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Abstract— In this paper, an Observer-Free Output Feedback 

(OF2) tracking controller is formulated for a robotic 

manipulator, in order to improve performance during human-

robot collaboration. The OF2 controller is based on a set of 

filtered error dynamics that avoids the need for direct speed 

measurements or observer design. The main advantage of this 

method is that it is model-free and robust to changes in operating 

conditions often present in environments where humans and 

robots work together. Moreover, OF2 controller is demonstrably 

stable, thus safe, and a Lyapunov stability proof is offered using 

a nominal dynamic model of the robot.  Collaborative robots 

have highly nonlinear and uncertain dynamic models and are 

ideal candidates for our controller.  The controller can be used 

to not only compensate for the unknown system parameters, but 

also reject external disturbances, such as human or 

environmental forces. Tracking performance of our controller 

has been tested experimentally on the Baxter collaborative robot 

under different trajectory tracking and impact experiments with 

and without payload. The results have been compared with the 

factory built-in and pre-tuned PID controller. Results indicate 

that our controller shows an order of magnitude improvement 

in the trajectory tracking performance and a reduction in joint 

efforts required during learning from demonstration and 

assembly tasks. 

  

I. INTRODUCTION  

In recent years, collaborative robots have been developed 
for use in industry, education, health care, and daily life [1]. 
These robots are employed in different applications alongside 
humans as aids for repetitive and tedious tasks during 
manufacturing [2], and also during interaction with social and 
rehabilitation robots in healthcare [3]. An important 
requirement for these collaborations is the safety of both the 
robot and the human user during physical interaction [4]. 
Furthermore, collaborative robots often need to execute 
programmed actions with high level of tracking performance, 
high speed, and accuracy regardless of possible undesirable 
disturbances from humans and the environment. 

A well-known example is the teach by demonstration 
capability of collaborative robots often used when the robot 
learns new skills from a human [5]. In this case, both safety 
and accurate trajectory tracking performances are important 
during interaction. In our recent work, we developed a human-
robot interaction (HRI) algorithm called Adaptive Motion 
Imitation (AMI) [6]. Using this algorithm, the robotic agent 
learns a cyclic trajectory performed by a user, and adapts the 
shape and speed of its motion to follow queues from the 
human. AMI is sensitive to the shape and speed of the 
performed trajectory which requires high accuracy for robotic 

 

* Authors are with Louisville Automation & Robotics Research Institute  
University of Louisville, KY, USA, email: moath.alqatamin@louisville.edu.  

arm control system regardless of payload carried by the robot. 
During the implementation of AMI on a robotic testbed in our 
lab, we noticed that the factory-tuned PID controller of the 
Baxter does not fulfill tracking requirements especially when 
the robot needs to carry large loads and move at high speeds. 

Another well-known motivating example involves limiting 
robot impact forces during collisions with humans or the 
environment. In the realm of safety, different strategies for safe 
human-robot interaction have been studied in the past decade, 
leading up to the collaborative robot RIA standard [7]. Many 
collaborative robot systems utilize costly sensors to detect 
human presence, for instance tactile, force and vision sensing.  
For example, [8] developed a rule-based method to resolve the 
collision issues during the pick and place task performance of 
a robotic arm. The robot detected objects based on received 
information from the vision system.  [9] considered serial 
robot manipulators equipped with a dual-type proximity 
sensor and developed an algorithm based on admittance 
control to avoid robots from collisions with the obstacle. They 
also applied a machine learning method to prevent the 
performance degradation of the proximity sensor.  
Furthermore, most collaborative robots detect joint efforts by 
monitoring motor currents during operation. However, many 
robots still lack sensors for human or obstacle detection. In 
these cases, an approach to maintain safety relies on is control 
algorithms that limit the impact forces of the robotic arm to a 
safe and acceptable range. Therefore, if a collision occurs, 
serious damage can be avoided [10]. 

