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Abstract

We study several model-theoretic aspects of W*-probability spaces, that is, o-finite von
Neumann algebras equipped with a faithful normal state. We first study the existentially
closed W*-spaces and prove several structural results about such spaces, including that they
are type III; factors that tensorially absorb the Araki-Woods factor R.,. We also study the
existentially closed objects in the restricted class of W*-probability spaces with Kirchberg’s
QWEP property, proving that R, itself is such an existentially closed space in this class. Our
results about existentially closed probability spaces imply that the class of type III; factors
forms a V;-axiomatizable class. We show that for A € (0, 1), the class of III; factors is not V-
axiomatizable but is V3-axiomatizable; this latter result uses a version of Keisler’s Sandwich
theorem adapted to continuous logic. Finally, we discuss some results around elementary
equivalence of Il factors. Using a result of Boutonnet, Chifan, and Ioana, we show that,
for any A € (0, 1), there is a family of pairwise non-elementarily equivalent III, factors of
size continuum. While we cannot prove the same result for III; factors, we show that there
are at least three pairwise non-elementarily equivalent III; factors by showing that the class
of full factors is preserved under elementary equivalence.
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1 Introduction

The model-theoretic study of von Neumann algebras began in earnest with the series of
papers [15, 16], and [17] by Farah, Hart and Sherman. There, a theory in a (continuous) first-
order language was described for which there was an equivalence of categories between the
models of the theory and the category of tracial von Neumann algebras for which the model-
theoretic ultraproduct construction corresponded to the tracial ultraproduct construction.
In the time since these papers appeared, there has been a very interesting interplay between
model-theoretic and operator-algebraic techniques; recent examples of applications of model-
theoretic techniques to problems about tracial von Neumann algebras can be found in the
papers [4, 20], and [22].

That a model-theoretic study of a wider class of von Neumann algebras (that is, beyond
the finite realm) should be possible is hinted at by the existence of the Ocneanu ultraproduct
construction, which allows one to take the ultraproduct of a family of W*-probability spaces,
that is, o-finite von Neumann algebras equipped with a faithful, normal state. (The relevant
facts about W*-probability spaces needed in this paper are summarized in Sect. 2.) Motivated
by the Ocneanu ultraproduct, Farah and Hart, in an unpublished work, observed that the
category of o-finite von Neumann algebras forms a so-called compact abstract theory (or
CAT), which is a logical framework predating the current incarnation of continuous first-
order logic. The first person to axiomatize (in the sense of the previous paragraph) W*-
probability spaces in an appropriate continuous first-order language was Dabrowski [13];
in particular, the model-theoretic ultraproduct construction for this class corresponds to the
Ocneanu ultraproduct construction. Dabrowski’s axiomatization is quite technical and uses
a fair amount of modular theory. A simpler (but less descriptive) axiomatization was given
by Hart, Sinclair, and the first author in [23].

Now that the class of W*-probability spaces has been established as an axiomatizable class
in an appropriate language, it is only natural to begin a thorough model-theoretic study of this
class. In this paper, we initiate this endeavor. Our main focus will be on studying the class
of existentially closed W*-probability spaces. The notion of an existentially closed structure
is the model-theoretic generalization of the notion of an algebraically closed field. Roughly
speaking, given structures M and AV (in some language) for which M is a substructure of V,
we say that M is an existentially closed substructure of A/ (or that M is existentially closed
in V) if any existential fact about some elements of M which is true in AV is also true in M.
Considering that we are in the setting of continuous logic, truth in M is really approximate
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Existentially closed W*-probability spaces 3789

truth. Thankfully, this syntactic definition of existentially closed substructure can be given a
semantic reformulation that aligns much more with the operator-algebraic perspective: M is
an existentially closed substructure of A if and only if there is an embedding of N into an
ultrapower MY of M for which the restriction of the embedding to M is the usual diagonal
embedding of M into its ultrapower. If M belongs to some class € of structures, we say
that the structure M is existentially closed for € if it is existentially closed in all extensions
belonging to €.

The Robinsonian school of model theory encourages one to understand the class of models
of a theory by understanding its class of existentiallly closed models, that is, the models of
the theory which are existentially closed for the class of models of the theory. The study of
existentially closed tracial von Neumann algebras was carried out in the papers [18, 19, 24],
and [21]. In Sect. 3 of this paper, we carry out a systematic study of the class of W*-probability
spaces. In Sect. 3.1, we describe some properties of a W*-probability space that are inherited
by an existentially closed substructure. In particular, we show that if the W*-probability space
(M, @) is existentially closed in (N, 1) and N is a type III; factor, then so is M. This aids us
in our study of the class of existentially closed W*-probability spaces in Sect. 3.2, where we
show that any such W*-probability space is necessarily a type III; factor, which generalizes
the result that an existentially closed tracial von Neumann algebra is necessarily a type II;
factor. Other facts about existentially closed tracial von Neumann algebras are generalized
to this setting, such as they tensorially absorb the Araki-Woods factor Ry, (generalizing the
fact that any existentially closed II; factor tensorially absorbs the hyperfinite II; factor R) and
that every automorphism of an existentially closed W*-probability space is approximately
inner.

If one restricts one’s attention to the class of tracial von Neumann algebras that satisfy
the conclusion of the Connes Embedding Problem, that is, that admit a trace-preserving
embedding into the tracial ultrapower of the hyperfinite II; factor R, then one obtains the
fact that R itself is an existentially closed element of this class. Since a tracial von Neumann
algebra embeds into the tracial ultrapower of R precisely when it has Kirchberg’s QWEP
property [34], it is natural to restrict attention to the class of QWEP W™*-probability spaces.
In fact, a result of Ando, Haagerup, and Winslow [2] shows that this class of W*-probability
spaces can be characterized by admitting an embedding (with expectation) into the Ocneanu
ultrapower of the Araki-Woods factor Ry, or, as we show below, in model-theoretic terms,
is a model of the universal theory of R,. We show that R, is an existentially closed QWEP
W*-probability space and prove a few further results about this class of structures. Section
3.4 is concerned with the technique of building W*-probability spaces by games, which is a
technique (first introduced in the continuous setting in [21]) that is very useful when trying to
build e.c. objects with extra properties. The section concludes with Sect. 3.5, which contains
some open questions about existentially closed W*-probability spaces.

Section 4 contains two further collections of results about the model theory of W*-
probability spaces. The first collection of results concerns the axiomatizability of various
classes of type III factors. It is shown in [2] that, given any A € (0, 1], the Ocneanu ultra-
product of a family of type III, factors is again a type III) factor and a factor is of type
IIT,, if its Ocneanu ultrapower is as well. Model-theoretically, this implies that the class of
W*-probability spaces whose underlying von Neumann algebra is a type III factor forms
an axiomatizable class. In Sect. 4.1, we show that the results of our analysis of existentially
closed W*-probability spaces implies that the class of type III; W*-probability spaces nec-
essarily has a V,-axiomatization, that is, has a set of axioms of the form sup, infy 8(x,y),
where x and y are finite tuples of variables and 0 is a quantifier-free formula. We show
that for a fixed A € (0, 1), the class of III) factors cannot be axiomatized using two quan-
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tifiers but can be axiomatized using three quantifiers. In none of these cases do we provide
explicit axiomatizations but instead use a “soft” criterion for establishing the existence of
such axiomatizations given by the Keisler Sandwich theorem.

In Sect. 4.2, we study the notion of elementary equivalence of W*-probability spaces.
Two W*-probability spaces are elementarily equivalent if they cannot be distinguished using
a first-order sentence. Using the Keisler-Shelah theorem, this can be given a semantic refor-
mulation, namely that they have isomorphic ultrapowers. We first show how the result
of Boutonnet, Chifan, and Ioana [6] stating that McDuff’s family [36] of pairwise non-
isomorphic separable II; factors are in fact pairwise non-elementarily equivalent can be used
to show that there exist continuum many non-elementarily equivalent separable type IIIy
W*-probability spaces for any A € (0, 1). We are currently unable to extend this result to
include A = 1 but are able to identify at least three non-elementarily equivalent separable
type III; W*-probability spaces. In order to accomplish this, we show that the class of non-
full T, factors (for fixed A € (0, 1]) is an axiomatizable class, generalizing the theorem
of Farah, Hart, and Sherman [17] that the class of type II; factors with property Gamma is
axiomatizable. This subsection includes a number of interesting open questions about the
study of elementary equivalence of W*-probability spaces.

There are two appendices in this paper. The first appendix contains results about embedding
AFD W*-probability spaces into ultraproducts that are needed in various portions of the paper;
most of the results in this appendix are unpublished results of Ando and the second author. The
second appendix concerns Keisler’s Sandwich Theorem, which is the main model-theoretic
tool needed in our axiomatization results appearing in Sect. 4.1. Since the continuous logic
version of this result has never appeared, we include a complete proof of the result here.
Moreover, we present the result using ultrapowers rather than arbitrary elementary extensions
in the interest of the operator-algebraic audience.

We have made every attempt to keep the model-theoretic prerequisites for this paper to
a minimum and try to use “semantic” definitions and proofs whenever possible. That being
said, on a few occasions, we need to refer to basic model-theoretic terminology, such as
elementary equivalence, elementary embedding, or first-order formula. A short introduction
aimed towards operator algebraists (albeit in the language of tracial von Neumann algebras)
can be found in Sects. 2.1 and 2.3 of [4].

2 Preliminaries

2.1 Basic facts about W*-probability spaces

For every von Neumann algebra M, we denote by || - ||eo its uniform norm, by M., its
predual, by Z(M) its center, by &g, (M) the set of faithful normal states on M, by U (M)
its unitary group, by Ball(M) its unit ball with respect to the uniform norm, by Aut(M)
its automorphism group and by (M, L2(M), J, L(M) ™) its standard form (see [25]). Under
the identification M = (M.,)*, the ultraweak topology on M coincides with the weak-x
topology on (M. )*. A linear map @ : M — N is said to be normal if it is ultraweakly
continuous.

A W*-probability space is a pair (M, @) that consists of a o-finite von Neumann alge-
bra M endowed with a faithful normal state @ € G, (M). For every x € M, write
x|l = @(x*x)"/2 (resp. HXHIEP = @(x*x)/2 + @(xx*)'/2). On uniformly bounded sets,
the topology induced by the norm || - ||, (resp. || - ng) coincides the strong (resp. *-strong)
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operator topology. We denote by 0 the modular automorphism group associated with the
state @. By definition, the centralizer M, of the state @ is the fixed point algebra of (M, 6.
The continuous core of M with respect to ¢ is the crossed product von Neumann algebra
cp (M) = M xge R. The natural inclusion 71y, : M — ¢, (M) and the strongly continuous
unitary representation Ay : R — ¢ (M) satisfy the covariance relation

Ao (V)7 (x)A (1)* =T (0f (x)) forallx € Mandall t € R.

