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Abstract
We study several model-theoretic aspects of W∗-probability spaces, that is, σ-finite von
Neumann algebras equipped with a faithful normal state. We first study the existentially
closed W∗-spaces and prove several structural results about such spaces, including that they
are type III1 factors that tensorially absorb the Araki–Woods factor R∞. We also study the
existentially closed objects in the restricted class of W∗-probability spaces with Kirchberg’s
QWEP property, proving that R∞ itself is such an existentially closed space in this class. Our
results about existentially closed probability spaces imply that the class of type III1 factors
forms a ∀2-axiomatizable class.We show that for λ ∈ (0, 1), the class of IIIλ factors is not ∀2-
axiomatizable but is ∀3-axiomatizable; this latter result uses a version of Keisler’s Sandwich
theorem adapted to continuous logic. Finally, we discuss some results around elementary
equivalence of IIIλ factors. Using a result of Boutonnet, Chifan, and Ioana, we show that,
for any λ ∈ (0, 1), there is a family of pairwise non-elementarily equivalent IIIλ factors of
size continuum. While we cannot prove the same result for III1 factors, we show that there
are at least three pairwise non-elementarily equivalent III1 factors by showing that the class
of full factors is preserved under elementary equivalence.
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1 Introduction

The model-theoretic study of von Neumann algebras began in earnest with the series of
papers [15, 16], and [17] by Farah, Hart and Sherman. There, a theory in a (continuous) first-
order language was described for which there was an equivalence of categories between the
models of the theory and the category of tracial von Neumann algebras for which the model-
theoretic ultraproduct construction corresponded to the tracial ultraproduct construction.
In the time since these papers appeared, there has been a very interesting interplay between
model-theoretic and operator-algebraic techniques; recent examples of applications ofmodel-
theoretic techniques to problems about tracial von Neumann algebras can be found in the
papers [4, 20], and [22].

That a model-theoretic study of a wider class of von Neumann algebras (that is, beyond
the finite realm) should be possible is hinted at by the existence of the Ocneanu ultraproduct
construction, which allows one to take the ultraproduct of a family ofW∗-probability spaces,
that is, σ-finite von Neumann algebras equipped with a faithful, normal state. (The relevant
facts aboutW∗-probability spaces needed in this paper are summarized in Sect. 2.) Motivated
by the Ocneanu ultraproduct, Farah and Hart, in an unpublished work, observed that the
category of σ-finite von Neumann algebras forms a so-called compact abstract theory (or
CAT), which is a logical framework predating the current incarnation of continuous first-
order logic. The first person to axiomatize (in the sense of the previous paragraph) W∗-
probability spaces in an appropriate continuous first-order language was Dabrowski [13];
in particular, the model-theoretic ultraproduct construction for this class corresponds to the
Ocneanu ultraproduct construction. Dabrowski’s axiomatization is quite technical and uses
a fair amount of modular theory. A simpler (but less descriptive) axiomatization was given
by Hart, Sinclair, and the first author in [23].

Now that the class ofW∗-probability spaces has been established as an axiomatizable class
in an appropriate language, it is only natural to begin a thoroughmodel-theoretic study of this
class. In this paper, we initiate this endeavor. Our main focus will be on studying the class
of existentially closed W∗-probability spaces. The notion of an existentially closed structure
is the model-theoretic generalization of the notion of an algebraically closed field. Roughly
speaking, given structuresM andN (in some language) for whichM is a substructure ofN ,
we say thatM is an existentially closed substructure ofN (or thatM is existentially closed
inN ) if any existential fact about some elements ofM which is true inN is also true inM.
Considering that we are in the setting of continuous logic, truth in M is really approximate
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truth. Thankfully, this syntactic definition of existentially closed substructure can be given a
semantic reformulation that aligns much more with the operator-algebraic perspective:M is
an existentially closed substructure of N if and only if there is an embedding of N into an
ultrapowerMU ofM for which the restriction of the embedding toM is the usual diagonal
embedding of M into its ultrapower. If M belongs to some class C of structures, we say
that the structure M is existentially closed for C if it is existentially closed in all extensions
belonging to C.

The Robinsonian school ofmodel theory encourages one to understand the class ofmodels
of a theory by understanding its class of existentiallly closed models, that is, the models of
the theory which are existentially closed for the class of models of the theory. The study of
existentially closed tracial von Neumann algebras was carried out in the papers [18, 19, 24],
and [21]. In Sect. 3 of this paper, we carry out a systematic study of the class ofW∗-probability
spaces. In Sect. 3.1, we describe some properties of aW∗-probability space that are inherited
by an existentially closed substructure. In particular, we show that if theW∗-probability space
(M,ϕ) is existentially closed in (N,ψ) and N is a type III1 factor, then so is M. This aids us
in our study of the class of existentially closed W∗-probability spaces in Sect. 3.2, where we
show that any such W∗-probability space is necessarily a type III1 factor, which generalizes
the result that an existentially closed tracial von Neumann algebra is necessarily a type II1
factor. Other facts about existentially closed tracial von Neumann algebras are generalized
to this setting, such as they tensorially absorb the Araki-Woods factor R∞ (generalizing the
fact that any existentially closed II1 factor tensorially absorbs the hyperfinite II1 factor R) and
that every automorphism of an existentially closed W∗-probability space is approximately
inner.

If one restricts one’s attention to the class of tracial von Neumann algebras that satisfy
the conclusion of the Connes Embedding Problem, that is, that admit a trace-preserving
embedding into the tracial ultrapower of the hyperfinite II1 factor R, then one obtains the
fact that R itself is an existentially closed element of this class. Since a tracial von Neumann
algebra embeds into the tracial ultrapower of R precisely when it has Kirchberg’s QWEP
property [34], it is natural to restrict attention to the class of QWEP W∗-probability spaces.
In fact, a result of Ando, Haagerup, and Winslow [2] shows that this class of W∗-probability
spaces can be characterized by admitting an embedding (with expectation) into the Ocneanu
ultrapower of the Araki-Woods factor R∞, or, as we show below, in model-theoretic terms,
is a model of the universal theory of R∞. We show that R∞ is an existentially closed QWEP
W∗-probability space and prove a few further results about this class of structures. Section
3.4 is concerned with the technique of building W∗-probability spaces by games, which is a
technique (first introduced in the continuous setting in [21]) that is very useful when trying to
build e.c. objects with extra properties. The section concludes with Sect. 3.5, which contains
some open questions about existentially closed W∗-probability spaces.

Section 4 contains two further collections of results about the model theory of W∗-
probability spaces. The first collection of results concerns the axiomatizability of various
classes of type III factors. It is shown in [2] that, given any λ ∈ (0, 1], the Ocneanu ultra-
product of a family of type IIIλ factors is again a type IIIλ factor and a factor is of type
IIIλ if its Ocneanu ultrapower is as well. Model-theoretically, this implies that the class of
W∗-probability spaces whose underlying von Neumann algebra is a type IIIλ factor forms
an axiomatizable class. In Sect. 4.1, we show that the results of our analysis of existentially
closed W∗-probability spaces implies that the class of type III1 W∗-probability spaces nec-
essarily has a ∀2-axiomatization, that is, has a set of axioms of the form supx infy θ(x,y),
where x and y are finite tuples of variables and θ is a quantifier-free formula. We show
that for a fixed λ ∈ (0, 1), the class of IIIλ factors cannot be axiomatized using two quan-
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tifiers but can be axiomatized using three quantifiers. In none of these cases do we provide
explicit axiomatizations but instead use a “soft” criterion for establishing the existence of
such axiomatizations given by the Keisler Sandwich theorem.

In Sect. 4.2, we study the notion of elementary equivalence of W∗-probability spaces.
TwoW∗-probability spaces are elementarily equivalent if they cannot be distinguished using
a first-order sentence. Using the Keisler-Shelah theorem, this can be given a semantic refor-
mulation, namely that they have isomorphic ultrapowers. We first show how the result
of Boutonnet, Chifan, and Ioana [6] stating that McDuff’s family [36] of pairwise non-
isomorphic separable II1 factors are in fact pairwise non-elementarily equivalent can be used
to show that there exist continuum many non-elementarily equivalent separable type IIIλ
W∗-probability spaces for any λ ∈ (0, 1). We are currently unable to extend this result to
include λ = 1 but are able to identify at least three non-elementarily equivalent separable
type III1 W∗-probability spaces. In order to accomplish this, we show that the class of non-
full IIIλ factors (for fixed λ ∈ (0, 1]) is an axiomatizable class, generalizing the theorem
of Farah, Hart, and Sherman [17] that the class of type II1 factors with property Gamma is
axiomatizable. This subsection includes a number of interesting open questions about the
study of elementary equivalence of W∗-probability spaces.

There are twoappendices in this paper. Thefirst appendix contains results about embedding
AFDW∗-probability spaces into ultraproducts that are needed in various portions of the paper;
most of the results in this appendix are unpublished results ofAndo and the second author. The
second appendix concerns Keisler’s Sandwich Theorem, which is the main model-theoretic
tool needed in our axiomatization results appearing in Sect. 4.1. Since the continuous logic
version of this result has never appeared, we include a complete proof of the result here.
Moreover, we present the result using ultrapowers rather than arbitrary elementary extensions
in the interest of the operator-algebraic audience.

We have made every attempt to keep the model-theoretic prerequisites for this paper to
a minimum and try to use “semantic” definitions and proofs whenever possible. That being
said, on a few occasions, we need to refer to basic model-theoretic terminology, such as
elementary equivalence, elementary embedding, or first-order formula. A short introduction
aimed towards operator algebraists (albeit in the language of tracial von Neumann algebras)
can be found in Sects. 2.1 and 2.3 of [4].

2 Preliminaries

2.1 Basic facts aboutW*-probability spaces

For every von Neumann algebra M, we denote by ‖ · ‖∞ its uniform norm, by M∗ its
predual, by Z(M) its center, by Sfn(M) the set of faithful normal states on M, by U(M)

its unitary group, by Ball(M) its unit ball with respect to the uniform norm, by Aut(M)

its automorphism group and by (M,L2(M), J,L2(M)+) its standard form (see [25]). Under
the identification M = (M∗)∗, the ultraweak topology on M coincides with the weak-∗
topology on (M∗)∗. A linear map Φ : M → N is said to be normal if it is ultraweakly
continuous.

A W∗-probability space is a pair (M,ϕ) that consists of a σ-finite von Neumann alge-
bra M endowed with a faithful normal state ϕ ∈ Sfn(M). For every x ∈ M, write
‖x‖ϕ = ϕ(x∗x)1/2 (resp. ‖x‖�

ϕ = ϕ(x∗x)1/2 + ϕ(xx∗)1/2). On uniformly bounded sets,
the topology induced by the norm ‖ · ‖ϕ (resp. ‖ · ‖�

ϕ) coincides the strong (resp. ∗-strong)
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Existentially closed W*-probability spaces 3791

operator topology. We denote by σϕ the modular automorphism group associated with the
stateϕ. By definition, the centralizer Mϕ of the stateϕ is the fixed point algebra of (M,σϕ).
The continuous core of M with respect to ϕ is the crossed product von Neumann algebra
cϕ(M) = M�σϕ R. The natural inclusion πϕ : M → cϕ(M) and the strongly continuous
unitary representation λϕ : R → cϕ(M) satisfy the covariance relation

λϕ(t)πϕ(x)λϕ(t)∗ = πϕ(σϕ
t (x)) for all x ∈ M and all t ∈ R.

Set Lϕ(R) = λϕ(R)′′ ⊂ cϕ(M). There is a unique faithful normal conditional expectation
ELϕ(R) : cϕ(M) → Lϕ(R) satisfying ELϕ(R)(πϕ(x)λϕ(t)) = ϕ(x)λϕ(t). The faithful
normal semifinite weight defined by f �→ ∫

R
exp(−s)f(s) ds on L∞(R) gives rise to a

faithful normal semifinite weight Trϕ on Lϕ(R) via the Fourier transform. The formula
Trϕ = Trϕ ◦ELϕ(R) extends it to a faithful normal semifinite trace on cϕ(M). Define the
dual action θϕ : R � cϕ(M) by the formula

θϕ
s (πϕ(x)λϕ(t)) = exp(−ist)πϕ(x)λϕ(t) for all x ∈ M and all s, t ∈ R.

