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1. Introduction

As climate change looms large, an alarming uptick in catastrophic weather woes has unfolded globally over the past
decades. Indeed, the conflation of such extreme events along with the aging and neglected equipment and antiquated
transmission lines engenders the power system susceptible to large perturbations, including abrupt spike in renewable
output/ consumer load. The buckling component tends to cascade the perturbation throughout the massive power
systems. The latest high-profile deficiencies and failures lay bare the vulnerability of aging U.S. infrastructure. For instance,
power grids across the West and South were under exceptional strain in the midst of extreme weather conditions in the
first half of 2021, and those large-scale blackouts exacted devastating economical tolls [ 1-3]. Therefore, resilience concept
has been brought to the sharp relief toward the efficacious operation of power systems. It highlights the system’s capability
to adapt itself to retain basic functionalities amid glitches, failures and environmental disturbances, and is a profound
property of many complex systems [4-6]. As a sweeping infrastructure bill has come to pass to revamp the U.S. economy,
it is imperative to integrate resilience into such pivotal facility systems to withstand potentially large perturbations or
power system faults. Nonetheless, thanks to the highly nonlinear and potentially chaotic dynamics inherent in power
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systems (e.g., fluctuation in power supply and demand on the grid, variation of rotator angle in the generator), it remains
a confounding quest to attain such resilience.

In nonlinear dynamics theory, stability has been extensively probed in assessment of the resilience for dynamical
systems or processes. The dynamical stability indicates that the system returns to the equilibrium states after a transitory
period ensuing the onset of perturbations. Conversely, the system states drift away in the midst of loss of stability. Of note,
linear stability analysis leverages the largest Lyapunov exponent to assess system resilience when the perturbed states
are bounded in vicinity of the equilibrium conditions [7]. That said, it is only amenable to parse vulnerability of dynamical
systems against small perturbations. Nonetheless, many realistic dynamical systems including the synchronized dynamics
in power generation systems are prone to large perturbations. Worse yet, governing equations for those dynamical systems
may be highly nonlinear and/or of higher orders. Accordingly, it is typically formidable to linearize system equations
around the equilibrium and formulate the Lyapunov exponent to study the local stability emanating from perturbations.
Hence, the method of Lyapunov functions is merely a theoretical advancement and proves difficult to deploy in practice
[1]. Hitherto, there has been a persistent drive toward quantifying the stability and resilience of complex dynamical
systems against large perturbations.

On the other front, transient stability is a key measure for resilience in power systems [8-11]. It underscores the
capability of power generators to maintain the reference grid frequency, also called synchronization, after the transient
period in presence of large perturbations, not the least of which include fault on a transmission line, a sudden sea
change in renewable throughput and load (or demand), among others. Those perturbations typically lead to considerable
excursion of generator rotor angles and frequencies owing to intense variation of the synchronizing torque, as dictated
by the intricate relationship between the power and rotor angle of synchronous generation machines [12]. Moreover, the
power grids are at the cusp of transformation with the relentless penetration of distributed and intermittent renewable
energy sources, and the increasing prevalence of plug-in electric vehicles. This has compounded the operations of the
power grid. It bears mentioning that the inverters for renewables are generally not subject to the regulation of grid
frequency and susceptible to unstable transients attributed to this inherent low inertia. As a result, the integration of more
nonsynchronous inverters into the existing grids is exacting adverse impact on frequency response of the whole power
grid and attenuating the grid’s capability to damp perturbations, thus posing a quandary for synchronization maintenance.
This new normal inevitably leads to unprecedented perturbations that could potentially trigger desynchronization of
power generators, and largely suppress the resilience [13].

More recently, basin stability (BS) has garnered tremendous tractions in quantification of transient stability against
the arbitrary and large-magnitude perturbations for dynamical systems [7]. It relies on physical or first-principle models,
including time-domain simulations [14-16] and energy function approaches [17,18], and consequently incurs huge
computational overhead. While such high-fidelity first-principle simulations proliferate in literature, there is a dire need
to ameliorate the computational bottleneck. In this present study, we put to test that integration of physical modeling and
statistical learning enables efficient and accurate modeling in resilience quantification of power generation systems. In our
previous studies [19,20], we applied active leaning to reduce the computational cost. However, they are designed for low
dimension systems, and not function well for high dimension systems. Our new approach solves this issue by dimension
reduction. We utilize sensitivity analysis (SA) to filter out the critical dimensions and perform the active learning only on
these critical dimensions.

2. Background

As the source that generates and exports power to the grid, the electromechanical dynamics of a synchronous generator
is foremost for the entire power systems. The rotor motion plays a pivotal role in understanding the dynamical behaviors.
Here, we present the physical model that defines the nonlinear and chaotic dynamics of a synchronous power generator.