For both trajectory tracking and safe operation, numerous 
model-based control algorithms have been developed for 
robotic systems, such as compute torque [11], robust control 
[12], and adaptive control [13]. However, the main 
disadvantage of these model-based approaches is that their 
performance degrades due to unknown dynamics and time-
varying disturbances. To deal with these challenges, intelligent 
control techniques such as neural networks (NN) have been 
incorporated in the controller loops [14, 15]. For instance, 
neuroadaptive controllers (NAC) have also been envisioned 
and are entirely model-free, have high tracking performance, 
and require little calibration of model parameters [16]. In our 
previous work [17], the NAC was extended to also estimate 
interaction forces from human operators, a highly variable 
input. However, a drawback of NN-based robot control 
methods is the high computational burden that requires high 
performance computing resources in the feedback loop. For 
robotic systems with limited computational resources, NN-
based controllers are still out of reach. In this paper, an 
observer-free output feedback torque controller (OF2), based 
on a set of filtered error signals is designed for a high 
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dimensional robotic manipulator with unknown dynamics and 
external torque disturbance. This controller was originally 
introduced in [18] for a class of second order systems. A 
modification has been introduced in this paper by designing an 
update term to compensate for unmolded and unstructured 
time varying external disturbances.  One advantage of OF2 is 
that it is suitable for the systems with low computational 
resources. Also, unlike many other methods, OF2 controller 
does not need a speed measurement or observer. The presence 
of a speed observer usually adds an outer loop to the control 
scheme which needs to converge faster than the control loop. 
This means, control loops bandwidth needs to be very fast. 
Also, performing numerical derivative of the position data to 
get the speed signal amplifies the encoder measurement noise 
and leads to a noisy speed signal that need to be filtered out 
before using it in the control loop. In addition, OF2 is model-
free and has both guaranteed tracking and stability 
performance due to a Lyapunov proof. 

For evaluation of OF2, experiments have been performed 
with a dual-arm, 7 degrees of freedom (DOF) Baxter robot 
available in our lab. Results show that our controller has very 
good tracking performance in comparison with the factory pre-
tuned PID controller of the Baxter in different operating 
conditions, such as high motion frequency and payload. We 
have specially considered cyclic trajectories for teach by 
demonstration episodes, since our AMI algorithm is based on 
repeated trajectories created by Fourier series. Further results 
during pick and place operation also demonstrated that OF2 
requires less torque, and generates less energetic impacts with 
the environment, which means it is safer than the PID 
controller for physical HRI.  

The paper is organized as follows: in section II the filter-
based control scheme OF2 is formulated, and its Lyapunov 
stability analysis is discussed. The experimental results 
validating the controller performance are presented and 
discussed in section III. Finally, the conclusion and the future 
work are presented in section IV. 

II. CONTROLLER FORMULATION AND STABILITY ANALYSIS 

The dynamic model of an n degree of freedom (nDOF) 
robotic arm can be classically written as:  

 𝑀(𝑞)𝑞̈(𝑡) + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) + 𝜏𝑑 = 𝜏        (1) 

where 𝑞(𝑡), 𝑞̇(𝑡), 𝑞̈(𝑡) ∈ ℝ𝑛 are the joints angular position, 
velocity and acceleration, respectively [19]. In (1), 𝑀(𝑞) ∈
ℝ𝑛𝑛 is the inertia matrix; 𝑉(𝑞, 𝑞̇) ∈ ℝ𝑛𝑛 is the matrix of 
Coriolis and centrifugal torques; 𝐺(𝑞) ∈ ℝ𝑛 is the vector of 
gravitational torques; 𝐹(𝑞̇) ∈ ℝ𝑛 is the friction vector. 
𝜏𝑑(𝑡) ∈ ℝ𝑛 represents unknown external disturbance torque. 
𝜏(𝑡) ∈ ℝ𝑛 is the vector of the input torque that represents the 
control torque to be designed. One of the well-known 
structural properties of the robot dynamic equation is listed 
below: 

Property: The inertia matrix 𝑀(𝑞) is a positive definite 
symmetric and lower and upper bounded as 

𝑚1||𝜒||
2

≤ 𝜒𝑇𝑀(𝑞)𝜒 ≤ 𝑚2||𝜒||
2
, where 𝑚1, 𝑚2 are known 

positive constants and ||𝜒|| is the Euclidean 2-norm of an 

arbitrary vector 𝜒 ∈ ℝ𝑛. 

