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With n e w  sources of big data,  it is increasingly possible to practically implement  advanced
freight forecasting models including activity-based and  truck touring models. Such models
improve upon traditional trip-based approaches by capturing freight behaviors sensitive to
transportation policy and  infrastructure changes. A persis tent  challenge wi th  the  use  of big
data  in this context is the  ability to generalize a  set  of representative behaviors to serve as
the  basis for model calibration and  validation from anonymized data  depicting the  com-
plex behaviors of the  population. To address  this challenge, w e  present  a  two-stage
methodology to extract unique  and  representative freight activity pa t te rns  from passively
collected truck Global Positioning System (GPS) data. The first stage involved a  heuristic-
based approach to derive a  set  of stop and  trip characteristics from large-streams of GPS
pings. The second stage employed data  mining and  machine learning techniques to discern
common freight activity pa t te rns  from the  set  of defined features. The resulting activity
pat tern  profiles, defined as chains of activities and  their trajectories over t ime and  space,
allow us  to maintain the  anonymity of the  trucks included in the  GPS datase t  while provid-
ing high-resolution travel profiles- a  necessary condition for most  da ta  sharing agreements
be tween  public agencies and  private da ta  providers. These activity pa t te rns  serve as the
critical, and  currently missing, da ta  needed  to calibrate and  validate advanced freight fore-
casting models. With more advanced forecasting models reflective of observed freight
behaviors, w e  will be able to evaluate a  wider  spect rum of policy and  infrastructure scenar-
ios more accurately.

 2022 Tongji University and  Tongji University Press. Publishing Services by Elsevier B.V.
This is an  open access article unde r  the  CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Although a number of theoretical Activity Based Models (ABMs) and truck touring models have been developed from as
early as 1979 (Adler and Ben-Akiva, 1979), practical implementations have been hindered in part  by the unavailability of the
data necessary to construct these advanced freight demand forecasting models. In more recent history, growing availability
and access to big data from cell phones, Global Positioning Systems (GPS), etc., seemingly closes this data gap. However, we
still lack the ability to generalize a set of representative travel patterns from the more complex behaviors of the truck pop-
ulation contained in big data. A representative set of travel patterns is necessary for practical calibration and validation of
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advanced freight travel demand models. Our study develops a methodology to extract unique, representative, and anony-
mous truck activity patterns from historical truck GPS data, a common source of big data for freight. In this way, we  seek to
fill a critical research gap concerning the use of big data for advanced freight demand forecasting.

An activity pattern is defined by start/end times, activity duration, travel duration and length, and sequence of those com-
ponents. Activity patterns have traditionally been derived from travel surveys (Nepal et  al., 2005, 2006; Ruan et  al., 2012;
Allahviranloo et  al., 2017) and, less commonly, from mobile sensors (Chung and Shalaby, 2005). Travel surveys have the ben-
efit of linking activity patterns to demographic characteristics but are limited by smaller sample sizes and temporal scopes,
e.g., daily or weekly trip diary formats. It can be difficult to extrapolate activity patterns from a one-day travel survey to the
population given the complex decision-making processes related to trip chaining. Moreover, travel diaries for freight trucks
are almost non-existent. For example, the Vehicle Inventory and Use Survey (VIUS) carried out by the FHWA gathered data
from fleet managers on annual trip and vehicle characteristics but did not at  all resemble a typical trip diary that  was needed to
recreate travel patterns (FHWA, 2001).

Counter to travel surveys, passively collected mobile sensor data for freight captures a much larger proportion of the truck
population and provides continuous spatial and temporal coverage. This data is increasingly available due to the  prevalence of
on-board or cellphone-based GPS units and, recently mandated,  Electronic Logging Devices (ELD). Since mobile sensor data
typically represents a large but sampled portion of the population, it has been commonly used as a source of probe vehi-cle data
to measure speeds and travel times. Considering this data depicts high resolution vehicle movements, sometimes on the order
of minute-to-minute position updates, and is potentially available for all trucks, there is a significant power in leveraging
it to gain insights into freight activity patterns.

Although the private sector collects large sample of robust data, the publicly shared data are void of industry, commodity,
fleet, and driver information due to business privacy concern. Thus, a persistent challenge with the use of freight big data in
this context is the  ability to generalize a set of representative behaviors to serve as the basis for model calibration and val-
idation. Also, there is a critical research gap to identify commodity-specific activity patterns from the anonymized data
depicting the complex behaviors of freight population while maintaining data privacy. To address this challenge, we  present a
two-stage methodology to extract unique and representative freight activity patterns from passively collected truck Global
Positioning System (GPS). Our approach identifies commodity clusters of freight trucks based on their daily activity patterns in
a way that  maintain business privacy standards.

The first stage involved a heuristic-based approach to derive a set of stop and trip characteristics from large-streams of
GPS pings. The second stage employed unsupervised machine learning techniques, namely K-means clustering, to discern
common freight activity patterns from the  set of defined features. The premise of this study follows from the work of
Allahviranloo et  al. (2017) for passenger activity travel pat tern generation. Allahviranloo et  al. (2017) demonstrated, using
survey data, that  a limited set of representative daily activity patterns can be extracted from those of the  larger population
and used for ABM calibration and validation. Our work not only extends this approach to freight activity pat tern recognition
but leverages anonymous mobile sensor data in place of traditional travel surveys.