2.1. Nonlinear dynamics of the synchronous power generator

Different models on power generation systems have been explored in literature, from the simplest second-order swing
equation to higher-order models that account for more details for dynamics of generator subcomponent (e.g., the turbine,
exciter, and the stabilizer) [5,21,22]. The higher-order model elucidates dynamical behaviors spanning three time periods:
sub-transient, transient, and steady state. The sub-transient period spans a short time interval (~0.03 s) after the short
circuit, during which the current is the highest, and accounts for fast dynamics. The transient period comes after elapse
of the sub-transient period and lasts till the fault current tapers to a low value, before the post-fault system settles down
to a steady state. The control structure for synchronous power generators is implemented in a rotating reference frame,
also known as dg-reference frame.

Herein, we adopt a 11th-order model to characterize high-resolution generator dynamics, which consists of a 6th-order
sub-transient generator model, a 2nd-order exciter model, and a 3rd-order power system stabilizer (PSS) model [23]. We
point out that this model provides a more granular view of the generator dynamics, and a new set of time constants (T,
and Té;) are incorporated to capture fast electromagnetic dynamics. The 6th-order sub-transient model for a synchronous
generator machine is defined as follows:

’ "
Xa—Xg

Tiokq =~ = (=) ['d )’

(V1a + (X§ — Xis) Ia + E,;)] + Epa, (1)
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Table 1
Notations for the parameters of the 11th-order generator dynamics model.

T4 and Ty, Transient time constant of d- and g-axis

TJD and TJO Sub-transient time constant of d- and g-axis.

Xq and X Synchronous reactance in d- and g-axis

X; and X, Transient reactance in d- and g-axis

X, and X‘;/ Sub-transient reactance in d- and g-axis

H Inertia constant

D Damping coefficient

Ka Voltage regulator gain

Vo Reference voltage

Xis Leakage reactance

Ta Voltage regulator time constant

Tg Voltage regulator time constant

ws Reference rotor frequency

Ty PSS Washout time constant

Ta1 PSS lag-time Constant 1

Taz PSS lag-time Constant 2

T PSS lead time Constant 1

Th2 PSS lead time Constant 2

G PSS gain
Th¥ia = —Va + Ej — (X§ — Xis) La» (2)

. Xg—X{
1%%:—%+(&—%)h (WX)(%q(&—x@@+%ﬂ, (3)
Tyrag = —W2q — Ej — (X; — Xis) I, (4)
0 =w— ws, 5)
. . X" —X X —x"

2§ 4 D = Py + [x?,—x,l: By = My, + (4~ X)) zq] Ia (6)

X! — X, X, —X
+[;_£%+; dw@m

Here, Py denotes the power injection or the mechanical force for this generator, and L is the moment of inertia. By
definition, Xy > X} > X/ > 0 and X; > X/ > Xl;’ > 0 for all synchronous machines. For a synchronous machine to operate
in a wide range of operating conditions, it is anticipated to maintain a constant terminal voltage Vg, and thus a constant
rotor angle 6 and frequency w. This means that field voltage Ej; and mechanical force Py should be systematically adjusted
to accommodate any change in terminal constraints. The physical device that provides the value of Py, is called the prime
mover, and that provides value of E is called the exciter. A type zero 2nd-order exciter is defined as follows:

TrVig = JE: + E2 — Vg, (7)

TaE = —Ep + Ka (Vo — Vig + S0) (8)
A simple 3rd-order power system stabilizer (PSS) is defined as follows [14]:
T,$1=w— S, (9)
Tudy =G (0= 1) (@ =5 - 5, (10)
Tods = (0 - 12) (6 @-5)+5) - 5, (11)
So= 12 (6@ =50 +5) +5s, (12)
Considering the saturation effects, the transient voltage E(’I has a piecewise function [14]
E; _ { , E, if E; <038 ?er unit (13)
6.980 (E&) — 11.236E; + 5.322 Other wise

The nomenclature for the dynamical physical states and the constant parameters of this model is showcased in Table 1
and Table 2, respectively. We follow the notation convention in power systems literature.

After the possibly large perturbation, an excursion is imposed generator states, which are subsequently deemed as the
initial condition for a time-domain simulation (TDS) of this high-order model. The perturbed state is stable if the rotor
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Table 2
Notations for the physical states of the 11th-order generator dynamics model.
E; and E| Transient voltage in d- and g-axis
Yq and g Flux linkage damper winding in d- and g-axis
(uniformly distributed)
Eq and E; Terminal voltage in d- and g-axis (uniformly distributed)
Iy and I, Current in d- and g-axis
[ Rotor angle (uniformly distributed)
w Rotor frequency (uniformly distributed)
Vg Generator terminal voltage (uniformly distributed)
Ep Field voltage (uniformly distributed)
51,52, 53 PSS variables (uniformly distributed)
So PSS output
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Fig. 1. Evolution of A6 under (a) stable and (b) unstable dynamics, and evolution of Aw under (c) stable and (d) unstable dynamics.

angle 6 and frequency w converge to the equilibrium conditions, i.e., the rotor frequency w coverages to the reference

ws (60 Hz in the U.S.) and the rotor angle # maintains a constant discrepancy A9 = 6 — 6y against the reference angle
90 in the steady state. The illustration of the stable and unstable dynamics in terms of A9 and Aw = “=** following
the perturbation from a TDS is depicted in Fig. 1. For simplicity, we only study the stability of the dynamlcs for one
synchronous generator, which corresponds to the single-machine-infinite-bus power grid system. This is a key step in
stability analysis of a network of the synchronous generators.

