When Poll is More Energy Efficient than Interrupt

Bryan Harris and Nihat Altiparmak
Dept. of Computer Science & Engineering
University of Louisville
{bryan.harris.1,nihat.altiparmak}@louisville.edu

ABSTRACT

Polling is commonly indicated to be a more suitable IO com-
pletion mechanism than interrupt for ultra-low latency stor-
age devices. However, polling’s impact on overall energy
efficiency has not been thoroughly investigated. In this pa-
per, contrary to common belief, we show that polling can
also be more energy efficient than interrupt. To do so, we
systematically investigate the energy efficiency of all avail-
able Linux IO completion mechanisms, including interrupt,
classic polling, and hybrid polling using a real ultra-low la-
tency storage device, a power meter, and various workload
behaviors. Our experimental results indicate that although
hybrid polling provides a good trade-off in CPU utilization,
it is the least energy efficient, whereas classic polling is the
most energy efficient for low latency IO requests. To the best
of our knowledge, this is the first paper classifying polling
as more energy efficient than interrupt for a real secondary
storage device, and we hope that our observations will lead
to more energy efficient IO completion mechanisms for new
generation storage device characteristics.

CCS CONCEPTS

+ Information systems — Storage power management;
Storage class memory.

KEYWORDS
IO completion, energy efficiency

ACM Reference Format:

Bryan Harris and Nihat Altiparmak. 2022. When Poll is More Energy
Efficient than Interrupt. In 14th ACM Workshop on Hot Topics in
Storage and File Systems (HotStorage °22), June 27-28, 2022, Virtual
Event, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3538643.3539747

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotStorage °22, June 27-28, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9399-7/22/06....$15.00
https://doi.org/10.1145/3538643.3539747

59

1 INTRODUCTION

With the most recent advancements in data storage tech-
nology, a new category of Solid-State Drives (SSDs) have
emerged. These devices are referred to as Ultra-Low La-
tency (ULL) SSDs and are broadly classified as providing
data access in less than 10 ps [17]. Various vendors includ-
ing Intel, Samsung, and Toshiba have representative ULL
SSDs [3, 4, 20], where Intel’s latest generation of the Optane
SSD is advertised to deliver read IO in 5 ps and write IO in
6 ps [6]. ULL IO performance providing sub-10 ps data access
latency renders the performance of traditional, interrupt-
based IO completion mechanism questionable. Both industry
and academia suggested replacing interrupts with polling
based IO completion methods for improved latency in such
devices [11, 13, 15, 19, 22, 25-27], where polling has also been
supported by the Linux kernel since version 4.4. However,
one must also consider the relationship between IO perfor-
mance and power consumption, as power saving methods
may not be worth the resulting loss in IO performance.

Despite greater performance, polling is commonly be-
lieved to be more costly and less energy efficient than in-
terrupt since polling wastes CPU cycles. The primary as-
sumption behind this is that reduced CPU usage directly
correlates to reduced power consumption. Therefore, with
kernel version 4.10, Linux introduced a hybrid polling mech-
anism, which sleeps the task before starting to poll so that
less CPU cycles are wasted [13].

In this paper, we study the energy implications of the
three IO completion mechanisms available in Linux, includ-
ing interrupts, classic polling, and hybrid polling techniques,
specifically for ULL disk IO. Our empirical evaluation using
areal ULL device, a power meter, various workload behav-
iors, and the most recent longterm Linux kernel relies on
IO performance measured per energy unit, bytes transferred
per joule. Considering both performance and energy in a
single metric, we make observations laying out the most en-
ergy efficient IO completion mechanisms. We hope that our
observations and analysis can lead to more energy efficient
storage stack designs in the future.

2 10 COMPLETION IN LINUX KERNEL

In this section, we outline the working mechanisms of avail-
able Linux IO completion mechanisms for the most com-
monly used Linux-native synchronous IO interface.