Set Ly (R) = A (R)"” C ¢y (M). There is a unique faithful normal conditional expectation
ELw(R) :cp(M) — Ly (R) satistying E]_(P(R)(H@(X)A(p(t)) = @(x)Ay(t). The faithful
normal semifinite weight defined by f — IR exp(—s)f(s)ds on L°(R) gives rise to a
faithful normal semifinite weight Tr, on Ly, (R) via the Fourier transform. The formula
Try = Trg oEp , (r) extends it to a faithful normal semifinite trace on ¢ (M). Define the
dual action 8¢ : R ~ ¢ (M) by the formula

B¢ (7 (x)Ag (1)) = exp(—ist) ey (X)Ap (t) forallx € M andall s, t € R.

Then 6 : R ~ ¢ (R) is a trace-scaling action in the sense that Try 00¢ = exp(—s) Tr¢
for every s € R.

Let Y € S (M) be any other faithful normal state. By Connes’ Radon-Nikodym
cocycle theorem [7,Théoreme 1.2.1] (see also [42,Theorem VIII.3.3]), there is a *-strongly
continuous map u: R — /(M) : t — u¢ such that

I. Ug4t =us0?(ue) forall s, t € R,
2. Gltj" (x) =urof (x)uf forallt € R and all x € M.

Item (1) says that u : R — /(M) is a 1-cocycle for o® while Item (2) says that 0 and o
are cohomologous. Then the *-isomorphism T, y, : ¢ (M) — ¢y, (M) : e (X)utAy (1) =
7oy (x) Ay, (1) satisfies T,y 070 = 7oy, TTepp 009 = 0% o1, y, and Try, olT, y, = Tr.
Note however that TT, y, does not map the subalgebra L, (R) C ¢, (M) onto the subalgebra
Ly (R) C ¢y (M). It follows that the triple (¢, (M), 0%, Tr, ) does not depend on the choice
of the faithful normal state ¢ € S¢,, (M) and we simply denote it by (c(M), 6, Tr).
Assume now that M is a factor. The restriction of 0 to the center Z(c(M)) is called the
Sflow of weights. By factoriality of M, the flow of weights 0 : R ~ Z(c(M)) is ergodic.

e If0:R ~ Z(c(M)) corresponds to the translation action R ~ R, then M is semifinite,
that is, M is of type I or II.

e If 0 : R ~ Z(c(M)) is periodic with period T > 0, then letting A = exp(—T), we say
that M is of type III;.

e If0:R ~ Z(c(M)) has no period, then we say that M is of type IIIj.

e If 0 : R ~ Z(c(M)) is trivial, that is, Z(c(M)) = CI, then we say that M is of type
111, .

Next, we define Connes’ S-invariant S(M) as the intersection
SM) =[] olAg)
(Peefn ( M)

where 0(A, ) is the spectrum of the modular operator A, associated with the faithful normal
state ¢ € G (M). Then S(M)\{0} is a closed multiplicative subgroup of R that completely
determines the type of M. When M is a type III factor, we have that:

e M is of type Il if and only if S(M) ={0, 1};
e M is of type III, if and only if S(M) = {0} UAZ, for A € (0, 1);
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e M is of type III; if and only if S(M) = [0, +00).

We also define Connes’ T-invariant T(M) as the set of all t € R for which of is an
inner automorphism. By Connes’ Radon—-Nikodym cocycle theorem, the above definition
does not depend on the choice of the faithful normal state ¢ € S, (M). Note that T(M)
is a subgroup of R. In case M is not of type Illy, then T(M) is a closed subgroup of R that
completely determines the type of M. Indeed, we have that:

e M is semifinite if and only if T(M) = R;
e M is of type III, if and only if T(M) = log(A)Z, for A € (0, 1);
e M is of type III; if and only if T(M) = {0}.

We refer to [7, 42] for further details regarding the structure of type III factors.
Throughout this paper, for A € (0,1), (Rx, @) denotes the Powers factor of type Il
endowed with its (unique) “Oéﬁ-periodic faithful normal state. By definition, we have

(Ra, @2) = (Ma(C), wy )®N

where wjy, : M (C) — C is defined by

w X1 X2\ A _— 1 N
Mk xa) ) T TR T TN
By Connes’ result [11] (see also [43,Theorem XVIIL1.1]), Ry, is the unique AFD factor of
type III, . We also let Ry, denote the Araki-Woods factor. Combining Connes’ result [12]
and Haagerup’s result [26] (see also [43,Theorem XVIIL.4.16]), Ry is the unique AFD factor

of type ITI; and moreover we have Ry, = Ry ® Rj, whenever log(A1)/log(A2) is irrational.
We next clarify what we mean by an inclusion of W*-probability spaces.

Definition 2.1 For W*-probability spaces (M, @) and (N, ), we say that (M, @) embeds
into (N,1), denoted (M, @) < (N, 1), if there exist a unital normal *-embedding t : M —
N such that 1 o t = @ and a faithful normal conditional expectation E : N — ((M) such
that g ot ' 0 E = 1.

In what follows, we identify M with (M), regard M C N as a von Neumann subalgebra,
and assume that ¢ : M — N is simply given by t(x) := x. In that case, we say that
(M, @) C (N,) is an inclusion of W*-probability spaces. By [42, Theorem 1X.4.2], the
following assertions are equivalent:

L (M, ) € (N, ).
2. The modular automorphism group o' leaves the subalgebra M C N globally invariant,
Ylm = @, and 6® = 0¥ |pm.

In that case, E : N — M is the unique faithful normal conditional expectation such that
@ o E =1. Moreover, we have

My ={x e M|Vt e R, 0 (x) =x}
={xeM|Vt GR,O'}LI)(X) =x} (since 0® = o¥|m)
C Ny
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Existentially closed W*-probability spaces 3793

2.2 Ocneanu ultraproducts of W*-probability spaces

Let I be any nonempty directed set and ¢/ any nonprincipal ultrafilter on L. Let (M, ©1)icr
be any family of W*-probability spaces. Following [1], define

iel

(L M) = {(Xi)i e [ TMi I sup fxifloo < +°°}

ier
Ty = {(xi)i € (L M) | Jim x5, = 0}
M = {(xi)i € (L M) | (x)i Iy C T and Ty (x:)i C Jue).

Observe that J;; C MY, The multiplier algebra MY is a C*-algebra and J;; C MY is a
norm closed two-sided ideal. Following [37, §5.1], we define the ultraproduct von Neumann
algebraby [ ,,(Mi, 1) i= (M, @1)¥ := MY /Ty, We note that the proof givenin[37,5.1]
for the case when I = N and & € 3(N) \ N applies mutatis mutandis. We denote the image
of (xi); € M in (Mg, 91)¥ by (x;)4.

We now focus on the particular case when (Mj, @i) = (M, @) for some fixed W*-
probability space (M, @). In that case, we write (M, @) = (MY, @¥) for the ultraprower
of (M, @). For every x € M, the constant sequence (x); lies in the multiplier algebra 9.
We then identify M with (M + J;¢)/Jy and regard M € MY as a von Neumann subalgebra.
The map Eyy : MY — M given by Eyy((xi)¥) = o-weak lim;_,;; X is a faithful normal
conditional expectation. Moreover, we have @ o By = oY. Thus, (M, @) C (M, @) is an
inclusion of W*-probability spaces. Following [8, §2], set

My = {(xi)i eL*(LM) | 'hnZI/{ [[xiC— {xi]| =0,V € LZ(M)}.

Define the asymptotic centralizer von Neumann algebra by My, = 9%, /3y, which is a von
Neumann subalgebra of MY By [8, Proposition 2.8] (see also [1,Proposition 4.35]), we have
My =(M'nN Mu)ll)u for every faithful normal state P € G (M).

Now let (Q,1%) C (M, @) be any inclusion of W*-probability spaces and denote by
E : M — Q the unique faithful normal conditional expectation such that 1 o E = ¢. We
have £2°(1,Q) C £2°(1,M), J34(Q) C Jyy(M) and MY (Q) C MY (M). We then identify
QY = MmH(Q)/Tu(Q) with (M“(Q) + Ty (M))/Tpy(M) and regard Q¥ < MY as a
von Neumann subalgebra. Observe that the norm || - ||,z on QY is the restriction of the
norm || - ngu to QY. Observe moreover that (E(x;)); € Ju(Q) for all (x1); € Jyu(M)
and (E(x1)); € MY(Q) for all (xi); € MY (M). Therefore, the mapping E¥ : MY —
QY given by EY((x;)¥) = (E(x;))¥ is a well-defined conditional expectation satisfying
YU o EY = @Y. Thus, (Q, Y)Y C (M, @)¥ is an inclusion of W*-probability spaces.

2.3 Automorphism group, fullness and w-spectral gap

Let M be any o-finite von Neumann algebra. Recall that for every @ € (M,)™, there is
a unique vector &, € L2(M)* such that @(x) = (x& ¢, &) for all x € M. The group
Aut(M) of all automorphisms of M acts on M, by 8(¢@) = @00~ ! forall® € Aut(M) and
@ € M.. Following [8, 25], the u-topology on Aut(M) is the topology of pointwise norm
convergence on M, meaning that a net (0;)icy in Aut(M) converges to the identity idpm
in the u-topology if and only if for all ¢ € M, we have ||8;(¢) — @|| — 0 as i — oco. This
turns Aut(M) into a complete topological group. When M., is separable, Aut(M) is Polish.
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Since the standard form of M is unique, the group Aut(M) also acts naturally on L>(M) and
we have 6(&¢) = &g () forevery @ € M. It follows that the u-topology coincides with

the topology of pointwise norm convergence on L2(M).
We introduce the following terminology:

Definition 2.2 We say that 6 € Aut(M) is

e approximately inner if there exists a net (uq)ic1 in /(M) such that Ad(u;) — 0 in the
u-topology.

e weakly inner in the sense of [35] if the automorphism 6 © id of M ® M°P extends to
an automorphism of the C*-algebra C 0 (M) generated by the standard representation

A-p:MeMP®P — B(L2(M)).

Any approximately inner automorphism is weakly inner (see [3,Theorem 4.1]) but the
converse is not true (see [35]).