Then θϕ
ϕ : R � cϕ(R) is a trace-scaling action in the sense that Trϕ ◦θϕ

s = exp(−s)Trϕ
for every s ∈ R.

Let ψ ∈ Sfn(M) be any other faithful normal state. By Connes’ Radon–Nikodym
cocycle theorem [7,Théorème 1.2.1] (see also [42,Theorem VIII.3.3]), there is a ∗-strongly
continuous map u : R → U(M) : t �→ ut such that

1. us+t = usσϕ
s (ut) for all s, t ∈ R,

2. σ
ψ
t (x) = utσ

ϕ
t (x)u∗

t for all t ∈ R and all x ∈ M.

Item (1) says that u : R → U(M) is a 1-cocycle for σϕ while Item (2) says that σϕ and σψ

are cohomologous. Then the ∗-isomorphismΠϕ,ψ : cϕ(M) → cψ(M) : πϕ(x)utλϕ(t) �→
πψ(x)λψ(t) satisfies Πϕ,ψ ◦πϕ = πψ, Πϕ,ψ ◦θϕ = θψ ◦Πϕ,ψ and Trψ ◦Πϕ,ψ = Trϕ.
Note however thatΠϕ,ψ does not map the subalgebra Lϕ(R) ⊂ cϕ(M) onto the subalgebra
Lψ(R) ⊂ cψ(M). It follows that the triple (cϕ(M), θϕ, Trϕ) does not depend on the choice
of the faithful normal state ϕ ∈ Sfn(M) and we simply denote it by (c(M), θ, Tr).

Assume now that M is a factor. The restriction of θ to the center Z(c(M)) is called the
flow of weights. By factoriality of M, the flow of weights θ : R � Z(c(M)) is ergodic.

• If θ : R � Z(c(M)) corresponds to the translation action R � R, then M is semifinite,
that is, M is of type I or II.

• If θ : R � Z(c(M)) is periodic with period T > 0, then letting λ = exp(−T), we say
that M is of type IIIλ.

• If θ : R � Z(c(M)) has no period, then we say that M is of type III0.
• If θ : R � Z(c(M)) is trivial, that is, Z(c(M)) = C1, then we say that M is of type

III1.

Next, we define Connes’ S-invariant S(M) as the intersection

S(M) =
⋂

ϕ∈Sfn(M)

σ(Δϕ)

where σ(Δϕ) is the spectrum of the modular operatorΔϕ associated with the faithful normal
stateϕ ∈ Sfn(M). ThenS(M)\{0} is a closedmultiplicative subgroup ofR∗

+ that completely
determines the type of M. When M is a type III factor, we have that:

• M is of type III0 if and only if S(M) = {0, 1};
• M is of type IIIλ if and only if S(M) = {0} ∪ λZ, for λ ∈ (0, 1);
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• M is of type III1 if and only if S(M) = [0,+∞).

We also define Connes’ T -invariant T(M) as the set of all t ∈ R for which σϕ
t is an

inner automorphism. By Connes’ Radon–Nikodym cocycle theorem, the above definition
does not depend on the choice of the faithful normal state ϕ ∈ Sfn(M). Note that T(M)

is a subgroup of R. In case M is not of type III0, then T(M) is a closed subgroup of R that
completely determines the type of M. Indeed, we have that:

• M is semifinite if and only if T(M) = R;
• M is of type IIIλ if and only if T(M) = log(λ)Z, for λ ∈ (0, 1);
• M is of type III1 if and only if T(M) = {0}.

We refer to [7, 42] for further details regarding the structure of type III factors.
Throughout this paper, for λ ∈ (0, 1), (Rλ,ϕλ) denotes the Powers factor of type IIIλ

endowed with its (unique) 2π
| log(λ)| -periodic faithful normal state. By definition, we have

(Rλ,ϕλ) ∼= (M2(C),ωλ)
⊗N

where ωλ : M2(C) → C is defined by

ωλ

((
x11 x12
x21 x22

))
=

λ

1+ λ
x11 +

1
1+ λ

x22.

By Connes’ result [11] (see also [43,Theorem XVIII.1.1]), Rλi
is the unique AFD factor of

type IIIλi
. We also let R∞ denote the Araki-Woods factor. Combining Connes’ result [12]

and Haagerup’s result [26] (see also [43,TheoremXVIII.4.16]), R∞ is the unique AFD factor
of type III1 and moreover we have R∞

∼= Rλ1 ⊗Rλ2 whenever log(λ1)/ log(λ2) is irrational.
We next clarify what we mean by an inclusion of W∗-probability spaces.

Definition 2.1 For W∗-probability spaces (M,ϕ) and (N,ψ), we say that (M,ϕ) embeds
into (N,ψ), denoted (M,ϕ) ↪→ (N,ψ), if there exist a unital normal ∗-embedding ι : M →
N such that ψ ◦ ι = ϕ and a faithful normal conditional expectation E : N → ι(M) such
that ϕ ◦ ι−1 ◦ E = ψ.

In what follows, we identifyMwith ι(M), regardM ⊆ N as a von Neumann subalgebra,
and assume that ι : M → N is simply given by ι(x) := x. In that case, we say that
(M,ϕ) ⊆ (N,ψ) is an inclusion of W∗-probability spaces. By [42, Theorem IX.4.2], the
following assertions are equivalent:

1. (M,ϕ) ⊆ (N,ψ).
2. The modular automorphism group σψ leaves the subalgebra M ⊆ N globally invariant,

ψ|M = ϕ, and σϕ = σψ|M.

In that case, E : N → M is the unique faithful normal conditional expectation such that
ϕ ◦ E = ψ. Moreover, we have

Mϕ = {x ∈ M | ∀t ∈ R,σϕ
t (x) = x}

= {x ∈ M | ∀t ∈ R,σψ
t (x) = x} (since σϕ = σψ|M)

⊆ Nψ.
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2.2 Ocneanu ultraproducts ofW*-probability spaces

Let I be any nonempty directed set and U any nonprincipal ultrafilter on I. Let (Mi,ϕi)i∈I

be any family of W∗-probability spaces. Following [1], define

�∞(I,Mi) =

{

(xi)i ∈
∏

i∈I

Mi | sup
i∈I

‖xi‖∞ < +∞

}

IU =

{

(xi)i ∈ �∞(I,Mi) | lim
i→U

‖xi‖�
ϕi

= 0

}

MU = {(xi)i ∈ �∞(I,Mi) | (xi)i IU ⊂ IU and IU (xi)i ⊂ IU } .

Observe that IU ⊆ MU . The multiplier algebra MU is a C∗-algebra and IU ⊂ MU is a
norm closed two-sided ideal. Following [37, §5.1], we define the ultraproduct von Neumann
algebra by

∏

U (Mi,ϕi) := (Mi,ϕi)
U := MU/IU .We note that the proof given in [37, 5.1]

for the case when I = N and U ∈ β(N) \ N applies mutatis mutandis. We denote the image
of (xi)i ∈ MU in (Mi,ϕi)

U by (xi)
U .

We now focus on the particular case when (Mi,ϕi) = (M,ϕ) for some fixed W∗-
probability space (M,ϕ). In that case, we write (M,ϕ)U = (MU ,ϕU ) for the ultraprower
of (M,ϕ). For every x ∈ M, the constant sequence (x)i lies in the multiplier algebra MU .
We then identifyMwith (M+IU )/IU and regardM ⊂ MU as a von Neumann subalgebra.
The map EU : MU → M given by EU ((xi)

U ) = σ-weak limi→U xi is a faithful normal
conditional expectation. Moreover, we have ϕ ◦ EU = ϕU . Thus, (M,ϕ) ⊆ (M,ϕ)U is an
inclusion of W∗-probability spaces. Following [8, §2], set

MU =

{

(xi)i ∈ �∞(I,M) | lim
i→U

‖xiζ − ζxi‖ = 0,∀ζ ∈ L2(M)

}

.

Define the asymptotic centralizer von Neumann algebra by MU = MU/IU , which is a von
Neumann subalgebra ofMU . By [8, Proposition 2.8] (see also [1,Proposition 4.35]), we have
MU = (M ′ ∩ MU )ψU for every faithful normal state ψ ∈ Sfn(M).

Now let (Q,ψ) ⊆ (M,ϕ) be any inclusion of W∗-probability spaces and denote by
E : M → Q the unique faithful normal conditional expectation such that ψ ◦ E = ϕ. We
have �∞(I,Q) ⊂ �∞(I,M), IU (Q) ⊆ IU (M) and MU (Q) ⊆ MU (M). We then identify
QU = MU (Q)/IU (Q) with (MU (Q) + IU (M))/IU (M) and regard QU ⊂ MU as a
von Neumann subalgebra. Observe that the norm ‖ · ‖ψU on QU is the restriction of the

norm ‖ · ‖ϕU to QU . Observe moreover that (E(xi))i ∈ IU (Q) for all (xi)i ∈ IU (M)

and (E(xi))i ∈ MU (Q) for all (xi)i ∈ MU (M). Therefore, the mapping EU : MU →
QU given by EU ((xi)

U ) = (E(xi))
U is a well-defined conditional expectation satisfying

ψU ◦ EU = ϕU . Thus, (Q,ψ)U ⊆ (M,ϕ)U is an inclusion of W∗-probability spaces.

2.3 Automorphism group, fullness and w-spectral gap

Let M be any σ-finite von Neumann algebra. Recall that for every ϕ ∈ (M∗)+, there is
a unique vector ξϕ ∈ L2(M)+ such that ϕ(x) = 〈xξϕ, ξϕ〉 for all x ∈ M. The group
Aut(M) of all automorphisms ofM acts onM∗ by θ(ϕ) = ϕ◦θ−1 for all θ ∈ Aut(M) and
ϕ ∈ M∗. Following [8, 25], the u-topology on Aut(M) is the topology of pointwise norm
convergence on M∗, meaning that a net (θi)i∈I in Aut(M) converges to the identity idM

in the u-topology if and only if for all ϕ ∈ M∗ we have ‖θi(ϕ) −ϕ‖ → 0 as i → ∞. This
turns Aut(M) into a complete topological group. When M∗ is separable, Aut(M) is Polish.
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Since the standard form of M is unique, the group Aut(M) also acts naturally on L2(M) and
we have θ(ξϕ) = ξθ(ϕ) for every ϕ ∈ M+∗ . It follows that the u-topology coincides with
the topology of pointwise norm convergence on L2(M).

We introduce the following terminology:

Definition 2.2 We say that θ ∈ Aut(M) is

• approximately inner if there exists a net (ui)i∈I in U(M) such that Ad(ui) → θ in the
u-topology.

• weakly inner in the sense of [35] if the automorphism θ � id of M � Mop extends to
an automorphism of the C∗-algebra C∗

λ·ρ(M) generated by the standard representation

λ · ρ : M � Mop → B(L2(M)).

Any approximately inner automorphism is weakly inner (see [3,Theorem 4.1]) but the
converse is not true (see [35]).

We say that a σ-finite factor M is full if whenever (ui)i∈I is a net in U(Q) such that
Ad(ui) → idM in the u-topology, there exists a bounded net (λi)i∈I in C such that ui −

λi1 → 0 ∗-strongly. When M is tracial, M is full if and only if M does not have property
Gamma of Murray and von Neumann. It is known that a full factor is never of type III0 (see
[8, Theorem 2.12]). By [31,Corollary 3.7], if M is a full factor, then for any nonprincipal
ultrafilter U on any directed set I, we have M ′ ∩ MU = C1. (The converse is also true and
follows readily from the definitions.) It follows from the classification of amenable factors
[11, 12, 26] that any factor that is amenable and full is necessarily of type I.