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

2.1 Interrupt

When a storage device completes a request, its controller
raises an interrupt by making a request on an interrupt re-
quest line (IRQ), which is caught by the CPU. The CPU per-
forms a context switch, saving its current state, and jumps
to an interrupt handler routine listed in a vector table. After
completion of the handler, the CPU clears the interrupt and
restores itself to the stored state, resuming its previous op-
eration. Use of interrupts is preferable for high IO latency
(such as HDDs) since it allows other work to be performed
while waiting. However, the overhead of switching and han-
dling interrupts can be significant if the interrupt occurs too
quickly after the request. If the rate of interrupts is exceed-
ingly high, it can even overload the system (livelock) causing
more damage than benefit [7, 14].

2.2 Classic Polling

In classic polling, the kernel continuously queries the device’s
completion queues for completed requests without switching
tasks and handles completions immediately. Block IO polling
has been supported since Linux 4.4. There are numerous
other performance benefits to avoiding context switching,
such as not polluting hardware and memory caches (TLB),
reducing CPU power state transitions, and reduced interrupt
handling overhead. This results in not only lower latency
for individual IOs, but overall greater IO throughput [25].
However, continuously polling for IO completion uses 100%
of a core, which puts significant pressure on CPU resources.

2.3 Hybrid Polling

Instead of continuously polling for IO completion, hybrid
polling (available since Linux 4.10) sleeps the task before
starting to poll [13]. This has two modes: fixed, in which a
user-specified sleep time (with microsecond resolution) can
be assigned for all polled requests, and automatic, where
the kernel sleeps for half the mean device service time. The
block layer maintains statistics on service times separately
for eight request sizes (512 B through 64 KB) and read/write
types, collected once over a 100 ms period, triggered by the
first IO request. For example, if the IO is expected to complete
in 8 ps, the kernel sleeps for 4 psbefore polling [2].

3 ENERGY EFFICIENT 10 COMPLETION

In this section, we first demonstrate how classic and hybrid
polling achieve their design goals, then we look into the
additional costs associated with polling and interrupt, and
finally present our energy efficiency analysis.

3.1 Methodology and Experimental Setup

Our test system is a Dell PowerEdge R230 with a single-
socket Intel Xeon E3-1230 v5 quad-core CPU (3.4 GHz) and
64 GB RAM. Our test storage device is an Intel Optane 900P

60

B. Harris and N. Altiparmak

SSD, a PClIe 3 ULL SSD capable of sub-10 ps read latency.
Our system also contains a Dell-certified flash SSD used
only as the OS disk, and not used for IO workloads in the
experiments. We used Ubuntu 20.04 and upgraded the Linux
kernel to version 5.15.16 (the latest longterm release). CPU
C-states are enabled, as this is a basic power saving feature
and the default for many systems and distributions.

In order to measure the power consumption of the en-
tire system, we used an in-line power meter (Onset HOBO
UX120-018 [21]) connected to the sole power supply of our
test system. This power meter is entirely self contained; it
measures voltage, current, power, etc., once a second and
records to embedded memory. Only after experiments have
completed is the data copied from the meter via USB. The
power meter’s real-time clock and host’s system clock are
synchronized to the same NTP server.

Our microbenchmark workloads use fio, the Flexible IO
tester [10] version 3.29, to generate a constant stream of
synchronous random reads using the preadv2 function. This
is the only API through the traditional IO path that supports
completion polling, which requires using the RWF_HIPRI
and O_DIRECT flags, thus avoiding the page cache. We used
the ext4 file system with the “none” IO scheduler, the default
for many distributions. We ran an array of microbenchmarks
similar to other authors [14, 24] using request sizes from 1 KB
through 128 KB and a number of threads from 1 through 64.
Since we used synchronous requests, the number of threads
is also the total number of outstanding requests (IO depth).

In order to record a sufficient number of power measure-
ments from the power meter, we ran each workload for a
fixed two minutes. In order to avoid any initial effects such
as caching, we used a warm up (“ramp time”) of 10 seconds.
All results presented are the average of 10 replicates.

3.2 Goals of Polling

First, we verify that classic and hybrid polling achieve their
intended design goals of improved performance over inter-
rupts and, for hybrid polling, reduced CPU utilization over
classic polling.

Observation 1. Both classic and hybrid polling show
improved performance over interrupts.