We say that a o-finite factor M is full if whenever (ui)ic1 is a net in ¢(Q) such that
Ad(uy) — idp in the u-topology, there exists a bounded net (A;)icy in C such that uy —
Ail — 0 x-strongly. When M is tracial, M is full if and only if M does not have property
Gamma of Murray and von Neumann. It is known that a full factor is never of type 111 (see
[8, Theorem 2.12]). By [31,Corollary 3.7], if M is a full factor, then for any nonprincipal
ultrafilter 4 on any directed set I, we have M/ N MY = Cl. (The converse is also true and
follows readily from the definitions.) It follows from the classification of amenable factors
[11, 12, 26] that any factor that is amenable and full is necessarily of type I.

We say that an inclusion of von Neumann algebras Q C M is with expectation if there
exists a faithful normal conditional expectation E : M — Q. Moreover, we say that Q has
w-spectral gap in M if, for any nonprincipal ultrafilter ¢/ on any set I, we have Q' N MY =
(Q'NM)H. By [31,Theorem 4.4], for any o-finite full factor M and any o-finite von Neumann
algebra N, M has w-spectral gap in M ® N.

2.4 W*-probability spaces as metric structures

As mentioned in the introduction, Dabrowski [ 13] introduced a first-order language for axiom-
atizing W*-probability spaces. In this language, the sorts are given by operator norm balls
centered at the origin of various natural number radii. The metric on each ball is given by the
norm | - ||, a relative of the norm || - ||, used above, which has the advantage that the state is
Lipschitz continuous on each sort. While one has the natural symbols for scalar multiplica-
tion, addition, and adjoint, multiplication is not uniformly continuous on each sort and thus
Dabrowski uses “smeared” multiplication maps defined using modular theory. Finally, he
includes function symbols for the modular automorphism group (for rational times to keep
the language countable) as well as some auxiliary symbols needed to make the axiomatization
work. In this language, it is possible to axiomatize a class of structures which, as a category,
is equivalent to the category of W*-probability spaces with inclusions as defined above and
for which the model-theoretic ultraproduct corresponds to the Ocneanu ultraproduct.

While quite explicit, Dabrowski’s language is very technical and cumbersome. An alter-
nate axiomatization is given by Hart, Sinclair, and the first author in [23]. There, the sorts
are given by vectors of operator norm at most N that are K-bounded (in a sense akin to that
used in bimodule theory). On these sorts, the metric is induced by the norm || - pr and then
all symbols (including multiplication) are naturally uniformly continuous. A much simpler
axiomatization in this language can be given which once again yields an equivalence of cat-
egories capturing the Ocneanu ultraproduct except that an inclusion of models of this theory
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Existentially closed W*-probability spaces 3795

only corresponds to a normal, state-preserving embedding of von Neumann algebras. In order
to recover the correspondence with the above notion of inclusion of W*-probability spaces,
one must add the modular automorphism group to the language, which is a harmless move as
the modular automorphism group is definable in this language, as shown in [23]. However,
the definability of the automorphism group is given by an abstract argument using the Beth
Definability Theorem and thus this axiomatization lacks the concrete flavor of Dabrowski’s
axiomatization.

In this paper, the specific first-order framework for studying W*-probability spaces is not
important and the reader can feel free to keep either of these two approaches in mind.

3 Existentially closed W*-probability spaces
3.1 Relative existential closedness

We begin this subsection by officially defining what it means for a W*-probability space to
be existentially closed in another:

Definition 3.1 If (M, @) C (N, ), we say that (M, @) is existentially closed (e.c.)in (N, )
if and only if

(M, ) € (N,1) C (M, @)
so that (M, @) C (M, @) is the diagonal inclusion.

Remarks 3.2 1. As discussed in the introduction, the previous definition is not the usual
“syntactic” definition of existential closedness. Stated in syntactic terms, (M, @) is e.c.
in (N, ) if and only if: for every existential formula 6 with parameters from M, we have
p(M.@) — g(N-P) The above definition is convenient for operator algebraists who do
not wish to understand the precise definition of existential sentence.

2. The previous definition is rather vague as to the nature of the ultrafilter /. If N in the
previous definition is a separably acting von Neumann algebra, then ¢/ can be taken to
be any nonprincipal ultrafilter on N. For general N, one needs to take a particular kind of
ultrafilter (known as a good ultrafilter) on some potentially large index set (depending
on the density character of the metric associated to || - ||,).

The following flexibility result allows us to change states when dealing with relatively
existentially closed W*-probability spaces.

Proposition 3.3 Suppose that (M, @) is e.c. in (N, ). Then for any faithful normal state p
on M, we have that (M, p) is e.c.in (N,p o E), where E : N — M is the unique faithful
normal conditional expectation such that @ o E = 1.

Proof By assumption, we have (M, @) C (N,1) C (M, @) sothat (M, @) C (M, @) is
the diagonal inclusion. Denote by F : M“ — N the unique conditional expectation such that
P o F = @Y. Recall from above that E; : MY — M given by Ey/((x1)¥) = w-limy, x; is
the canonical faithful normal conditional expectation. By definition, we have @ o By = Y.
Since ¢ is faithful and since

@o(EoF)=poF=¢"=¢oky,

by uniqueness of the conditional expectation, we have E o F = Ey.
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Let now p be any faithful normal state on M. We then have (p o E) o F = p o Eyy = p¥.
With respect to the same inclusions and the same conditional expectations E and F, we have
(M,p) € (N,poE)and (N,poE)C(M¥ (poE)oF) = (M,p)” and so (M,p) C
(N, poE) C (M, p)¥. This shows that (M, p) is e.c.in (N, p o E). O

Lemma 3.4 Suppose that (M, @) is e.c.in (N,). Then:

1. If N is a factor, then M is a factor.

2. T(M) C T(N).

Proof By assumption, we have (M, @) C (N,1) C (M, @) where (M, @) C (M, )4
the diagonal inclusion.

1. Assume that N is factor. Since Z(M) C Z(N), it follows that Z(M) = C1 and so M is

a factor.
2. Lett € T(M). Then o € Inn(M) and there exists u € ¢ (M) such that o = Ad(u).
Since O‘ﬂ) = ()‘ffulN and since G;P“ = Ad(u), it follows that O't = Ad(u) € Inn(N).

Therefore, t € T(N).
O

The next key result gives a necessary condition for an e.c. inclusion of W*-probability
spaces to be of type IIly. Unlike other results in this paper, the next theorem is a purely type
IIT von Neumann algebraic statement.

Theorem 3.5 Suppose that (M, @) is e.c. in (N, ). If M is a type Il factor and N is a
factor, then N is a type Il factor.

Proof By assumption, we have (M, @) C (N,1) € (M, @)¥ where (M, @) C (M, @)¥
is the diagonal inclusion. Fix faithful normal conditional expectations E : N — M and

: MY — Nsothat EoF : MY — M is the canonical faithful normal conditional
expectatlon Ey MY — M.

Since M is a type Il factor, by [7, Lemme 5.3.2], there exists a lacunary faithful normal
strictly semifinite weight @ with infinite multiplicity on M. Then the centralizer Mg is
a type I, von Neumann algebra and there exists a unique faithful normal ®-preserving
conditional expectation Eqy : M — M. By [7, Théoréme 5.3.1], there exist 0 < Ag < 1 and
u € M(o?®, (—oo0,log(Ag)]) such that uM g u* = Mg and M is generated by Mg and w.
For the definition of the spectral subspace M(0®, (—o0, log(Ag)]), we refer to [1, Subsection
2.2]. Moreover, we canonically have M = Mg Xg Z where 0 € Aut(Mg ) is given by
0 = Ad(u)Imyg, - Also, Mg has a diffuse center and 0| z(pm ) € Aut(Z(Mg)) is ergodic.
Letting T = @[pm ,, » we have T(0(x)) < Agt(x) forevery x € (Mo )+

Set¥ = @ oE. Following [ 1, Definition 4.25], we have WoF = @ oEoF = ®oky = oY,
Since @ is lacunary, by [1, Proposition 4.27], the equality (Mu)q)u = (Mg )Y holds. Then
[1, Proposition 6.23] shows that M is generated by (M ¢ ) and 1. Moreover, we canonically
have MY = (Mg ¥ X gu Z, where Y ¢ Aut((Mg)¥) is given by 8Y = Ad(u)‘(MCD)U-
Letting ™/ = @Y | yu» we have (B4 (x)) < Aot (x) for every x € (Mg )Y) 4

Note that N C MZ” is globally invariant under @ and 0¥ = (T(DMIN. This implies
that Mg C Ny C (Mg ) which further implies that the centralizer Ny is a type Il von
Neumann algebra with diffuse center. Observe that Ny = N N (Mg )% and that 8 (Ny) =
uNyu* = Nyy. Then Ny C (Mg)¥ is a Z-globally invariant von Neumann subalgebra
and we have Ny % g Z C N.
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Claim 3.6 The equality N = Ny g Z holds.

Recall that MY = (Mg )Y X gu Z and denote by E g/ : MY — (Mg )Y the canonical
faithful normal @Y -preserving conditional expectation. We will show below that Eqpu(N) =
Nw. Once this is proven, [41, Corollary 3.4] implies that

N C {xe (Mo xgu Z |V € Z,Equ(xu™) € N\y} =Ny xgu Z

and thus N = Ny X gu/ Z.

First observe that Ny = Egu(Ny) C Egu(N). Next, let x € (Mg)4 Xalg Z be
any element in the algebraic crossed product. Denote by F C Z the finite support of x.
Since Z(Mg) = L*(X,v) is diffuse and since the action Z ~ Z(Mg) is ergodic, it
follows that the action Z ~ (X,V) is essentially free. Then [41, Lemma 3.1] (whose proof
works for arbitrary diffuse probability spaces) implies that there exists a finite partition of
unity ) ; pi = 1 with projections p; € Z(Mg) such that pi0) (pi) = O for all i and all
j € F\{0}. Then we have

D pixpi=) ) pifgubau Wpg
i i jeF
= Z Z PiEgu (xu )0 (py )u
i jeF
=2 D pi® (pi)Equlxu W (since 0'(pi) € Z(Mo) € Z((Mo)¥))
i jeF
= Z Pi Equ (x)

= E(Dz,{(x).

Thus, we have Egu(x) = 3 5 pixpi.

