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A B S T R A C T

Random magnetic fields suppress the long-range magnetic ordering through the formation of the magnetic
domains. The size of the domains is determined by the competition among the exchange interaction, the
magnetic anisotropy, and the strength of the random field. Here we theoretically investigate the temperature
dependence of the magnetization of the two-dimensional domains for the anisotropic Heisenberg model with
a random magnetic field. We find that magnetization of the domains displays a first-order phase transition in
which the magnetization is discontinuous at a critical temperature. Moreover, the first-order transition persists
even in the presence of an external magnetic field whose magnitude is smaller than the strength of the disorder.
The above unusual first-order phase transition can be experimentally tested with doped two-dimensional
magnets.
1. Introduction

In the last several years, research interests in low dimensional
magnetism are getting greatly boosted by experimental identifications
of many 2D magnetic materials, particularly, those of 2D van der Waals
(vdW) magnetic semiconductors [1–8]. Similar to the well-studied
raphenes, the thickness of 2D vdW semiconductors can be precisely
ontrolled down to one monolayer, and thus it is now possible that the-
retical predictions on 2D magnetism can be quantitatively compared
ith the experiments. Several magnetic and transport phenomena have
lready been reported experimentally, like the giant magnetoresis-
ance [9], spin–orbit torques [10–13], spin Seebeck, and Nernst ef-
ect [14–16] including the discovery of large anomalous Nernst effect in
e3GeTe2 by C.L. Chien’s group [17]. These experimental advances raise
n interesting perspective on 2D magnetic materials for spintronics
pplications.

One of the most fundamental properties of 2D magnetism is that the
ong-range ferromagnetic ordering should not exist in principle [18].
mry and Ma [19] have shown that an arbitrary small random field
r disorder would destroy the ferromagnetic phase since the random
ield favors the break-up of the uniform magnetization into domains
s a result of the competition among exchange interactions, magnetic
nisotropy, and the random field. Theoretically, such a conclusion is
niversally valid for Heisenberg and Ising models with or without long-
ange dipolar interaction [20]. Since the random field is always present
n real materials, the experimentally observed 2D ferromagnetism must

∗ Corresponding author.
E-mail address: essa@arizona.edu (E.M. Ibrahim).

not be a true ferromagnetic phase with a uniform magnetization.
Instead, one may reasonably argue that the size of the domains induced
by the random field is large for weak disorders and these domains
can be swiped away by a small magnetic field. Indeed, a theoretical
analysis by Malozemoff [21] has estimated the domain size in various
model Hamiltonians and has established qualitative relations between
the random field and domain size.

In this paper, we investigate how the magnetization of the ferro-
magnetic domains in 2D films varies with the temperature and the
magnetic field. We assume, a priori, that these domains are much larger
than the domain wall thickness such that we only need to calculate the
magnetization within an individual domain. By using the self-consistent
random phase approximation, we establish an analytical theory of the
temperature dependence of magnetization as a function of the strength
of the random field. We have found a novel first-order phase transition
that has not been anticipated previously: the magnetization has a
discontinuous drop when the temperature increases to a critical value.
Even with a moderate external magnetic field, the first-order transition
persists. The paper is organized as follows. In Section 2, we define
our model Hamiltonian, followed by deriving the analytical expression
of the equilibrium magnetization by using the self-consistent random
phase approximation (RPA) in Section 3. We discuss the results in
Section 4.
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2. Model

We start with the generic anisotropic Heisenberg Hamiltonian for a
2D lattice,

̂ = −𝐽
∑

⟨𝑖,𝑗⟩
𝐒̂𝑖.𝐒̂𝑗 − 𝐴

∑

⟨𝑖,𝑗⟩
𝑆̂𝑧
𝑖 .𝑆̂

𝑧
𝑗 −

∑

𝑖
(𝐻 + ℎ𝑖)𝑆̂𝑧

𝑖 (1)

where 𝐒̂𝑖 and 𝑆̂𝑧
𝑖 are, respectively, the spin and the 𝑧-component (taken

as perpendicular to the two-dimensional plane) of the spin operators at
lattice site 𝐑𝑖, 𝐽 is the isotropic exchange integral, 𝐴 is the anisotropic
exchange integral, ⟨𝑖𝑗⟩ indicates the sum over nearest neighbors, and
𝐻 and ℎ𝑖 are the external and the random magnetic field in the 𝑧-
direction. We take the random field to be an uncorrelated white-noise,

