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ABSTRACT

The Stoner–Wohlfarth model is a classical model for magnetic hysteresis of single-domain magnets. For two-dimensional (2D) magnets at
finite temperatures, the Stoner–Wohlfarth model must be extended to include intrinsic strong spin fluctuations. We predict several funda-
mentally different hysteresis properties between 2D and 3D magnets. The magnetization switching diagram known as the astroid figure in
the conventional Stoner–Wohlfarth model becomes highly temperature dependent and asymmetric with respect to the transverse and longi-
tudinal magnetic fields. Our results provide new insights into the spintronics applications based on 2D magnetic materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143593

I. INTRODUCTION

In the last several years, many two-dimensional (2D) magnetic
materials with novel magnetic and spin transport phenomena have
been discovered.1–17 These new classes of 2D magnetic materials
generate an interesting perspective for their possible applications in
spintronics. To elucidate the fundamental differences between 2D
and 3D magnets in response to an external magnetic field, we start
with a single-domain magnet in which the magnetization is spa-
tially uniform across the sample. The single-domain magnet is
usually a building block for magnetic memory devices in which the
direction of the magnetization can be well controlled by either the
magnetic field or the electric currents. The most elementary mag-
netic property of a single domain is its very simple magnetic hys-
teresis described by the classical Stoner–Wohlfarth model,18,19

whose magnetic energy is

ESW ¼ �K(ẑ �M)2 �H �M, (1)

where M is the magnetization vector, ẑ is the anisotropy axis with
the anisotropy energy K, and H is the applied magnetic field. For a
single domain, the anisotropy constant K includes the crystal
anisotropy and the demagnetization factor. The above simple
Stoner–Wohlfarth model immediately gives rise to the well-known
hysteresis loops for the different directions of the applied magnetic
field, as shown in Figs. 1(a)–1(d). We note that an extension to the

above single-domain model with an arbitrary anisotropic direction
would lead to more complicated hysteresis loops.20

In this paper, we study the magnetic hysteresis of two-
dimensional single-domain magnetic particles with the uniaxial
anisotropy, i.e., the 2D Stoner–Wohlfarth model. Why does the
above successful Stoner–Wohlfarth model for the conventional 3D
magnet fail for 2D magnets? In 3D, the magnitude of the magneti-
zation, Ms(T) ¼ jMj is controlled by the exchange interaction
between the neighboring spins, and, thus, it weakly depends on the
magnetic field or the magnetic anisotropy as long as the tempera-
ture is not too close to the Curie temperature. Since the hysteresis
is measured with a constant temperature, Ms does not change for
the entire range of the field in the hysteresis. In 2D, however, the
magnitude of the magnetization depends on both the exchange
interaction and the total effective field Ht (the sum of the anisot-
ropy and the applied field) even at low temperatures. To see this,
we recall that, due to the divergence of the number of long-
wavelength spin waves of the isotropic Heisenberg model of the 2D
magnet, the long-range order is absent without the external field.
This is known as the Wagner and Mermin theorem.21 The same
divergence would occur for the anisotropic Heisenberg model if the
magnitude of the applied magnetic field is equal to the anisotropy
field but in the opposite direction of magnetization such that the
spin wave gap becomes zero, and, therefore, the gapless spin waves
destroy the long-range order in the anisotropic Heisenberg model
as well. The difference between the isotropic Heisenberg model and
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the anisotropic Heisenberg model is that the induced magnetization
instability occurs in all directions of the magnetization for the iso-
tropic Heisenberg model, while for the anisotropic Heisenberg
model, the disappearance of the magnetization occurs at one of the
anisotropic orientations. In fact, after the spin waves destroy the
long-range order, the magnetization would be spontaneously

re-established in the direction parallel to the magnetic field. In this
paper, we describe the variation of both magnitude and direction
of the magnetization with the applied field by using the self-
consistent spin-wave method, which is equivalent to the random
phase approximation.22 In Figs. 1(e)–1(h), we show the 2D hystere-
sis alongside the conventional 3D hysteresis, followed by our
detailed theory and calculation in Sec. II.