We use an idea in [41, Lemma 3.2]. For this, we choose a faithful normal state p on
MY such that p o Epu = p. Then (Mg M C MY is globally invariant under the modular
automorphism group o®. Since Z(Mg ) C Z((Mg)4), it follows that Z(Mg ) is contained
in the centralizer ( Mu]p. Let now y € N be any element. For every n > 1, we may choose
Xn € (Mg)¥ alg Z so that [[y — xn|lp < 5. We then have |[Equ(y — xn)llp <
lly — anp < 5=. The above reasoning shows that there exists a finite partition of unity
2aipt=1 w1th projections pI* € Z(Mg) such that E g (xn) = 3 ; pI*xpi*. Since for
every i, we have pi* € Z(Mg) C (Mu)p and 0 < pi* < 1, we obtain

1> prxn—ulpllp =0 Zpl xn = Y)" P (xn —U)PY)
pri *n —U)* (xn —u)p})
=p()_Plxn —Y)*(xn —v))

=p((xn —Y)* (xn —v))

2
= IPn = ulls-
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This implies that

[Equ(y Zm upllle < [Equly —xn)llo + [Equ(xn) = D plxapllo
i

HI P — WPl
i

< Pxn = yllo + 0+ [Ixn —yllp

I N

S2n 2n n’
For every n > 1, set yn = ) ; pi'ypl' € N (recall that pI* € Z(Mg) C N). Since
limy, [|[Egu (Y) —Yn|lp = 0, the uniformly bounded sequence (yn )n>1 converges strongly
to Equ (y). Since yn € N for every n > 1 and since N is strongly closed, this implies
that Equ (y) € N. This further implies that Eg (N) € N N (Mg)¥ = Ny and so
Epu (N) = Ny. This finishes the proof of the claim.

By Claim 3.6, we have N = Ny X g/ Z where Ny is a type IIo, von Neumann algebra
with diffuse center. Since N is a factor, we have that 6| 2Z(Ny) € Aut(Z(Ny)) is nec-
essarily ergodic. Moreover, we have ™ (0¥ (x)) < Aot (x) for every x € (Ny) . Then
[7,Proposition 5.1.1] implies that N is a type IIIj factor. O

Corollary 3.7 Suppose that (M, @) is e.c.in (N, ). If N is a type III, factor, then so is M.

Proof Lemma 3.4(1) implies that M is a factor. Theorem 3.5 implies that M is not of type
1IIy. Lemma 3.4(2) implies that T(M) C T(N) = {0}. Since M is not of type Ill, this further
implies that M has type II1;. |

3.2 Global existential closedness

As stated in the introduction, we say that (M, @) is existentially closed (e.c.) if whenever
(M, @) C (N,¥), then (M, @) is e.c. in (N, V). An immediate consequence of Proposi-
tion 3.3 is the following:

Proposition 3.8 If M is a o-finite von Neumann algebra, then for any two faithful, normal
states @1 and @, on M, we have that (M, @) is e.c.if and only if (M, @3) is e.c.

By the previous proposition, it is sensible to call a o-finite von Neumann algebra M
existentially closed (e.c.) if (M, @) is an e.c. W*-probability space for some (equivalently

any) ¢ € S¢n(M).
The next result enumerates many important facts about e.c. W*-probability spaces.

Theorem 3.9 Suppose that M is an e.c. W*-probability space. Then the following assertions
hold:

. M s a type Il factor:

M ® Roo =M.

. For any full factor Q, either Q is of type I or M 2 Q ® Ry

. Any automorphism of M is approximately inner.

. For every subfactor N C M with expectation and with w-spectral gap, we have (N’ N
M) NnM =N.
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Proof 1. Choose any faithful normal state p on Ry, and denote by (N, V) := (M, @) *
(Reo, p) the corresponding free product von Neumann algebra. Since N is a type III;
factor (see [44, Theorem 4.1]), Corollary 3.7 implies that M is a type I1I; factor.

2. Fix A € (0,1). Then (M, @) C (M, @) ® (Ra, @r) < (M, @) with the composition
being the diagonal embedding. In particular, (Ry, @) embeds into (M’ N MY, ¢¥)
where Y = (pulM/mMu. This implies that A € O'p(A(pz,(). Then [1, Theorem 4.32]
shows that M @R, = M. Since this is true for every A € (0, 1), it follows that M@ Ry, =
M.

3. Assume that there exists a full factor Q such that M = Q ® Rs. Denote by « €
Aut(M ® M) the flip automorphism defined by «(x ® y) = y ® x. Regard M C
M@M:x— x®landset N := (M@ M) xg Z/2Z. Then M C N < M¥ with the
composition being the diagonal embedding. Denote by u = (un ) € U(N) C U(MY)
the canonical unitary implementing the action Z/2Z ~* M. Then for every x € M, we
have 1®x = a(x®1) = u(x®1)u*. This implies that uMu* € M’NMY. Since Q isa
full factor, Q has w-spectral gapin M = Q ® Ry, andso Q' NMY = (Q' NM)¥ = RY
(see [31, Corollary 3.7]). We obtain uMu* C RZO{) and so M C u*Rg’ou C MY, Fix
a faithful normal state 1p on Q and consider the faithful normal conditional expectation
E: M — Ry defined by E = 1 ® idg_ . For every n, set R, = ujReoun € M
and define the faithful normal conditional expectation E;; : M — Ry, by the formula
En = Ad(u}) o E o Ad(un). Up to changing the net, we may assume that for every
x € M, we have E (x) —x — 0 *-strongly as n — oo. For every n, we may choose a
faithful normal state @ on Ry, so that (Ry,, @ ) is an AFD W*-probability space (see
Definition A.3). Therefore, we may find nets of normal ucp maps S; : M — My, (C)
and Tj : M, (C) — M such that for every x € M, we have (Tj o S;)(x) —x — 0 -
strongly as j — oo. Then [43, Theorem XV.3.1] implies that M = Q ® R, is amenable.
Then Q is amenable and full and so Q is a type I factor.

4. Fix 6 € Aut(M) and denote by N := M xg Z the corresponding crossed product
von Neumann algebra. Then M C N < MY with the composition being the diagonal
embedding. Denote by u = (un )Y € U(N) C U(MY) the canonical unitary implement-
ing the action Z ~9 M. Then for every x € M, we have 0(x) = uxu™* and [3, Theorem
4.1 (iv) = (v)] shows that 0 is weakly inner. Since M = M ® Ry, [35, Theorem F]
implies that 0 is approximately inner.

5. It suffices to show that (N’ N M)’ N M C N. Define the amalgamated free product von
Neumann algebra Q := M *N (L(Z) ® N) with respect to the natural faithful normal
conditional expectations E : M — N and 17 ® idN : L(Z) ® N — N. Then M C Q —
MY with the composition being the diagonal embedding. Denote by w € U(L(Z)) C
U(MH) the canonical Haar unitary. Then we haveu € N’'NQ € N/nMY = (N'nM)¥
and so we may write 1 = (un )Y where u,, € (N’ N M) for every n. Now take now
b € (N’ nM)’ N M and note that bu,, = unb for every n and so bu = ub. Since
L(Z) is diffuse, we have L(7Z) ﬁL(Z)@N N in the sense of Popa’s intertwining theory
(see [30, 40]), whence [46, Proposition 3.3] implies that L(Z)’ N Q = L(Z) ® N. Thus,
we obtainb € M N (L(Z) ® N) = N.

O

Remark 3.10 All of the items in the previous theorem are appropriate generalizations of the
corresponding facts about e.c. tracial von Neumann algebras. Indeed, suppose that M is an
e.c. tracial von Neumann algebra. Then the finite analog of (1) states that M is a II; factor,
which was proven in [24], while the finite analog of (2) states that M is McDulff, that is,
tensorially absorbs the hyperfinite II; factor R, which was also proven in [24]. The finite
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analog of (3) is that M is not a strongly McDuff factor, where a strongly McDuff factor is
one that is isomorphic to a factor of the form Q ® R, where Q is a II; factor without property
Gamma; this fact was proven in [4,Proposition 6.2.11]. The finite analogs of (4) and (5) have
identical statements and were proven in [18] and [19, Proposition 5.16] respectively.

Proposition A.8 in the appendix states that the ultrapower of a type III; factor is always
a prime factor, that is, cannot be written as the tensor product of diffuse factors. Combined
with Theorem 3.9(2), we immediately obtain:

Corollary 3.11 The class of e.c. W*-probability spaces is not closed under ultrapowers.

In particular, the class of e.c. W*-probability spaces is not axiomatizable. In model-
theoretic language, this means:

Corollary 3.12 The theory of W*-probability spaces does not have a model companion.

The analogous fact for tracial von Neumann algebras also holds and was the main result
of [24].

3.3 The case of QWEP factors

In [18], the authors consider the e.c. elements of the class of tracial von Neumann algebras
that admit a trace-preserving embedding into the tracial ultrapower RY of the hyperfinite
II; factor R. That this is a model-theoretically sensible thing to consider is substantiated
by the basic fact that a tracial von Neumann algebra embeds into R if and only if it is a
model of the universal theory of R, denoted Thy(R), consisting of all conditions of the form
sup, @(x) = 0 with @(x) a quantifier-free formula. As in the unrestricted case, any e.c.
model of Thy(R) is a McDuff II; factor with only approximately inner automorphisms. In
this case, however, one can name a concrete e.c. object, namely R itself. In fact, a positive
solution to the Connes Embedding Problem is equivalent to the statement that R is an e.c.
tracial von Neumann algebra.

In this subsection, we consider the analogous situation for W*-probability spaces. To
motivate the move that is to follow, we recall that a tracial von Neumann algebra embeds
into RY if and only if it has Kirchberg’s QWEP property [34]. Thus, it appears that the
natural course of action to take in our current context is to consider restricting to the class
of QWEP W*-probability spaces. To see that, once again, this is a natural move from the
model-theoretic perspective, we recall the main result of [2], which states that a von Neumann
algebra has QWEP if and only if it embeds into R . (This is technically proven in the case
that the von Neumann algebra under consideration is separably acting and the ultrafilter is a
nonprincipal ultrafilter on N; this result naturally extends to all QWEP von Neumann algebras
by writing them as an increasing union of separably acting QWEP subalgebras and using an
ultrafilter on a larger index set.) To see that this latter condition has model-theoretic meaning,
we make the following observation. Recall from the introduction that two W*-probability
spaces (M, @) and (N, ) are elementarily equivalent if and only if there are ultrafilters &/
and V such that (M, )4 = (N, })V.

Proposition 3.13 For any type III; factor M and faithful normal states @ and \p on M, we
have that (M, @) and (M,\b) are elementarily equivalent.

Proof The state space of MY is strictly homogeneous by [1,Theorem 4.20]. (We note that this
result indeed holds for ultrapowers with respect to arbitrary countably incomplete ultrafilters.)