In addition, the subsequent controller development is based on 
the following standard assumptions about the robot dynamic 
equation: 

Assumption 1: 𝑀(𝑞), 𝑉(𝑞, 𝑞̇), 𝐹(𝑞̇), 𝐺(𝑞) are unknown 
matrices and vectors but bounded and differentiable. 

Assumption 2: 𝜏𝑑(𝑡) is a slowly time-varying bounded 
unknown external disturbance torque. 

Assumption 3:  The desired trajectories 𝑞𝑑(𝑡) are bounded 
and continuous differentiable. 

The objective of the proposed controller is to ensure that the 
output positions of the robotic arm joints are tracking the 
desired trajectories 𝑞𝑞(𝑡) ∈ ℒ∞ in the presence of unknown 

system parameters and unknown external disturbance with 
only the angular position is measurable (output feedback 
control scheme). Hence, 𝑞(𝑡) → 𝑞𝑑(𝑡) as 𝑡 → ∞. For this 
objective, the position tracking error 𝑒(𝑡) should be defined 
as: 

𝑒 ≜ 𝑞𝑑 − 𝑞 (2) 

Moreover, in order to compensate for the lack of the velocity 
measurement, the following filter dynamics is introduced as: 

𝑒̇𝑓 ≜ −𝑒𝑓 + 𝑟𝑓  (3) 

𝑟𝑓 ≜ 𝑝 − (𝑘2 + 1)𝑒 (4) 

𝑝̇ ≜ −𝑟𝑓 − (𝑘2 + 1)(𝑒 + 𝑟𝑓) + 𝑒 − 𝑒𝑓 (5) 

where 𝑒𝑓(𝑡), 𝑟𝑓(𝑡) ∈ ℝ𝑛 are the filtered signals, 𝑝(𝑡) ∈ ℝ𝑛 is 

an auxiliary variable introduced to write the filter 𝑟𝑓(𝑡) in 

implementable form. 𝑘2 is a positive constant. 

To start the control development, the error signal 𝜂(𝑡) ∈ ℝ𝑛 is 
defined as: 

𝜂 ≜ 𝑒̇ + 𝑒 + 𝑟𝑓 (6) 

By taking the time derivative of (4), and substituting (5), the 
dynamic filter is obtained: 

𝑟̇𝑓 = −𝑟𝑓 − (𝑘2 + 1)𝜂 + 𝑒 − 𝑒𝑓 (7) 

After taking the time derivative of (6) and front pre-
multiplying by 𝑀(𝑞), the following equation can be obtained: 

𝑀(𝑞)𝜂̇ = 𝑀(𝑞)𝑒̈ + 𝑀(𝑞)𝑒̇ + 𝑀(𝑞)𝑟̇𝑓 (8) 

By substituting the second time derivative of (2), the system 
dynamics from (1), 𝑟̇𝑓(𝑡) from (7) and 𝑒̇(𝑡) from (6) into (8), 

and after some mathematical simplification, the following 
𝜂(𝑡) open-loop error dynamics can be written as: 

𝑀(𝑞)𝜂̇ = −𝑘2𝑀(𝑞)𝜂 − 𝑀(𝑞)(𝑒𝑓 + 2𝑟𝑓) 

+𝑌 + 𝜏𝑑 − 𝜏 
 (9) 

where the auxiliary term 𝑌(𝑞, 𝑞̇) is defined as: 