II. MODEL

The quantum version of the 2D Stoner–Wohlfarth model with
a uniaxial anisotropy (denoted as z-axis) is

Ĥ ¼ �J
X

hi,ji

Ŝi � Ŝ j � A
X

hi,ji

Ŝzi Ŝ
z
j �

X

i

H � Ŝi, (2)

where Ŝi and Ŝzi , respectively, are the spin and the z-component
(taken as perpendicular to the two-dimensional plane) of the spin
operators at lattice site Ri, J is the isotropic exchange integral, A is
the anisotropic exchange integral, hiji indicates the sum over
nearest neighbors, and H is the external field. We use here natural
units as we set �h ¼ μB ¼ 1. In Eq. (2), we choose the exchange
anisotropy rather than the single-site anisotropy since some 2D
magnets such as CrI3 have a dominant anisotropy from the
exchange anisotropy;23 this anisotropy exchange is equivalent to
the anisotropy constant K ¼ zA of Eq. (1), where z is the number
of the nearest neighbor spins (z ¼ 4 for a square lattice). To deter-
mine the magnetization, we have developed a random phase
approximation (RPA) in which the transverse spin fluctuation and
the longitudinal spin fluctuation are decoupled, and we have
arrived at the self-consistent equation for the magnetization22

M ¼ Ms �

ð

BZ

d2k

(2π)2
2M

eβEk � 1
, (3)

where Ms is the saturation magnetization at T ¼ 0, β ; (kBT)
�1,

and Ek is the magnon energy; in the long-wavelength limit,
Ek ¼ zM(2Aþ 0:5Jk2)þ H (assuming the field is along the direc-
tion of the anisotropy field). Equation (3) has a straightforward
explanation: the magnetization is subtracted by the number of the
magnons, which are softened by the factor of M at finite tempera-
ture. We note that (a) Eq. (3) is derived from the random phase
approximation for spin 1=2; the higher spins would lead to a more
complicated equation; (b) compared to the conventional Holstein–
Primakoff (HP) transformation, which is useful for low tempera-
tures, the random phase approximation neglects the correlation
between the longitudinal and transverse spin fluctuation at different
sites of the spins but retain all orders of other correlations.22 The
random phase approximation provides an excellent approximation
for the equilibrium magnetization as long as the temperature is not
too close to the Curie temperature. By using the quadratic disper-
sion for the magnon energy, we may integrate out d2k in Eq. (3),
resulting in a simpler analytical expression

M ¼ Ms �
1

πzJ

1

β
ln

eβ(ΔþW) � 1

eβΔ � 1

�

�

�

�

�

�

�

�

�W

� �

, (4)

FIG. 1. Magnetic hysteresis and switching astroid for the 3D [four left panels
(a)–(d)] and 2D [four right panels (e)–(h)] Stoner–Wohlfarth models. The magni-
tude of the magnetization is normalized by the magnetization at temperature T

and at the zero field, M0 ¼ M(T , H ¼ 0) for all figures, i.e., mH ; MH=M0,
where MH ¼ M � H=H is the magnetization in the direction of the magnetic field,
which is normalized by 2K or 2zA and h ; H=2K . The hysteresis loops of a
3D magnet with the angles between the magnetic fields and the anisotropy axis:
(a) at 0�, (b) at 45�, and (c) 90�. (d) The 3D astroid figure for magnetization
switching fields. The hysteresis loops of the 2D magnet with the angles
between the magnetic fields and the anisotropy axis: (e) at 0�, ( f ) at 45�, and
(g) at 90� respectively. (h) The 2D astroid figure. All figures are calculated at
the temperature T ¼ 0:6Tc , where Tc is the Curie temperature.
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where Δ ¼ 2zAM þ H and W ¼ 2πzJM are the effective magnon
gap and the magnon bandwidth, respectively. Since the quadratic
dispersion of the magnon energy is used for the long-wavelength
magnons, one may replace the entire magnon bandwidth W in
Eq. (4) with a cutoff magnon energy. However, Eq. (4) is weakly
dependent on W if β(ΔþW) . 1; thus, the choice of the cutoff
energy is unimportant. Our hysteresis study will be based on
Eq. (4): for a given temperature and a magnetic field, the magni-
tude of the magnetization is determined by Eq. (4) and the
direction of the magnetization is parallel to the total effective
magnetic field, which is the sum of the external field and the
anisotropic field.