⟨ℎ𝑖⟩𝑐 = 0; ⟨ℎ𝑖ℎ𝑗⟩𝑐 = 𝛿𝑖𝑗𝛾
2 (2)

where ⟨⟩𝑐 represents the configuration average over the distribution
of the random field. Without the random field, the above simple
anisotropic Heisenberg model has been applied to a number of 2D
magnets such as CrI3 with the exchange constant 𝐽 and the anisotropy

obtained by the first-principle calculation [22,23]. The random field
e introduced here may come from the spin–orbit coupling at the

mperfect surface or interface in which the local electronic potential
s no longer periodic. One may identify two sources of the random
ield. First, as 2D magnetic films are usually grown on a substrate or
y exfoliation, lattice mismatch with the substrate leads to roughness,
hich causes the breakdown of the perfect periodicity for the 2D film.
he second case is due to the presence of impurities or vacancies in
hich the impurities could be introduced intentionally or uninten-

ionally. The detailed correlation between the random field and the
aterial structure is complex and we will follow the conventional

hoice of the random field [19–21] to be uncorrelated at different sites
ith its strength 𝛾2 by a single constant, independent of energy and

emperature.
As the model Hamiltonian, Eq. (1), has no exact solution even

ithout the random field, one usually relies on numerical methods
uch as quantum Monte Carlo simulation to determine the equilibrium
agnetization and critical phenomena. As the analytical formulation

or the magnetization is extremely useful for studying various spin
ransport properties, we will extend the self-consistent random phase
pproximation (RPA) [24–27] to include the random field for the cal-
ulation of the temperature dependence of the magnetization. Although
he RPA is an approximate method, the physics of the spin fluctuation
rom the low energy excitations has been explicitly taken into account.
he RPA becomes a poor approximation when the magnetization is
mall, i.e., near the second-order phase transition temperature. In the
resent case, we find a first-order phase transition occurs where the
agnetization remains finite and thus the RPA would be an excel-

ent approximation for the temperature below the first-order phase
ransition temperature to be determined later in the paper.

. Equilibrium magnetization in the presence of random fields

Following the conventional method of RPA [24–27], we first define
he retarded Green’s function of spin operators,

𝑖𝑗 (𝑡) =≪ 𝑆̂+
𝑖 (𝑡) ∶ 𝑆̂−

𝑗 ≫≡ −𝑖𝛩(𝑡)⟨𝑆̂+
𝑖 (𝑡), 𝑆̂

−
𝑗 ⟩ (3)

where 𝑆̂± = 𝑆̂𝑥 ± 𝑆̂𝑦 is lowering and raising spin operator, 𝛩(𝑡) is the
eaviside step function, ⟨⋯⟩ denotes the thermal average and ≪∶≫

s Zubarev notation [28]. The equation of motion for the above Green
unction in the frequency space is then

𝐺𝑖𝑗 (𝐸) = ⟨[𝑆̂+
𝑖 , 𝑆̂

−
𝑗 ]⟩𝛿𝑖𝑗+ ≪ [𝑆̂+

𝑖 , ̂] ∶ 𝑆̂−
𝑗 ≫ (4)

When we substitute Eq. (1) into the commutator [𝑆̂+
𝑖 , ̂], the result

contains the terms involving the product of the three spin operators,
2

e.g., 𝑆̂𝑧
𝑙 𝑆̂

+
𝑖 𝑆̂

−
𝑗 . To obtain a closed form for the Green’s function, we use

the decoupling scheme known as the RPA in which the longitudinal
spin 𝑆̂𝑧

𝑙 and the transverse spin fluctuation 𝑆̂+
𝑖 𝑆̂

−
𝑗 at the different sites

𝑙 ≠ 𝑖, 𝑗, are uncorrelated [24–26], i.e.,

≪ 𝑆̂𝑧
𝑙 𝑆̂

+
𝑖 , 𝑆̂

−
𝑗 ≫= ⟨𝑆̂𝑧

𝑙 ⟩ ≪ 𝑆̂+
𝑖 , 𝑆̂

−
𝑗 ≫ . (5)

Defining the site-independent magnetization 𝑀(𝑇 ) ≡ ⟨𝑆̂𝑧
𝑙 ⟩, and mak-

ing the Fourier transformation in space and time, 𝐺𝐤𝐤′ (𝐸) = (2𝜋)−1
∑

𝑖𝑗 𝑒
𝑖𝐤⋅𝐑𝑖+𝑖𝐤′⋅𝐑𝑗 ∫ 𝑑𝑡𝑒−𝑖𝐸𝑡𝐺𝑖𝑗 (𝑡), we find

𝐸 − 𝐸(0)
𝑘

)

𝐺𝑘𝑘′ (𝐸) +
∑

𝑞
ℎ𝑘−𝑞𝐺𝑞𝑘′ (𝐸) = 2𝑀𝛿𝑘𝑘′ (6)

where 𝐸(0)
𝑘 = 2𝑧𝑀[𝐽 (1 − 𝛾𝑘) + 𝐴] + 𝐻 is the energy spectrum without

he random field, 𝑧 is the number of the nearest neighbors and 𝛾𝑘 =
1
𝑧
∑

𝑒𝑖𝐤⋅𝐑 and the summation is over the nearest-neighbor sites. We note
that we will neglect the finite size effect of the domain such that the
lower bound of the wave-number 𝑘 is set to zero.