2. Background

Trucking is and will continue to be the dominate mode of transport for freight in the US with trucks accounting for 64%
and 69% of the market by both weight and value, respectively (FHWA, 2018). The Freight Analysis Framework (FAF), the Fed-
eral Highway Administration’s (FHWA) nationwide freight forecasting model estimates that  the weight of freight shipments
moved by truck will grow 45% between 2012 and 2045 (FHWA, 2018). Ensuring efficient freight movement through the pro-
vision of adequate infrastructure and effective transportation policy is critical for the economy and the environment. To con-
struct, maintain, and operate a transportation system that  supports the efficient movement of freight, it is necessary for
public transportation agencies accurately model and predict freight travel demands.

A variety of travel demand models, i.e., traditional trip-based, activity-based, and truck touring models, are used to pre-
dict freight flows and, in turn,  direct effective freight-oriented infrastructure and policy programs. However, the choice of an
appropriate model depends on data availability, time and resource allotments, and the need to assess certain infrastructure
and/or policy scenarios. Advanced freight forecasting models are increasingly used to predict travel demands as they con-
sider robust behavioral characteristics, operational decisions, and interactions. Advance models, compared to their tradi-
tional trip-based predecessors, allow agencies to evaluate a wider variety of infrastructure and policy decisions by
incorporating behavioral models. Activity Based Models (ABMs), for example, forecast travel demand by depicting trip chains of
individual agents participating in a set of activities. For freight, activities include initiating/receiving shipments and trans-
porting goods from origin to destination by various modes. Agents may be shippers, receivers, or drivers. The premise of such
models, unlike trip-based models, is tha t  travel is derived from the  demand to pursue activities. Thus, models that  consider
trip linkages have the potential to more accurately forecast travel demands by focusing on activity patterns rather than indi-
vidual trips.

With new sources of big data providing insights into freight travel patterns, it is becoming increasingly possible to prac-
tically implement advanced freight forecasting models including activity-based and truck touring models. Key to success-
fully leveraging big data for advanced travel demand modeling is the ability to (1) derive operational characteristics, (2)
extract common activity patterns, and (3) link activity patterns to the population.
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2.1. Deriving operational characteristics

In order to distill common activity patterns from big data sources like GPS, it is first necessary to extract operational char-
acteristics tha t  define activity patterns. Examples of operational characteristics include trip length, number of trips, speed,
travel time, destination, stop location, and stop duration (Zanjani et  al., 2015; Liao, 2009; Gingerich et  al., 2016; Aziz et  al.,
2016, Laranjeiro et  al., 2019). Heuristic approaches for identifying stops (‘‘Stop Identification”) and trips (‘‘Map Matching”)
have been developed to derive operational characteristics from large-streams of GPS data (Giovannini, 2011; Thakur et  al.,
2015; Quddus and Washington, 2015; Camargo et  al., 2017; Yang et  al., 2014). ‘‘Stop-identification” refers to finding clusters of
pings that  relate to a single stop. Available algorithms (Thakur et  al., 2015; Camargo et  al., 2017) used geographic bound-ing
boxes and rule-based approaches to define stop clusters. ‘‘Map-matching” refers to the process of identifying the network links
that  correspond to each GPS ping (a latitude, longitude, timestamp tuple). Yang et  al. (2014) developed a support vector
machine (SVM) to identify delivery stops with GPS data. The features of the SVM model were the stop duration, the distance
from a stop to the center of the  city, and the distance to a stop’s closest major bottleneck.

Oka et  al. (2019) developed a route choice model using the large-scale urban freight survey and found that  travel patterns
changed significantly depending on the type of trucks. Giovannini (2011) developed an algorithm to re-construct routes from
low-sample rate GPS data, e.g., around one mile between pings, using a Bayesian approach (Giovannini, 2011). Quddus and
Washington (2015) developed a new weight-based shortest path and vehicle trajectory aided map-matching algorithm to
determine the network link corresponding to each GPS ping based on proximity, among other factors, for a sparse road net-
work. Further extensions of map-matching, such as that  by Camargo et  al. (2017), ensured that  the sequence of identified
network links constituted a complete path. The ‘‘stop identification” and ‘‘map-matching” algorithms developed by
Camargo et  al. (2017) were used in this paper as they were shown to produce accurate stop locations and routes for GPS data.
We applied several modifications to their algorithms to ensure accuracy for denser road networks and less urbanized areas
(see Section 3.1).

2.2. Extracting representative activity patterns

Due to the ability to handle complex patterns and noise found in large datasets, machine-learning techniques have been
used to extract representative activity patterns from surveys (Allahviranloo et  al., 2017; Jiang et  al., 2012; Allahviranloo and
Recker, 2013; Li and Lee, 2017) and mobile sources (Shoval and Isaacson, 2007; Yang et  al., 2010; Liu et  al., 2014). Jiang et  al.
(2012) applied Principle Component Analysis (PCA) and K-means clustering to extract representative groups among week-
day and weekend activity patterns from travel surveys. They found eight and seven representative groups for weekdays and
weekends, respectively. Allahviranloo and Recker (2013) used Support Vector Machines (SVM) to classify the  daily activity
patterns of travelers based on trip diary data. Allahviranloo et  al. (2017) generated activity patterns from survey data using a
combination of affinity propagation and K-means clustering. They defined 12 activity patterns, where  the pat tern corre-
sponding to long duration work activity was the most prevalent. Also working with survey data, Li and Lee (2017) developed a
Probabilistic Context Free Grammar (PCGG) model to analyze and generate daily activity patterns. They found 15 common
activity patterns which explained 70% of the behaviors represented by their data sample.