𝑌(𝑞, 𝑞̇) = 𝑀(𝑞)𝑞̈𝑑 + 𝑉(𝑞, 𝑞̇)𝑞̇ + 𝐹(𝑞̇) + 𝐺(𝑞) (10) 

By defining 𝑌𝑑 ≜ 𝑌(𝑞𝑑 , 𝑞̇𝑑) as the desired trajectories of the 

auxiliary signal 𝑌(𝑞, 𝑞̇), it is easy to see that 𝑌𝑑 , 𝑌̇𝑑 are bounded 
based on Assumption 1. Then, the open loop error dynamics 
can be rewritten as: 
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𝑀(𝑞)𝜂̇ = −𝑘2𝑀(𝑞)𝜂 −
1

2
𝑀̇(𝑞)𝜂 + 𝑌̃ + 𝑌𝑑 + 𝜏𝑑 − 𝜏,  (11) 

where 𝑌̃(𝑞, 𝑞̇, 𝑒𝑓 , 𝑟𝑓 , 𝜂) is defined as: 

𝑌̃ ≜ 𝑌 − 𝑌𝑑 − 𝑀(𝑞)(𝑒𝑓 + 2𝑟𝑓) +
1

2
𝑀̇(𝑞)𝜂 (12) 

From the open-loop error dynamic of 𝜂(𝑡) in (9) and motivated 
by the subsequent stability analysis, the following control 
torque is designed as: 

𝜏 ≜ 𝐾1𝑠𝑔𝑛(𝑒 + 𝑒𝑓) − (𝑘2 + 1)𝑟𝑓 + 𝑒 + 𝜏̂𝑑 ,  (13) 

where 𝐾1 ∈ ℝ𝑛𝑛 is positive control gains matrix which is 
selected based on the subsequent stability analysis. 𝑠𝑔𝑛(∙) is 
the standard signum function. 𝜏̂𝑑(𝑡) is the estimation of the 
external disturbance torque which designed based on the 
stability analysis to be: 

𝜏̇̂𝑑 ≜ 𝐾𝑑𝜂,  (14) 

where 𝐾𝑑 is a positive estimation gain. From (14) it is clear 
that this update law is not implementable because it has 
velocity measurement in the definition of 𝜂(𝑡). By using (6) 
and making the integration, the following realizable form can 
be found as: 

𝜏̂𝑑 = 𝐾𝑑[𝑒(𝑡) − 𝑒(0) + ∫ (𝑒 + 𝑟𝑓)𝑑𝜎].
𝑡

0

 (15) 

After substituting (13) into (9), the closed-loop error dynamics 
for 𝜂(𝑡) becomes: 

𝑀(𝑞)𝜂̇ = −𝑘2𝑀(𝑞)𝜂 −
1

2
𝑀̇(𝑞)𝜂 + 𝑌̃ + 𝑌𝑑  

−𝐾1𝑠𝑔𝑛(𝑒 + 𝑒𝑓) + (𝑘2 + 1)𝑟𝑓 − 𝑒 + 𝜏̃𝑑  

(16) 

Where 𝜏̃𝑑(𝑡) is the estimation error of the external disturbance 
𝜏𝑑(𝑡) defined as: 

𝜏̃𝑑 ≜ 𝜏𝑑 − 𝜏̂𝑑 . (17) 

From the definition of 𝑌(∙) in (10) and assumptions 1, and by 

using the mean value theorem, 𝑌̃(∙) can be upper bounded as: 

||𝑌̃|| ≤ 𝜌(||𝑧||)||𝑧||, (18) 

where 𝑧 ≜ [𝑒𝑇    𝑒𝑓
𝑇    𝑟𝑓

𝑇    𝜂𝑇]
𝑇
 and 𝜌(||𝑧||) is a non-

decreasing positive function depends on the ∞-norm of the 
system errors. The following Lemmas are introduced to be 
used in the stability proof of the main theorem presented in this 
section. 

