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Abstract—Digital Twin technology is being envisioned to be an
integral part of the industrial evolution in modern generation.
With the rapid advancement in the Internet-of-Things (IoT) tech-
nology and increasing trend of automation, integration between
the virtual and the physical world is now realizable to produce
practical digital twins. However, the existing definitions of digital
twin is incomplete and sometimes ambiguous. Herein, we conduct
historical review and analyze the modern generic view of digital
twin to create its new extended definition. We also review and
discuss the existing work in digital twin in safety-critical robotics
applications. Especially, the usage of digital twin in industrial
applications necessitates autonomous and remote operations due
to environmental challenges. However, the uncertainties in the
environment may need close monitoring and quick adaptation
of the robots which need to be safety-proof and cost effective.
We demonstrate a case study on developing a framework for
safety-critical robotic arm applications and present the system
performance to show its advantages, and discuss the challenges
and scopes ahead.

Index Terms—Digital Twin, Robotics, Internet of Things,
Industrial IoT, Robotic Arm, Robot Operating System (ROS)

I. INTRODUCTION

Digital Twin as a concept has garnered significant attention
over the last few years and considered as one of the top
strategic technology trends in the last five years [1] . This can
be seen by the estimated market of digital twin applications
to exceed 35 billion USD by the year 2025 [2]. This attention
is only increasing as the industrial automation is pushing
towards more and more integration between the virtual and
the physical world. With the advancement of the Internet-
of-Things (IoT) technologies [3], the modern smart sensors,
actuators, computing and communication devices have enabled
the seamless collection and exchange of information between
the physical and virtual space, thus making the practical
implementation of the digital twin possible. Furthermore, the
rapid progress in artificial intelligence (AI), data analytics and
edge/cloud computing has facilitated the support needed for
critical applications with stringent performance constraints.

Digital Twin technology is revolutionizing many important
fields including the manufacturing industry, connected and au-
tonomous vehicles, healthcare IoT, construction, city planning
and many others [4]. With the advancement of robotics and
automation, most of these applications involve infrastructure
based on robotics with varying degrees of autonomy and
human cooperation. Although the application of robotics in
these domains aims to increase the performance and support

tasks that are difficult and/or impossible for human, a large
factor for using robotics is enabling scalability and minimizing
the cost of operation. Additionally, the safety-critical robots
in industrial applications necessitates autonomous and remote
operations due to environmental challenges. However, the
uncertainties in the environment needs close monitoring and
quick adaptation of the robots to ensure safety. Recent works
proposed learning based adaptation of the robot [5] which
however is not full safety-proof in uncertain and dynamic
environments, e.g., in sensitive applications, a single error can
have domino effect damaging the industrial process. To mit-
igate the problem, digital twin based framework is proposed
where a virtual replica of the real robots will be continuously
monitored in real-time. This is in lieu of complete tele-
operation of the robot, where autonomy is incorporated in the
physical world, and only in case of anomaly in the behaviour
of robot or environment, human intervention or cooperation is
needed, thus saving the operational cost significantly.

Herein, we first present a review of digital twin to create
a new extended definition and conduct a survey of digital
twin in the robotics applications. Then we show a case study
on a digital twin of a robotic arm application based on
Franka-Emika-Panda robot, and show the performance of the
bidirectional digital twin with a few scenarios.

II. A PRIMER ON DIGITAL TWIN

The digital twin conceptual model was first introduced in
2003 in a presentation about product life-cycle management
by Michael Grieves. Though the term was coined in the
early 2000’s the first actual usage of a digital twin was
several years later by The National Aeronautics and Space
Administration (NASA) where a digital twin was implemented
in order to mirror conditions in space for testing and flight
preparations for the actual physical hardware [1], [6]. NASA
also utilized Digital Twins in order to better predict the
long term performance of space and air crafts [7]. Since
then, over the following years, the rapid advancement in IoT,
cloud computing, and big data analytics, along with better
means to collect information had become more automated,
the simulation of real world physics had greatly advanced,
and real-time processing of big data has made the digital twin
to fruition [8].