Ma et  al. (2016) used a series of data-mining algorithms to extract an individual truck’s trip-chaining information from
multiday GPS data. You et  al. (2016) developed a modeling framework for freight that  considered both spatial–temporal con-
straints. They developed the model based on an adaptation of an activity-based passenger model called the Household Activ-ity
Pattern Problem (HAPP). Hunt and Stefan (2007) developed a tour-based microsimulation model using a set of interviews
about own-account commercial vehicle movements conducted at  just over 3100 business enterprises in the Calgary Region.
Joubert and Meintjes (2015) argued tha t  the use of GPS data and the associated expert judgements can be applied with con-
fidence in freight transport models.

Shoval and Isaacson (2007) used a variety of tracking technologies, i.e., GPS tracking, Cellular Triangulation tracking,
assisted GPS tracking, and land-based time difference of arrival (TDOA) tracking, to collect and analyze time–space activity
patterns of tourists. They found that  GPS devices collected more accurate data than other tracking methods. Like the studies by
Allahviranloo and Recker (2013) and Allahviranloo et  al. (2017), Yang et  al. (2010) applied SVM methods to determine the
individual’s travel behavior but used GPS data instead of travel surveys. Features used to train their SVM included activity
start time, end time, distance, etc. derived from the GPS data (Yang et  al., 2010). They were able to distinguish around eight
unique activity patterns. Similarly, Liu et  al. (2014) used mobile phone data to identify activity types based on travel beha-
viour information, i.e., the timing and frequency of visits to different locations. Liu et  al. (2015) developed a model based on
profile Hidden Markov Models (pHMMs) to quantify the occurrence probabilities of all the daily activities as well as their
sequential order also using mobile sensor data. They found three main patterns dependent  on the location of the longest
activity duration, i.e., home, work, and non-work clusters, where the non-work cluster had seven sub-clusters. Considering
the availability of truck GPS data, there is significant potential in extending the abovementioned techniques to distill activity
patterns for freight.
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2.3. Linking representative activity patterns to the population

To expand representative activity patterns extracted from surveys or samples of mobile sensor data to the  population-at-
large, it is necessary to link patterns to freight demographic characteristics like industry served and commodity carried.
However, commercially available mobile sensor data is typically devoid of demographic data, e.g., anonymized, to protect
the privacy and satisfy data sharing agreements between public agencies and private data providers. Jing (2018) a t tempted to
overcome this limitation by concurrently collecting travel diary and GPS data for freight trucks through a tablet-based
application. Like traditional travel surveys, this approach was restricted by its smaller sample size (i.e., the  survey included
only 119 truck drivers in Singapore), bringing into question the ability to extrapolate derived activity patterns to a much
larger truck population (Jing, 2018).

Sharman and Roorda (2013) used truck GPS data to calculate the time between arrivals at  a destination of two successive
vehicles operated by the same carrier and found a wide variation in shipping behavior of commercial establishments. They
argued that  many firms do not follow consistent shipping schedules. Alho et  al. (2019) compared different stop-to-tour
assignment, tour-type, and tour-chain identification algorithms to extract their implications. They demonstrate that  the pre-
dictions of tours, tour types, and tour-chain-types are highly dependent  on the  used assumptions and GPS data processing.
They also analyzed the daily tour pat tern and demonstrated tha t  the operational characteristics varies from vehicle types
and industries. You and Ritchie (2018) analyzed truck GPS data to interpret tour behavior of clean drayage trucks, and to
prepare sufficient tour data for clean truck modeling. Sánchez-Díaz et  al. (2015) developed a freight demand model that  esti-
mated tour flows from secondary data sources e.g., traffic counts and bypass the need for expensive surveys.

Without survey data to provide necessary demographics like trip purpose, commodity carried, or truck type, algorithmic
approaches to derive such information from GPS data have been at tempted.  Kuppam et  al. (2014) combined GPS and land use
data to derive trip purposes, i.e., goods pickup or delivery, service, return home. They showed that  land use at  the trip origin
was a significant predictor of trip purpose and was able to correlate industry type with trip characteristics like fre-quency
and number of stops. For example, ‘‘construction trucks” made  fewer stops than ‘‘government-related trucks”. Unlike the study
by Kuppam et  al. (2014) which was able to correlate freight demographics from activity or trip characteristics, Ma et  al. (2011)
focused on distinguishing vehicle characteristics from mobile sensor data, which can also be useful for inferring freight
demographics. They used GPS data to classify truck trips into access, local, and loop trips based on trip travel distance from the
origin to the destination relative to straight-line distances. Similar to these approaches, the methodology described in this
paper connects activity patterns to freight demographics, specifically industry served, by examining land uses at  each stop
location.

3. Methodology

Following a brief discussion of the  data requirements, the two major components of the methodology are discussed in
this section: (1) derivation of operational characteristics from truck GPS data, and (2) selection, estimation, and validation of
unsupervised machine-learning models to discern unique truck activity patterns from operational characteristics.

3.1. Data requirements

The methodology described in this paper is suited for large streams of mobile sensor data that  contain a unique, but
anonymous, vehicle identification number (ID), timestamp, latitude and longitude, point-speed, and heading direction
(e.g., azimuth). GPS data used in this paper is in a raw form that  required pre-processing to remove noise and other incon-
sistencies in the data. It is assumed that  adequate quality checks will produce ‘complete’ truck records, defined as those that
represent an over the  road truck movement with reasonable start and end positions, speeds, and accelerations. We devel-
oped an algorithmic approach to identify a complete truck tour after checking data consistency and relevancy. The algorithm
removes any GPS pings that  have acceleration/ deceleration rates above 2.24 ft/s2, corresponding to 85th percentile average
acceleration rate of heavy trucks (Pline, 1999). It also flags any truck records tha t  have space-mean-speed (SMS) more than 81
miles per hour (mph) for at  least 2 min. Additionally, the algorithm calculates the  spatial and temporal extension of truck
records to check the validity of the data. Any truck records that  have a smaller geographic and temporal coverage than the
thresholds are removed. The spatial and temporal thresholds (i.e., 1.2 miles and 20 min) were determined by observing man-
ually the spatial extent of freight distribution centers and operational stops (e.g., pickup/ delivery, rest stops, etc.).