The above retarded Green function may be expanded in terms of the
order of the random fields. The zeroth order is 𝐺(0)

𝐤𝐤′
= 2𝑀𝛿𝐤𝐤′∕(𝐸−𝐸(0)

𝑘 ),
the first order is 𝐺(1)

𝐤𝐤′
= −2𝑀ℎ𝐤−𝐤′∕(𝐸 −𝐸(0)

𝑘 )(𝐸 −𝐸(0)
𝑘′ ), and the second

order is,

𝐺(2)
𝑘𝑘′ = − 2𝑀

(𝐸 − 𝐸(0)
𝑘 )(𝐸 − 𝐸(0)

𝑘′ )

∑

𝑞

ℎ𝑞−𝑘′ℎ𝑘−𝑞
𝐸 − 𝐸(0)

𝑞

. (7)

By using the assumption of white-noise random fields, ⟨ℎ𝑞−𝑘′ℎ𝑘−𝑞⟩ =
2𝛿𝐤𝐤′ , the Green’s function, up to the second order, 𝐺 = 𝐺(0) + 𝐺(2)

the first order is averaged to zero), is

𝑘𝑘′ (𝐸) =
2𝑀𝛿𝑘𝑘′

𝐸 − 𝐸(0)
𝑘 − 𝛴(𝐸,𝐤)

(8)

where we have defined self-energy

𝛴(𝐸, 𝑘) = 𝛾2
∑

𝑞

1
𝐸 − 𝐸𝐪

= 𝛾2 ∫
𝑔(𝜖)𝑑𝜖
𝐸 − 𝜖

(9)

and we have replaced the summation of 𝐪 with the integration over
the energy in the last identity, with 𝑔(𝜖) being the density of states.
To further simplify the analytical expression, we consider a simple
dispersion 𝐸(0)

𝑘 = 𝑧𝑀(2𝐴 + 𝐽𝑘2𝑎20∕2) + 𝐻 such that the density of
states is a constant for the energy within the magnon band, i.e., 𝑔(𝜖) =
(2𝑧𝜋𝐽𝑀)−1 for 𝛥0 < 𝜖 < 𝛥0+𝑊0 where the energy gap is 𝛥0 = 2𝑧𝑀𝐴+𝐻
and the bandwidth 𝑊0 = 2𝜋𝑧𝐽𝑀 . The energy dispersion in the presence
of the random field is given by the poles of Green’s function, Eq. (8). By
explicitly integrating the constant density of state in Eq. (9), we obtain
the energy dispersion with the random field,

𝐸𝑘 = 𝐸(0)
𝑘 +

𝛾2

2𝜋𝑧𝐽𝑀
ln
|

|

|

|

𝐸𝑘 − 𝛥0
𝛥0 +𝑊0 − 𝐸𝑘

|

|

|

|

(10)

he above equation is an implicit equation that determines 𝐸𝑘 for a
iven magnetization 𝑀 . However, 𝑀 is unknown a priori, and must

be determined self-consistently. Recall the spin operator identity, 𝑆̂𝑧
𝑖 =

𝑆(𝑆 + 1) − (𝑆̂𝑧
𝑖 )

2 − 𝑆̂−
𝑖 𝑆̂

+
𝑖 . For spin-1/2, the identity becomes, 𝑆̂𝑧

𝑖 =
∕2 − 𝑆̂−

𝑖 𝑆̂
+
𝑖 and thus, 𝑀 = 1∕2 − ⟨𝑆̂−

𝑖 𝑆̂
+
𝑖 ⟩. By taking the thermal

veraging of the above identity, we have

= 1
2
−
∑

𝑘𝑘′
∫

𝑑𝐸
2𝜋

2Im(𝐺𝑘𝑘′ (𝐸 + 𝑖0+))
𝑒𝛽𝐸 − 1

(11)

y substituting

m𝐺𝑘𝑘′ (𝐸 + 𝑖0+) = 2𝜋𝑀𝛿
(

𝐸 − 𝐸(0)
𝑘 − Re𝛴(𝐸, 𝑘)