@ Springer



Existentially closed W*-probability spaces 3801

Consequently, there is u € U/(MY) such that ue¥u* = ¥ ; the inner automorphism Ad(u)
thus yields that (MY, V) = (MY Y1), o

Remark 3.14 The previous proposition is false for type III, factors, A € (0, 1), even when
only considering the universal theory. Indeed, if M is a type III, factor, A € (0, 1), and
©, € G (M) are such that ¢ is periodic and 1 is not, then (M, 1) cannot embed into
the ultrapower of (M, @).

A particular consequence of Proposition 3.13 is that we may unambiguously speak of the
universal theory Thy (M) of any type III; factor M, by which we mean the unique common
universal theory of (M, @) for any @ € G, (M). From this point of view, the main result
of [2] can be reworded by saying that a W*-probability space (M, @) is QWEP if and only
if it is a model of Thy (R ).

Remark 3.15 Most of the results of the previous subsection continue to hold when restricted
to the elementary class of QWEP W™*-probability spaces. More specifically, the first four
items of Theorem 3.9 as well as Corollary 3.12 hold when restricted to the class of QWEP
W-probability spaces. We do not know if item (5) of Theorem 3.9 holds in this restricted
case as it is unknown if the amalgamated free product of QWEP von Neumann algebras
remains QWEP. In that respect, it follows from [29, Corollary B] that the free product of
QWEP von Neumann algebras remains QWEP. For other permanence properties, we refer
to [38, Proposition 4.1].

As mentioned above, R is an e.c. member of the class of QWEP II; factors. We now prove
the analogous fact in the setting of W*-probability spaces:

Theorem 3.16 The Araki—-Woods factor Ry, is an e.c. QWEP W*-probability space.

Proof Let N be an e.c. QWEP W*-probability space such that R, C N. Since N is QWEP,
there is an embedding N < Rf;’o. By Corollary A.7, up to conjugating by a unitary, we may
suppose that the composite embedding is the diagonal embedding. This shows that Ry, is
e.c.in N and hence is an e.c. QWEP W*-probability space. (Note that we have used the fact
that being e.c.does not depend on the choice of state when we conjugated by a unitary.) O

3.4 Building W*-probability spaces by games

We now introduce a method for building W*-probability spaces first introduced in [21] (based
on the discrete case presented in [27]). This method goes under many names, such as Henkin
constructions, model-theoretic forcing, or building models by games.

We fix a countably infinite set C of distinct symbols that are to represent generators
of a separable W*-probability space that two players (traditionally named V and J) are
going to build together (albeit adversarially). The two players take turns playing finite sets
of expressions of the form [0(c) — r| < €, where c is a tuple of variables from C, 6(c)
is some atomic formula, and each player’s move is required to extend (that is, contain) the
previous player’s move. The exact form an atomic formula depends on which language we are
considering for describing W*-probability spaces, but in either case, they roughly correspond
to expressions of the form @(p(c)), where p is some expression involving the *-algebra
operations as well as modular automorphisms and ¢ is a generic symbol for the state. (In the
case of Dabrowski’s language, one is only allowed to use “smeared” multiplication in such
expressions.) These plays of the game are called (open) conditions. The game begins with V’s
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move. Moreover, these conditions are required to be satisfiable, meaning that there should
be some W*-probability space (M, @) and some tuple a from M such that [6(a) — 1| < €
for each such expression in the condition. We play this game for countably many rounds.
At the end of this game, we have enumerated some countable, satisfiable set of expressions.
Provided that the players address a certain “dense” set of conditions infinitely often, they can
ensure that the play is definitive, meaning that the final set of expressions yields complete
information about all atomic formulae in the variables C (that is, for each atomic formula
0(c), there should be a unique r such that the play of the game implies that 8(c) = 1) and
that this data describes a countable, dense x-subalgebra of a unique W*-probability space,
which is called the compiled structure.

Definition 3.17 Given a property P of W*-probability spaces, we say that P is an enforceable
property is there a strategy for 3 so that, regardless of player V’s moves, if 3 follows the
strategy, then the compiled structure will have property P.

Fact3.18 1. (Conjunction lemma [27, Lemma 2.4]) If Py, is an enforceable property for
each n € N, then so is the conjunction A, Pn.
2. ([27, Proposition 2.10] Being e.c. is enforceable.

Item (2) in the previous fact indicates the significance of this technique of building W*-
probability spaces in connection with the study of e.c. W*-probability spaces.

Definition 3.19 A W*-probability space (M, @) is said to be enforceable if the property of
being isomorphic to (M, @) is an enforceable property.

Clearly, if an enforceable W*-probability space exists, then it is unique.

One can relativize the above context by considering only QWEP W*-probability spaces.
One can then speak of enforceable properties of QWEP W*-probability spaces and ask about
the existence of the enforceable W*-probability space.

In the analogous game for II; factors, it was shown in [21, Theorem 5.2] that a positive
solution to the Connes Embedding Problem is equivalent to the statement that R is the
enforceable tracial von Neumann algebra and that, when restricted to the context of QWEP
tracial von Neumann algebras, R is indeed the enforceable object. It is worth asking if the
same is true in the case of QWEP W*-probability algebras. The answer is actually negative
and rests on the following:

Proposition 3.20 There is no faithful normal state @ on Ry, such that (Reo, ©) embeds into
all e.c. QWEP W*-probability spaces.

Proof By contradiction, assume that there exists a faithful normal state ¢ on R, such that
for any other faithful normal state 1p on Ry, we have (Reo, @) < (Roo, ).

Itis a standard fact that there exists a faithful normal state \p on R, for which (R )y, = C.
Since (Roo, @) <= (Roo, P), it follows that (R ) = C1. Next, identify (Roo, ) = (Ry, ®
Rx,, ®A, ® @), ) for appropriately chosen A; and A,. Then 1 is an almost periodic state on
Reo in the sense that the corresponding modular operator Ay, is diagonalizable on [2(Roo).
Since (Roo, @) <= (Roo, ), it follows that ¢ is an almost periodic state and so (R ) # C1
by [45, Lemma 2.1]. This is a contradiction. O

Corollary 3.21 There is no enforceable QWEP W*-probability space.
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Proof Suppose, towards a contradiction, that (M, @) is the enforceable QWEP W*-
probability space. Then (M, ¢) is e.c.and embeds into all e.c. QWEP W*-probability spaces
(see [21, Section 6]). In particular (M, @) embeds into (Re, ) for all faithful normal states
P on Ry. This implies that M = R, and we obtain a contradiction with the previous
proposition. i

On the other hand, we do have the following proposition:

Proposition 3.22 The property of being approximately finite dimensional is an enforceable
property of QWEP W*-probability spaces.

Proof By the Conjunction Lemma, it suffices to show that, given any open condition X,
any finite number cy,...,cn of constants, and any € > 0, there are matrix units (eij)
for some matrix algebra and some complex coefficients oc}fj for k = 1,...,n such that

ZU{flex — 2y ocf]. eij pr < e} is itself a condition. However, this follows from the fact
that X, being satisfiable in some QWEP W*-probability space, must also be satisfiable
in Ryo. ]

Itis quite interesting that player 3 can always enforce the underlying von Neumann algebra
of the compiled W*-probability space to be Ry, although there is no single state on Ry, that
can be enforced.

An important class of e.c. structures is the class of finitely generic structures. We end this
section by briefly discussing this class. First, since the class of W*-probability spaces has
the joint embedding property (meaning that any two W*-probability spaces can be jointly
embedded into a third), it follows from [21, Corollary 2.16] that, for each sentence o in the
language of W*-probability spaces, there is a unique real number r such that the property
o = r is an enforceable property; in this case, we set o to denote this unique .

Definition 3.23 A W™*-probability space (M, @) is called finitely generic if it satisfies the
following two properties:

1. For every sentence o in the language of W*-probability spaces, we have that ¢(M-®)

f
o'
2. For any W*-probability space (N,1{) elementarily equivalent to (M, @) for which
(M, @) C (N,1), we have that this inclusion is an elementary embedding.

The following was shown in [21, Section 3], generalizing the corresponding classical
results:

Fact3.24 1. The property of being finitely generic is enforceable. In particular, finitely
generic structures exist.
2. Finitely generic structures are e.c.

In[18, Corollary 6.4], it was shown that R is a finitely generic QWEP tracial von Neumann
algebra. We prove an analogous result here:

Theorem 3.25 There is a faithful normal state © on Ry, so that (Reo, @) is a finitely generic
OWEP von Neumann algebra.

Proof Simply apply the Conjunction Lemma to the fact that both being approximately finite
dimensional is enforceable (Proposition 3.22) and being finitely generic is enforceable. O
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3.5 Open questions

We end this section with some open questions:

As shown in the last subsection, the enforceable QWEP factor does not exist. As mentioned
above, a positive solution to the Connes Embedding Problem is equivalent to the statement
that R is the enforceable tracial von Neumann algebra. Due to the recent negative solution of
the Connes Embedding Problem [32], we conclude that R is not the enforceable tracial von
Neumann algebra. However, whether or not the enforceable tracial von Neumann algebra
exists is an interesting open question. The analogous question for W*-probability spaces is
also open:

Question 3.26 Does the enforceable QWEP W *-probability space exist?

In connection with Theorem 3.25, we ask if the analog of Proposition 3.8 holds for finitely
generic structures:

Question 3.27 If (M, ¢) is finitely generic for some @ € S, (M), do we have that (M, )
is finitely generic for every { € G, (M)?

For the next question, recall that the class of W*-probability spaces whose underlying von
Neumann algebra is a III factor (for some fixed A € (0, 1)) and whose state is a periodic
state forms an inductive class. This result is clear from the fact that this class is closed under
ultraproducts and ultraroots (see [1, Theorem 6.11]) and inductive limits. Explicit axioms
for this class were given by Dabrowski in [13]. Let T, denote some collection of axioms for
this class. Since Ty is an inductive theory, it has e.c. models.

Question 3.28 What can we say about the class of e.c. models of Ty ? If we restrict to QWEP
such objects, is Ry, with its unique periodic state, an e.c. model? Does being e.c.depend on
the state?

We should note that the argument appearing in the proof of Theorem 3.9(2) above shows
that e.c. models of Ty tensorially absorb Ry (equipped with its unique periodic state) and the
same is true for the e.c. elements of the class of QWEP models of T .