Once cleaned of inconsistencies, GPS data represented as a series of pings should be converted to a series of stops and
trips. Heuristic approaches developed by Camargo et  al. (2017) to identify stop clusters and routes from truck GPS data were
adapted for this work due to differences in proposed application contexts, i.e., metropolitan area vs statewide region. To
define stop location, we  used the  first identified ping in the stop cluster (e.g., a group of consecutive pings with minimal
speed) rather than using the cluster centroid as the stop location. This ensured that  stop locations aligned with physical busi-
ness locations. First, the  ‘‘stop identification” algorithm calculates the space-mean speed (SMS) from consecutive GPS pings. It
continues calculating the SMS between the next pair of consecutive pings until the SMS is more than 3 mph.  Thus, the
algorithm collects an array of the pings that  pass the speed threshold (i.e., less than or equal 3 mph). Next, the  algorithm
calculates the  total ‘‘stop time”  and ‘‘stop coverage” for all consecutive pings from the  array. To avoid traffic signal related
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stops, we  added a spatial and a temporal threshold to the algorithm. Thus, if a  group of stopped pings covers at  most 0.2
miles for at  least 5 min, then the group is considered as a ‘‘stop cluster” and the first ping of that  ‘‘stop cluster” is marked as
the  location of the ‘‘stop”. Later, these stops are categorized as pick-up/delivery stops, rest or fuel stops, or unintended stops
due to congestion.

After categorization of stops, we  developed the  ‘‘path identification” algorithm to identify the set of links that  comprised
the complete path between consecutive pings and extract the  trip characteristics. In regard to trip characteristics, modifica-
tions to the ‘‘map-matching” algorithm by Camargo et  al. (2017) accounted for a dense statewide road network. Use of the All
Roads Network of Linear Referenced Data (ARNOLD) (FHWA, 2014) network file in this work, ensures the transferability of
results from state-to-state. Because this network was denser than that  used by Camargo et  al. (2017), the link buffer distance
was altered based on road functional class to improve accuracy in matching GPS pings to network links. Additionally, the
modified algorithm defined link cost using estimated free-flow travel time instead of link length. Since ARNOLD does not
include speed limits, speed limits were assumed based on road functional class. Further details on modifications to the stop
identification and map-matching algorithms can be found in Akter et  al. (2018).

3.2. Operational characteristics as input feature vector

Five operational characteristics were extracted from the GPS data, three relating to stops, i.e., stop time of day, number of
stops, and stop duration and two relating to trips, i.e., trip length and trip duration. The extracted stop duration was divided
into three groups based on the Hours of Service (HOS) regulations of the Federal Motor Carrier Safety Administration
(FMCSA). According to the ‘‘30-Minute Driving Break” rule of HOS, all freight drivers are required to take a 30-minute break
after an 8 h  cumulative drive (FMCSA, 2020). The ‘‘14-Hour Limit” rule regulates a consecutive 10 h  break for freight drivers
after having been on duty for 14 h. Additionally, drivers may split their required 10-hour off-duty period between at  least 2
and 8 h  while using sleeper berths (FMCSA, 2020). Hence, we  considered ‘30 min to 8 h’ as the critical threshold for extract-ing
activity patterns.

To derive daily activity patterns, we  segmented multi-day travel patterns by day (i.e., from midnight to midnight). For
instance, if a unique truck traveled for three days, that  truck would be segmented into three independent daily truck records.
We adopted this approach to consider situations where a unique truck transported different goods on different days and thus
showed different activity patterns. The daily pattern of each truck was represented by an 11-element feature vector based on
operational characteristics (Table 1).

These features relate to behavioral characteristics assumed to distinguish representative activity patterns. For instance,
stops of ‘less than 30 min’ duration captured short-breaks, e.g., food break, restroom, refueling, short-term deliveries etc.
while stops of ‘30 min to 8 h’ duration captured long-term pickup/delivery stops but not long rest periods (Jing, 2018). Trip
length and trip duration were used to identify the types of truck trips. Trip lengths ‘less than 30 miles’ and/or trip duration
‘less than 1 hour’ were assumed to represent short-haul truck movements while trip lengths ‘more than 100 miles’ and/or
trip duration ‘more than 4 h’ represented long-haul truck movements.

3.3. Unsupervised machine learning to derive representative activity patterns

A K-means clustering model was applied to identify the  representative daily activity patterns of trucks. The assumption
was that  K-means clustering could distill the daily activity patterns of the  truck population to a relatively small set of rep-
resentative patterns, as well as to identify the optimal number and compositions of such patterns should they exist
(Allahvira et  al., 2017).

Unsupervised learning methods find multi-dimensional groups in data represented by multi-dimensional input vectors
(Alpaydın, 2014). Among unsupervised learning models (i.e., Hierarchical, DBSCAN, Gaussian Mixture Model, etc.), K-
means cluster models are appropriate when  input variables are numerical, as is the case for the feature vector representing
operational patterns (Bishop, 2016). K-means clustering algorithms partition the  data into K number of clusters in a

Table 1
Features  defined by operational characteristics by group and  type.