We say that an inclusion of von Neumann algebras Q ⊂ M is with expectation if there
exists a faithful normal conditional expectation E : M → Q. Moreover, we say that Q has
w-spectral gap in M if, for any nonprincipal ultrafilter U on any set I, we have Q ′ ∩ MU =

(Q ′∩M)U . By [31,Theorem4.4], for anyσ-finite full factorM and anyσ-finite vonNeumann
algebra N, M has w-spectral gap in M ⊗ N.

2.4 W*-probability spaces as metric structures

Asmentioned in the introduction,Dabrowski [13] introduced afirst-order language for axiom-
atizing W∗-probability spaces. In this language, the sorts are given by operator norm balls
centered at the origin of various natural number radii. The metric on each ball is given by the
norm ‖ ·‖∗

ϕ, a relative of the norm ‖ ·‖#ϕ used above, which has the advantage that the state is
Lipschitz continuous on each sort. While one has the natural symbols for scalar multiplica-
tion, addition, and adjoint, multiplication is not uniformly continuous on each sort and thus
Dabrowski uses “smeared” multiplication maps defined using modular theory. Finally, he
includes function symbols for the modular automorphism group (for rational times to keep
the language countable) aswell as some auxiliary symbols needed tomake the axiomatization
work. In this language, it is possible to axiomatize a class of structures which, as a category,
is equivalent to the category of W∗-probability spaces with inclusions as defined above and
for which the model-theoretic ultraproduct corresponds to the Ocneanu ultraproduct.

While quite explicit, Dabrowski’s language is very technical and cumbersome. An alter-
nate axiomatization is given by Hart, Sinclair, and the first author in [23]. There, the sorts
are given by vectors of operator norm at most N that are K-bounded (in a sense akin to that
used in bimodule theory). On these sorts, the metric is induced by the norm ‖ · ‖#ϕ and then
all symbols (including multiplication) are naturally uniformly continuous. A much simpler
axiomatization in this language can be given which once again yields an equivalence of cat-
egories capturing the Ocneanu ultraproduct except that an inclusion of models of this theory
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only corresponds to a normal, state-preserving embedding of vonNeumann algebras. In order
to recover the correspondence with the above notion of inclusion of W∗-probability spaces,
one must add the modular automorphism group to the language, which is a harmless move as
the modular automorphism group is definable in this language, as shown in [23]. However,
the definability of the automorphism group is given by an abstract argument using the Beth
Definability Theorem and thus this axiomatization lacks the concrete flavor of Dabrowski’s
axiomatization.

In this paper, the specific first-order framework for studying W∗-probability spaces is not
important and the reader can feel free to keep either of these two approaches in mind.

3 Existentially closedW∗-probability spaces

3.1 Relative existential closedness

We begin this subsection by officially defining what it means for a W∗-probability space to
be existentially closed in another:

Definition 3.1 If (M,ϕ) ⊆ (N,ψ), we say that (M,ϕ) is existentially closed (e.c.) in (N,ψ)

if and only if

(M,ϕ) ⊆ (N,ψ) ⊆ (M,ϕ)U

so that (M,ϕ) ⊆ (M,ϕ)U is the diagonal inclusion.

Remarks 3.2 1. As discussed in the introduction, the previous definition is not the usual
“syntactic” definition of existential closedness. Stated in syntactic terms, (M,ϕ) is e.c.
in (N,ψ) if and only if: for every existential formula θwith parameters fromM, we have
θ(M,ϕ) = θ(N,ψ). The above definition is convenient for operator algebraists who do
not wish to understand the precise definition of existential sentence.

2. The previous definition is rather vague as to the nature of the ultrafilter U . If N in the
previous definition is a separably acting von Neumann algebra, then U can be taken to
be any nonprincipal ultrafilter on N. For general N, one needs to take a particular kind of
ultrafilter (known as a good ultrafilter) on some potentially large index set (depending
on the density character of the metric associated to ‖ · ‖ψ).

The following flexibility result allows us to change states when dealing with relatively
existentially closed W∗-probability spaces.

Proposition 3.3 Suppose that (M,ϕ) is e.c. in (N,ψ). Then for any faithful normal state ρ

on M, we have that (M, ρ) is e.c. in (N, ρ ◦ E), where E : N → M is the unique faithful
normal conditional expectation such that ϕ ◦ E = ψ.

Proof By assumption, we have (M,ϕ) ⊆ (N,ψ) ⊆ (M,ϕ)U so that (M,ϕ) ⊆ (M,ϕ)U is
the diagonal inclusion. Denote by F : MU → N the unique conditional expectation such that
ψ ◦ F = ϕU . Recall from above that EU : MU → M given by EU ((xi)

U ) = w- limU xi is
the canonical faithful normal conditional expectation. By definition, we have ϕ ◦ EU = ϕU .
Since ϕ is faithful and since

ϕ ◦ (E ◦ F) = ψ ◦ F = ϕU = ϕ ◦ EU ,

by uniqueness of the conditional expectation, we have E ◦ F = EU .
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Let now ρ be any faithful normal state on M. We then have (ρ ◦ E) ◦ F = ρ ◦ EU = ρU .
With respect to the same inclusions and the same conditional expectations E and F, we have
(M, ρ) ⊆ (N, ρ ◦ E) and (N, ρ ◦ E)⊆(MU , (ρ ◦ E) ◦ F) = (M, ρ)U and so (M, ρ) ⊆
(N, ρ ◦ E) ⊆ (M, ρ)U . This shows that (M, ρ) is e.c. in (N, ρ ◦ E).

Lemma 3.4 Suppose that (M,ϕ) is e.c. in (N,ψ). Then:

1. If N is a factor, then M is a factor.
2. T(M) ⊆ T(N).

Proof By assumption, we have (M,ϕ) ⊆ (N,ψ) ⊆ (M,ϕ)U where (M,ϕ) ⊆ (M,ϕ)U is
the diagonal inclusion.

1. Assume that N is factor. Since Z(M) ⊆ Z(N), it follows that Z(M) = C1 and so M is
a factor.

2. Let t ∈ T(M). Then σϕ
t ∈ Inn(M) and there exists u ∈ U(M) such that σϕ

t = Ad(u).

Since σ
ψ
t = σϕU

t |N and since σϕU
t = Ad(u), it follows that σ

ψ
t = Ad(u) ∈ Inn(N).

Therefore, t ∈ T(N).

The next key result gives a necessary condition for an e.c. inclusion of W∗-probability
spaces to be of type III0. Unlike other results in this paper, the next theorem is a purely type
III von Neumann algebraic statement.

Theorem 3.5 Suppose that (M,ϕ) is e.c. in (N,ψ). If M is a type III0 factor and N is a
factor, then N is a type III0 factor.

Proof By assumption, we have (M,ϕ) ⊆ (N,ψ) ⊆ (M,ϕ)U where (M,ϕ) ⊆ (M,ϕ)U
is the diagonal inclusion. Fix faithful normal conditional expectations E : N → M and
F : MU → N so that E ◦ F : MU → M is the canonical faithful normal conditional
expectation EU : MU → M.

Since M is a type III0 factor, by [7, Lemme 5.3.2], there exists a lacunary faithful normal
strictly semifinite weight Φ with infinite multiplicity on M. Then the centralizer MΦ is
a type II∞ von Neumann algebra and there exists a unique faithful normal Φ-preserving
conditional expectationEΦ : M → MΦ. By [7, Théorème 5.3.1], there exist 0 < λ0 < 1 and
u ∈ M(σΦ, (−∞, log(λ0)]) such that uMΦu∗ = MΦ and M is generated by MΦ and u.
For the definition of the spectral subspaceM(σΦ, (−∞, log(λ0)]), we refer to [1, Subsection
2.2]. Moreover, we canonically have M = MΦ �θ Z where θ ∈ Aut(MΦ) is given by
θ = Ad(u)|MΦ

. Also, MΦ has a diffuse center and θ|Z(MΦ) ∈ Aut(Z(MΦ)) is ergodic.
Letting τ = Φ|MΦ

, we have τ(θ(x)) � λ0τ(x) for every x ∈ (MΦ)+.
SetΨ = Φ◦E. Following [1, Definition 4.25], we haveΨ◦F = Φ◦E◦F = Φ◦EU = ΦU .

Since Φ is lacunary, by [1, Proposition 4.27], the equality (MU )ΦU = (MΦ)U holds. Then
[1, Proposition 6.23] shows thatMU is generated by (MΦ)U andu.Moreover,we canonically
have MU = (MΦ)U �θU Z, where θU ∈ Aut((MΦ)U ) is given by θU = Ad(u)|(MΦ)U .

Letting τU = ΦU |(MΦ)U , we have τU (θU (x)) � λ0τ
U (x) for every x ∈ ((MΦ)U )+.

Note that N ⊆ MU is globally invariant under σΦU
and σΨ = σΦU

|N. This implies
that MΦ ⊆ NΨ ⊆ (MΦ)U which further implies that the centralizer NΨ is a type II∞ von
Neumann algebra with diffuse center. Observe that NΨ = N ∩ (MΦ)U and that θU (NΨ) =

uNΨu∗ = NΨ. Then NΨ ⊆ (MΦ)U is a Z-globally invariant von Neumann subalgebra
and we have NΨ �θU Z ⊆ N.
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Claim 3.6 The equality N = NΨ �θU Z holds.

Recall that MU = (MΦ)U �θU Z and denote by EΦU : MU → (MΦ)U the canonical
faithful normalΦU -preserving conditional expectation.Wewill show below that EΦU (N) =

NΨ. Once this is proven, [41, Corollary 3.4] implies that

N ⊆
{

x ∈ (MΦ)U �θU Z | ∀j ∈ Z,EΦU (xu−j) ∈ NΨ

}

= NΨ �θU Z

and thus N = NΨ �θU Z.
First observe that NΨ = EΦU (NΨ) ⊂ EΦU (N). Next, let x ∈ (MΦ)U �alg Z be

any element in the algebraic crossed product. Denote by F ⊂ Z the finite support of x.
Since Z(MΦ) = L∞(X,ν) is diffuse and since the action Z � Z(MΦ) is ergodic, it
follows that the action Z � (X,ν) is essentially free. Then [41, Lemma 3.1] (whose proof
works for arbitrary diffuse probability spaces) implies that there exists a finite partition of
unity

∑

i pi = 1 with projections pi ∈ Z(MΦ) such that piθ
j(pi) = 0 for all i and all

j ∈ F \ {0}. Then we have

∑

i

pixpi =
∑

i

∑

j∈F
pi EΦU (xu−j)uj pi

=
∑

i

∑

j∈F
piEΦU (xu−j)θj(pi)u

j

=
∑

i

∑

j∈F
piθ

j(pi)EΦU (xu−j)uj (since θj(pi) ∈ Z(MΦ) ⊆ Z((MΦ)U ))

=
∑

i

pi EΦU (x)

= EΦU (x).

Thus, we have EΦU (x) =
∑

i pixpi.
We use an idea in [41, Lemma 3.2]. For this, we choose a faithful normal state ρ on

MU such that ρ ◦ EΦU = ρ. Then (MΦ)U ⊆ MU is globally invariant under the modular
automorphism group σρ. SinceZ(MΦ) ⊆ Z((MΦ)U ), it follows thatZ(MΦ) is contained
in the centralizer (MU )ρ. Let now y ∈ N be any element. For every n � 1, we may choose
xn ∈ (MΦ)U �alg Z so that ‖y − xn‖ρ � 1

2n . We then have ‖EΦU (y − xn)‖ρ �
‖y − xn‖ρ � 1

2n . The above reasoning shows that there exists a finite partition of unity
∑

i pn
i = 1 with projections pn

i ∈ Z(MΦ) such that EΦU (xn) =
∑

i pn
i xpn

i . Since for
every i, we have pn

i ∈ Z(MΦ) ⊂ (MU )ρ and 0 � pn
i � 1, we obtain

‖
∑

i

pn
i (xn − y)pn

i ‖2ρ = ρ(
∑

i

pn
i (xn − y)∗pn

i (xn − y)pn
i )

� ρ(
∑

i

pn
i (xn − y)∗(xn − y)pn

i )

= ρ(
∑

i

pn
i (xn − y)∗(xn − y))

= ρ((xn − y)∗(xn − y))

= ‖xn − y‖2ρ.
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This implies that

‖EΦU (y) −
∑

i

pn
i ypn

i ‖ρ � ‖EΦU (y − xn)‖ρ + ‖EΦU (xn) −
∑

i

pn
i xnpn

i ‖ρ

+ ‖
∑

i

pn
i (xn − y)pn

i ‖ρ

� ‖xn − y‖ρ + 0 + ‖xn − y‖ρ

� 1
2n

+
1
2n

=
1
n
.