We also note that by the main result of [2], given any A € (0, 1), a von Neumann algebra
is QWEP if and only if it embeds into RZ;\’ with expectation. If one could improve this result
so that any QWEP model (M, @) of Ty embeds into (Ry, @), then one could mimic the
proof of 3.22 to show that being hyperfinite is an enforceable property with respect to the
class of QWEP models of T,. Since being e.c. is also an enforceable property, one could
conclude that (Ry, @) is an e.c. element of the class of QWEP models of Ty. In fact, we
have the following:

Proposition 3.29 The following statements are equivalent:

1. Every QWEP model of Ty embeds into (Ry, @ )Y.

2. Hyperfiniteness is an enforceable property of QWEP models of T.
3. (Rx, @) is the enforceable QWEP model of Ty.

4. (Rx, @) is an e.c. element of the class of QWEP models of Ty.

Whether or not the above statements indeed hold, by Corollary A.6, (R, @,) is an e.c.

model of Thy (Ry, @x).
In connection with the previous question, one might also ask the following:
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Question 3.30 Suppose that (M, @) is a type I, factor equipped with a periodic state. Is
(M, @) an e.c.model of Ty if and only if M, is an e.c.II; factor?

An even more basic question about models of Ty arises:

Question 3.31 If M is a III,, factor and ¢ and 1 are both periodic states on M, must (M, @)
and (M, 1) have the same universal theory?

Our final question returns to the general study of e.c. W*-probability spaces:
Question 3.32 Are any two e.c. (QWEP) W*-probability spaces elementarily equivalent?

The analogous question for II; factors remains unsettled but is presumed to have a negative
answer.

4 Other model-theoretic results
4.1 Axiomatizability results

In [1], it was shown that, for any A € (0, 1], the Ocneanu ultraproduct of a family of type
IIT,, factors is once again a type III; factor and a o-finite von Neumann algebra is a type 11T,
factor if the same is true of an Ocneanu ultrapower. By the “soft” test for axiomatizability
(see [5,Proposition 5.14]), this says that the class of III, factors (again, for fixed A € (0, 1])
is an axiomatizable class. However, this test does not give us explicit axioms for these
axiomatizable classes. Nevertheless, it is possible to at least describe the quantifier complexity
of such axiomatizations.

In order to state such quantifier complexity results and the test we use for obtaining them,
we define a V;, -sentence to be one of the form

supinf - - Qx, 0(X1,...,Xn),

x) X2
where each x; is a finite block of variables, 0 is a quantifier-free formula, and Q = sup if nis
odd and Q = inf if n is even. The notion of a 3, -sentence is defined analogously, beginning
with a block of inf quantifiers instead of sup quantifiers. By using dummy variables, we
note that any V', - or 3y, -sentence is automatically both V| and 3, 4. Finally, we say that
an axiomatizable class is V;, -axiomatizable (resp. 3 -axiomatizable) if there is a set T of
axioms for the class consisting solely of conditions of the form o = 0 with o a nonnegative
Vn-sentence (resp. a I -sentence).

In classical logic, given an axioimatizable class, the Keisler Sandwich Theorem [33] can be
used to prove the existence of an axiomatization of a particular kind of quantifier complexity.
In our results below, we use (a modified version of) the Keisler Sandwich Theorem, adapted to
the setting of continuous logic. Since neither the continuous version of the Keisler Sandwich
Theorem, nor the variant presented here, have appeared in the literature before, we include
a proof in Appendix B.

Definition 4.1 Given structures M and N (in the same language) and n > 1, an (M, N, n)-
ultrapower sandwich is a chain of embeddings of the form

M%N%MMIQNMZL)H-MQM"*I,

where:
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e U,...,Un_ are ultrafilters,

e Q=Mifnisevenand Q = N if nis odd, and

e all compositions M¥k—1 < MUk+1 and NH¥x—1 < NUYk+1 are the diagonal embed-
dings (which in particular implies that Uy | = Uy ® V for some ultrafilter V).

Theorem 4.2 (Keisler Sandwich Theorem (Ultrapower version)) Suppose that T is a theory.
Then:

1. TisVn-axiomatizable if and only if: whenever there is an (M, N, n)-ultrapower sandwich
and N =T, then M= T.

2. Tis In-axiomatizable ifand only if: whenever there is an (M, N, n)-ultrapower sandwich
and M =T, then N = T.

Note that an (M, N, 2)-ultrapower sandwich is simply a chain of embeddings M <= N <
MY such that the embedding M — MY is the diagonal embedding. Thus, an (M, N, 2)-
ultrapower sandwich exists precisely when M is e.c. in N. By Theorem 4.2 and Corollary 3.7,
we immediately have:

Theorem 4.3 The class of type III; factors is ¥-axiomatizable.

Alternate proof of Theorem 4.3 There is an alternative to showing that a theory T is V-
axiomatizable and that is to show that the collection of models of the theory is closed under
unions of chains. This can be established quite easily for the case of II1; factors as follows. Let
(M4, @i)ie1 be any increasing chain of type III; W*-probability spaces. Denote by (M, ¢)
the inductive limit of (Mj, @1 )i in the language of W*-probability spaces. Then for every
i € I, we have (Mi, i) C (M, @) and we denote by E; : M — M, the unique faithful
normal conditional expectation such that ¢; o E; = @. Also, we have \/iel M; =M.

For every i € I, we may consider the trace-preserving inclusion of continuous cores
Cp;(Mi) C co(M) with trace-preserving faithful normal conditional expectation F; :
co(M) — ce;(My). Since M; is a type III; factor, cp, (M) is a type Il factor. In
order to show that M is a type III; factor, it suffices to show that ¢, (M) is a factor. Let
X € Z(co(M)) be any central element. Then for every i € I, we have Fi(x) € Z(cy; (Mi))
and so Fi(x) € CI. Since \/;c1Co; (Mi) = co (M), it follows that F;(x) — x *-strongly
as 1 — oo, which implies that x € C1. m]

The case of type III, factors for A € (0, 1) is inherently more complicated:

Proposition 4.4 For any A € (0, 1), the axiomatizable class of type Il factors is not V-
axiomatizable.

Proof Fix A € (0, 1). We construct an increasing sequence of W*-probability space type I1I
factors (Mn, @n) so that, setting (M, @) := \/, cny(Mn, @n), we have that M is a type
III; factor.

Take A1, Az € (0, 1) with log(A1)/ log(A;) irrational, whence Ry, ® Ry, = Roo. For every

increasing sequence of W*-probability spaces type III,, factors. Indeed, observe that for
every n € N, we have M, = R,,. Moreover, for every n € N, we have @nyi1lm, = @n
and the linear mapping Ey, : M1 — My, defined by B, = idp,, ®wy, is a faithful
normal conditional expectation such that @, 0o Eyy = @ 41.

However, we have \/, cn(Mn, @n) = (Ry, @ Ry,, @r, @ 0a,) = (M, @) = (R, @).
Indeed, for every n € N, we have @|pm,, = @n and the linear mapping Fr, : M — My,
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defined by Fr, =idm, ®w%2N\{O ..... n}

@noFn = @. Thus, the inductive limit of W*-probability spaces (M, @) \/neN n, On)
is a type III; factor. |

is a faithful normal conditional expectation such that

We also note:
Proposition 4.5 For any A € (0, 1], the class of type Il factors is not 3,-axiomatizable.

Proof Fix A € (0, 1] and suppose that M is a type III, factor that is not full (e.g. M = Ry).
Then there is a o-finite von Neumann algebra N such that N is not a factor and yet M C
N C MY. By Theorem 4.2, the result follows. ]

While the class of type 11T factors, A € (0, 1), cannot be axiomatized using two quantifiers,
we now show that it can be axiomatized using three quantifiers. The key to proving this is
the following:

Proposition 4.6 Suppose that we have an (M, N, 3)-sandwich with M a type 111, factor and
N a type Il factor, \, 1. € (0,1). Then A = L.

Proof SetT), = Tos(A] 1og( and Tu m Choose a Ty -periodic faithful normal state p on N

and apply Proposition 3.3 to the inclusion N € M1 C N¥2_ Since )*2| mu 18 Ta-periodic,

we have {0} U u% = S(MY) C G(A¢M2| " ) C {0} U AZ. Next, choose a T,.-periodic
M4l

faithful normal state @ on M and apply Proposition 3.3 to the inclusion M C N C M1,
Since @Y1|y is Ty-periodic, we have {0} UAZ = S(N) C (I(A(pu1 ‘N) C {0} U p”. This
shows that 1 = A. |

Corollary 4.7 The class of type Il factors is both ¥3- and 33-axiomatizable.

Proof Consider a (M, N, 3)-sandwich. First suppose that N is a III; factor. By Lemma 3.4,
M is a factor. Since MY contains N with expectation, M¥! is type III, whence so is M.
By Theorem 3.5, M is not of type ITly. If M is type III;, then so is M¥1; since N is e.c.
in MYt Corollary 3.7 implies that N is type III{, a contradiction. Thus, M is type 11, for
some 1 € (0, 1), whence A = u by Proposition 4.6. This shows that the class of III, factors
is V3-axiomatizable.

Now suppose that M is a 1T, factor. Since N is e.c. in the IIT factor M“!, we see that N
is a factor. Since N contains the type III factor M with expectation, we see that N has type
III. By Corollary 3.7, N does not have type III;. Since N is e.c. in the III, factor MY, N
does not have type Illy by Theorem 3.5. Thus, N has type III,, for some p € (0, 1), and thus
A = n by Proposition 4.6. This shows that the class of III, factors is J3-axiomatizable. O

4.2 First-order theories of W*-probability spaces

In this final subsection, we consider the task of counting the number of first-order theories
of I, W*-probability spaces for A € (0, 1].

In [6], Boutonnet, Chifan, and Ioana showed that there exist continuum many pairwise
non-elementarily equivalent separable I1; factors. More precisely, they showed that the family
(M) eon of separable I factors constructed by McDuft in [36] provides such a continuum.
We observe that their result can be easily applied to construct such a continuum in the realm
of type III, factors for A € (0, 1).
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Theorem 4.8 Fix A € (0,1). Then there exist continuum many non-pairwise elementary
equivalent separable type Il factors.

Proof Consider the family (M), con of separable II; factors constructed by McDuff in
[36]. For every « € 2N, M, is a McDuff factor, that is, My ® R = M. This implies
that A € F(Mg). Set MY = M ® B(¢?) and choose an automorphism 8% € Aut(M%)
such that T o Gé‘c = A1, where T is any faithful normal semifinite trace on M. Then
Ng = M xga Zis a type 1II) factor whose discrete core is isomorphic to M (see
[7, Théoreme 4.4.1]).