The motivation of using polling-based 10 completion
for ULL IO is to achieve improved performance over inter-
rupts [25]. Our first observation confirms that both classic
and hybrid polling achieve this goal with our Optane SSD.
Table 1 compares the average latency and throughput (IOPS)
using 4 KB random read workloads. For a single thread, clas-
sic polling has the lowest latency of 8.1 ps, a 2-us improve-
ment over interrupts. Hybrid polling is not far behind, with
only a slight 0.4 ps latency cost over classic polling. This
improved latency for both polling methods corresponds to

When Poll is More Energy Efficient than Interrupt

800% -

2.5 GB/s -

600% - /

2 GB/s -

1.5GB/s -

1GB/s -

CPU (user + system)

Throughput (MB/s)

512 MB/s 22

64 1 2 4 8 16 32 64
Number of threads (10 depth)

1 2 4 8 16 32
Number of threads (IO depth)
= interrupt - = classic

— interrupt == classic

(a) Performance (MB/s)

— - hybrid =+ hybrid

(b) CPU (user+sys)

Power

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

100 W-

80 W-

Power

1 2 4 8
Number of threads (10 depth)

16 32 64 0% 200% 400% 600%

CPU (user + system)

800%

== classic ==+ hybrid = interrupt == classic ==+ hybrid

(d) Power vs. CPU

- interrupt

(c) Power (watts)

Figure 1: Performance and basic cost comparison

Table 1: Basic performance comparison (4 KB reads)

1 Thread 8 Threads
10 Completion Latency IOPS Latency IOPS
Classic polling 8.1us 120,470 13.6 us 571,659
Hybrid polling 8.5us 113,846 139 pus 546,968
Interrupt 10.1pus 96,722 15.0 uys 511,895

an increased throughput over interrupts of roughly 24K IOPS
and 17K IOPS more for classic and hybrid polling, respec-
tively. Even at the saturation point of eight threads these
improvements remain. Figure 1a further illustrates these per-
formance trends with bandwidth (MB/s), where both polling
methods outperform interrupts until device saturation.

Observation 2. Hybrid polling uses more CPU than
interrupts and less than classic polling.

Although classic polling outperforms interrupts, it comes
at an obvious cost to CPU usage. The motivation of hybrid
polling is to use less CPU than classic polling by sleeping
for half the expected latency before polling begins [13]. We
directly observed this reduction in CPU usage, as shown in
Figure 1b. As intended, hybrid consistently uses less CPU
than classic polling, but this usage is still higher than inter-
rupts. Polling for half the latency still requires more CPU
than sleeping for the entire latency using an interrupt. How-
ever, as we show next, hybrid polling has other costs in
addition to CPU usage.

3.3 Costs of Polling

Here we observe the costs of polling, first in terms of power
consumption and then we investigate additional costs.

Observation 3. CPU utilization does not directly correspond
to power consumption of the entire system.

Figure 1c shows the overall power consumption of our test
system for the three IO completion methods. If one assumes
that power consumption is directly related to CPU usage
(Fig. 1b), then he would expect power (Fig. 1c) to show similar
trends. Notice that hybrid polling has a surprisingly high
power consumption. Unlike its CPU usage, hybrid polling’s
power can exceed even that of classic polling. Moreover,
classic polling can use even less power than interrupts.

61

These results clearly warn us against making quick as-
sumptions about power consumption based solely on CPU
usage. In order to outline this better, Figure 1d directly com-
pares CPU usage (Fig. 1b) to power consumption (Fig. 1c).
Power consumption of the three completion methods does
not scale equally based on CPU usage, indicating that there
must be other factors affected by the choice of completion
method that also contribute significantly to power. In other
words, simply reducing CPU usage does not necessarily cor-
respond to power savings. Next, we explore the reasons
behind this by looking at other system software costs.

Observation 4. Hybrid polling triggers as many context
switches as interrupts, while classic polling triggers none.

