is the ratio of the correctly classified responses to the total
number of responses (Equation 12). This is also referred
to as “recall” (Equation 12). CCR ranges from 79% for
manufacturing to 0% for pass-through and is generally
correlated with the volume of samples (Table 7). Since
the model output could be used to predict the volume of
each commodity group, we also present the volume accu-
racy of the classifications. Volume accuracy for each
commodity group (i) is expressed as the difference in

predicted and actual volume relative to the actual volume
(Equation 13, all terms defined in Table 7).

_ P
CCR' = 100% X — (12)
Vl
4
) vi— Vi
Volume Accuracy’ = 100% — M (13)

Vi

Discussion

Knowing the commodity carried by a truck provides
insight into its operational characteristics, for example,
number of stops, trip length, and time of day travel pat-
terns. Conversely, knowledge of operational characteris-
tics can be used to understand the commodity carried by
a truck. Because operational characteristics can be
derived from GPS data, but commodity carried cannot
be observed, the approach explained in this paper was to
use heuristic methods to derive operational characteris-
tics from GPS data and then relate those characteristics
to commodity carried via an MNL model.

According to the estimation results, stop time of day,
stop duration, trip length, and trip duration are found to
be significant operational characteristics predictive of
commodity carried. For instance, the model estimates
that if the number of short break (less than 30min)
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Correct classification
rate (CCR) (%)

No. correct
predictions P'

No.
samples V),

Farm
Products  Manufacturing  Mining  Misc. mixed  Pass-through

Chemicals

Table 7. Cross-Classification Matrix and Model Statistics of Test Data

2
56
166
66

2

0

292

211
156
9
7
516

*.
cocococogo

*
NoOoN—ocow;m

Farm products
Manufacturing

Mining
Misc. mixed
Pass-through

Chemicals

Actual commodity
classification

Total volume

na

na

na

84 74 88 22

63

predicted, Vi
Volume accuracy (%)

*Gray-Shaded Cells = Correctly classified commodity

Note: Misc. = miscellaneous; na = not applicable.
Gray-Shaded Cells = Total

increases by one, the log-odds of carrying miscellaneous
mixed goods will increase by 0.46 and the log-odds of car-
rying farm products will decrease by 0.25. It also indicates
that the probability of carrying miscellaneous mixed com-
modity will increase by 55% while the probability of carry-
ing farm products will decrease by 24%. This denotes that
trucks carrying miscellaneous mixed products have higher
number of short breaks compared with trucks carrying
farm products, which follows intuition that trucks carrying
miscellaneous mixed goods are making stops at many dif-
ferent establishments in a less-than-truckload fashion. The
model also estimates that, if the number of short trips (less
than 30 mi) increases by one, the log-odds of carrying farm
products will increase by 0.41, while the log-odds of carry-
ing chemicals will decrease by 1.37. In other words, the
probability of that truck carrying farm products will
increase by 31% while the probability of it carrying chemi-
cals will decrease by 78%. It indicates that trucks carrying
farm products have a higher number of short-length trips
compared with trucks carrying chemicals. This can be
intuitively supported by noting that farm products include
transporting animal feed from local producers to farms, as
well as live animals to local processing plants.
Additionally, the model finds that the stop time of day fac-
tor is positively significant for manufactured products and
negatively significant for mining materials. It indicates that
trucks carrying manufactured products have a higher
number of stops during daytime (6a.m. to 6 p.m.) com-
pared with trucks carrying mining materials. Again, this
reflects intuition, in that manufactured product deliveries
must follow daily operating hours of factories and stores.

The data used in this work represents a sample of
trucks covering a statewide region. On average, this sam-
ple represents approximately 10% to 15% of the total
population of trucks. From that sample, we manually
identified the industry of 1,584 trucks to train our model
(75%) and 516 trucks to test the model (25%). This is a
common split of training and test data for machine
learning applications. Further, we use stratified random
sampling with stratification based on commodity group
to ensure the training and testing data are representative
of the larger population of trucks. It can be argued that
more training data will result in a stronger model while
more testing data can better show how performance var-
ies by class. However, the approach taken in this paper
to gather labeled samples required a manual, time-
consuming process and thus was restricted to 2,064
trucks. There is no known data set in the public space
that links commodity carried to GPS record and, thus, it
is a challenge to gather labeled training instances for
model development. For future expansion of this work,
researchers can partner with trucking companies to
potentially gather paired commodity and truck move-
ment data for model-training purposes.
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Conclusion

Although big data such as that from GPS is increasingly
plentiful, without efficient heuristic methods to extract
relevant performance measures it is not possible to fully
leverage this valuable data source. Methods to derive stop
duration, trip length, trip duration, and stop time of day
allow us to identify freight activity patterns from big data
sources and to link those patterns to commodity carried.
While deriving operational characteristics from big data
allows us to develop more ubiquitous transportation per-
formance metrics, the link between operational character-
istics and commodity carried serves as critical input for
freight demand forecasting that hinges on economic fore-
casts of commodity production and consumption (/7).

The methodology presented in this paper consists of
spatial heuristics to identify stop clusters and complete
paths of individual trucks from timestamped latitude-
longitude points gathered from GPS devices on board
trucks. After deriving stop and path, trip chains—for
example, sequences of stops and trips—can be observed.
Statistical approaches, namely MNL models, were
employed to determine how operational characteristics
such as stop time of day and duration, relate to com-
modity carried. The MNL model identified that stop
duration, number of total daily stops, stop time of day,
trip length, and trip duration were significant character-
istics that could be used to predict commodity carried.

Although the CCR of the predictions is 57%, and sev-
eral of the commodity class predictions are above 40%,
the pseudo-R-squared of the estimated MNL model of
29%, a general description of the goodness of fit, indi-
cates that there is a room for improvement. This can be
attributed to several factors. First, MNL estimation
assumes a linear-in-parameters specification such that
operational characteristics should be linearly related to
commodity carried. This assumption may not hold true.
Advanced machine learning methods such as K-means
clustering, random forest, and SVM models can better
identify patterns, especially non-linear patterns, from
large and noisy data like GPS pings (27). Therefore,
machine learning models are likely more appropriate for
this application but would require more ground truth
(training data). Second, MNL specification requires a
complete choice set to be specified. This paper considered
only five commodity groups plus a sixth group represent-
ing pass-through movements. This is not a complete
choice set but was limited by data ground truth proce-
dures necessary to maintain confidence in the labeled
data. Future work should expand the set of commodities
which should also improve cross-classification errors.

The results of this paper can guide public sector engi-
neers and planners to achieve the TPM goal-setting
initiatives and requirements set forth in federal transpor-
tation legislation.
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