Feature  Group

Stop Duration

Trip Length

Trip Duration

Time of Day

Features

1. Number  of s tops  less t h a n  3 0  min

30  min  to  8  h

More t h a n  8  h

2. Number  of trips less t h a n  30  miles

30  miles to  100  miles

More t h a n  100  miles

3. Number  of trips less t h a n  1  h o u r

1  h o u r  t o  4  h

More t h a n  4  h

4. Proport ion of day t ime  s tops  (6AM –  6PM)Proportion of nightt ime s tops

(12AM –  6AM & 6PM –  12AM)

Variable Type

Discrete

Discrete

Discrete

Cont inuous
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multidimensional space such that  the sum of the squares of the distances of each data point to its closest cluster centroid l k

is a minimum (Bishop, 2016) (Eq. (1)). A two-step iterative procedure is used to find optimal cluster assignments. Iterations
correspond to successive optimizations with respect to the  binary indicator variables for cluster membership (rnk) and the
cluster centroid ‘‘location’ (lk). The first step assumed a random value for l k  for K number of clusters and minimizes J with
respect to rn k  (Eq. (2)). In the second step, J is minimized with respect to l k ,  keeping rn k  fixed (Eq. (3) and (4)). The first stage of
updating rn k  and the  second stage of updating l k  correspond respectively to the E (expectation) and M (maximization) steps
of the EM algorithm. This two-stage optimization is repeated until convergence (Bishop, 2016).

N K

J ¼ rnkjj xn  lk jj2

n¼1 k¼1

1ifk ¼ arg minj jj xn  l  jj2 nk

0otherwise

2 
X

r n k  xn  l k

 
¼ 0 n¼1

P
n r n k  xn

k
nrnk

Where,

ð1Þ

ð2Þ

ð3Þ

ð4Þ

{x1, . . ., xn} = N observations of a random D-dimensional Euclidean variable x.
l k  = Centers of the clusters, where  k = 1,. . ., K.
rnk = Binary indicator variables, {0, 1} describing which of the  K clusters the data point xn is assigned to, where  k = 1,. . .,K.

A challenge in applying K-means clustering is the need to define the number of clusters when  there is no a priori knowl-
edge of appropriate value. Several approaches are suggested in the literature to select K including i) by the rule of thumb, ii)
‘elbow’ method, iii) information criterion approach, iv) an information theoretic approach, v) choosing K using the silhouette
and vi) cross-validation (Kodinariya and Makwana, 2013). Of these methods, the ‘elbow’ method is the most commonly used
and, in this study, produced a logical K value (Ng, 2012). The ‘‘elbow” method considers the  number of clusters K as a func-tion
of the total within-cluster sum of squares (WSS). A reasonable number of clusters K differences when  there is minimal change
in the total WSS after adding another cluster.

4. Results

Four, two-week periods of anonymous truck GPS data representing each quarter of the year (i.e., February, May, August/
September, and November) gathered from the American Transportation Research Institute (ATRI) were used to assess the
proposed method. The data from the August/September sample was used for algorithm calibration, i.e., setting the stop iden-
tification and map-matching parameters and determining an  appropriate number of clusters, while the remaining datasets
were used for assessing temporal transferability. In total, there were approximately 338,304,135 pings within the  eight-
week sample period. The sample represented 358,092 unique trucks in Arkansas and was shown to be a representative sam-ple
of the total truck population of the state (Corro et  al., 2019).

The K-means clustering model was applied to approximately 300,000 daily truck movement records and produced six
distinct clusters (K = 6) from the  11-element input feature vector (Table 2). The number of clusters (K) was varied from one
to 15 clusters and the ‘‘elbow” method was applied to determine a reasonable number of clusters (Fig. 1). Since the WSS
plateaued beyond six clusters, minimal differences in cluster characteristics were observed when  more clusters were added.
Alternatively, total WSS increased when  the  number of clusters decreased below six clusters.

The following definitions were adopted to facilitate interpretation of activity patterns represented by each cluster:

 Short break: Stop duration less than 30 min
Pickup/delivery: Stop duration 30 min to 8 h
Long rest break: Stop duration more than 8 h
 Short-trip length: Trip length less than 30 miles
 Medium-trip length: Trip length 30 miles to 100 miles
Long-trip length: Trip length more than 100 miles
 Short-trip duration: Trip duration less than 1 hour
Medium-trip duration: Trip duration 1 hour to 4 h
Long-trip duration: Trip duration more than 4 h
 Daytime hours: 6 AM – 6 PM
 Nighttime hours: 12 AM – 6 AM and 6 PM – 12 AM
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Table 2
Centroids of K-means  Clusters.