Context switching refers to the switching of a processor
from one task to another, and it is known to be a costly op-
eration as it requires the execution of the CPU scheduler,
storing the CPU context to memory for the task that is be-
ing scheduled-out, loading the CPU context from memory
for the task that is being scheduled-in, and flushing TLB
entries [18]. Using getrusage(2), fio records the number of
context switches for its worker threads. Figure 2a shows
the rate of context switches as a function of IO depth. First,
we can notice that classic polling has no noticeable context
switch cost. On the other hand, both hybrid polling and in-
terrupts have context switch rates directly correlated to their
throughput. If we divide Fig. 2a by IOPS, we have the aver-
age number of context switches per IO, shown in Figure 2b.
This clearly indicates that both hybrid polling and interrupts
have, on average, one context switch per IO. Next, we ob-
serve the costs associated with these context switches for
hybrid polling as increased load & store operations.

Observation 5. Hybrid polling has a high cost in load &
store operations associated with context switches.

While interrupt has its cost of context switching and clas-
sic polling has its cost of polling, hybrid polling has the
combined costs of both. Here we measure the number of
load/store operations, and further attribute them to high-
level operations in the kernel. Polling requires continuously
checking for completion through memory-mapped device
controller registers. Context switching requires loads and
stores by the CPU scheduler and the dispatcher as contexts

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

B. Harris and N. Altiparmak

e o o pm
» o ®» o
' | |

ontext switches per |10
o
N
)

Context switches per sec

\ interrupt and hybrid lines overlap

C

<}

o
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- E

2Gis-

3 block/

3 drivers/nvme/host/
EEN kernel/sched/
3 kernel/time/

[other

1Gis-

(Loads + Stores) per sec

2 4

=

1 2 4 8 16 32 64
Number of threads (IO depth)

= interrupt == classic ==+ hybrid

(a) Context switches per second

- interrupt

8

Number of threads (10 depth)

== classic —

(b) Context switches per IO

16 32 64 o

interrupt classic hybrid
hybrid

(c) Loads/stores by kernel source

Figure 2: Additional costs of polling

are switched in and out of processors and the scheduler’s
data structures are modified. If these memory values do not
change frequently, most of these load/store operations will be
handled by the CPU cache rather than DRAM. Even if polling
or context switching do not require continuous DRAM oper-
ations, they can add considerable cost to the CPU die that is
not accounted for by process CPU utilization alone. In order
to measure these costs, we recorded the number of loads
and stores using Intel’s VTune profiler [5] while running
our fio workloads. Furthermore, we attribute loads/stores to
specific portions of the kernel by looking at per-function in-
formation from the profiler. However, since the Linux kernel
contains thousands of source files with thousands of func-
tions, we map function names to source files using cscope [1],
and aggregate functions into sections based on the directory
of the kernel source tree in which they are defined: block/
is the block layer, drivers/nvme/host/ is the NVMe driver,
kernel/sched/ is the CPU scheduler, etc.

Let us examine in depth a case of 4 KB reads after satura-
tion (32 threads), shown in Table 2. Values shown are sums
of the number of load and store operations, averaged over
the two-minute workload and rounded to the nearest million
per second. To emphasize specific operations in further de-
tail, we share a breakdown into selected functions below the
source directory grouping. We illustrate the main sections
of Table 2 with Figure 2c.

First, let us look at the cost of polling; notice that the cost
from the block layer (block/) is lowest for interrupts, highest
for classic, and with hybrid roughly halfway between the
two. The most significant individual function in this section
is blk_poll, which performs the polling for IO completion. As
one may expect, hybrid polling performs half the blk_poll
accesses as classic since it sleeps for half the expected de-
vice latency. The blk_poll function internally calls nvme_poll
of the NVMe driver to query the completion queues, and
so we also see similar contributions to the cost from dri-
vers/nvme/host/, with more accesses for classic than hybrid.