For every n � 1, set yn :=
∑

i pn
i ypn

i ∈ N (recall that pn
i ∈ Z(MΦ) ⊆ N). Since

limn ‖EΦU (y) −yn‖ρ = 0, the uniformly bounded sequence (yn)n�1 converges strongly
to EΦU (y). Since yn ∈ N for every n � 1 and since N is strongly closed, this implies
that EΦU (y) ∈ N. This further implies that EΦU (N) ⊂ N ∩ (MΦ)U = NΨ and so
EΦU (N) = NΨ. This finishes the proof of the claim.

By Claim 3.6, we have N = NΨ �θU Z where NΨ is a type II∞ von Neumann algebra
with diffuse center. Since N is a factor, we have that θU |Z(NΨ) ∈ Aut(Z(NΨ)) is nec-
essarily ergodic. Moreover, we have τU (θU (x)) � λ0τ

U (x) for every x ∈ (NΨ)+. Then
[7,Proposition 5.1.1] implies that N is a type III0 factor.

Corollary 3.7 Suppose that (M,ϕ) is e.c. in (N,ψ). If N is a type III1 factor, then so is M.

Proof Lemma 3.4(1) implies that M is a factor. Theorem 3.5 implies that M is not of type
III0. Lemma 3.4(2) implies that T(M) ⊆ T(N) = {0}. SinceM is not of type III0, this further
implies that M has type III1.

3.2 Global existential closedness

As stated in the introduction, we say that (M,ϕ) is existentially closed (e.c.) if whenever
(M,ϕ) ⊆ (N,ψ), then (M,ϕ) is e.c. in (N,ψ). An immediate consequence of Proposi-
tion 3.3 is the following:

Proposition 3.8 If M is a σ-finite von Neumann algebra, then for any two faithful, normal
states ϕ1 and ϕ2 on M, we have that (M,ϕ1) is e.c. if and only if (M,ϕ2) is e.c.

By the previous proposition, it is sensible to call a σ-finite von Neumann algebra M

existentially closed (e.c.) if (M,ϕ) is an e.c. W∗-probability space for some (equivalently
any) ϕ ∈ Sfn(M).

The next result enumerates many important facts about e.c. W∗-probability spaces.

Theorem 3.9 Suppose that M is an e.c.W∗-probability space. Then the following assertions
hold:

1. M is a type III1 factor.
2. M ⊗ R∞

∼= M.
3. For any full factor Q, either Q is of type I or M � Q ⊗ R∞.
4. Any automorphism of M is approximately inner.
5. For every subfactor N ⊂ M with expectation and with w-spectral gap, we have (N ′ ∩

M) ′ ∩ M = N.
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Proof 1. Choose any faithful normal state ρ on R∞ and denote by (N,ψ) := (M,ϕ) ∗
(R∞, ρ) the corresponding free product von Neumann algebra. Since N is a type III1
factor (see [44, Theorem 4.1]), Corollary 3.7 implies that M is a type III1 factor.

2. Fix λ ∈ (0, 1). Then (M,ϕ) ⊆ (M,ϕ) ⊗ (Rλ,ϕλ) ↪→ (M,ϕ)U with the composition
being the diagonal embedding. In particular, (Rλ,ϕλ) embeds into (M ′ ∩ MU , ϕ̇U )
where ϕ̇U = ϕU |M′∩MU . This implies that λ ∈ σp(Δϕ̇U ). Then [1, Theorem 4.32]
shows thatM⊗Rλ

∼= M. Since this is true for every λ ∈ (0, 1), it follows thatM⊗R∞
∼=

M.
3. Assume that there exists a full factor Q such that M = Q ⊗ R∞. Denote by α ∈

Aut(M ⊗ M) the flip automorphism defined by α(x ⊗ y) = y ⊗ x. Regard M ⊆
M ⊗ M : x �→ x ⊗ 1 and set N := (M ⊗ M)�α Z/2Z. Then M ⊆ N ↪→ MU with the
composition being the diagonal embedding. Denote by u = (un)

U ∈ U(N) ⊂ U(MU )
the canonical unitary implementing the action Z/2Z �

α M. Then for every x ∈ M, we
have 1⊗x = α(x⊗1) = u(x⊗1)u∗. This implies thatuMu∗ ⊆ M ′∩MU . SinceQ is a
full factor,Q has w-spectral gap inM = Q⊗R∞ and soQ ′ ∩MU = (Q ′ ∩M)U = RU

∞

(see [31, Corollary 3.7]). We obtain uMu∗ ⊆ RU
∞

and so M ⊆ u∗RU
∞

u ⊆ MU . Fix
a faithful normal state ψ on Q and consider the faithful normal conditional expectation
E : M → R∞ defined by E = ψ ⊗ idR∞

. For every n, set Rn = u∗
nR∞un ⊆ M

and define the faithful normal conditional expectation En : M → Rn by the formula
En = Ad(u∗

n) ◦ E ◦ Ad(un). Up to changing the net, we may assume that for every
x ∈ M, we have En(x) − x → 0 ∗-strongly as n → ∞. For every n, we may choose a
faithful normal state ϕn on Rn so that (Rn,ϕn) is an AFD W*-probability space (see
Definition A.3). Therefore, we may find nets of normal ucp maps Sj : M → Mnj

(C)

and Tj : Mnj
(C) → M such that for every x ∈ M, we have (Tj ◦ Sj)(x) − x → 0 ∗-

strongly as j → ∞. Then [43, Theorem XV.3.1] implies that M = Q⊗R∞ is amenable.
Then Q is amenable and full and so Q is a type I factor.

4. Fix θ ∈ Aut(M) and denote by N := M �θ Z the corresponding crossed product
von Neumann algebra. Then M ⊆ N ↪→ MU with the composition being the diagonal
embedding. Denote byu = (un)

U ∈ U(N) ⊂ U(MU ) the canonical unitary implement-
ing the action Z �

θ M. Then for every x ∈ M, we have θ(x) = uxu∗ and [3, Theorem
4.1 (iv) ⇒ (v)] shows that θ is weakly inner. Since M ∼= M ⊗ R∞, [35, Theorem F]
implies that θ is approximately inner.

5. It suffices to show that (N ′ ∩ M) ′ ∩ M ⊆ N. Define the amalgamated free product von
Neumann algebra Q := M ∗N (L(Z) ⊗ N) with respect to the natural faithful normal
conditional expectations E : M → N and τZ ⊗ idN : L(Z)⊗ N → N. Then M ⊆ Q ↪→
MU with the composition being the diagonal embedding. Denote by u ∈ U(L(Z)) ⊂
U(MU ) the canonicalHaar unitary. Thenwe haveu ∈ N ′∩Q ⊆ N ′∩MU = (N ′∩M)U
and so we may write u = (un)

U where un ∈ U(N ′ ∩ M) for every n. Now take now
b ∈ (N ′ ∩ M) ′ ∩ M and note that bun = unb for every n and so bu = ub. Since
L(Z) is diffuse, we have L(Z) �L(Z)⊗N N in the sense of Popa’s intertwining theory
(see [30, 40]), whence [46, Proposition 3.3] implies that L(Z) ′ ∩ Q = L(Z)⊗ N. Thus,
we obtain b ∈ M ∩ (L(Z) ⊗ N) = N.

Remark 3.10 All of the items in the previous theorem are appropriate generalizations of the
corresponding facts about e.c. tracial von Neumann algebras. Indeed, suppose that M is an
e.c. tracial von Neumann algebra. Then the finite analog of (1) states that M is a II1 factor,
which was proven in [24], while the finite analog of (2) states that M is McDuff, that is,
tensorially absorbs the hyperfinite II1 factor R, which was also proven in [24]. The finite
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analog of (3) is that M is not a strongly McDuff factor, where a strongly McDuff factor is
one that is isomorphic to a factor of the form Q⊗R, where Q is a II1 factor without property
Gamma; this fact was proven in [4,Proposition 6.2.11]. The finite analogs of (4) and (5) have
identical statements and were proven in [18] and [19, Proposition 5.16] respectively.

Proposition A.8 in the appendix states that the ultrapower of a type III1 factor is always
a prime factor, that is, cannot be written as the tensor product of diffuse factors. Combined
with Theorem 3.9(2), we immediately obtain:

Corollary 3.11 The class of e.c. W∗-probability spaces is not closed under ultrapowers.

In particular, the class of e.c. W∗-probability spaces is not axiomatizable. In model-
theoretic language, this means:

Corollary 3.12 The theory of W∗-probability spaces does not have a model companion.

The analogous fact for tracial von Neumann algebras also holds and was the main result
of [24].

3.3 The case of QWEP factors

In [18], the authors consider the e.c. elements of the class of tracial von Neumann algebras
that admit a trace-preserving embedding into the tracial ultrapower RU of the hyperfinite
II1 factor R. That this is a model-theoretically sensible thing to consider is substantiated
by the basic fact that a tracial von Neumann algebra embeds into RU if and only if it is a
model of the universal theory of R, denoted Th∀(R), consisting of all conditions of the form
supx ϕ(x) = 0 with ϕ(x) a quantifier-free formula. As in the unrestricted case, any e.c.
model of Th∀(R) is a McDuff II1 factor with only approximately inner automorphisms. In
this case, however, one can name a concrete e.c. object, namely R itself. In fact, a positive
solution to the Connes Embedding Problem is equivalent to the statement that R is an e.c.
tracial von Neumann algebra.

In this subsection, we consider the analogous situation for W∗-probability spaces. To
motivate the move that is to follow, we recall that a tracial von Neumann algebra embeds
into RU if and only if it has Kirchberg’s QWEP property [34]. Thus, it appears that the
natural course of action to take in our current context is to consider restricting to the class
of QWEP W∗-probability spaces. To see that, once again, this is a natural move from the
model-theoretic perspective, we recall themain result of [2], which states that a vonNeumann
algebra has QWEP if and only if it embeds into RU

∞
. (This is technically proven in the case

that the von Neumann algebra under consideration is separably acting and the ultrafilter is a
nonprincipal ultrafilter onN; this result naturally extends to all QWEP vonNeumann algebras
by writing them as an increasing union of separably acting QWEP subalgebras and using an
ultrafilter on a larger index set.) To see that this latter condition has model-theoretic meaning,
we make the following observation. Recall from the introduction that two W∗-probability
spaces (M,ϕ) and (N,ψ) are elementarily equivalent if and only if there are ultrafilters U
and V such that (M,ϕ)U ∼= (N,ψ)V .

Proposition 3.13 For any type III1 factor M and faithful normal states ϕ and ψ on M, we
have that (M,ϕ) and (M,ψ) are elementarily equivalent.

Proof The state space ofMU is strictly homogeneous by [1,Theorem 4.20]. (We note that this
result indeed holds for ultrapowerswith respect to arbitrary countably incomplete ultrafilters.)
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Consequently, there isu ∈ U(MU ) such thatuϕUu∗ = ψU ; the inner automorphismAd(u)
thus yields that (MU ,ϕU ) ∼= (MU ,ψU ).

Remark 3.14 The previous proposition is false for type IIIλ factors, λ ∈ (0, 1), even when
only considering the universal theory. Indeed, if M is a type IIIλ factor, λ ∈ (0, 1), and
ϕ,ψ ∈ Sfn(M) are such that ϕ is periodic and ψ is not, then (M,ψ) cannot embed into
the ultrapower of (M,ϕ).

A particular consequence of Proposition 3.13 is that we may unambiguously speak of the
universal theory Th∀(M) of any type III1 factor M, by which we mean the unique common
universal theory of (M,ϕ) for any ϕ ∈ Sfn(M). From this point of view, the main result
of [2] can be reworded by saying that a W∗-probability space (M,ϕ) is QWEP if and only
if it is a model of Th∀(R∞).