       Lemma 1: The following auxiliary function 𝐿(𝑡) ∈  ℝ is 

defined as: 

𝐿 ≜ 𝜂𝑇 (𝑌𝑑 − 𝐾1𝑠𝑔𝑛(𝑒 + 𝑒𝑓)). (19) 

If 𝐾1 is selected to satisfy the following condition: 

𝐾1𝑖 > ||𝑌𝑑𝑖||∞
+ ||𝑌̇𝑑𝑖||

∞
, (20) 

where 𝑖 = 1,2, … , 𝑛 represents the ith element of the diagonal 

𝐾1 matrix. Then, 

∫ 𝐿(𝜎)𝑑𝜎 ≤ 𝛾,
𝑡

0

 (21) 

where 𝛾 is a positive constant selected to satisfy the following 

condition: 

𝛾 ≜ ∑ 𝐾𝑛
𝑖=1 1𝑖

|𝑒𝑖(0)| − 𝑒𝑇(0)𝑌𝑑(0). (22) 
Based on the above, the following positive definite function 

𝑃(𝑡) ∈ ℝ can be defined as: 

𝑃(𝑡) ≜ 𝛾 − ∫ 𝐿(𝜏)𝑑𝜏
𝑡

0

, (23) 

       Proof: See Appendix A in [20]. 

      Lemma 2: Define the region 𝔇 to be as: 𝔇 ≜
{𝑦 ∈ ℝ𝑚| ||𝑦|| < 𝜀𝜀 is a positive constant. Also, define 

𝑉(𝑡, 𝑦): ℝ+ × 𝔇 → ℝ+ to be a continuously differentiable 

function such that:  

𝑊1(𝑦) ≤ 𝑉(𝑡, 𝑦) ≤ 𝑊2(𝑦) 𝑎𝑛𝑑 𝑉̇(𝑡, 𝑦) ≤ −𝑊(𝑦) (24) 

∀𝑡 ≥ 0 and ∀𝑦 ∈ 𝔇, where 𝑊1(𝑦), 𝑊2(𝑦) are continuous 

positive definite functions and 𝑊(𝑦) is a uniformly 

continuous positive semi-definite function on 𝔇. If the 

condition in (24) is met and 𝑦(0) ∈ ℑ, the following result is 

concluded as: 

𝑊(𝑦(𝑡)) → 0 as 𝑡 → ∞, (25) 

where the region ℑ should be defined as: 

ℑ ≜ {𝑦 ∈ 𝔇|𝑊2(𝑦) ≤ 𝛿 (26) 

 where 𝛿 < min
||𝑦||=𝜀

𝑊1(𝑦) is a positive constant. 

     Proof: See Theorem 8.4 in [21]. 

    Theorem 1 (OF)2: The proposed observer-free, output 

feedback control law in (13), (14) and (15) ensure that the 

error signals 𝑒(𝑡), 𝑒𝑓(𝑡), 𝑟𝑓(𝑡), 𝜂(𝑡) are bounded and 

𝑒(𝑡), 𝑒̇(𝑡) → 0 as 𝑡 → ∞ if 𝐾1 is selected to satisfy the 

condition in (20) and 𝑘2 as in: 

𝑘2 =
𝑘3+1

𝑚1
   (27) 

where 𝑘3 is a positive constant chosen based on the stability 

analysis. 𝑘3 is not explicitly appears in the control law in (13). 