Stop dura t ion

Trip length

Trip dura t ion

TOD

Features

1. Less t h a n  3 0  min

2. 3 0  min  to  8  h

3. More t h a n  8  h

4. Less t h a n  3 0  miles

5. 3 0  t o  100  miles

6. More t h a n  100  miles

7. Less t h a n  1  h o u r

8. 1  t o  4  h

9. More t h a n  4  h

10. Day propor t ion

11. Night propor t ion

Activity

Pat te rn  1

2  (7.7)

3  (5.9)

1  (0.3)

3  (14.9)

2  (2.9)

1  (1.1)

4  (15.6)

2  (2.2)

0  (0.3)

0.72 (0.01)

0.28 (0.01)

Activity

Pat te rn  2

1  (1.5)

1  (2.1)

1  (0.4)

1  (3.0)

1  (1.1)

1  (0.8)

1  (3.3)

1  (1.3)

0  (0.4)

0.45 (0.01)

0.55 (0.01)

Activity

Pat te rn  3

0  (0.6)

0  (0.5)

1  (0.0)

0  (1.0)

0  (0.5)

1  (0.4)

1  (1.2)

1  (0.6)

0  (0.3)

0.00 (0.00)

1.00 (0.00)

Activity

Pat te rn  4

1  (2.3)

1  (1.3)

1  (0.0)

1  (4.3)

1  (0.8)

1  (0.5)

1  (4.5)

1  (0.9)

0  (0.3)

1.00 (0.00)

0.00 (0.00)

Activity

Pat te rn  5

1  (0.7)

1  (0.5)

0  (0.0)

0  (0.8)

0  (0.3)

1  (0.3)

0  (0.9)

1  (0.5)

0  (0.3)

0.00 (0.00)

1.00 (0.00)

Activity

Pat te rn  6

1  (1.4)

1  (0.8)

0  (0.0)

1  (1.8)

0  (0.5)

1  (0.4)

1  (2.0)

1  (0.6)

0  (0.2)

1.00 (0.00)

0.00 (0.00)

Percentage of trucks within each activity 9% 11% 14% 20% 14% 32%

pattern cluster

Note:  The s t anda rd  deviation of t h e  fea ture  wi thin  t h e  samples  in t h e  cluster is s h o w n  in parenthesis .

Fig.  1. Number  of clusters ba sed  o n  ‘‘elbow method” .

The highest percentage of sampled trucks (about 32%) were clustered into Activity Pattern 6 that  had one or two daily
stops, specifically during daytime hours. Those stops, either a short break or a pickup/delivery, were followed by both
short- and long-trip lengths. The second highest percentage (about 20%) of sampled trucks were grouped into Activity Pattern 4.
Those trucks had one to five daily stops (i.e., short break, pickup/delivery, and long rest break) followed by short-,
medium-,  and long-trip lengths.

All stops in Activity Pattern 4 occurred during daytime hours. Also, we  observed that  around 14% of sampled trucks were
clustered into both Activity Pattern 3 and Activity Pattern 5, independently. Trucks of Activity Pattern 3 had long rest breaks
during nighttime hours followed by long-trip lengths. Alternatively, trucks of Activity Pattern 5 had long-trip lengths with no
long rest break. Around 11% of sampled trucks in Activity Pattern 2 had one to four daily stops. Those stops were followed by
short- and medium-trip durations. Around 55% of stops in Activity Pattern 2 occurred during nighttime hours. Further, we
found that  about 9% of trucks were clustered into Activity Pattern 1 and had a high number of daily stops (on average 6 stops in
a day). Around 33% of those stops were short breaks and 17% were long rest breaks. Moreover, most of the stops (about 72%)
occurred during daytime hours for Activity Pattern 1.
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5. Discussion

The six representative activity patterns found via K-means clustering using an 11-feature vector depicting operational
characteristics can be described according to their spatio-temporal characteristics (Table 3). Time-space diagrams depicting
changes in location along the horizontal axis (blue lines), duration of activities and travel along the vertical axis (dashed red
lines), and portions of the trip that  are unknown (grey wavy lines) (Fig. 2) show distinct patterns. When a trip returned to the
same starting location after completing its daily activity, we  categorized that  trips as a ‘‘home-base” trip. For example, ‘Short-
Haul Home-Base with Multiple Stops’ (e.g., Activity Pattern 1) showed a pat tern in which trucks made  multiple numbers of
stops and returned to their home-base at  the end of the day. Trucks labeled ‘Medium-Haul Home-Base with One/Multiple Stops’
(e.g., Activity Pattern 5) started driving midday after a long rest-break (about 11 h) followed by a series of short breaks and
medium-trip durations (Fig. 2a). At the end of the day, those trucks also returned to their assumed home base. The last exam-
ple, labeled ‘Long-Haul with One Stop’ (e.g., Activity Pattern 6) showed a pat tern in which trucks drove through the night and
took a short break at  6 AM before resuming their drive across the state (Fig. 2a). Unlike short and medium-haul  movements,
these trucks did not return to a home-base by the end of the day. The grey lines represented unknown portions of the trip.
This occurred due to the data sample restriction to truck movements within the state boundary. The remaining activity pat-
terns differed in their number and duration of stops, travel distances, and returns to a home base (Fig. 2b). As mentioned
earlier, Activity Pattern 2 was similar to ‘Short-Haul Home-Base with Multiple Stops’ while Activity Patterns 3 and 4 were similar to
‘Medium-Haul Home-Base with One/Multiple Stops’.

Key to the uniqueness of the six activity patterns in the  study was the definition of the feature vector representing the
operational characteristics of the  trucks. Stop and trip characteristics were two basic operational characteristics that  likely
varied by commodity carried and industry of the truck. For example, since early morning is the best time to feed hens, trucks
carrying chicken feed make multiple short breaks in the morning (before sunrise) followed by short-trip lengths (Waldroup
and Hellwig, 2000). Some industries, like mining, operate 24 h  a day and result in a high number of stops and trips through-out
the day. By including features tha t  relate to the time of day, stop duration, trip length, and trip duration, we  are able to capture
these differences in operation that  lead to different activity patterns.