Remark 3.15 Most of the results of the previous subsection continue to hold when restricted
to the elementary class of QWEP W∗-probability spaces. More specifically, the first four
items of Theorem 3.9 as well as Corollary 3.12 hold when restricted to the class of QWEP
W*-probability spaces. We do not know if item (5) of Theorem 3.9 holds in this restricted
case as it is unknown if the amalgamated free product of QWEP von Neumann algebras
remains QWEP. In that respect, it follows from [29, Corollary B] that the free product of
QWEP von Neumann algebras remains QWEP. For other permanence properties, we refer
to [38, Proposition 4.1].

As mentioned above, R is an e.c. member of the class of QWEP II1 factors. We now prove
the analogous fact in the setting of W∗-probability spaces:

Theorem 3.16 The Araki–Woods factor R∞ is an e.c.QWEP W∗-probability space.

Proof Let N be an e.c.QWEP W*-probability space such that R∞ ⊆ N. Since N is QWEP,
there is an embedding N ↪→ RU

∞
. By Corollary A.7, up to conjugating by a unitary, we may

suppose that the composite embedding is the diagonal embedding. This shows that R∞ is
e.c. in N and hence is an e.c.QWEP W∗-probability space. (Note that we have used the fact
that being e.c.does not depend on the choice of state when we conjugated by a unitary.)

3.4 BuildingW∗-probability spaces by games

Wenow introduce amethod for buildingW∗-probability spaces first introduced in [21] (based
on the discrete case presented in [27]). This method goes under many names, such asHenkin
constructions, model-theoretic forcing, or building models by games.

We fix a countably infinite set C of distinct symbols that are to represent generators
of a separable W∗-probability space that two players (traditionally named ∀ and ∃) are
going to build together (albeit adversarially). The two players take turns playing finite sets
of expressions of the form |θ(c) − r| < ε, where c is a tuple of variables from C, θ(c)

is some atomic formula, and each player’s move is required to extend (that is, contain) the
previous player’smove. The exact form an atomic formula depends onwhich languagewe are
considering for describingW∗-probability spaces, but in either case, they roughly correspond
to expressions of the form ϕ(p(c)), where p is some expression involving the *-algebra
operations as well as modular automorphisms and ϕ is a generic symbol for the state. (In the
case of Dabrowski’s language, one is only allowed to use “smeared” multiplication in such
expressions.) These plays of the game are called (open) conditions. The game begins with ∀’s
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move. Moreover, these conditions are required to be satisfiable, meaning that there should
be some W∗-probability space (M,ϕ) and some tuple a from M such that |θ(a) − r| < ε

for each such expression in the condition. We play this game for countably many rounds.
At the end of this game, we have enumerated some countable, satisfiable set of expressions.
Provided that the players address a certain “dense” set of conditions infinitely often, they can
ensure that the play is definitive, meaning that the final set of expressions yields complete
information about all atomic formulae in the variables C (that is, for each atomic formula
θ(c), there should be a unique r such that the play of the game implies that θ(c) = r) and
that this data describes a countable, dense ∗-subalgebra of a unique W∗-probability space,
which is called the compiled structure.

Definition 3.17 Given a property P ofW∗-probability spaces, we say that P is an enforceable
property is there a strategy for ∃ so that, regardless of player ∀’s moves, if ∃ follows the
strategy, then the compiled structure will have property P.

Fact 3.18 1. (Conjunction lemma [27, Lemma 2.4]) If Pn is an enforceable property for
each n ∈ N, then so is the conjunction

∧
n Pn.

2. ([27, Proposition 2.10] Being e.c. is enforceable.

Item (2) in the previous fact indicates the significance of this technique of building W∗-
probability spaces in connection with the study of e.c. W∗-probability spaces.

Definition 3.19 AW∗-probability space (M,ϕ) is said to be enforceable if the property of
being isomorphic to (M,ϕ) is an enforceable property.

Clearly, if an enforceable W∗-probability space exists, then it is unique.
One can relativize the above context by considering only QWEP W∗-probability spaces.

One can then speak of enforceable properties of QWEPW∗-probability spaces and ask about
the existence of the enforceable W∗-probability space.

In the analogous game for II1 factors, it was shown in [21, Theorem 5.2] that a positive
solution to the Connes Embedding Problem is equivalent to the statement that R is the
enforceable tracial von Neumann algebra and that, when restricted to the context of QWEP
tracial von Neumann algebras, R is indeed the enforceable object. It is worth asking if the
same is true in the case of QWEP W∗-probability algebras. The answer is actually negative
and rests on the following:

Proposition 3.20 There is no faithful normal state ϕ on R∞ such that (R∞,ϕ) embeds into
all e.c.QWEP W∗-probability spaces.

Proof By contradiction, assume that there exists a faithful normal state ϕ on R∞ such that
for any other faithful normal state ψ on R∞ we have (R∞,ϕ) ↪→ (R∞,ψ).

It is a standard fact that there exists a faithful normal stateψ onR∞ for which (R∞)ψ = C.
Since (R∞,ϕ) ↪→ (R∞,ψ), it follows that (R∞)ϕ = C1. Next, identify (R∞,ψ) = (Rλ1 ⊗
Rλ2 ,ϕλ1 ⊗ ϕλ2) for appropriately chosen λ1 and λ2. Then ψ is an almost periodic state on
R∞ in the sense that the corresponding modular operator Δψ is diagonalizable on L2(R∞).
Since (R∞,ϕ) ↪→ (R∞,ψ), it follows thatϕ is an almost periodic state and so (R∞)ϕ �= C1
by [45, Lemma 2.1]. This is a contradiction.

Corollary 3.21 There is no enforceable QWEP W∗-probability space.
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Proof Suppose, towards a contradiction, that (M,ϕ) is the enforceable QWEP W∗-
probability space. Then (M,ϕ) is e.c.and embeds into all e.c.QWEPW∗-probability spaces
(see [21, Section 6]). In particular (M,ϕ) embeds into (R∞,ψ) for all faithful normal states
ψ on R∞. This implies that M ∼= R∞, and we obtain a contradiction with the previous
proposition.

On the other hand, we do have the following proposition:

Proposition 3.22 The property of being approximately finite dimensional is an enforceable
property of QWEP W∗-probability spaces.

Proof By the Conjunction Lemma, it suffices to show that, given any open condition Σ,
any finite number c1, . . . , cn of constants, and any ε > 0, there are matrix units (eij)

for some matrix algebra and some complex coefficients αk
ij for k = 1, . . . ,n such that

Σ ∪ {‖ck −
∑

ij αk
ijeij‖#ϕ < ε} is itself a condition. However, this follows from the fact

that Σ, being satisfiable in some QWEP W∗-probability space, must also be satisfiable
in R∞.

It is quite interesting that player∃ can always enforce the underlying vonNeumann algebra
of the compiled W∗-probability space to be R∞ although there is no single state on R∞ that
can be enforced.

An important class of e.c. structures is the class of finitely generic structures. We end this
section by briefly discussing this class. First, since the class of W∗-probability spaces has
the joint embedding property (meaning that any two W∗-probability spaces can be jointly
embedded into a third), it follows from [21, Corollary 2.16] that, for each sentence σ in the
language of W∗-probability spaces, there is a unique real number r such that the property
σ = r is an enforceable property; in this case, we set σf to denote this unique r.

Definition 3.23 A W∗-probability space (M,ϕ) is called finitely generic if it satisfies the
following two properties:

1. For every sentence σ in the language of W∗-probability spaces, we have that σ(M,ϕ) =

σf.
2. For any W∗-probability space (N,ψ) elementarily equivalent to (M,ϕ) for which

(M,ϕ) ⊆ (N,ψ), we have that this inclusion is an elementary embedding.

The following was shown in [21, Section 3], generalizing the corresponding classical
results:

Fact 3.24 1. The property of being finitely generic is enforceable. In particular, finitely
generic structures exist.

2. Finitely generic structures are e.c.

In [18, Corollary 6.4], it was shown thatR is a finitely genericQWEP tracial vonNeumann
algebra. We prove an analogous result here:

Theorem 3.25 There is a faithful normal state ϕ on R∞ so that (R∞,ϕ) is a finitely generic
QWEP von Neumann algebra.

Proof Simply apply the Conjunction Lemma to the fact that both being approximately finite
dimensional is enforceable (Proposition 3.22) and being finitely generic is enforceable.
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3.5 Open questions

We end this section with some open questions:
As shown in the last subsection, the enforceableQWEP factor does not exist. Asmentioned

above, a positive solution to the Connes Embedding Problem is equivalent to the statement
that R is the enforceable tracial von Neumann algebra. Due to the recent negative solution of
the Connes Embedding Problem [32], we conclude that R is not the enforceable tracial von
Neumann algebra. However, whether or not the enforceable tracial von Neumann algebra
exists is an interesting open question. The analogous question for W∗-probability spaces is
also open:

Question 3.26 Does the enforceable QWEP W∗-probability space exist?

In connection with Theorem 3.25, we ask if the analog of Proposition 3.8 holds for finitely
generic structures:

Question 3.27 If (M,ϕ) is finitely generic for some ϕ ∈ Sfn(M), do we have that (M,ψ)

is finitely generic for every ψ ∈ Sfn(M)?

For the next question, recall that the class ofW∗-probability spaces whose underlying von
Neumann algebra is a IIIλ factor (for some fixed λ ∈ (0, 1)) and whose state is a periodic
state forms an inductive class. This result is clear from the fact that this class is closed under
ultraproducts and ultraroots (see [1, Theorem 6.11]) and inductive limits. Explicit axioms
for this class were given by Dabrowski in [13]. Let Tλ denote some collection of axioms for
this class. Since Tλ is an inductive theory, it has e.c. models.

Question 3.28 What can we say about the class of e.c. models of Tλ? If we restrict to QWEP
such objects, is Rλ, with its unique periodic state, an e.c.model? Does being e.c. depend on
the state?

We should note that the argument appearing in the proof of Theorem 3.9(2) above shows
that e.c. models of Tλ tensorially absorb Rλ (equipped with its unique periodic state) and the
same is true for the e.c. elements of the class of QWEP models of Tλ.

We also note that by the main result of [2], given any λ ∈ (0, 1), a von Neumann algebra
is QWEP if and only if it embeds into RU

λ with expectation. If one could improve this result
so that any QWEP model (M,ϕ) of Tλ embeds into (Rλ,ϕλ)

U , then one could mimic the
proof of 3.22 to show that being hyperfinite is an enforceable property with respect to the
class of QWEP models of Tλ. Since being e.c. is also an enforceable property, one could
conclude that (Rλ,ϕλ) is an e.c. element of the class of QWEP models of Tλ. In fact, we
have the following:

Proposition 3.29 The following statements are equivalent:

1. Every QWEP model of Tλ embeds into (Rλ,ϕλ)
U .

2. Hyperfiniteness is an enforceable property of QWEP models of Tλ.
3. (Rλ,ϕλ) is the enforceable QWEP model of Tλ.
4. (Rλ,ϕλ) is an e.c. element of the class of QWEP models of Tλ.

Whether or not the above statements indeed hold, by Corollary A.6, (Rλ,ϕλ) is an e.c.
model of Th∀(Rλ,ϕλ).

In connection with the previous question, one might also ask the following:
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Question 3.30 Suppose that (M,ϕ) is a type IIIλ factor equipped with a periodic state. Is
(M,ϕ) an e.c.model of Tλ if and only if Mϕ is an e.c. II1 factor?

An even more basic question about models of Tλ arises:

Question 3.31 If M is a IIIλ factor and ϕ and ψ are both periodic states on M, must (M,ϕ)

and (M,ψ) have the same universal theory?

Our final question returns to the general study of e.c.W∗-probability spaces:

Question 3.32 Are any two e.c. (QWEP) W∗-probability spaces elementarily equivalent?

The analogous question for II1 factors remains unsettled but is presumed to have a negative
answer.