  

     Proof: A candidate positive definite Lyapunov function 

𝑉(𝑡, 𝑦) ∈ ℝ is defined as: 

𝑉 ≜
1

2
𝑒𝑇𝑒 +

1

2
𝑒𝑓

𝑇𝑒𝑓 +
1

2
𝑟𝑓

𝑇𝑟𝑓 +
1

2
𝜂𝑇𝑀𝜂 + 𝑃, (28) 

where 𝑦 = [𝑧𝑇 √𝑃]
𝑇
. The time derivative of (28) is 

𝑉̇ = 𝑒𝑇𝑒̇ + 𝑒𝑓
𝑇𝑒𝑓̇ + 𝑟𝑓

𝑇 𝑟̇𝑓 + 𝜂𝑇𝑀𝜂̇ +
1

2
𝜂𝑇𝑀̇𝜂 + 𝑃̇. (29) 

After substituting the error signals from (3), (6) and (7), along 

with the closed loop error dynamics from (16) and the update 

law from (14) into (29), the following expression can be 

obtained after some mathematical simplifications and after 

using (19): 

𝑉̇ = −𝑒𝑇𝑒 − 𝑒𝑓
𝑇𝑒𝑓 − 𝑟𝑓

𝑇𝑟𝑓 − 𝑘2𝜂𝑇𝑀(𝑞)𝜂 + 𝜂𝑇𝑌̃ (30) 

After applying property of 𝑀(𝑞)  into (30), and using (18) and 

(27), 𝑉̇(𝑡) in (30) can be upper bounded as in (31): 

𝑉̇ ≤ −||𝑧|| + [||𝜂||𝜌(||𝑧||)||𝑧|| − 𝑘3||𝜂||
2

] (31) 

After completing the square of the bracket term, the following 

term can be obtained: 

𝑉̇ ≤ − (1 −
𝜌2(||𝑧||)

4𝑘3

) ||𝑧||
2

= −𝛼||𝑧||
2

 (32) 

Where 𝛼 is positive constant. From the above, 𝑉̇(𝑡) is 

negative definite if 𝑘3 >
1

4
𝜌2(||𝑧||). By utilizing Lemma 2 

and from (24) and (32) it is easy to see that 

𝑒(𝑡), 𝑒𝑓(𝑡), 𝑟𝑓(𝑡), 𝜂(𝑡) ∈ ℒ∞. Then, from (6) we conclude that 
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𝑒̇(𝑡) ∈ ℒ∞. From (3), (4) and (5), it is clear that 

𝑒̇𝑓(𝑡), 𝑟𝑓(𝑡), 𝑝(𝑡) 𝑎𝑛𝑑 𝑝̇(𝑡) ∈ ℒ∞. Using the above results and 

from (15), we can say that 𝜏̂𝑑(𝑡) ∈ ℒ∞. Then, using the 

previous results and from (13), it is concluded that 𝜏(𝑡) ∈ ℒ∞. 

Again by using Lemma 2 and (32) we can say that 𝛼||𝑧||
2

→

0 as 𝑡 → ∞. From the definition of 𝑧(𝑡) and using (6) we can 

conclude that 𝑒(𝑡), 𝑒𝑓(𝑡), 𝑟𝑓(𝑡), 𝜂(𝑡), 𝑒̇(𝑡) → 0 as 𝑡 → ∞.   

Thus, the proof of Theorem 1 is completed. 

III. EXPERIMENTAL RESULTS 

         In this section, we discuss experimental evaluation of 

the OF2 controller on the Baxter collaborative robot [22] 

during learning from demonstration and environmental 

impact tests. The control scheme was implemented using 

Python programming language. The generated torques are 

sent to the joints of the right arm of Baxter robot through 

Robotic Operating System (ROS) running on Ubuntu 16.05 

operating system. The joints are denoted s0 and s1 for the 

shoulder joints, e0 and e1 for the elbow joints, w0, w1 and w2 

for the wrist joints as shown in Fig.1a. Both OF2 and the 

native, factory-tuned PID controller of the Baxter are updated 

at a 1KHz loop rate. The OF2 controller gains have been 

chosen based on the stability analysis gain conditions and by 

performance observation to be 𝑘2 = 30, 𝐾𝑑 = 1, and 𝐾1 =
𝑑𝑖𝑎𝑔(0.9,1,1,0.5,0.5,0.5,0.2). These values are selected 

based on the condition in (20) and the definition of the desired 

auxiliary signal 𝑌(𝑞𝑑 , 𝑞̇𝑑). If we increase the values more, the 

controller will be more aggressive because the signum 

function term in the control structure. 