A drawback of K-means clustering is the a priori need to define the number of clusters. To demonstrate the sensitivity of
activity patterns to the selected number of clusters, we  examined the activity patterns under  assumptions of five (K = 5) and
seven (K = 7) clusters and noted the trends in cluster centroid definitions as we  increased the number of clusters beyond
seven. With five clusters, Activity Pattern 5 merged with Activity Pattern 3. Thus, we  were unable to see subtle differences in
medium-haul trips. Specifically, Activity Pattern 3 had one long-trip duration stop while Activity Pattern 5 had one short-
trip duration followed by a pickup/delivery. Increasing the number of clusters from five to six allowed us to distinguish Activity
Pattern 5 and Activity Pattern 3. Increasing from six to seven clusters, on the other hand, divided Activity Pattern 1 into two
clusters. However, the newly created pat tern had no meaningful characteristics tha t  would distinguish it as a unique pattern,
only a difference in the number of daily stops without changes in the trip length/duration or sequencing among stops. Thus,
six clusters were assumed to capture unique and representative activity patterns from the sample.

Variation in the representative activity patterns arose not only due to the selection of the number of clusters but was also
found within the  samples that  comprised each cluster. Activity Pattern 1, which represented the lowest percent (about 9%) of
daily truck samples, had the  highest within-cluster variance for each feature. Other activity patterns had relatively smaller
within-cluster variation for each feature. Features with the highest within-cluster variation across all clusters included trips
less than 30 miles (feature #4) and trip duration less than 1 hour (feature #7) while the lowest variation was found with stop
duration more than 8 h  (feature #3), trips more than 100 miles (feature #6), and trips longer than 4 h  (feature #9). The
higher number of short-trips in a day (versus one long-trip) was likely responsible for this variation. High variation among
features in Activity Pattern 1 explained why increasing the number of clusters leads to further separation of tha t  pattern.
However, the current K-means clustering feature set considers the time series of trips and stops visited by a truck but not
the sequence. The representative activity pat tern is considered from all trips and stops made  by a truck but does not
consider the order of trips and stops. This chosen representation within the model can lead to some of the  misclassifications.
Future work will consider the sequence and frequency of trips and stops to improve on the  misclassification.

To tie activity patterns distilled from the GPS data sample to those of the  larger population for which demographics are
known, it was necessary to link each pat tern to freight demographics such as commodity or industry type. To create this

Table 3
Categorization of activity pat terns .

Activity Pat te rn

Activity Pattern 1

Activity Pattern 2

Activity Pattern 3

Activity Pattern 4

Activity Pattern 5

Activity Pattern 6

Category Name

Short-Haul Home-Base wi th  Multiple

Stops

Medium-Haul Home-Base wi th  One/

Multiple Stops

Long-Haul wi th  One Stop

Category Description

Trucks have multiple  s tops  followed by  multiple  shor t  tr ips a n d  r e t u r n  to  h o m e -

b a s e  wi thin  a  day

Trucks have one/mul t iple  s tops  followed by  one/mul t iple  m e d i u m  trips  a n d

re tu rn  t o  h o m e - b a s e  wi thin  a  day

Trucks have one  (or  two)  s top  followed by  one  long trip a n d  n o t  r e t u r n  to  h o m e -

base  wi thin  a  day
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Fig.  2. Daily activity pa t t e rn s  of freight trucks.

linkage, 2064 daily activity patterns were mapped using Google Earth, and the business types of each stop location were
examined to determine the industry served by the truck. We inspected truck GPS stop locations using aerial imagery of land
use and business locations (e.g., Google Satellite images) and created a set of industry labeled data. Since the satellite ima-
gery includes building locations, orientations, access roads, loading docks, and other details, we  can get the insights of which
freight industry is served by that  truck. We followed a sequential manual  inspection that  involved observing the identified
stop location, stop time, and stop duration of a truck against satellite imagery (Google Earth), examining type of businesses at
the stop using web searches, predicting the industry served by that  truck, and comparing the predicted industry served
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Equipment and Chemicals Consumer Products Materials Agriculture Pass-Through

100%
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50%
45%

40%

30%

20%

10%
24%

0% 1%
Activity Pattern 1

5%

30%

27%

28%

10%

Activity Pattern 2

4%

34%

23%

20%

19%

Activity Pattern 3

7%

13%

11%

22%

47%

Activity Pattern 4

2%

14%

16%

39%

29%

Activity Pattern 5

55%

22%

12%

8%

3%

Activity Pattern 6

Activity Patterns

Fig.  3. Indus t ry  types  contained  in each activity p a t t e r n  cluster.

against the clustering model’s activity patterns. Thus, we  inferred industry types for 2,064 daily truck records. Industry types
were aggregated into five groups defined as follows:

(1) Agriculture including agriculture and livestock
(2) Materials including mining, coal, oil/gas, and non-metallic minerals
(3) Consumer products including food, lumber, and other manufactured products
(4) Equipment and chemicals including paper, chemicals, concrete, and metals
(5) Pass-through which included stops at  rest areas and gas stations

Each activity pat tern cluster consisted of trucks serving multiple industries, however, there was a dominant industry
group for several of the activity patterns (Fig. 3). Of all trucks included in Activity Pattern 1, 45% served the materials industry
and 30% served the agriculture industry (Fig. 3). We assumed this was in line with operations of trucks traveling to and from oil
and gas wells to support fracking activity, e.g., many short duration stops and trips with a return to a home base at  the end of the
day. Further supporting this assumption was the location of stops for Activity Pattern 1 (i.e., Short-Haul Home-Base with Multiple
Stops) which align with known oil and gas wells (Fig. 4a). Those same locations also had businesses related to poul-try which
tend to generate short-haul truck trips between feed mills, chicken houses, and processing facilities (e.g., chicken houses).
Activity Patterns 2 and 3 shared similar distributions among industry types with agriculture representing approxi-mately 30
and 34%, followed by materials representing approximately 27 and 23%, respectively (Fig. 3).