4 Other model-theoretic results

4.1 Axiomatizability results

In [1], it was shown that, for any λ ∈ (0, 1], the Ocneanu ultraproduct of a family of type
IIIλ factors is once again a type IIIλ factor and a σ-finite von Neumann algebra is a type IIIλ
factor if the same is true of an Ocneanu ultrapower. By the “soft” test for axiomatizability
(see [5,Proposition 5.14]), this says that the class of IIIλ factors (again, for fixed λ ∈ (0, 1])
is an axiomatizable class. However, this test does not give us explicit axioms for these
axiomatizable classes.Nevertheless, it is possible to at least describe the quantifier complexity
of such axiomatizations.

In order to state such quantifier complexity results and the test we use for obtaining them,
we define a ∀n-sentence to be one of the form

sup
x1

inf
x2

· · ·Qxnθ(x1, . . . , xn),

where each xi is a finite block of variables, θ is a quantifier-free formula, andQ = sup if n is
odd and Q = inf if n is even. The notion of a ∃n-sentence is defined analogously, beginning
with a block of inf quantifiers instead of sup quantifiers. By using dummy variables, we
note that any ∀n- or ∃n-sentence is automatically both ∀n+1 and ∃n+1. Finally, we say that
an axiomatizable class is ∀n-axiomatizable (resp. ∃n-axiomatizable) if there is a set T of
axioms for the class consisting solely of conditions of the form σ = 0 with σ a nonnegative
∀n-sentence (resp. a ∃n-sentence).

In classical logic, given an axioimatizable class, theKeisler Sandwich Theorem [33] can be
used to prove the existence of an axiomatization of a particular kind of quantifier complexity.
In our results below,we use (amodified version of) theKeisler Sandwich Theorem, adapted to
the setting of continuous logic. Since neither the continuous version of the Keisler Sandwich
Theorem, nor the variant presented here, have appeared in the literature before, we include
a proof in Appendix B.

Definition 4.1 Given structures M and N (in the same language) and n � 1, an (M,N,n)-
ultrapower sandwich is a chain of embeddings of the form

M ↪→ N ↪→ MU1 ↪→ NU2 ↪→ · · · ↪→ QUn−1 ,

where:
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• U1, . . . ,Un−1 are ultrafilters,
• Q = M if n is even and Q = N if n is odd, and
• all compositions MUk−1 ↪→ MUk+1 and NUk−1 ↪→ NUk+1 are the diagonal embed-

dings (which in particular implies that Uk+1
∼= Uk−1 ⊗ V for some ultrafilter V).

Theorem 4.2 (Keisler Sandwich Theorem (Ultrapower version)) Suppose that T is a theory.
Then:

1. T is∀n-axiomatizable if andonly if:whenever there is an (M,N,n)-ultrapower sandwich
and N |= T , then M |= T .

2. T is∃n-axiomatizable if andonly if:whenever there is an (M,N,n)-ultrapower sandwich
and M |= T , then N |= T .

Note that an (M,N, 2)-ultrapower sandwich is simply a chain of embeddingsM ↪→ N ↪→
MU such that the embedding M ↪→ MU is the diagonal embedding. Thus, an (M,N, 2)-
ultrapower sandwich exists precisely whenM is e.c. inN. By Theorem 4.2 and Corollary 3.7,
we immediately have:

Theorem 4.3 The class of type III1 factors is ∀2-axiomatizable.
Alternate proof of Theorem 4.3 There is an alternative to showing that a theory T is ∀2-
axiomatizable and that is to show that the collection of models of the theory is closed under
unions of chains. This can be established quite easily for the case of III1 factors as follows. Let
(Mi,ϕi)i∈I be any increasing chain of type III1 W∗-probability spaces. Denote by (M,ϕ)

the inductive limit of (Mi,ϕi)i∈I in the language of W∗-probability spaces. Then for every
i ∈ I, we have (Mi,ϕi) ⊆ (M,ϕ) and we denote by Ei : M → Mi the unique faithful
normal conditional expectation such that ϕi ◦ Ei = ϕ. Also, we have

∨
i∈I Mi = M.

For every i ∈ I, we may consider the trace-preserving inclusion of continuous cores
cϕi

(Mi) ⊆ cϕ(M) with trace-preserving faithful normal conditional expectation Fi :

cϕ(M) → cϕi
(Mi). Since Mi is a type III1 factor, cϕi

(Mi) is a type II∞ factor. In
order to show that M is a type III1 factor, it suffices to show that cϕ(M) is a factor. Let
x ∈ Z(cϕ(M)) be any central element. Then for every i ∈ I, we have Fi(x) ∈ Z(cϕi

(Mi))

and so Fi(x) ∈ C1. Since
∨

i∈I cϕi
(Mi) = cϕ(M), it follows that Fi(x) → x ∗-strongly

as i → ∞, which implies that x ∈ C1.

The case of type IIIλ factors for λ ∈ (0, 1) is inherently more complicated:

Proposition 4.4 For any λ ∈ (0, 1), the axiomatizable class of type IIIλ factors is not ∀2-
axiomatizable.

Proof Fix λ ∈ (0, 1). We construct an increasing sequence ofW∗-probability space type IIIλ
factors (Mn,ϕn) so that, setting (M,ϕ) :=

∨
n∈N

(Mn,ϕn), we have that M is a type
III1 factor.

Take λ1, λ2 ∈ (0, 1)with log(λ1)/ log(λ2) irrational, whence Rλ1 ⊗Rλ2
∼= R∞. For every

n ∈ N, set (Mn,ϕn) = (Rλ1 ,ϕλ1) ⊗ (M2(C),ωλ2)
⊗{0,...,n}. Then (Mn,ϕn)n∈N is an

increasing sequence of W∗-probability spaces type IIIλ1 factors. Indeed, observe that for
every n ∈ N, we have Mn

∼= Rλ1 . Moreover, for every n ∈ N, we have ϕn+1|Mn = ϕn

and the linear mapping En : Mn+1 → Mn defined by En = idMn ⊗ωλ2 is a faithful
normal conditional expectation such that ϕn ◦ En = ϕn+1.

However, we have
∨

n∈N
(Mn,ϕn) ∼= (Rλ1 ⊗ Rλ2 ,ϕλ1 ⊗ ϕλ2) =: (M,ϕ) ∼= (R∞,ϕ).

Indeed, for every n ∈ N, we have ϕ|Mn = ϕn and the linear mapping Fn : M → Mn
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defined by Fn = idMn ⊗ω
⊗N\{0,...,n}
λ2

is a faithful normal conditional expectation such that
ϕn◦Fn = ϕ. Thus, the inductive limit ofW∗-probability spaces (M,ϕ) =

∨
n∈N

(Mn,ϕn)

is a type III1 factor.

We also note:

Proposition 4.5 For any λ ∈ (0, 1], the class of type IIIλ factors is not ∃2-axiomatizable.

Proof Fix λ ∈ (0, 1] and suppose that M is a type IIIλ factor that is not full (e.g. M = Rλ).
Then there is a σ-finite von Neumann algebra N such that N is not a factor and yet M ⊆
N ⊆ MU . By Theorem 4.2, the result follows.

While the class of type IIIλ factors,λ ∈ (0, 1), cannot be axiomatizedusing twoquantifiers,
we now show that it can be axiomatized using three quantifiers. The key to proving this is
the following:

Proposition 4.6 Suppose that we have an (M,N, 3)-sandwich with M a type IIIμ factor and
N a type IIIλ factor, λ,μ ∈ (0, 1). Then λ = μ.

Proof SetTλ = 2π
| log(λ)| andTμ = 2π

| log(μ)| . Choose aTλ-periodic faithful normal stateψonN

and apply Proposition 3.3 to the inclusionN ⊆ MU1 ⊆ NU2 . SinceψU2 |MU1 is Tλ-periodic,
we have {0} ∪ μZ = S(MU1) ⊆ σ(ΔψU2 |

MU1
) ⊆ {0} ∪ λZ. Next, choose a Tμ-periodic

faithful normal state ϕ on M and apply Proposition 3.3 to the inclusion M ⊆ N ⊆ MU1 .
Since ϕU1 |N is Tμ-periodic, we have {0} ∪ λZ = S(N) ⊆ σ(ΔϕU1 |N

) ⊆ {0} ∪ μZ. This
shows that μ = λ.

Corollary 4.7 The class of type IIIλ factors is both ∀3- and ∃3-axiomatizable.

Proof Consider a (M,N, 3)-sandwich. First suppose that N is a IIIλ factor. By Lemma 3.4,
M is a factor. Since MU1 contains N with expectation, MU1 is type III, whence so is M.
By Theorem 3.5, M is not of type III0. If M is type III1, then so is MU1 ; since N is e.c.
in MU1 , Corollary 3.7 implies that N is type III1, a contradiction. Thus, M is type IIIμ for
some μ ∈ (0, 1), whence λ = μ by Proposition 4.6. This shows that the class of IIIλ factors
is ∀3-axiomatizable.

Now suppose that M is a IIIλ factor. Since N is e.c. in the IIIλ factor MU1 , we see that N
is a factor. Since N contains the type III factor M with expectation, we see that N has type
III. By Corollary 3.7, N does not have type III1. Since N is e.c. in the IIIλ factor MU1 , N

does not have type III0 by Theorem 3.5. Thus, N has type IIIμ for some μ ∈ (0, 1), and thus
λ = μ by Proposition 4.6. This shows that the class of IIIλ factors is ∃3-axiomatizable.

4.2 First-order theories ofW*-probability spaces

In this final subsection, we consider the task of counting the number of first-order theories
of IIIλ W∗-probability spaces for λ ∈ (0, 1].

In [6], Boutonnet, Chifan, and Ioana showed that there exist continuum many pairwise
non-elementarily equivalent separable II1 factors.More precisely, they showed that the family
(Mα)α∈2N of separable II1 factors constructed byMcDuff in [36] provides such a continuum.
We observe that their result can be easily applied to construct such a continuum in the realm
of type IIIλ factors for λ ∈ (0, 1).
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Theorem 4.8 Fix λ ∈ (0, 1). Then there exist continuum many non-pairwise elementary
equivalent separable type IIIλ factors.

Proof Consider the family (Mα)α∈2N of separable II1 factors constructed by McDuff in
[36]. For every α ∈ 2N, Mα is a McDuff factor, that is, Mα ⊗ R ∼= Mα. This implies
that λ ∈ F(Mα). Set M∞

α = Mα ⊗ B(�2) and choose an automorphism θλ
α ∈ Aut(M∞

α )

such that τ ◦ θλ
α = λτ, where τ is any faithful normal semifinite trace on M∞

α . Then
Nα = M∞

α �θλ
α

Z is a type IIIλ factor whose discrete core is isomorphic to M∞

α (see
[7, Théorème 4.4.1]).

Now suppose that α,β ∈ 2N are such that Nα is elementarily equivalent to Nβ. By
the Keisler-Shelah Theorem, there are ultrafilters U and V such that (Nα)

U ∼= (Nβ)
V . By

[1, Proposition 4.7], the discrete core of (Nα)
U (resp. (Nβ)

V ) is (M∞

α )U (resp. (M∞

β )V ).
Then [7, Théorème 4.4.1] implies that MU

α ⊗ B(�2) = (M∞

α )U ∼= (M∞

β )V = MV
β ⊗ B(�2).

SinceMU
α andMV

β have full fundamental group, we haveMU
α

∼= MV
β and [6] further implies

that α = β.

The preceding question naturally raises the following:

Question 4.9 Do there exist continuum many non-pairwise elementary equivalent separable
type III1 factors?

While we cannot yet answer the above question, we can at least find three such factors.
First, due to the recent negative solution of the Connes Embedding Problem [32], there must
exist a non-QWEP type III1 factorM. Consequently,M is not a model of Th∀(R∞), and thus
is not elementarily equivalent to R∞. To find a third theory of type III1 factors, we recall that
in [17, 3.2.2], property Gamma was shown to be an axiomatizable property and thus could
be used to distinguish theories of II1 factors. The correct generalization of property Gamma
to our context is that of being non-full. Here, we show that the non-full type IIIλ factors form
an axiomatizable class and, as a consequence, that the non-full factors form a local class,
that is, closed under ultrapowers and ultraroots (which is still sufficient for differentiating
between theories):

Theorem 4.10 For λ ∈ (0, 1], the class of non-full type IIIλ factors is axiomatizable.