Now suppose that «, p € 2N are such that N is elementarily equivalent to Ng. By
the Keisler-Shelah Theorem, there are ultrafilters ¢/ and V such that (N« ) = (Ng)Y. By
[1, Proposition 4.7], the discrete core of (N )Y (resp. (Nﬁ)v) is (M) (resp. (M%O)V).
Then [7, Théoréme 4.4.1] implies that MY @ B(£?) = (MZP)¥ = (MF)Y = My @ B(¢?).
Since MY and M}; have full fundamental group, we have MY = Mg and [6] further implies
that o« = 3. |

The preceding question naturally raises the following:

Question 4.9 Do there exist continuum many non-pairwise elementary equivalent separable
type III; factors?

While we cannot yet answer the above question, we can at least find three such factors.
First, due to the recent negative solution of the Connes Embedding Problem [32], there must
exist anon-QWEDP type III; factor M. Consequently, M is not a model of Thy (R, ), and thus
is not elementarily equivalent to Ro,. To find a third theory of type III; factors, we recall that
in [17, 3.2.2], property Gamma was shown to be an axiomatizable property and thus could
be used to distinguish theories of II; factors. The correct generalization of property Gamma
to our context is that of being non-full. Here, we show that the non-full type III, factors form
an axiomatizable class and, as a consequence, that the non-full factors form a local class,
that is, closed under ultrapowers and ultraroots (which is still sufficient for differentiating
between theories):

Theorem 4.10 For A € (0, 1], the class of non-full type III, factors is axiomatizable.

Proof We use the aforementioned “soft” test for being axiomatizable, that is, we show that
the class of non-full type III, factors is closed under ultraproducts and ultraroots. We first
show the latter. Let &/ be any nonprincipal ultrafilter and let M be any full type III, factor;
we show that MY is also full. To see this, let )V be any nonprincipal ultrafilter. Then we have
(MUY = mveu by [3, Proposition 2.4]. Since M is a full factor, we have M’ N mveu —
C1. Since M ¢ MY, we have (MY)’ n (MY)Y € M/ N (MY)Y = M/ n MY®U = C].
Since this holds true for any nonprincipal ultrafilter V), this further implies that MY is a full
factor.

Conversely, let (My, @i)ic1 be any family of non-full type III) factor W*-probability
spaces and 2/ a nonprincipal ultrafilter on I. Then (MY, @) = (M, )" is a type III,
factor. We show that MY is also non-full. It is well-known that we may assume that 2/ is
countably incomplete, meaning that there is some countable collection of sets from ¢/ that has
empty intersection. As a result, this allows us to define a sequence (e;)ic1 of positive real
numbers such that limy; €; = 0. Forevery i € I, there is an index set J; for which there exists
asequence (u})jeli in2/(M) such that lim; Hu}cpi—tpiu}ﬂ =0, lim; ||yu}—u}y|\Ii . =0
for every y € M and lim; (pi(u}) =0.Let F ={X1,..., Xm) C MY be any finite subset.
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Write Xy = (x3..1)¥ for every 1 < k < m. For every i € I, there exists v = uj, € U(My)

such that ||vi@i — @ivi]| < €i, |V1Xk,i — Xk,ivi”%pi < € and |@i(vi)] < €4 for every
1 < k < m. Then we have (vi)ic; € MU (My, @), vy = (W)Y € Z/{((MZ”)@M) and
(pu (vz) = 0 (see [28, Proposition 2.4] and [1, Lemma 4.36]). By construction, we have
Xvg = veX for every X € F and @Y (vr) = 0. Since this holds true for any finite subset
F c MY this further implies that MH is not full. O

Corollary 4.11 The following three III; factors are pairwise non-elementarily equivalent:

1. Reo-
2. Any non-QWEP III factor.
3. Any full QWEP III; factor.

Remark 4.12 In [17], the authors provide explicit axioms for having property Gamma. It
would be interesting to find explicit axioms for the class of non-full Il W™*-probability
spaces.

In [17, Theorem 4.3], it is shown that, for any separable II; factor M, there are continuum
many pairwise nonisomorphic separable II; factors elementarily equivalent to M. We ask if
the analogous result holds true for W*-probability spaces:

Question 4.13 For any separable W*-probability space (M, ¢), are there continuum many
nonisomorphic separable (N, 1) elementarily equivalent to (M, @)?

By Proposition 3.13, if M is any type III; factor, then (M, @) is elementarily equivalent
to (M,) for all @, € G¢n(M). In this sense, the previous question has a somewhat
trivial positive solution for type III; factors. It would be more interesting to find continuum
many nonisomophic separable models of any given theory of W*-probability spaces whose
underlying von Neumann algebras themselves are pairwise nonisomorphic.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Embeddings of AFD W*-probability spaces into ultraprod-
ucts

Most of the results presented in this appendix are due to Ando and Houdayer (unpublished
work).

For the ease of exposition, all ultrafilters in this appendix are assumed to be nonprincipal
ultrafilters on N. However, all of the results hold verbatim for countably incomplete ultrafilters
on arbitrary index sets with only routine modifications of the proofs needed. These more
general versions of the results are what are used throughout the main part of the paper.

Let (M, @) be any type III, factor, where A € (0, 1], endowed with a faithful normal state
such the centralizer (MY) ! of the ultraproduct state @ is a type II; factor.
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e If M is of type III, with A € (0, 1), we may take any \log( I -periodic faithful normal
state @ on M.

o If M is of type III{, we may take any faithful normal state ¢ on M (see [1,Proposition
4.24)).

First, we observe that any atomic (discrete) W*-probability space has a unique embedding
into (M, @) up to unitary conjugacy.

LemmaA.1 Ler (P,\) be any atomic W*-probability space. For every i € {1,2}, let T :
(P,) — (M, @) be any embedding. Then there exists u € U((Mu)(pu) such that T =
Ad(u) o 7.

Proof Write P = @p P, where each Py, is a type I factor. For every p, denote by (eil)k,l
a system of matrix units for P, and denote by (AE)k positive reals such that ) AE =
1 and Vlep)
P(lpy,)
(AR/AD) T ep).
Observe for every i € {1,2}, since @ o 7ty = \ and since 7;(P) € MY is globally

= Tp,, (diag(A}) - ). For all k,L,p and all t € R, we have Gﬁ’(eil) =

invariant under O“F’M, we have Gg’u o7y = TI4 O th) forallt € Rby [7,Lemme 1.2.10]. Since
(MY) 4 is a type II; factor and since 7ty (e})), ma(el,) € (MY)_u and ¥ (m(e]})) =
Plef)) = o (ﬁz(ell)) there exists a partial isometry vy € (M™) i such that vivy, =

m(ell) and vpvy, = th(ell) If we let u = Zp > kol ek])vpm(elk) we have u €
Z/l((l\/lu)(p )andﬁz(ekl) =um (e kl)u forallk, 1, p. Therefore, we have t; = Ad(u)omr;.
O

Next, we prove that the unique embedding property into (M, @)¥ up to unitary conjugacy,
is stable under taking increasing unions.

LemmaA.2 Let (P, ) be any separable W*-probability space and (P, ) C (P, ) any
increasing sequence of W*-probability subspaces such that \/ |, ¢ (Pn, bn) = (P, ). For
everyi € {1,2), letmy : (P, ) < (M, @)Y be any embedding. Assume that for everyn € N,
there exists Wy, € U((Mu)(pu) such that T (x) = un 7 (x)u, for every x € Py.

Then there exists L € L{((Mu)@u) such that T, = Ad(u) o 7.

Proof For every n € N, write un = (W) where (ul)y, € 9Y(M) and ul, € U(M)
(see eg [30,Lemma 2.1]). For every n € N, denote by X;, = {yp [ k € N} C Py a
-1 W, ~dense countable subset and set X§" = {yg 10 <k <n}. Forevery i € {1,2}and

every b € Xy, write i (b) = (b}, )Y where (b},)m € MY (M).
For every n € N, define

1
Fni= ﬂ {meN\ [ b (upm)* = bl < m}
0<k<n,bex sk
Gn::{meN\m>n}ﬂ{meN\Hum<p (pum||< } mF

j=l1

By construction and since I/ is a nonprincipal ultrafilter on N, (Gn)nen is a decreasing
sequence of subsets of ¢ such that Gg = N and mnEN Gn = 0. For every m € N, set
vm = ujl, € U(M) where n € N is the unique integer such that m € Gn, \ Gn1.

Letne N.If m e G, = Uj>n Gj \ Gj41, denote by p > n the unique integer such
that m € Gp \ Gp1. Since vip = ub,, we have
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o [[vim® — @vin| = [[ubio — oul|| < 5i7 < 71 and
o [[vin bLovi — b2 1% = [ub bl (b)) — b2 || < L forall0 <k <n

p+I < n+l
andallb € XE .

This implies that

1
Gnc{meN\va(p Ovm| < +1}

1
Gn C N meN| [vmbp, v, — b5 1% < +1}'
0<k<nbex sk
Since Gy, € U, it follows that
1
€N < eu
{m Hvme —@vm < — 1}
1
Y0 < k <m Vb e XSK, {meN| [V bl v, — B2 [, < ﬁ} eu.
Since this holds for every n € N, we obtain limn g/ ||[Vim @ — @vm || = 0. This implies

that (Vi )m € MY (M) andu = (v )Y € U((Mu) v ). This further implies that for every
()IF,

*

k € Nand every b € XS, we have |[ur; (b)u* — 7 (b)||* ,, = limpm—gq [vm by vi, —

2 1% = 0. Since Uyen X3 XSk = = Unen Xn., since for every n € N, the set Xy, is || - pr

dense in Py, since VneN n = P and since forevery i € {1,2}, 7ty : P — MY is a normal
embedding, this finally implies that 71> (x) = w7y (x)u* for every x € P. O

Definition A.3 We say that a W*-probability space (P, ) is approximately finite dimensional
(AFD) if there exists an increasing sequence of finite dimensional W*-probability subspaces
(PTI’ 1‘1’)1’1] g (P’ 11)) such that VneN(PT'Lr 11)1'1) = (P’l*l’))'

If (P,y) is an AFD W*-probability space, then 1 is necessarily an almost periodic state
on P.

Examples A.4 Here are the main examples of AFD W*-probability spaces:

1. Every AFD tracial von Neumann algebra (M, T) endowed with a tracial faithful normal
state is an AFD W*-probability space.

2. For every A € (0, 1), endow the type III, Powers factor Ry with its canonical “Og ( -

periodic faithful normal state . Then (Rx, @3 ) is an AFD W*-probability space.

3. Endow the type III; Araki-Woods factor R, = Ry, ® Ry,, where }g‘;‘ M) g @, with the

faithful normal state @ = @, ® @a,. Then (R, @) is an AFD W*- probablhty space.
4. For every AFD type Il factor P, there exists a faithful normal state ¢ on M such that
(M, @) is an AFD W*-probability space (see [10, Theorem 1]).