Activity Patterns 3 was distinguished by several medium-trip lengths and short breaks with a return to a home base. We
assumed the activity patterns related to agriculture in this case were capturing grain production and processing where
movements were within the state (i.e., Medium-Haul Home-Base with One/Multiple Stops) to and from farms and centralized
grain elevators. This was also seen in the relatively heavier volumes of Activity Pattern 3 trucks in the northeast and north-
west regions of the state where  farms are located (Fig. 4b). For materials, we  assumed the medium-haul,  home based activ-
ities captured movements of petroleum between fueling stations. Further, about 55% of trucks following Activity Patterns 6
represented pass-through movements (Fig. 3). The heatmaps of Activity Pattern 6 (i.e., Long-Haul with One Stop) also showed
that  these trucks had a high concentration of stops in the center region of the state (Fig. 4c). We considered this pat tern as
pass-through truck movements that  took short-breaks followed by long-trip lengths. The approach of linking activity pattern to
industry type is transferable to any geographic extent, although industry types may differ based on the  area.

However, due to the anonymity of GPS data, it was not possible to directly ‘‘observe” the demographic characteristics of
the trucks within each representative pattern. The unsupervised model (i.e., K-means clustering) of this paper identified
unique truck activity patterns tha t  can support transportation agencies to develop advanced freight forecasting models.
Future work will consider applying supervised machine learning techniques to predict industry-served or commodity-
carried of freight trucks from the extracted operational characteristics.
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(b) Medium-Haul Home-Base with One/Multiple Stops

(c) Long-Haul with One Stop

Fig.  4. Stop location concentrat ion by  activity pa t t e rn .

6. Conclusions

Transportation agencies rely on freight demand forecasting models to develop, prioritize, and assess future infrastructure
and policy scenarios. Advanced freight forecasting models that  incorporate behavioral dimensions, including activity-based
and truck touring models, allow for a wider range of policy evaluation and more detailed infrastructure planning. To date,
such models have been hindered by a lack of relevant and available data. Fortunately, with new sources of big data evolving in
the freight context, it is increasingly possible to practically implement advanced freight forecasting models. Unfortunately, the
ubiquity of big data in and of itself does not close this critical data gap. This paper addresses the challenge of using big data for
advanced freight travel demand modeling by developing and evaluating a method to extract representative and unique
activity patterns from a common source of big data for trucks, e.g., passively collected GPS data.

A two-stage methodology is developed in which daily trip and stop characteristics are extracted from large streams of
GPS pings (e.g., latitude, longitude, timestamp) and then used to find common but unique activity patterns defined as series of
trips and stops. Heuristic based approaches to determine stop and trip characteristics were used in the first stage that  fed into a
K-means unsupervised clustering algorithm in the second stage. Using a statewide sample of GPS data for evaluation, we
identified six activity patterns among 300,000 daily truck records. In relation to advanced freight models like ABMs, by
reducing 300,000 daily truck activity patterns to a representative set of six, we  aim to enable more efficient model calibration
and validation.

About 32% of all trucks included in our statewide GPS sample belonged to the activity pat tern cluster representing long-
haul movements with a single stop, indicative of pass-through operations. The second most common patterns, approxi-
mately 50% in total if combined, captured medium-haul trips with several stops and a daily return to a home base but dif-
fered by the time of day in stop and trips took place. The least common pat tern depicted short-haul trips with many stops
connected by short trips, characteristics of local delivers or local mining operations.
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Since truck GPS data used in our study was anonymous, it was not possible to directly ‘‘observe” the  demographic char-
acteristics (e.g., industry-served or commodity carried) of the trucks within each representative pattern. Therefore, truck
demographic characteristics associated with each activity pat tern were inferred through visual comparisons of GPS trajec-
tories and business and land use data. Representative activity patterns linked to industries can improve the  ways in which
the study extrapolates patterns derived from a sample to the  population- a necessary step toward creating the data neces-
sary for advanced freight forecasting models.

In future work, supervised machine learning can be used to predict commodity from operational features such as those
described in this paper. For example, through supervised learning techniques, a predictive model can be trained to recognize
the operational characteristics (e.g., daily activity patterns) tha t  correspond to particular industries, given a large-enough
sample of industry-labeled daily activity patterns. Further, while this study used only truck GPS data to distinguish activity
patterns, addition of spatial data depicting business locations and/or land uses and the advent of spatial fusion approaches
would allow us to identify the industry associated with each stop and relate it back to commodity specific activity patterns.

The developed model demonstrates that  activity trajectories for a truck population can be approximated by a small set of
representative patterns, containing some core trajectories, and that  there are possible correlations among the demographics
of commodities and the operational characteristics. In this way, we  produce a novel dimension to passively collected mobile
sensor data, tha t  can be linked to the industry served and commodity carried without violating privacy concerns. Further,
federal, state, and local transportation agencies can apply this approach to generate industry-specified activity pat tern pro-
files that  can be used for the development, calibration, and validation of advanced freight forecasting models. Ultimately, this
approach can allow transportation agencies to satisfy the Moving Ahead for Progress in the 21st Century (MAP-21) and the
Fixing America’s Surface Transportation Act (FAST Act) goals by supporting the development of policy sensitive travel

demand forecasting models.
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