Proof We use the aforementioned “soft” test for being axiomatizable, that is, we show that
the class of non-full type IIIλ factors is closed under ultraproducts and ultraroots. We first
show the latter. Let U be any nonprincipal ultrafilter and let M be any full type IIIλ factor;
we show that MU is also full. To see this, let V be any nonprincipal ultrafilter. Then we have
(MU )V = MV⊗U by [3, Proposition 2.4]. Since M is a full factor, we have M ′ ∩MV⊗U =

C1. Since M ⊂ MU , we have (MU ) ′ ∩ (MU )V ⊆ M ′ ∩ (MU )V = M ′ ∩ MV⊗U = C1.
Since this holds true for any nonprincipal ultrafilter V , this further implies that MU is a full
factor.

Conversely, let (Mi,ϕi)i∈I be any family of non-full type IIIλ factor W∗-probability
spaces and U a nonprincipal ultrafilter on I. Then (MU ,ϕU ) = (Mi,ϕi)

U is a type IIIλ
factor. We show that MU is also non-full. It is well-known that we may assume that U is
countably incomplete, meaning that there is some countable collection of sets from U that has
empty intersection. As a result, this allows us to define a sequence (εi)i∈I of positive real
numbers such that limU εi = 0. For every i ∈ I, there is an index set Ji for which there exists
a sequence (ui

j)j∈Ji
inU(Mi) such that limj ‖ui

jϕi−ϕiu
i
j‖ = 0, limj ‖yui

j−ui
jy‖�

ϕi
= 0

for every y ∈ Mi and limj ϕi(u
i
j) = 0. Let F = {X1, . . . ,Xm} ⊂ MU be any finite subset.
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Write Xk = (xk,i)
U for every 1 � k � m. For every i ∈ I, there exists vi = uji

∈ U(Mi)

such that ‖viϕi − ϕivi‖ � εi, ‖vixk,i − xk,ivi‖�
ϕi

� εi and |ϕi(vi)| � εi for every
1 � k � m. Then we have (vi)i∈I ∈ MU (Mi,ϕi), vF = (vi)

U ∈ U((MU )ϕU ) and
ϕU (vF ) = 0 (see [28, Proposition 2.4] and [1, Lemma 4.36]). By construction, we have
XvF = vFX for every X ∈ F and ϕU (vF ) = 0. Since this holds true for any finite subset
F ⊂ MU , this further implies that MU is not full.

Corollary 4.11 The following three III1 factors are pairwise non-elementarily equivalent:

1. R∞.
2. Any non-QWEP III1 factor.
3. Any full QWEP III1 factor.

Remark 4.12 In [17], the authors provide explicit axioms for having property Gamma. It
would be interesting to find explicit axioms for the class of non-full IIIλ W∗-probability
spaces.

In [17, Theorem 4.3], it is shown that, for any separable II1 factor M, there are continuum
many pairwise nonisomorphic separable II1 factors elementarily equivalent to M. We ask if
the analogous result holds true for W*-probability spaces:

Question 4.13 For any separable W*-probability space (M,ϕ), are there continuum many
nonisomorphic separable (N,ψ) elementarily equivalent to (M,ϕ)?

By Proposition 3.13, if M is any type III1 factor, then (M,ϕ) is elementarily equivalent
to (M,ψ) for all ϕ,ψ ∈ Sfn(M). In this sense, the previous question has a somewhat
trivial positive solution for type III1 factors. It would be more interesting to find continuum
many nonisomophic separable models of any given theory of W*-probability spaces whose
underlying von Neumann algebras themselves are pairwise nonisomorphic.
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and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Embeddings of AFD W*-probability spaces into ultraprod-
ucts

Most of the results presented in this appendix are due to Ando and Houdayer (unpublished
work).

For the ease of exposition, all ultrafilters in this appendix are assumed to be nonprincipal
ultrafilters onN. However, all of the results hold verbatim for countably incomplete ultrafilters
on arbitrary index sets with only routine modifications of the proofs needed. These more
general versions of the results are what are used throughout the main part of the paper.

Let (M,ϕ) be any type IIIλ factor, where λ ∈ (0, 1], endowed with a faithful normal state
such the centralizer (MU )ϕU of the ultraproduct state ϕU is a type II1 factor.
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• If M is of type IIIλ with λ ∈ (0, 1), we may take any 2π
| log(λ)| -periodic faithful normal

state ϕ on M.
• If M is of type III1, we may take any faithful normal state ϕ on M (see [1,Proposition

4.24]).

First, we observe that any atomic (discrete)W∗-probability space has a unique embedding
into (M,ϕ)U up to unitary conjugacy.

Lemma A.1 Let (P,ψ) be any atomic W∗-probability space. For every i ∈ {1, 2}, let πi :

(P,ψ) ↪→ (M,ϕ)U be any embedding. Then there exists u ∈ U((MU )ϕU ) such that π2 =

Ad(u) ◦ π1.

Proof Write P =
⊕

p Pp where each Pp is a type I factor. For every p, denote by (e
p
kl)k,l

a system of matrix units for Pp and denote by (λ
p
k)k positive reals such that

∑

k λ
p
k =

1 and
ψ( · 1Pp)

ψ(1Pp) = τPp(diag(λ
p
k) · ). For all k, l,p and all t ∈ R, we have σ

ψ
t (e

p
kl) =

(λ
p
k/λ

p
l )

it e
p
kl.

Observe for every i ∈ {1, 2}, since ϕU ◦ πi = ψ and since πi(P) ⊂ MU is globally

invariant under σϕU
, we have σϕU

t ◦πi = πi ◦σ
ψ
t for all t ∈ R by [7,Lemme 1.2.10]. Since

(MU )ϕU is a type II1 factor and since π1(e
p
11),π2(e

p
11) ∈ (MU )ϕU and ϕU (π1(e

p
11)) =

ψ(e
p
11) = ϕU (π2(e

p
11)), there exists a partial isometry vp ∈ (MU )ϕU such that v∗

pvp =

π1(e
p
11) and vpv∗

p = π2(e
p
11). If we let u =

∑

p

∑

k π2(e
p
k1)vpπ1(e

p
1k), we have u ∈

U((MU )ϕU ) andπ2(e
p
kl) = uπ1(e

p
kl)u

∗ for allk, l,p. Therefore,we haveπ2 = Ad(u)◦π1.

Next, we prove that the unique embedding property into (M,ϕ)U up to unitary conjugacy,
is stable under taking increasing unions.

Lemma A.2 Let (P,ψ) be any separable W∗-probability space and (Pn,ψn) ⊆ (P,ψ) any
increasing sequence of W∗-probability subspaces such that

∨
n∈N

(Pn,ψn) = (P,ψ). For
every i ∈ {1, 2}, letπi : (P,ψ) ↪→ (M,ϕ)U be any embedding. Assume that for everyn ∈ N,
there exists un ∈ U((MU )ϕU ) such that π2(x) = unπ1(x)u

∗
n for every x ∈ Pn.

Then there exists u ∈ U((MU )ϕU ) such that π2 = Ad(u) ◦ π1.

Proof For every n ∈ N, write un := (un
m)U where (un

m)m ∈ MU (M) and un
m ∈ U(M)

(see e.g. [30,Lemma 2.1]). For every n ∈ N, denote by Xn = {yn
k | k ∈ N} ⊂ Pn a

‖ · ‖�
ψn

-dense countable subset and set X�n
n := {yn

k | 0 � k � n}. For every i ∈ {1, 2} and

every b ∈ Xn, write πi(b) = (bi
m)U where (bi

m)m ∈ MU (M).
For every n ∈ N, define

Fn :=
⋂

0�k�n,b∈X
�k
k

{

m ∈ N | ‖un
m b1

m (un
m)∗ − b2

m‖�
ϕ <

1
n + 1

}

Gn := {m ∈ N | m � n} ∩
{

m ∈ N | ‖un
mϕ − ϕun

m‖ <
1

n + 1

}

∩
n⋂

j=1

Fj.

By construction and since U is a nonprincipal ultrafilter on N, (Gn)n∈N is a decreasing
sequence of subsets of U such that G0 = N and

⋂
n∈N

Gn = ∅. For every m ∈ N, set
vm = un

m ∈ U(M) where n ∈ N is the unique integer such that m ∈ Gn \ Gn+1.
Let n ∈ N. If m ∈ Gn =

⋃
j�n Gj \ Gj+1, denote by p � n the unique integer such

that m ∈ Gp \ Gp+1. Since vm = u
p
m, we have
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• ‖vmϕ − ϕvm‖ = ‖u
p
mϕ − ϕu

p
m‖ < 1

p+1 � 1
n+1 and

• ‖vm b1
m v∗

m − b2
m‖�

ϕ = ‖u
p
m b1

m (u
p
m)∗ − b2

m‖�
ϕ < 1

p+1 � 1
n+1 for all 0 � k � n

and all b ∈ X
�k
k .

This implies that

Gn ⊂
{

m ∈ N | ‖vmϕ − ϕvm‖ <
1

n + 1

}

Gn ⊂
⋂

0�k�n,b∈X
�k
k

{

m ∈ N | ‖vm b1
m v∗

m − b2
m‖�

ϕ <
1

n + 1

}

.

Since Gn ∈ U , it follows that
{

m ∈ N | ‖vmϕ − ϕvm‖ <
1

n + 1

}

∈ U

∀0 � k � n,∀b ∈ X
�k
k ,

{

m ∈ N | ‖vm b1
m v∗

m − b2
m‖�

ϕ <
1

n + 1

}

∈ U .

Since this holds for every n ∈ N, we obtain limm→U ‖vmϕ − ϕvm‖ = 0. This implies
that (vm)m ∈ MU (M) and u = (vm)U ∈ U((MU )ϕU ). This further implies that for every

k ∈ N and every b ∈ X
�k
k , we have ‖uπ1(b)u

∗ − π2(b)‖�

ϕU = limm→U ‖vm b1
m v∗

m −

b2
m‖�

ϕ = 0. Since
⋃

k∈N
X

�k
k =

⋃
n∈N

Xn, since for every n ∈ N, the set Xn is ‖ · ‖�
ψn

-

dense in Pn, since
∨

n∈N
Pn = P and since for every i ∈ {1, 2}, πi : P ↪→ MU is a normal

embedding, this finally implies that π2(x) = uπ1(x)u
∗ for every x ∈ P.

Definition A.3 We say that aW∗-probability space (P,ψ) is approximately finite dimensional
(AFD) if there exists an increasing sequence of finite dimensional W∗-probability subspaces
(Pn,ψn) ⊆ (P,ψ) such that

∨
n∈N

(Pn,ψn) = (P,ψ).

If (P,ψ) is an AFD W∗-probability space, then ψ is necessarily an almost periodic state
on P.

Examples A.4 Here are the main examples of AFD W∗-probability spaces:

1. Every AFD tracial von Neumann algebra (M, τ) endowed with a tracial faithful normal
state is an AFD W∗-probability space.

2. For every λ ∈ (0, 1), endow the type IIIλ Powers factor Rλ with its canonical 2π
| log(λ)| -

periodic faithful normal state ϕλ. Then (Rλ,ϕλ) is an AFD W∗-probability space.

3. Endow the type III1 Araki-Woods factor R∞ = Rλ1 ⊗ Rλ2 , where
log(λ1)
log(λ2)

/∈ Q, with the

faithful normal state ϕ = ϕλ1 ⊗ ϕλ2 . Then (R∞,ϕ) is an AFD W∗-probability space.
4. For every AFD type III0 factor P, there exists a faithful normal state ϕ on M such that

(M,ϕ) is an AFD W∗-probability space (see [10, Theorem 1]).

We deduce that any AFDW∗-probability space has a unique embedding into (M,ϕ)U up
to unitary conjugacy.