In order to make a direction comparison of the magnetic
hysteresis between the Stoner–Wohlfarth model and ours, we
need to properly renormalize the magnetization. In the classical
Stoner–Wohlfarth model, the magnetization depends on tempera-
ture, but not the magnetic field. We, therefore, take the magneti-
zation in our model at the zero magnetic field, the same as the
classical one at a given temperature. In other words, we first solve
Eq. (4) at a zero magnetic field to obtain M0 ¼ M(T , H ¼ 0).
The hysteresis loops shown in Fig. 1 have the magnetization nor-
malized by M0.

III. EXTERNAL FIELD IN THE DIRECTION OF THE
ANISOTROPY

The numerical solutions of M for the field in the direction
of the anisotropy field are readily solved from Eq. (4). A simple
way to obtain a solution for given parameters (temperature,
field, and anisotropy) is to plot two functions y ¼ M and
y ¼ f (M), where f (M) is the right side of Eq. (4). Note that the
function f (M) is only physically meaningful when the magnon
energy gap is positive, i.e., Δ . 0. The negative gap is unstable
such that the magnetization reversal takes place. In Fig. 2, we
show f (M) for three different magnetic fields: for a positive or
small negative field, M ¼ f (M) has two solutions, representing
an energy minimum (the solution with a larger M) and an
energy maximum. At a critical negative magnetic field, there is
only one solution, which is also known as the coercive field.
Beyond the critical field, there is no solution for M . 0, indicat-
ing magnetization reversal occurs.

Compared with the conventional Stoner–Wohlfarth model,
the hysteresis shown in Fig. 1(e) is no longer square. The reduction
of the magnetization near the critical value of the field is caused by
the reduced effective gap and, thus, the increased number of
magnons. Since the magnon population depends on the tempera-
ture, the magnetization at the critical magnetic field decreases sig-
nificantly at higher temperatures as shown in Fig. 3. This contrasts
with the 3D magnet, which is essentially independent of
temperature.

IV. EXTERNAL FIELD AT AN ARBITRARY DIRECTION

We now consider the hysteresis loop with the field in an arbi-
trary direction, H ¼ H0(ẑ cos θ þ x̂ sin θ), where θ is the angle
between the applied field and the z-axis. The total effective field is
the sum of the external and anisotropic field, Ht ¼ Hþ 2zA(M �
ẑ)ẑ, where the direction and the magnitude of M need to be

self-consistently determined. At equilibrium, the magnetization M
is always parallel to Ht , therefore,

Mx

Mz
¼

H0 sin θ

H0 cos θ þ 2zAMz
: (5)

Equation (4) remains valid as long as the magnon gap is replaced
by the total magnetic field projected to the direction of the magne-
tization, that is, Δ ¼ Ht �M=M. Thus, Eqs. (4) and (5) determine
the magnetization for any arbitrary direction of the magnetic field.
As an example, we show in Fig. 1(f ), the hysteresis for the field
direction at θ ¼ 45�. Note that the hysteresis loop measures the
magnetization in the direction of the external field as a function of
the magnetic field, namely, it is measuring mh ; H �M=jHj. In the
3D Stoner–Wohlfarth model of Eq. (1), one can easily show that
45� is a special case where the magnetization along the direction of
the field is precisely zero at the coercive field, see Fig. 1(b). In 2D,
the magnetization remains finite just below the coercive field as
shown in Fig. 1(f) since the reversal occurs before the magnetiza-
tion becomes zero. For θ ¼ 90� (the hard axis loops), both 2D and
3D hysteresis are single-valued. However, the 2D Stoner–Wohlfarth
model has a non-zero slope even above the anisotropy field while
the 3D Stoner–Wohlfarth model would be completely saturated
above the anisotropy field.