To approximate the cost from the block multiqueue sub-
system, we group the 15 functions with the prefix blk_mq_
in the block/ section. Although both polling methods have
greater cost than interrupts, there is little difference between

62

Table 2: Load/store operations (millions per second)

Source Interrupt Classic Hybrid

[] block/ 386 759 533
blk_poll 0 219 70
blk_mq_x (36 functions) 111 158 156
(109 other functions) 274 383 307

[drivers/nvme/host/ 51 207 111

[kernel/sched/ 598 41 786
__schedule 13 0 13
psi_task_change 11 0 13
update_load_avg 14 0 22
(285 other functions) 560 41 739

[] kernel/time/ 65 22 154
ktime_get 10 14 22
hrtimer (33 functions) 0 1 100
(56 other functions) 55 8 33

[] (other sources) 1611 2160 2029

Total 2710 M/s 3190 M/s 3612 M/s

classic and hybrid from blk-mgq. Greater differences come
from context switching, visible from the CPU scheduler ker-
nel/sched/. The breakdown by function in Table 2 shows the
three most significant functions. Since classic polling never
voluntarily gives up its processor core, loads/stores from
the scheduler is minimal. On the other hand, interrupts and
hybrid both voluntarily give up their processor, and so the
scheduler must switch out their contexts, schedule another
task, and switch them back in when either the interrupt
occurs or hybrid’s sleeper timer expires, resulting in signifi-
cantly more accesses. For interrupts and hybrid polling, this
cost of switching is greater than their costs from the block
layer. Furthermore, the cost of hybrid polling attributed to
the scheduler (786 M/s) is comparable to the costs of polling
in the block layer for classic (759 M/s). Hybrid has costs
associated with both polling and scheduling. Although hy-
brid polling may use less CPU utilization by sleeping, the
load/store costs of switching its context in and out of CPU
can be significant and should not be overlooked.

Hybrid polling uses a high resolution kernel timer
(hrtimer) to sleep before polling, which further contributes
to its load/store costs. We combine 33 functions with the
substring “hrtimer” from kernel/time/, which is 100 M/s for

When Poll is More Energy Efficient than Interrupt

hybrid polling and negligible for interrupts and classic. While
not as significant as other contributors, it appears to be an
implementation choice that primarily affects hybrid polling.

In summary, although hybrid polling saves CPU utiliza-
tion over classic polling (Obs. 2), it adds significantly to
load/store operations due to the combined costs of polling
and context switching. As illustrated in Figure 2c, the num-
ber of loads/stores from the task scheduler (kernel/sched/)
and sleeper timer (kernel/time/) add significantly to the costs
of hybrid polling over classic polling. Next, we directly com-
pare power and performance to determine which of the three
methods is the most energy efficient.

3.4 When Poll is More Energy Efficient

When analyzing energy efficiency, one must consider not
only power consumption but also performance. We there-
fore use the ratio of performance (MB/s) to power (watts, or
joules per second) as our metric for energy efficiency, which
simplifies to bytes per joule (B/]).

128 KB4 4.0M
64 KB4 tie
8 32k89 303 15M
&
§ 16kB 1 581K 736K 26M 5.4M
& sxe{ 9K ot SOK 1M UM 1M 1M
4KB{ 586K 241K 731K 26M 16M 18M 2M
1KB{ M5K 132K 255K 07K 629K 628K 568K
i é li é 1‘6 3‘2 6‘4

Number of threads (IO depth)

B hybrid is most efficient
[tie (p>0.05)

Il interrupt is most efficient

BN classic is most efficient
Figure 3: Most efficient completion method and differ-
ence in energy efficiency (B/])

Figure 3 shows the most energy efficient IO completion
method for our tested range of request sizes and IO depths.
The value in each tile is the difference in energy efficiency
(bytes per joule) between the most efficient completion
method and the next. If the top two methods have no sig-
nificant difference (p > 0.05) between the two sets of 10
replicates using an independent two-sample Student ¢-test,
the tile is marked as a “tie”

Observation 6. Polling can be more energy efficient than
interrupts.

To our surprise, for requests with low IO latencies, we
observed that classic polling is the most energy efficient
method. This goes against the common assumption that
continuously polling is more energy hungry than interrupts
or hybrid polling. We believe that this observation can inform
future IO completion designs for ULL disk IO. As it is clear
from Fig. 3, the competition is generally between interrupts

63

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

and classic polling, motivating new hybrid IO completion
mechanisms that can switch between classic polling and
interrupts for better energy efficiency.