So what exactly is a Digital Twin?
There are many definitions of digital twin, and there are a



Fig. 1. Comparison of Digital Twin with Digital Model and Digital Shadow

lot of misconceptions as well. One of the popular definition
comes from the first use case by NASA which defines it as an
“integrated multiphysics, multiscale, probabilistic simulation
of an as-built vehicle or system that uses the best available
physical models, sensor updates, fleet history, etc., to mirror
the life of its corresponding flying twin.” [9]. This definition
is specific to a Digital Twin of an aviation and space sense.
However, the basics remain - a Digital Twin is a software
model of a physical device which allows for the simulation
of different environments, time periods, and variables in a
device’s lifespan while also actively accounting for sensor data
and operational changes [10] [1].

The snowball effect of digital twin’s popularity continued
to rise in 2013 as ‘Industry 4.0’ [11] is proposed utilizing the
digital twin model. The combination of digital twins and the
Industrial IoT (IIoT) can help realize the goal of Industry 4.0.
Definition Ambiguity:

The ambiguous definitions and usage of the term “Digital
Twin” in various applications sometimes lead to confusion
between a digital twin and similar sounding computer based
simulations , e.g., ‘Digital Models’ and ‘Digital Shadows’. A
digital model usually creates a 3D or 2D construction of a
conceptual object in a digital environment for efficient design
of that object in real-world. Here only static data related to
feature and attributes of the object flows manually from the
digital to the physical model as shown in fig. 1(a). So in a
Digital Model, any physical changes to the real-world model
have no impact whatsoever on the digital equivalent [6]. An
example of digital model would be using AutoCAD software
building schematics or a device design plans where the real-
world object, or device does not have any impact on its digital
model. This is a big difference with respect to a digital twin,
which not only does future predictions in the physical object
based on the design with the digital counterpart but, also report
the real-world changes in the physical entity to the digital
counterpart through sensor data feedback into the software [6]
for adaptation plan in the physical world.

The Second common misconception is that a digital twin
is same as a ‘Digital Shadow’. In a digital shadow, the
digital replica of a physical object is taken with scan or

reflection [12]. Here, data flow can be manual in case of
static information, or automatic for receiving dynamic scanned
information. But it is unidirectional from the physical object
to the digital counterpart. This means that the digital object
can successfully receive sensor data and changes in the state
of the physical model but, cannot influence the physical model
itself as shown in fig. 1(b). So an example of this would be
using data from a sensor to monitor industrial machines or
vehicles but not change or simulate their states in real-world.

The digital twin, however, establishes a bidirectional con-
nection between the physical and virtual entity as shown in
fig. 1(c). Similar to digital model and shadow, one of the
components in these entities is the object which can be a
tangible machine or system and their physics and kinematics
behavior. Additionally, the entities can consist of processes
implemented with software algorithms, e.g., motion plan, pick
and place task, construction, supply chain etc. Moreover, the
entities can contain the environmental characteristics, e.g.,
wind, temperature, light that may impact the physical prop-
erties or activities of the object or the process. An entity
can also contain exogenous conditions which do not directly
impact or interact with the physical properties or activities of
the object/process, but can impact the decision making, e.g.,
the wireless channel conditions or any adversarial influence
as shown in fig. 1(c). For example, in a collaborative multi-
robot task, the physical and digital twin need to produce the
replica of the robots, their physics, algorithm for the task,
any adverse weather conditions as it can impact the robot’s
movements, and wireless conditions which is a function of
indoor structures, their materials, any presence of wireless
interference - as they all can impact the collaboration of robots
over wireless communications. Any dynamic changes in the
object, process or environment can be detected in real-time
with sensors and sent to the digital entity. Similarly, once the
detected changes can be faithfully reproduced at the digital
twin and tested for possible safe adaptations of the system,
the updated controls can be sent to the physical twin.
Extended Definition of Digital Twin:

Based on the aforementioned analysis and discussions, we
aim to create an extended definition of digital twin as follows:



A digital twin framework involves a ‘physical entity’ consist-
ing of objects, processes, interacting ambience and exogenous
conditions, which are digitally reproduced in a counterpart
‘digital entity’, and a bidirectional information flow between
the physical and digital entity ensures the state and control
information exchanges between them, supporting synchronous
or asynchronous behavioral influence on each other.

Note that, the bidirectional information flow can be
real-time/synchronous for dynamic adaptation of the sys-
tem in mission-critical applications, or can be non-real-
time/asynchronous for monitoring the state of the system with
the sensor data and take action later. The definition does
not include specific technologies as they are the enablers of
digital twin implementation and not the fundamental part of
the concept.