We deduce that any AFD W*-probability space has a unique embedding into (M, @)% up
to unitary conjugacy.

Theorem A.5 Let (P,\) be any AFD W*-probability space. For every i € {1,2}, let m; :
(P,) — (M, @)Y be any embedding. Then there exists u € u((M”)(pu) such that Ty =
Ad(u) o .
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Proof Let (Pn,¥n) € (P,V) be an increasing sequence of finite dimensional W*-
probability subspaces such that \/| cx(Pn,Pn) = (P, ). For every n € N, Lemma A.1
implies that there exists uy, € Z/l((MZ’{)(pu) suchthat 7 (x) = un 7 (x)uf, foreveryx € Pn.
Then Lemma A.2 implies that there exists u € U((MY) (pU) such that 75 (x) = wrmry (x)u*
for every x € P. O

As a straightforward consequence of Theorem A.5, we obtain the following unique embed-
ding property for the Powers factors Ry where A € (0, 1).

Corollary A.6 Let A € (0,1) and 7 : (Ry, @) — (R, @)Y be any embedding. Then there
exists W € U((Rl){]@z{) such that Ad(u) o 7t : (Ry, @A) — (Ra, @)Y is the diagonal

embedding.

Combining Theorem A.5 with Connes-Stgrmer transitivity theorem, we obtain the fol-
lowing unique embedding property for the Araki-Woods factor R.

Corollary A.7 Let\p be any faithful normal state on Rog and 7 : (Reo, ) — (Roo, W) any
embedding. Then there exists u € L{[(Rg’o)wu) such that Ad(w) o7 : (Rgo, ) < (Rgo, Y)¥
is the diagonal embedding.

Proof Denote by E : R — 71(Ry) the unique faithful normal conditional expectation such
that\pom—! o E =Y. Choose a faithful normal state ¢ on Ry, such that (Reo, @) is an AFD
W*-probability space (see Example A.4(3)). Setd = ¢ omloE € (Rg’o)*. By [1, Theorem
4.20], there exists w € U(RY) such that ¢ = @Y o Ad(w). (This result indeed holds for
countably incomplete ultrafilters on arbitrary index sets.) Then 7t,, = Ad(w)o7: Ry <— Rzolo
is an embedding such that ¥ o 7r,,, = ¥ 0 Ad(w) ot = ¢ o 7T = . Moreover, the faithful
normal conditional expectation E,, = Ad(w) o E o Ad(w*) : RY, — wrt(Ry)W* satisfies
pom,oEy =@om oAd(w*) o Ad(w) o E o Ad(w*) = @Y. Thus, 7y, : (Roo, @) <
(Reo, @) is an embedding of W*-probability spaces.

By Theorem A.5, there exists v € Z/l((Rf;’o)(pu) such that Ad(v) o 7y, : (Reo, @) <—
(Roo, @)Y is the diagonal embedding t : (Rog, @) < (Reo, @)¥. Set u = vw € U(RY).
Then we have Ad (1)o7t = tand ¥ oAd(u)om = @ = @Yot Denote by Eyy : RE — 1(Ryo)
the canonical faithful normal expectation. Note that E,, = Ad(u) o E o Ad(u*) : RY —
urt(Reo Ju* is another faithful normal conditional expectation onto t(Rs) = urr(Reo)u™.
Since

@om 'oAd(u*)oEy = @om o Ad(u*) o Ad(u) o E o Ad(u*)
= ¢ o Ad(w*) o Ad(V*)
=4
=@oi oy,
we have E;y = E, = Ad(u) o E o Ad(u™*). This further implies that
Y=o oEy

=1pon oAd(u*)oAd(u)oE o Ad(u*)

=1pon 'oEoAdu*)

=Y o Ad(u*)

andsou € L{((Rf;’o)q)u ), finishing the proof. O
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We may also apply Theorem A.5 to the structure of ultraproduct type III; factors. The
next result extends [14, Theorem 4.5].

Proposition A.8 Let M be any o-finite type 11l factor. Then MY is a prime factor, that is,
MY 2 My @ M, for any diffuse factors M1, M.

Proof By contradiction, assume that MY is not prime and write MY = M; ® M,. For
every i = 1,2, choose a separable diffuse abelian von Neumann subalgebra A; C M; with
expectation. By Theorem A.5, there exists a unitary w € /(M) such that wA;w* = A,.

For every i = 1,2, choose a faithful normal state @; on M such that A; C (Mj) ¢, and
define the faithful normal conditional expectation E : M ®@Mj — Mp by Ex = ¢ ®idpm,.
Choose a sequence of unitaries (uy, ) in U(A|) such that u,, — 0 weakly. For all i € {1, 2}
and all x{,yi € My, we have

liT{IlEAZ((Xl ®@x2)(un ®1)(y1 ®yY2)) = lim @1(x1uny1)x2yz =0.

By strong density of linear combinations of elementary tensors in M| ® M, and since
Un € Aj C (My)g,, it follows that for all x,y € M| ® M, = MY we have

lim E p, (x(t @ 1)y) = 0.
Applying the above result to x = w and y = w* and since wA | w* = A,, we obtain
1= liTILn [wiun @ )W*|| e, = liTILn [EA, (Wun @ )W)|| o, = 0.

This is a contradiction. ]

Appendix B. Keisler's Sandwich Theorem

In this section we prove Keisler’s Sandwich Theorem (Theorem 4.2). To simplify the matter,
we work in the traditional [0, 1]-valued version of continuous logic presented in [5]. We freely
use the notation and terminology established in [5].

Fix a language L. Let L3 be the language obtained by adding a predicate P, for every
existential L-formula ¢. It is clear that an embedding between Lg-structures is an existential
embedding of their L-reducts and, conversely, any existential embedding between L-structures
is an embedding of their canonical expansions to L3-structures.

LemmaB.1 Any restricted quantifier-free L3-formula is equivalent to both an ¥ L-formula
and a 3 L-formula.

Proof. We prove the lemma by induction on the complexity of formulae. The main case is
the connective —. This follows from the following calculations:

e (sup, infy @) = (inf; sup,, ) = sup, sup, infy inf,, (¢ =) and

e (infy supy @) — (sup,infy, ) = infx inf; sup sup,, (¢ — ). |
In what follows, given an L-structure N, Thy (N) denotes the closed conditions of the
form o = 0, where o is a Vy, -sentence for which oN =0. Similarly, if T is a theory, we let
Ty,, denote the collection of closed conditions o = 0, where o is a Vy,-sentence for which
T E o = 0. The corresponding notions with V;, replaced by 3,, are defined analogously. It
is routine to verify that M = Thy_ (N) if and only if N = Thg (M).
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Theorem B.2 For L-structures M and N, the following are equivalent:

1. M = Thy,, (N);.
2. There is an elementary extension N’ of N for which there is an (M, N/, n)-ultrapower
sandwich.

Proof We prove this by induction on n. The case n = 1 is well-known.

Now suppose that . > 1. If S is an n-ultrapower sandwich, let S’ denote the sandwich
with the last element removed.

First suppose that there is an (M, N/, n)-ultrapower sandwich S with N’ an elementary
extension of N. Then S is an (M, N’,nn — 1)-ultrapower sandwich with respect to L5. By
induction, we have that M is a model of Thy __,(N) with respect to the language L5. It
is clear that Thy, (N) with respect to L is contained in Thy _, (N) with respect to L3, so
M = Thy, (N), as desired.

Now suppose that M = Thy, (N). By the previous lemma, we have that M |=
Thy,, , (N) with respect to L3. By induction, there is an elementary extension N’ of N for
which there is an (M, N/, n — 1)-ultrapower sandwich with respect to L5, that is, the embed-
dings are all existential embeddings. In particular, the chain can be extended by one more
element if the embeddings are not required to be existential. Thus, there is an (M, N’,n)-
ultrapower sandwich, as desired. O

We can now prove the above promised sandwich theorems:

Corollary B.3 For any L-theory T, the following are equivalent:

1. T is Vn-axiomatizable.
2. Whenever there is an (M, N, n)-ultrapower sandwich with N = T, we also have that
MET.

Proof First suppose that T is V,, -axiomatizable and consider an (M, N, n)-ultrapower sand-
wich with N = T. Then by Theorem B.2, we have that M |= Thy,_ (N). Since N = T, we
have that Ty, C Thy, (N). It follows that M = Ty . Since T is Vy, -axiomatizable, we have
that M =T, as desired.

Conversely, suppose that (2) holds and let M = Ty, . We wish to show that M = T.
Consider the set

€ .
S=TU{o> 5 s oM > ¢, ois a Vp -sentence}.
If £ were unsatisfiable, then there would be o1, ..., 0y and € such that O'{Vl > eforalli

and yet T |= max;¢i<m(0y — 5) = 0. Since this latter sentence is still Vy,, we have that it
belongs to Ty, , contradicting the fact that M = Ty, .

Let N = L. Note then that N = T. Moreover, M = Thy_(N). Indeed, if o is a Vy,
sentence such that o™ = 0, then o™ = 0, else there is € > 0 such that o™ > €, whence
oN > 5, a contradiction.

By Theorem B.2, there is an elementary extension N’ of N for which there is an
(M, N/, n)-ultrapower sandwich. By (2) and the fact that N’ &= T, we have that M = T, as
desired. |

Corollary B.4 For any L-theory T, the following are equivalent:

1. T is dn -axiomatizable.
2. Whenever there is an (M, N, n)-ultrapower sandwich with M = T, we also have that
NET.
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Proof First suppose that T is 3, -axiomatizable and consider an (M, N, n)-ultrapower sand-
wich with M = T. By Theorem B.2, we have that M |= Thy, (N). Note then that
N = Thg, (M). Indeed, if o is an 3,,-sentence and oM =0, then oN =0, else oN > e.
Since € - o is equivalent to a Vy,-sentence, we get that ¢ — o € Thy,_ (N), whence
(e —~ )M =0y, contradicting that oM = 0. Since T is In-axiomatizable, we have that
N & T, as desired.

Now suppose that (2) holds and M |= T3 . We wish to show that M = T. The exact same
argument as in the previous theorem shows that there is N = T such that o™ > e whenever
o is a I -sentence with o™ > e. It follows that M |= Th3 _ (N). Arguing as above, we have
that N = Thy, (M), so there is an (N, M/, n)-ultrapower sandwich with M’ an elementary
extension of M. By (2) and the fact that N = T, we have that M’ = T, whence M = T, as
desired. O
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