         The following experiments were performed with the 

right arm of the Baxter robot in order to evaluate the 

performance of our controller in comparison to the 

performance of the Baxter factory pre-tuned PID joint 

position controller: 

1- Trajectory tracking, free space motion without payload.  

2- Trajectory tracking, free space motion with a 1kg 

payload. 

3- Impact safety evaluation for teach by demonstration pick 

and place scenario. 

4- Demonstrate the robustness of the proposed controller. 

       In first two experiments, joints were positioned at 𝑞 =
[0,0,3.14,0.872,0,0]𝑇 radians as shown in Fig.1. A sinewave 

with amplitude 𝜋/6 rad was used as a desired trajectory of the 

elbow joint e1 in OF2 controller in order to perform elbow lift 

motion. In the position control mode, the desired trajectories 

were sent directly to the built-in PID controller. The 

maximum angular velocity of the joint e1 of Baxter robot is 

2rad/sec. So, we chose the operating angular velocities to be 

1 rad/sec and 2rad/sec. In the second scenario, a 1kg payload 

is picked up by the end-effector as shown in Fig.1b, and the 

same elbow lift motion style for both controllers is performed. 

To quantify the tracking performance of both controllers the 

total 2-norm error for all arm’s joints was calculated as:  

∑ ‖𝑒𝑖‖2

7

𝑖=1
, (33) 

where 𝑖 is the joint index, and 𝑒𝑖 is tracking error defined in 

(2). Moreover, in order to evaluate the torque performance for 

each controller, the absolute value of average torque for each 

joint was calculated and then summed up to give the total 

absolute average torque as: 

∑ |𝑎𝑣𝑔(𝜏𝑖)|
7

𝑖=1
 (34) 

        Figure 2 shows the tracking performance results for both 

controllers in the first scenario at trajectory frequency of the 

joint e1 motion equal 1𝑟𝑎𝑑/𝑠𝑒𝑐. Only the results from joints 

s1, e1 and w1 are plotted here since these joints have the most 

effect in this kind of the elbow lift motion style. Table I shows 

the summary of the total 2-norm error that calculated from 

(33) for both controllers for each frequency. As it can be seen, 

OF2 has better tracking performance at both frequencies. 

Also, we can see the PID controller performance much worse 

in the higher rate with total error jumped from 38.1rad to 84.9 

rad by changing the rate from 1rad.sec to 2rad/sec. Figure 2 

and Table I show the torques for both controllers for these 

three joints and the total torque that calculated based on (34) 

for all joints. From the safety point of view, it is clear that the 

OF2 controller has lower total torque than the PID controller 

and in the same time has better performance. From the table, 

the maximum total torque of the OF2 controller is 15.4 N.m 

but for the PID controller was 40.9 Nm.   

 

 
 (a)No Payload 

 
(b)With Payload 

Figure 1: Baxter robot used in our experiments to validate the 
performance of our OF2 controller. 

 

 
(a) OF2 Controller 

s0 

s1 e0 e1 

w0 

w1 

w2 
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(b)PID Controller 

Figure 2:  Tracking performance for both controllers without payload and at 
1rad/sec speed for joint e1 motion, (a) OF2 (b) PID. 

  
(a) OF2 Controller 

 
(b)PID Controller 

Figure 3:  Torque performance for both controllers without payload and at 

1rad/sec speed for joint e1 motion, (a) OF2 (b) PID/. 