4 RELATED WORK

Existing energy efficiency research regarding solid-state stor-
age has mainly focused on the design tradeoffs of flash SSDs
for improved energy efficiency [12], the impact of SSD RAIDs
on server energy consumption [23], power consumption
characteristics of ULL SSDs [16], and the impact of Op-
tane SSDs on energy efficiency [14]. However, no previous
work focused on system software’s impact on energy effi-
ciency. From the performance perspective, within the last
decade both industry and academia indicated the suitabil-
ity of polling based IO completion methods for improved
latency in ULL storage devices [11, 13, 15, 19, 22, 25-27].
Classic polling has been implemented in the Linux kernel
since version 4.4 and hybrid polling since version 4.10 [13].
In addition, a selective polling/interrupt technique has also
been proposed [27]. Finally, polling has also been included
in alternative/custom IO interfaces such as io_uring [8, 9]
based on user/kernel space shared memory approach and the
SPDK kernel-bypass system [26]. To the best of our knowl-
edge, there is no previous work investigating the impact of
IO completion on overall energy efficiency.

5 CONCLUSION AND DISCUSSION

We analyzed the energy efficiency of three IO completion
mechanisms available in the Linux kernel for ULL IO: tra-
ditional interrupts, classic polling, and hybrid polling. Al-
though both polling methods require more CPU utilization
than interrupts, this does not necessarily correspond to pro-
portionally more power consumption or less energy effi-
ciency. In particular, hybrid polling inherits both the CPU
cost of classic polling and the context switching cost of in-
terrupt, making it the least energy efficient. Based on our
experiments, classic polling is the most energy efficient for
low-latency requests, and interrupt for high-latency requests.
Although polling being more energy efficient than interrupt
may be counter-intuitive, our result should encourage wider
support for polling, as we expect ULL devices to have more
widespread use and even lower latency performance. We
would also like to caution against using CPU utilization alone
as a shorthand for energy consumption determination, and
instead encourage them to look at the power consumption
of the entire system.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This research was supported in part by the U.S. Na-
tional Science Foundation (NSF) under grants OIA-1849213
and CNS-2050925.

HotStorage ’22, June 27-28, 2022, Virtual Event, USA

REFERENCES

[1] 2012. Cscope v15.9. http://cscope.sourceforge.net/
[2] 2017. Hybrid Block Polling.

[12

(13

(14

[15

[16

(17

—

=

]

]

]

—

https://kernelnewbies.org/Linux_4.10#Hybrid_block_polling

2017. Samsung SZ985 Z-NAND SSD.
https://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-
NAND_Technology_Brief v5.pdf.

2018. Intel Optane SSD 900P Series Product Brief.
https://www.intel.com/content/dam/www/public/us/en/documents/
product-briefs/optane-ssd-900p-brief.pdf.

2020. Intel VTune Profiler. https://software.intel.com/content/www/
us/en/develop/tools/oneapi/components/vtune-profiler.html

2022. Intel Optane SSD DC P5800X Series.
https://ark.intel.com/content/www/us/en/ark/products/201840/intel-
optane-ssd-dc-p5800x-series-3-2tb-2-5in-pcie-x4-3d-xpoint.html.
Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2018.
Operating Systems: Three Easy Pieces (1.00 ed.). Arpaci-Dusseau Books.

Jens Axboe. 2019. Efficient IO through io_uring.
https://kernel.dk/io_uring.pdf.

Jens Axboe. 2019. Faster IO through io_uring.
https://kernel-recipes.org/en/2019/talks/faster-io-through-io_uring/.
Kernel Recipes, 2019.

Jens Axboe. 2022. Flexible I/O Tester. https://github.com/axboe/fio.
Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K.
Gupta, and Steven Swanson. 2010. Moneta: A High-Performance
Storage Array Architecture for Next-Generation, Non-Volatile
Memories. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO °10). IEEE
Computer Society, USA, 385-395.
https://doi.org/10.1109/MICRO.2010.33

Seokhei Cho, Changhyun Park, Youjip Won, Sooyong Kang, Jachyuk
Cha, Sungroh Yoon, and Jongmoo Choi. 2015. Design Tradeoffs of
SSDs: From Energy Consumption’s Perspective. ACM Trans. Storage
11, 2, Article 8 (March 2015), 24 pages.
https://doi.org/10.1145/2644818.

Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. 2018. Reducing DRAM Footprint with NVM in Facebook. In
Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal)
(EuroSys ’18). Association for Computing Machinery, New York, NY,
USA, Article 42, 13 pages. https://doi.org/10.1145/3190508.3190524
Bryan Harris and Nihat Altiparmak. 2020. Ultra-Low Latency SSDs’
Impact on Overall Energy Efficiency. In 12th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage "20). USENIX
Association.

Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect:
A User-space I/O Framework for Application-specific Optimization
on NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage ’16). USENIX Association, Denver, CO.
https://www.usenix.org/conference/hotstorage16/workshop-
program/presentation/kim

S. Koh, J. Jang, C. Lee, M. Kwon, J. Zhang, and M. Jung. 2019. Faster
than Flash: An In-Depth Study of System Challenges for Emerging
Ultra-Low Latency SSDs. In 2019 IEEE International Symposium on
Workload Characterization (IISWC). 216-227.
https://doi.org/10.1109/IISWC47752.2019.9042009.

Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W. Lee,
and Jinkyu Jeong. 2019. Asynchronous I/O Stack: A Low-latency
Kernel I/O Stack for Ultra-Low Latency SSDs. In 2019 USENIX Annual
Technical Conference (USENLX ATC ’19). USENIX Association, Renton,

64

B. Harris and N. Altiparmak

WA, 603-616.
https://www.usenix.org/conference/atc19/presentation/lee-gyusun.
Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost
of context switch. In Proceedings of the 2007 workshop on Experimental
computer science. 2—es.

Damien Le Moal. 2016. I/O Latency Optimization with Polling.
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-
nvme-polling-vault-2017-final_0.pdf.

Shigeo (Jeff) Ohshima. 2018. Scaling Flash Technology to Meet
Application Demands. https:
//flashmemorysummit.com/English/Conference/Keynotes.html.
Onset 2021. HOBO® UX120-018 Data Logger (datasheet). Onset.
https://www.onsetcomp.com/datasheet/UX120-018.

S. Swanson and A. M. Caulfield. 2013. Refactor, Reduce, Recycle:
Restructuring the I/O Stack for the Future of Storage. Computer 46, 8
(2013), 52-59.

Erica Tomes and Nihat Altiparmak. 2017. A Comparative Study of
HDD and SSD RAIDs’ Impact on Server Energy Consumption. In 19th
IEEE International Conference on Cluster Computing (CLUSTER 2017).
Honolulu, Hawaii. https://doi.org/10.1109/CLUSTER.2017.103.

Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019.
Towards an Unwritten Contract of Intel Optane SSD. In 11th USENLX
Workshop on Hot Topics in Storage and File Systems (HotStorage '19).
USENIX Association, Renton, WA. https:
//www.usenix.org/conference/hotstorage19/presentation/wu-kan.
[25] Jisoo Yang, Dave B. Minturn, and Frank Hady. 2012. When Poll is
Better than Interrupt. In Proceedings of the 10th USENIX Conference on
File and Storage Technologies (San Jose, CA) (FAST ’12). USENIX
Association, USA, 3.

Z.Yang,]. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, and L. E. Paul. 2017. SPDK: A Development Kit to
Build High Performance Storage Applications. In 2017 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). 154-161. https://doi.org/10.1109/CloudCom.2017.14.

Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon Koh,
Changlim Lee, Mohammad Alian, Myoungjun Chun, Mahmut Taylan
Kandemir, Nam Sung Kim, Jihong Kim, and Myoungsoo Jung. 2018.
FlashShare: Punching Through Server Storage Stack from Kernel to
Firmware for Ultra-Low Latency SSDs. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’18). USENIX
Association, Carlsbad, CA, 477-492.
https://www.usenix.org/conference/osdi18/presentation/zhang.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