III. APPLICATION OF DIGITAL TWIN IN ROBOTICS

In this paper, we focus only on the robotics applications in
different domains and discuss how digital twin is proposed to
be used for those applications.

A. Manufacturing and Factory Floor

In industrial robotics applications, a digital twin’s ability to
simulate the physical system allows real-time synchronization
and decision making which can be used to choose the opti-
mized actions for improved efficiency, accuracy, and economic
gains in the production [5], [15], [29]. It can help inferring
the quality of a manufacturing process as well [19], [20].
The twins have the ability to identify how changes affect the
upstream and downstream processes. This allows for better
scheduling with increased efficiency. A digital twin for the
industrial robots can help factories to better understand their
machines health conditions and needs, which can increase
competitiveness, productivity, and efficiency [29] [30]. This
gives a lot more power in predictive measures and in analyzing
data and how machines work [31] [32]. Table I summarizes
some of the industrial robotic applications along with indica-
tions of the operational and safety characteristics of the robots
considered in the respective applications.

B. Healthcare

Application of robotics in healthcare and medicine has
rapidly increased since the COVID-19 [33]. The digital twin
can play a vital role in reducing the cost of treatment for
the patient. Accurate digital twin modeling can provide great
insight on deteriorating conditions and allow for better tailored
treatment plans. These advanced diagnostic tools can be used
to supplement other systems already in place. They can also
help provide better healthcare in developing countries [32].

One of the most popular healthcare application of digi-
tal twin is automated remote health monitoring of patients
incorporating various sensors, AR/VR technologies and AI-
driven algorithms [21], [22]. Another cutting-edge medical
applications where robotics is envisioned to be greatly useful,
is the remote surgery. A digital twin based remote surgery [24]
can increase the accuracy, safety and efficiency of the medical

surgery. Digital twin can also be used to improve the hospital’s
operational and logistic system [23]. All these proposed digital
twin models satisfy varying degrees of operational and safety
needs of the healthcare robotic systems as shown in Table I.

C. Connected and Autonomous Vehicles

Through coupling vehicles with their digital twins, the
automobile manufacturers can retrieve functional information
on the vehicle and help examining of performance of vehicles
through their lifetimes and can help in suggestive and pre-
ventative maintenance of their automobiles [26], [28], [32].
Another functionality of digital twin in vehicular application,
is testing the vehicles in complex simulated environments
and scenarios before deploying the physical model in real-
world. For similar reasons NASA and the Air Force adopted
digital twin to test with lower cost the conditions that may be
impossible to replicate easily [34]. Digital twin for vehicles
is also used to map the challenging environments [25] and
for advanced driving assistance system (ADAS) [27]. In table
I, we summarize the digital twin propositions for all these
robotics applications and compare them with respect to their
characteristics and performance offerings.

IV. CASE STUDY: A DIGITAL TWIN FOR
SAFETY-CRITICAL ROBOTIC ARM IN UNCERTAIN,

DYNAMIC ENVIRONMENT

The digital twin of a robotic arm is used for different
applications in the industry floor where the robot can perform
various heavy-duty tasks and the status of the robot as well
as their functionality can be monitored over a digital twin.
However, the robots may often face uncertainties due to
dynamics in the environment or anomaly introduced by an
adversary. Overcoming these uncertainties may need human
intervention or re-training the autonomous decision-making
models to update the motion plan. In safety-critical applica-
tions, autonomous re-planning of the motion and deploying
directly on the physical robot is not fully safety-proof. Instead
capturing the dynamic uncertainty and reproducing on the
digital counterpart to retrain the motion planning algorithm
and testing on the digital model before deploying on the
physical model is ideal.

A. System Perspective and Challenges

Our aim is to analyze the system challenges to optimize
the performance and the cost of digital twin operation. First
challenge is that the safety-critical applications should be
synchronous and blocking on the motion plan to overcome
any uncertainty safely. If it is asynchronous, the robot may
not handle uncertainty well and get damaged or may not
perform well on subsequent activities. Synchronizing the
physical and digital robot is challenging as both run their
control algorithms on two different computers with different
capacity. The digital models use robot operating system (ROS)
based simulations which need real-time Linux (RT-Kernel) for
comparable performance with the physical robots. Another
challenge is the low communication need between the physical



TABLE I
DIGITAL TWIN IN ROBOTICS IN VARIOUS APPLICATION DOMAINS

and digital counterparts. To overcome that high volume data
transmission delay, edge computing [35] can help in partial
or full computation offloading optimizing the latency and
accuracy of the computing.