 

        In the second experiment, the payload that picked up by 

the end-effector will change the arm dynamics and increase 

the inertia of the end-effector. The signum function term in 

OF2 controller in (13) will compensate for this change. In the 

PID control scheme, usually the gains are tuned for a specific 

operating conditions. Figure 4 shows the tracking 

performance of both controllers with payload at 2𝑟𝑎𝑑/𝑠𝑒𝑐 

angular frequency of the motion of joint e1. Moreover, Figure 

5 shows that the torque of OF2 controller is much lower than 

the torque of the PID controller. Table I further demonstrates 

and concludes that the performance of OF2 control scheme is 

better than the PID control scheme in terms of tracking 

performance and the torque that required to perform the 

motion. Moreover, OF2 controller is not using the speed 

measurement or any kind of observer design. 

      In third experiment, teach by demonstration is performed 

by the operator to teach the robot arm to mimic a pick and 

place task of an object placed on a worktable in front of the 

robot.  The goal of this test is to compare the impact 

performance for both controllers by comparing the torque that 

required to perform the same task. At the beginning the 

operator sent a command to enter the teaching mode of 

Baxter. Then, he grabbed the arm and moved the end-effector 

to the pick and place location on the worktable. The 

trajectories of the motion are saved and used as desired 

trajectories motion for both controllers. The experiments are 

repeated ten times for each controller. The torque of both 

controllers are recorded and the total torque based on (34) is 

calculated for each trial. The average of running ten trials are 

calculated to be 3.3 N.m and 33.6 N.m for OF2 and PID 

controllers, respectively. It is clear that the torque of OF2 

controller is significantly lower than the torque of the PID 

controller, which means it is safer for both human-robot 

interaction and environmental interaction tasks. 

 In the fourth experiment, joint s0 is controlled to move to a 

desired location which in this case was defined by angle 

s0=−𝜋/6 rad. Then,  an external force was applied to the joint 

to check the robustness of OF2. Figure (6) shows that the 

proposed OF2 controller quickly returns the joint to the 

desired location. For PID controller, it was more difficult to 

apply the same external force because the joints have very 

large stiffness due to the high torque. However, both 

controller rejected average human push disturbances. 
Table I 

Summary of error and torque for both controllers for first two 

experiments 

Speed Payload ∑ ‖𝑒𝑖‖2

7

𝑖=1
 ∑ |𝑎𝑣𝑔(𝜏𝑖)|

7

𝑖=1
 

Rad/sec kg PID OF2 PID OF2 

1 0 38.1 29.1 29.3 5.5 

2 0 84.9 35.2 30.4 7.6 

1 1 39.2 46.7 41.6 13.8 

2 1 87.7 58.2 40.9 15.4 

 
(a) OF2 Controller 

(b)PID Controller 
Figure 4:  Tracking performance for both controllers with payload and at 
2rad/sec speed for joint e1 motion, (a) OF2 (b) PID. 

 
(a) OF2 Controller 

 
(b)PID Controller 

Figure 5:  Torque performance for both controllers with payload and at 

2rad/sec speed for joint e1 motion, (a) OF2 (b) PID. 
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Figure 6:  Tracking performance for OF2 controller against external 

disturbance. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we formulated OF2, a new observer-free, 

filter-based output feedback controller scheme without the 

need of speed measurement or observer. Stability and tracking 

performance guarantees for OF2 were derived using a 

Lyapunov proof. The controller was experimentally evaluated 

in free motion under cyclic trajectories and also in teach by 

demonstration assembly scenarios. The results demonstrate 

that OF2 has a better tracking performance than the factory 

pre-tuned PID controller specifically with high joint rates. 

Moreover, the results during pick and place operation 

demonstrated that the OF2 control scheme requires 10 x less 

torque, and therefore generates less energetic impacts with the 

environment, which means it is safer than the PID controller 

for physical HRI.  

In future work, we will use this controller in parallel with 

the AMI algorithm for upper body teach by demonstration and 

adaptive imitation applications. 
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