)

= 2𝜋𝑀𝛿(𝐸 − 𝐸𝑘)𝑍𝑘

nto Eq. (11), we have

= 1
2
− ∫

𝑑2𝑘
(2𝜋)2

2𝑀𝑍𝑘

𝑒𝛽𝐸𝑘 − 1
(12)

where 𝑍𝑘 = (1 − 𝜕𝛴
𝜕𝐸𝑘

)−1. Comparing the above equation with the
spin wave approximation shown in [22,23], our self-consistent RPA
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Fig. 1. The complete solutions of 𝑀 as a function of temperature are calculated from
Eqs. (13) and (14). The section with the blue line is the equilibrium ferromagnetic
tate while the other two sections are not stable states. The section with the yellow
olor has higher free energy compared to the blue line and the section with the orange
olor has a negative effective energy gap. We have used 𝐽 = 1, 𝑧 = 4, 𝐴 = 0.2, 𝐻 = 0
nd 𝛾 = 0.1.

pproach contains the factor of 𝑀𝑍𝑘 in the second term; they represent
he renormalization 𝑍𝑘 to the self-energy of the magnon and the
educed magnon angular momentum by 𝑀 . Without this correction,
he magnetization 𝑀 = 0 does not satisfy Eq. (12) at any temperature
ithout the disorder.

The integration in Eq. (12) can be readily done if we use the
uadratic dispersion in the energy 𝐸(0)

𝑘 ∝ 𝑘2. By changing the integra-
tion over 𝑑2𝑘 to 𝑑𝐸𝑘, i.e., substituting 𝑑2𝑘 = 2𝜋𝑘𝑑𝑘 = 2𝜋

𝑧𝑀𝐽 𝑑𝐸
(0)
𝑘 =

2𝜋
𝑧𝑀𝐽 (1 −

𝜕𝛴
𝜕𝐸𝑘

)𝑑𝐸𝑘 = 2𝜋
𝑧𝑀𝐽 𝑍

−1
𝑘 𝑑𝐸𝑘 we find

= 1
2
− 1

𝜋𝑧𝐽

(

1
𝛽
ln
|

|

|

|

𝑒𝛽(𝛥+𝑊0) − 1
𝑒𝛽𝛥 − 1

|

|

|

|

−𝑊0

)

(13)

here the effective energy gap 𝛥 = 𝛥0 + (𝐸𝑘 − 𝐸(0)
𝑘 )|𝑘=0 and we have

set the bandwidth 𝑊0 unchanged since we assume the number of
states remains unperturbed by the disorder. By using Eq. (10), we may
xplicitly write the effective gap,

= 𝛥0 −
𝛾2

2𝜋𝑧𝐽𝑀
ln
|

|

|

|

1 + 2𝜋𝑧𝐽𝑀
𝛥0 − 𝛥

|

|

|

|

. (14)

The role of the random field is the reduction of the anisotropic gap
from 𝛥0 to 𝛥. At the temperature well below the Curie temperature, 𝛾 ≪
2𝜋𝑧𝑀𝐽 , the above gap reduction 𝛥0 − 𝛥 is negligible. As temperature
increases, 𝑀 decreases and thus 𝛥0 − 𝛥 increases. When 𝑀 becomes
very small such that 2𝜋𝑧𝐽𝑀 ≪ 𝛾, the gap reduction reaches its
maximum value of 𝛾. In the absence of the magnetic field, 𝛥0 = 2𝑧𝑀𝐴
ecreases with temperature while the gap correction from the random
ield increases with the temperature. Thus, at a certain temperature,
he effective gap becomes too small to support long-range ordering
ince the spin fluctuations at finite temperature destabilizes the mag-
etization and long range order is destroyed. More quantitatively, we
hall numerically solve Eq. (13), along with Eq. (14), to determine the
emperature dependence of the magnetization.

. Results and discussions

We show general features of the mathematical solution of Eq. (13) in
ig. 1. For a given anisotropy constant 𝐴 and a random field strength 𝛾,
3

m

Fig. 2. (𝑎) Magnetization as a function of temperature for several different values of the
andom fields without an external magnetic field. The dotted lines mark the critical
oints where the solutions end and the first-order phase transition occurs. We have
sed 𝐽 = 1 and 𝐴 = 0.3, 𝑧 = 4. (𝑏) and (𝑐) The critical magnetization and the critical
emperature as functions of the strength of the random field for several systems with
ifferent anisotropy constants.

here are three solutions for the magnetization at the low temperature.
he upper curve represents the physically meaningful solution. The
ottom curve is unphysical since it represents the case where the
ffective gap 𝛥 becomes negative. Clearly, the ground state is no longer
n the 𝑧-direction when the gap is negative, and thus the magnon
xcitation along the 𝑧-axis becomes invalid. The middle curve in Fig. 1
s also the solution of Eq. (13), but the free energy is higher than the
pper curve at the same temperature. Therefore, we will take the upper
urve as the physical solution of Eq. (13) and we will only show the
pper curve in the following numerical results.