B. ROS-based Digital Twin with Franka Robotic Arm

Herein, a digital twin control architecture was designed to
operate a Franka Emika Panda robot and its virtual counter-
part, as shown in Fig. 2. The control architecture uses ROS



Fig. 2. ROS-based Bi-Directional Information Architecture of Franka Robotic
Arm Digital Twin

Algorithm 1 Bi-Directional Digital Twin Control
Input: Pr , Pv , TSr , TSv , Kr , Kv , Pobs, Tu

Output: Ur , Uv

Initialisation :
1: Acquire initial values for Pr , Pv , TSr , TSv , Kr , Kv , Pobs

LOOP Process
2: Acquire trajectory goal from user (Tu)
3: while (Pr , Pv) ̸= Tu do
4: Send Command to move the physical robot and virtual robot by ∆Tu

5: Acquire values for Pr , Pv , TSr , TSv , Kr , Kv , Pobs

6: if ((Pr , Pv) - Pobs) ≥ ∆B then
7: Alert User
8: Take Obstacle Avoidance Measures
9: end if

10: if Pr − Pv ≥ ∆Q then
11: Alert User
12: Record Data for Analysis
13: end if
14: if TSr − TSv ≥ ∆α then
15: Alert User
16: Record Data for Analysis
17: end if
18: end while

with bi-directional communication to obtain feedback and
send trajectory commands to the physical and virtual robot.
The control architecture is also capable of tracking obstacles
(both virtually and physically) during the robot operation and
avoid any possible collision by taking appropriate obstacle
avoidance measures. As illustrated in Algorithm 1, the control
block acquires the robot pose information Pr, Pv of physical
and virtual robots respectively along with their kinematics
(Kr,Kv) and time stamp data (TSr, TSv). If any obstacle
is detected either virtually or physically, the obstacle’s pose,
Pobs, is also relayed to the control block. The control block
acquires the joint positions of the robot and through the use
of the kinematic chain and ROS Kinematics Dynamic Library
(KDL), the end poses, Pr, Pv , are calculated.

During the operation, the control block accepts a desired
trajectory input, Tu, from the user and plans the path for both
the physical and the virtual robot through multiple waypoints
∆Tu. The control block loops through the waypoints until
the desired end pose is achieved. During the movement in-
between the waypoints, the control block keeps verifying that

Fig. 3. Edge-assisted Safety-proof Human-in-the-loop Framework

the deviation of pose and time stamp between the physical
robot data and virtual robot data is not more than the set
bounds of ∆Q and ∆α respectively. If the deviations exceed
a threshold, the system alerts the user and record the incident
for further inspection. When an obstacle is detected, either
virtually or physically, and the current pose of robot is with
the bounds of ∆B, the trajectory waypoints are modified to
move the robot in a way to avoid the detected obstacle.

To make the robotic arm safety-proof in presence of dy-
namic obstacles or anomalies, we propose an edge-assisted
human-in-the-loop framework for the digital twin of the
robotic arm as shown in Fig. 3. It can simultaneously send
a push notification to a person responsible for monitoring,
who can check the new autonomous planning with the digital
model with the dynamically introduced anomalies. Once the
person approves, the new motion plan can be deployed on the
physical robot which will be unblocked to use it.

C. Performance Evaluation

In this case study, we implemented ROS-based digital twin
with Franka-Emika robotic arm and Gazebo simulator [36] for
the digital robot. The ROS runs with RT-kernel on a powerful
computer which runs the Gazebo simulation in almost real-
time. We first performed random motion with the robotic arm
using Cartesian coordinates based waypoints and measure the
movements of the end-effector in the physical and digital
robots. Fig. 4 shows the trajectory of both and we can see
very small differences in the order of few centimeters. We
also measure the errors in the motion between the physical
and digital twin in individual translational and rotational move-
ments. Fig. 5 shows the temporal transational error between
the robotic twins. As indicated previously, the error is quite
small. Then, we measure the mean absolute error (MAE) for
the experiments which shows the errors less than 5 cm as
mentioned in the table II. The slight error could be created
due to the difference in controller gain between the physical
and digital robot. One can set up the safety margin slightly
greater than this errors for seamless operation.