We next construct the critical values of the magnetic field
for the magnetization reversal for all directions of the magnetic
field, known as the astroid figure. When the magnetic field
increases across the astroid line, the reversal occurs. In the classical

FIG. 2. The solutions of Eq. (4) for three different magnetic fields. For the field
jHj , Hc , the equation has two solutions m1 and m2. At H ¼ Hc (the coercive
field), the equation has one solution mc , which is the critical magnetization at
which the magnetization reversal occurs.
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Stoner–Wohlfarth model, the astroid line can be readily derived
from Eq. (1), and the analytic expression of the astroid is

H
2=3
z þ H2=3

x ¼ (2K)2=3. In the 2D Stoner–Wohlfarth model, the
astroid is highly temperature dependent as shown in Fig. 4. At
low temperatures, the astroid figure resembles that of the 3D
Stoner–Wohlfarth model. At higher temperatures, the magnetiza-
tion reversal for the longitudinal field (parallel to the anisotropy
field) is more effective than for the transverse field. This is
because, for the same magnitude of the field, the longitudinal
direction reduces the magnon gap more than the transverse direc-
tion, leading to the asymmetry of the astroid figure in the

direction of the applied field (loss of the fourth-order symmetry
of the astroid curve).

V. EFFECTS OF FINITE SAMPLE SIZE

Up until now, we have only considered an infinite size of the
single-domain magnet in which the long-wavelength magnons are
responsible for the strong spin fluctuation. For a large magnet, the
switching of the magnetization is, in general, through domain wall
nucleation and propagation due to the presence of magnetic impu-
rities and boundary roughness. Therefore, the single-domain
assumption is only experimentally meaningful for a small magnet.
To see how the finite size changes, our calculation and what the
minimum size needed to observe the predicted hysteresis loops, we
may introduce a maximum wavelength of the magnon spectrum to
be the size of the sample Lm, or equivalently, a cutoff minimum
wave vector kmin ¼ 2π=Lm such that the integral of Eq. (3) has the
range from kmin to the bandwidth W. Consequently, the effective
gap in Eq. (4) becomes Δ ¼ zM(2Aþ 0:5Jk2min)þH.

To estimate how the additional gap 0:5zMJk2min induced by
the finite size affects the hysteresis, one may identify the coercivity

Hc in Fig. 1(e) is shifted by 0:5zMJk2min toward the classical value
of 2zMA. If 0:5Jkmin � A, or equivalently, the sample size

Lm � π
ffiffiffiffiffiffiffiffi

J=A
p

in units of the lattice constant, the correction of the

finite size becomes insignificant. Recall that π
ffiffiffiffiffiffiffiffi

J=A
p

is the domain

wall width, which is only about several nanometers if A is two
orders of magnitude smaller than J . Thus, as long as the single
domain can be maintained at a size larger than the domain wall
width in experiments, our calculations remain valid.

FIG. 3. (a) The hysteresis of a single-domain 2D magnet at different tempera-
tures (magnetization is normalized at zero temperature Ms) with the field parallel
to the anisotropic axis. (b) The temperature dependence of the critical magneti-
zation. (c) The temperature dependence of the coercive field.

FIG. 4. The temperature dependence of the astroid diagram for a 2D single-
domain magnet (2zAMs ¼ 1).
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VI. SUMMARY AND CONCLUSIONS

Due to the fundamentally strong spin fluctuation of 2D
magnets, the classical Stoner–Wohlfarth model, which is widely
used for modeling elementary hysteresis of a uniaxial anisotropic
3D magnet fails to account for the external field dependence of
magnetization. By using our previously established random phase
approximation for the equilibrium magnetization of the 2D
magnet, we find that (1) the hysteresis involves the magnetization
collapse at a critical field such that the long-range order is
destroyed by the spin wave excitations, (2) the coercivity is signifi-
cantly smaller than that of the 3D magnet for the same anisotropic
constant, (3) the fourth-order symmetry of the astroid curve is lost,
and (4) the above behavior is more pronounced at higher
temperatures.

Finally, we comment on the current experimental status of the
2D single-domain hysteresis. The direct comparison of the single-
domain model of the 2D magnet with experiments is difficult at
the present time due to non-single ‘domain hysteresis. In experi-
ments, hysteresis is measured in a film with a large lateral size, for
example, the hysteresis loops of high-quality CrBr3 monolayers
have been experimentally measured by photoluminescence,24 and it
is certain that the film breaks up into domains in various stages of
the hysteresis. The physical origins of the domain wall formation
could be intrinsic such as long-range dipolar interactions and edge
effects or could be extrinsic such as film roughness or impurities.
To account for these experimental complications, one needs to
develop new micromagnetic theories, including the change of the
magnetization amplitude during the hysteretic processes, that can
be broadly used for the 2D magnet with the spin fluctuations
included.
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