Theorem A.5 Let (P,ψ) be any AFD W∗-probability space. For every i ∈ {1, 2}, let πi :

(P,ψ) ↪→ (M,ϕ)U be any embedding. Then there exists u ∈ U((MU )ϕU ) such that π2 =

Ad(u) ◦ π1.
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Proof Let (Pn,ψn) ⊆ (P,ψ) be an increasing sequence of finite dimensional W∗-
probability subspaces such that

∨
n∈N

(Pn,ψn) = (P,ψ). For every n ∈ N, Lemma A.1
implies that there existsun ∈ U((MU )ϕU ) such thatπ2(x) = unπ1(x)u

∗
n for everyx ∈ Pn.

Then Lemma A.2 implies that there exists u ∈ U((MU )ϕU ) such that π2(x) = uπ1(x)u
∗

for every x ∈ P.

As a straightforward consequence of TheoremA.5,we obtain the following unique embed-
ding property for the Powers factors Rλ where λ ∈ (0, 1).

Corollary A.6 Let λ ∈ (0, 1) and π : (Rλ,ϕλ) ↪→ (Rλ,ϕλ)
U be any embedding. Then there

exists u ∈ U((RU
λ )ϕU

λ
) such that Ad(u) ◦ π : (Rλ,ϕλ) ↪→ (Rλ,ϕλ)

U is the diagonal

embedding.

Combining Theorem A.5 with Connes-Størmer transitivity theorem, we obtain the fol-
lowing unique embedding property for the Araki-Woods factor R∞.

Corollary A.7 Let ψ be any faithful normal state on R∞ and π : (R∞,ψ) ↪→ (R∞,ψ)U any
embedding. Then there exists u ∈ U((RU

∞
)ψU ) such thatAd(u)◦π : (R∞,ψ) ↪→ (R∞,ψ)U

is the diagonal embedding.

Proof Denote by E : RU
∞

→ π(R∞) the unique faithful normal conditional expectation such
thatψ◦π−1 ◦E = ψU . Choose a faithful normal stateϕ on R∞ such that (R∞,ϕ) is an AFD
W∗-probability space (see Example A.4(3)). Setφ = ϕ◦π−1 ◦E ∈ (RU

∞
)∗. By [1, Theorem

4.20], there exists w ∈ U(RU
∞
) such that φ = ϕU ◦ Ad(w). (This result indeed holds for

countably incomplete ultrafilters on arbitrary index sets.) Thenπw = Ad(w)◦π : R∞ ↪→ RU
∞

is an embedding such that ϕU ◦πw = ϕU ◦Ad(w)◦π = φ◦π = ϕ. Moreover, the faithful
normal conditional expectation Ew = Ad(w) ◦ E ◦ Ad(w∗) : RU

∞
→ wπ(R∞)w∗ satisfies

ϕ ◦ π−1
w ◦ Ew = ϕ ◦ π−1 ◦Ad(w∗) ◦Ad(w) ◦ E ◦Ad(w∗) = ϕU . Thus, πw : (R∞,ϕ) ↪→

(R∞,ϕ)U is an embedding of W∗-probability spaces.
By Theorem A.5, there exists v ∈ U((RU

∞
)ϕU ) such that Ad(v) ◦ πw : (R∞,ϕ) ↪→

(R∞,ϕ)U is the diagonal embedding ι : (R∞,ϕ) ↪→ (R∞,ϕ)U . Set u = vw ∈ U(RU
∞
).

Thenwe haveAd(u)◦π = ι andϕU ◦Ad(u)◦π = ϕ = ϕU ◦ι. Denote byEU : RU
∞

→ ι(R∞)

the canonical faithful normal expectation. Note that Eu = Ad(u) ◦ E ◦ Ad(u∗) : RU
∞

→
uπ(R∞)u∗ is another faithful normal conditional expectation onto ι(R∞) = uπ(R∞)u∗.
Since

ϕ ◦ π−1 ◦ Ad(u∗) ◦ Eu = ϕ ◦ π−1 ◦ Ad(u∗) ◦ Ad(u) ◦ E ◦ Ad(u∗)
= φ ◦ Ad(w∗) ◦ Ad(v∗)

= ϕU

= ϕ ◦ ι−1 ◦ EU ,

we have EU = Eu = Ad(u) ◦ E ◦ Ad(u∗). This further implies that

ψU = ψ ◦ ι−1 ◦ EU
= ψ ◦ π−1 ◦ Ad(u∗) ◦ Ad(u) ◦ E ◦ Ad(u∗)

= ψ ◦ π−1 ◦ E ◦ Ad(u∗)

= ψU ◦ Ad(u∗)

and so u ∈ U((RU
∞
)ψU ), finishing the proof.
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We may also apply Theorem A.5 to the structure of ultraproduct type III1 factors. The
next result extends [14, Theorem 4.5].

Proposition A.8 Let M be any σ-finite type III1 factor. Then MU is a prime factor, that is,
MU

� M1 ⊗ M2 for any diffuse factors M1,M2.

Proof By contradiction, assume that MU is not prime and write MU = M1 ⊗ M2. For
every i = 1, 2, choose a separable diffuse abelian von Neumann subalgebra Ai ⊂ Mi with
expectation. By Theorem A.5, there exists a unitary w ∈ U(MU ) such that wA1w

∗ = A2.
For every i = 1, 2, choose a faithful normal state ϕi on Mi such that Ai ⊂ (Mi)ϕi

and
define the faithful normal conditional expectationE2 : M1⊗M2 → M2 byE2 = ϕ1⊗idM2 .
Choose a sequence of unitaries (un) in U(A1) such that un → 0 weakly. For all i ∈ {1, 2}
and all xi,yi ∈ Mi, we have

lim
n

EA2((x1 ⊗ x2)(un ⊗ 1)(y1 ⊗ y2)) = lim
n

ϕ1(x1uny1)x2y2 = 0.

By strong density of linear combinations of elementary tensors in M1 ⊗ M2 and since
un ∈ A1 ⊂ (M1)ϕ1 , it follows that for all x,y ∈ M1 ⊗ M2 = MU , we have

lim
n

EA2(x(un ⊗ 1)y) = 0.

Applying the above result to x = w and y = w∗ and since wA1w
∗ = A2, we obtain

1 = lim
n

‖w(un ⊗ 1)w∗‖ϕ2 = lim
n

‖EA2(w(un ⊗ 1)w∗)‖ϕ2 = 0.

This is a contradiction.

Appendix B. Keisler’s Sandwich Theorem

In this section we prove Keisler’s Sandwich Theorem (Theorem 4.2). To simplify the matter,
wework in the traditional [0, 1]-valued version of continuous logic presented in [5].We freely
use the notation and terminology established in [5].

Fix a language L. Let L∃ be the language obtained by adding a predicate Pϕ for every
existential L-formula ϕ. It is clear that an embedding between L∃-structures is an existential
embeddingof theirL-reducts and, conversely, any existential embeddingbetweenL-structures
is an embedding of their canonical expansions to L∃-structures.

Lemma B.1 Any restricted quantifier-free L∃-formula is equivalent to both an ∀2 L-formula
and a ∃2 L-formula.

Proof. We prove the lemma by induction on the complexity of formulae. The main case is
the connective .

−. This follows from the following calculations:

• (supx infy ϕ)
.
− (infz supw ψ) ≡ supx supz infy infw(ϕ

.
− ψ) and

• (infx supy ϕ)
.
− (supz infw ψ) ≡ infx infz supy supw(ϕ

.
− ψ).

In what follows, given an L-structure N, Th∀n(N) denotes the closed conditions of the
form σ = 0, where σ is a ∀n-sentence for which σN = 0. Similarly, if T is a theory, we let
T∀n denote the collection of closed conditions σ = 0, where σ is a ∀n-sentence for which
T |= σ = 0. The corresponding notions with ∀n replaced by ∃n are defined analogously. It
is routine to verify that M |= Th∀n(N) if and only if N |= Th∃n(M).
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3814 I. Goldbring, C. Houdayer

Theorem B.2 For L-structures M and N, the following are equivalent:

1. M |= Th∀n(N);.
2. There is an elementary extension N ′ of N for which there is an (M,N ′,n)-ultrapower

sandwich.

Proof We prove this by induction on n. The case n = 1 is well-known.
Now suppose that n > 1. If S is an n-ultrapower sandwich, let S ′ denote the sandwich

with the last element removed.
First suppose that there is an (M,N ′,n)-ultrapower sandwich S with N ′ an elementary

extension of N. Then S is an (M,N ′,n − 1)-ultrapower sandwich with respect to L∃. By
induction, we have that M is a model of Th∀n−1(N) with respect to the language L∃. It
is clear that Th∀n(N) with respect to L is contained in Th∀n−1(N) with respect to L∃, so
M |= Th∀n(N), as desired.

Now suppose that M |= Th∀n(N). By the previous lemma, we have that M |=
Th∀n−1(N) with respect to L∃. By induction, there is an elementary extension N ′ of N for
which there is an (M,N ′,n−1)-ultrapower sandwich with respect to L∃, that is, the embed-
dings are all existential embeddings. In particular, the chain can be extended by one more
element if the embeddings are not required to be existential. Thus, there is an (M,N ′,n)-
ultrapower sandwich, as desired.

We can now prove the above promised sandwich theorems:

Corollary B.3 For any L-theory T , the following are equivalent:

1. T is ∀n-axiomatizable.
2. Whenever there is an (M,N,n)-ultrapower sandwich with N |= T , we also have that

M |= T .

Proof First suppose that T is ∀n-axiomatizable and consider an (M,N,n)-ultrapower sand-
wich with N |= T . Then by Theorem B.2, we have that M |= Th∀n(N). Since N |= T , we
have that T∀n ⊆ Th∀n(N). It follows that M |= T∀n . Since T is ∀n-axiomatizable, we have
that M |= T , as desired.

Conversely, suppose that (2) holds and let M |= T∀n . We wish to show that M |= T .
Consider the set

Σ := T ∪ {σ � ε

2
: σM � ε, σ is a ∀n-sentence}.

If Σ were unsatisfiable, then there would be σ1, . . . ,σm and ε such that σM
i � ε for all i

and yet T |= max1�i�m(σi
.
− ε

2 ) = 0. Since this latter sentence is still ∀n, we have that it
belongs to T∀n , contradicting the fact that M |= T∀n .

Let N |= Σ. Note then that N |= T . Moreover, M |= Th∀n(N). Indeed, if σ is a ∀n

sentence such that σN = 0, then σM = 0, else there is ε > 0 such that σM � ε, whence
σN � ε

2 , a contradiction.
By Theorem B.2, there is an elementary extension N ′ of N for which there is an

(M,N ′,n)-ultrapower sandwich. By (2) and the fact that N ′ |= T , we have that M |= T , as
desired.

Corollary B.4 For any L-theory T , the following are equivalent:

1. T is ∃n-axiomatizable.
2. Whenever there is an (M,N,n)-ultrapower sandwich with M |= T , we also have that

N |= T .
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Proof First suppose that T is ∃n-axiomatizable and consider an (M,N,n)-ultrapower sand-
wich with M |= T . By Theorem B.2, we have that M |= Th∀n(N). Note then that
N |= Th∃n(M). Indeed, if σ is an ∃n-sentence and σM = 0, then σN = 0, else σN � ε.
Since ε

.
− σ is equivalent to a ∀n-sentence, we get that ε

.
− σ ∈ Th∀n(N), whence

(ε
.
− σ)M = 0, contradicting that σM = 0. Since T is ∃n-axiomatizable, we have that

N |= T , as desired.
Now suppose that (2) holds andM |= T∃n . We wish to show thatM |= T . The exact same

argument as in the previous theorem shows that there is N |= T such that σN � ε whenever
σ is a ∃n-sentence with σM � ε. It follows thatM |= Th∃n(N). Arguing as above, we have
that N |= Th∀n(M), so there is an (N,M ′,n)-ultrapower sandwich with M ′ an elementary
extension of M. By (2) and the fact that N |= T , we have that M ′ |= T , whence M |= T , as
desired.
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