We show the magnetization curves as a function of the strength of
he disorder at zero magnetic field in Fig. 2. Without disorders, the
agnetization undergoes the second-order phase transition at the Curie
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Fig. 3. (𝑎) Magnetization as a function of temperature for several different external
agnetic fields. The dotted lines mark the critical points where the solutions end and

he first-order phase transition occurs. 𝐴 = 0.2, 𝑧 = 4, and 𝛾 = 0.1. (𝑏) and (𝑐) The critical
agnetization and the critical temperature as functions of the external magnetic field

or several different random fields. 𝐴 = 0.2, 𝑧 = 4.

emperature where the anisotropy gap can no longer stabilize the mag-
etization against thermal fluctuations. The magnetization approaches
ero at the critical temperature of the second-order phase transition,
s shown in the blue line of Fig. 2. Two distinct features are seen as
e increase the strength of the disorders. First, the reduction of the

ransition temperature scales as the strength of the random field; this is
xpected since the effective gap, 𝛥 of Eq. (14), decreases as the random
ield increases. At low temperature, however, the effect of the random
ield is negligible since the gap 𝛥 is not significantly different from 𝛥0.
he second feature is more interesting: the phase transition becomes
irst order with the random field. When the temperature reaches a
ritical value, Eq. (13) does not have a solution anymore, indicating
hat the ferromagnetic phase we have assumed in deriving Eq. (13)
oes not exist, i.e., the phase transition occurs at a finite value of the
agnetization 𝑀𝑐 whose magnitude scales with the strength of the

andom field, as shown in the insert of Fig. 2b. Since Eq. (13) has no
olution for 𝑇 > 𝑇𝑐 , the magnetization would be no longer uniform.

We now discuss the effects of an external magnetic field on mag-
etization. Any external magnetic field breaks the time-reversal sym-
4

etry and thus the second-order phase transition which characterizes r
Fig. 4. The phase diagram of a two-dimensional magnetic system with a random field
(based on the data presented in Fig. 3c). The solid black line represents the first-
rder phase transition from the uniform magnetization phase (UM) to a paramagnetic
tate (PM). The dotted line represents the maximum susceptibility for the uniform
agnetization. The critical magnetic field scales with 𝐻𝑐 = 𝛾.

he transition between the time-reversal symmetry-broken phase and
ymmetry-conserving phase does not exist. With the random field, how-
ver, we find the first-order phase transition persists. If the magnetic
ield is smaller or comparable to the strength of the random field, the
olution of Eq. (13) shows a similar first-order phase transition at a
ritical temperature. The explanation is as follows. The random field
eads an effective anisotropy gap as small as 𝛥 = 𝛥0−𝛾 = 2𝑧𝐴𝑀 +𝐻 −𝛾
hen 𝑀 is small (or temperature is high). If 𝐻 is smaller than 𝛾, the
ffective gap would be small or negative at the high temperature which
eads to the collapse of the magnetization due to thermal fluctuation at
critical value of the temperature. In Fig. 3, we show the magnetization

at several different external fields. When the external field is larger than
𝛾, the magnetization is essentially identical to that without the random
field, i.e., there is no phase transition.

Taken together, we may construct a temperature-magnetic field
phase diagram in the presence of the random field, shown in Fig. 4.
Since there is no second-order phase transition in the presence of the
magnetic field, we denote the region with a uniform magnetization
as UM in which the solution of a uniform magnetization exists. For
the magnetic field larger than the strength of the random field, the
magnetization is at the UM state for all temperatures, i.e., no phase
transition. When the magnetic field is smaller than the random field,
the first order phase transition appears with the magnetization jump
and the transition temperature higher for a larger magnetic field. While
our theory cannot address the details after the first order phase transi-
tion to a paramagnetic state, we believe such paramagnetic states may
contain short-range orders with special topological structures. Since our
2D Heisenberg model does not host Kosterlitz–Thouless (KT) vortexes
(which are formed in the XY model) [29], the actual domain structure

ill require further investigation.
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