We also measure the difference in actuation time in physical
and digital robot when the control commands are fired simulta-
neously for both. Table II shows the mean absolute difference



Fig. 4. Cartesian position comparison between a physical and digital robot

Fig. 5. Temporal translational deviation in motion between a physical robot
and digital twin robot

in actuation time is about 16 ms, which can’t be differentiated
by human eye and can be considered as real-time.

We introduced dynamic obstacle detection and avoidance in
the digital twin. For demonstration, we assumed that the obsta-
cle is detected a priori and the information about its position
and size is sent to the digital model. In the digital simulation
then a simulated version of the obstacle is dynamically created
and new motion plan with obstacle avoidance is executed. For
consistency, we executed the same task with simple motion
from left to right along the Y-axis avoiding the obstacle. We
first tested a fixed size obstacle and then randomly place
at different positions to create dynamic uncertainties. Fig. 6
shows the mean absolute error in movements in X,Y, Z
directions. It can be noted that for different position of the

X-mov Y-mov Z-mov Roll Pitch Yaw Actuation
(m) (m) (m) (rad) (rad) (rad) Time (ms)

0.0104 0.0401 0.0081 3.9806 0.0274 0.0401 16.014

TABLE II
MEAN ABSOLUTE ERROR IN MOVEMENTS IN FREE ENVIRONMENT

Scenario X-mov Y-mov Z-mov Actuation
(m) (m) (m) Time (ms)

Fixed height obstacle,
varying positions 0.0107 0.0875 0.0085 16.013

Fixed position obstacle,
varying heights 0.0156 0.0786 0.0113 16.055

TABLE III
MEAN ABSOLUTE ERROR IN MOVEMENTS WITH DYNAMIC

VARYING OBSTACLES

Fig. 6. MAE of Cartesian Positions between a physical robot and digital twin
robot for 0.4m high obstacle at different X-Y location

Fig. 7. MAE of Cartesian Positions between a physical robot and digital twin
robot for variable obstacle height at fixed X-Y (0.5m,0m) location

obstacle the error does not vary proportionally. The errors
in X and Z direction is still within 5 cm as it was in free
environment. However, as the robot is moving in Y direction
and trying to avoid obstacle, the error slightly increase to
about 10 cm. Similarly, in Fig. 7, we keep the location of
the obstacle fixed but vary its height. It shows a similar trend
as the previous case, where the errors do not vary with the
obstacle height and remains within bounds. However, similar
to previous case, the errors in X and Z direction is less than
3 cm, whereas maximum error in Y direction is about a 10
cm. Table III summarizes the mean absolute error for the
aforementioned cases along with the difference is actuation
time which still remains about 16 ms.

V. CONCLUSION AND FUTURE SCOPES

The Digital Twin creates a virtual clone with the ability
to predict, monitor, share data, and control the physical twin.
These benefits, however, are not without challenges - including
data handling, communications, synchronization between the
twins, simulation software, and cyber security concerns. Al-
though, the cost to develop, test, and implement a digital twin
is high, the long term reward of improving system efficiency
makes it worth investing.

In this paper, we revisited the fundamentals of the digital
twin concept and come up with an extended definition. We
conducted a brief survey on related works of digital twin in
various robotics applications. Finally, we demonstrated a case
study on the digital twin of a robotic arm and presented the
performance in dynamic uncertain conditions. We proposed



a safety-proof human-in-the-loop digital twin framework for
safety-critical robotics applications and discuss its advantages,
and challenges. In future the framework can be augmented
with overlay technologies including Artificial Intelligence and
Virtual and Augmented Reality (VR/AR) to create a seamless
and efficient digital twin. The future robotic digital twin
can leverage the advancements in 5G and upcoming 6G
wireless technologies together with strong secured sensing,
communications and computing to become more resilient.
Also, sophisticated and ultra low latency algorithms need to
be developed in future for fast-responding, robust and efficient
practical digital twin in safety-critical robotics.
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