2.2. Basin stability

BS is a benchmark for global stability or resilience of dynamical systems, and it quantifies the likelihood that the
dynamical system returns to equilibrium after a large perturbation within a finite time interval. In practice, the large
perturbation manifests in a random shift of system state x. In a compact form, system dynamics is represented as
X (t) = F(xg, t), with initial condition xy € RY. For power generation systems, system dynamics F is embodied in the
aforementioned 11th-order model (see Eqgs. (1)-(13)), and the state x = [9, w, Eq, Eq, Y4, Vg, Efa, Vv, S1, 52, S3]T is given
in Table 2. Here, [E/, E[J, I, Ig, So] are considered as constant, as they are typically not subject to variations caused by
external perturbations. The BS is defined as

B = [, ¥ (%) p (Xo) dXo, (14)

where y (%9) € 0,1 is an indicator function for system convergence to equilibrium from a perturbed xo: y (%) = 1
indicates x(t) converges to the equilibrium in steady state; y (xg) = 0 otherwise. 2 is the support of probability density
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Fig. 2. BS indicates the forewarning as the rainforest degrades: (a) the BoA for the forest state x; shrinks and (b) BS diminishes as x. ticks up.

function p(xg) regarding the random perturbation &g, and thus f o 0 (X0) dxg = 1. The set of xo, from which the system
returns to equilibrium, is termed as the Basin of Attraction (BoA). Eq. (14) can also be interpreted as B = E, [y (X0)] €
[0, 1]. In other words, BS defines a probability measure that delineates the degree of system resilience considering large
perturbations. In practice, BS is approximated by Monte Carlo (MC) sampling. A large number n,, of sampling points of
Xo are randomly drawn from p(xg), according to domain experts or historical data, and then the governing equations are
called upon to track the evolution of x(t) on each realization of Xy to assess the convergence. Thereby, BS is estimated as

B =l (15)

Nrotal ’
where n, is the number of sampling points out of n., that converge to equilibrium. The lion’s share of existing works on
BS involves such tedious MC, and ny = 1.5 x 10° was used in our previous work [23]. At issue is the tremendous
computational cost to estimate B, which is a formidable computational bottleneck. We further elucidate BS with an
illustrative example of the Amazonian rainforest [24-26], which bears immense ramification for the earth’s climate
change. The dynamics of rainforest cover x is encapsulated in a modified Levins model [27]

Y R (16)

Here, x, is a delicate juncture or tipping point, across which x exhibits contrasting dynamics with distinct equilibria, and
this bi-stability resides in self-fulfilling feedback dynamics. When x > x., the forest regenerates at a saturating rate s
until reaching the fertile forest equilibrium x; = 1 — g (s > d > 0). A vast forest cover spawns more precipitation
and amplifies water concentration in the soil, which further cements vegetation conditions and transpires more water
vapors into the atmosphere. Therefore, when the forest cover x is above the decisive tipping point, the Amazon is still able
to proliferate amid deforestation and maintains high resilience. Conversely, if x < x., it degrades with pace d until the
rainforest vanishes, pointing to a barren savanna equilibrium x, = 0. The destructive deforestation scrapes water soaked
up in the otherwise rich vegetation, and the landscape withers and tapers off. The forecast becomes more vulnerable to
further destruction in this vicious cycle, and eventually saddles into the savanna state.

Remarkably, deleterious human activities juxtaposed with devastating wildfires and dire aridness have exerted outsize
perturbations on the Amazonian rainforest over the past decades, which have pushed the rainforest to a precarious status
and depleted the resilience against further destructive deforestation, manifesting in the upswing of the tipping point
x.. However, as demonstrated in our prior work, the Lyapunov exponent does not depend on the tipping point x., and
hence fails to capture loss of stability to the fertile forecast equilibrium x;, when intensifying aridity ramps up x. [19].
Consequently, no critical slowing down of recovery from perturbations could be discerned from linear stability. In contrast,
BS indicates the forewarning as the rainforest degrades [19]. As shown in Fig. 2 the BoA for the forest state x; shrinks
(Fig. 2a) and BS diminishes (Fig. 2b) with the elevation of x.. Whereas BS can be easily computed from MC for this
simple case, a fundamental question remains on how to approximate the formidable intricacies and complications of
the synchronous generator dynamics.

3. Methodology

To estimate BS of a single generator dynamics described by Eqgs. (1)-(13), TDS at 1.5 million realizations of the
generator states from a large perturbation was conducted in our prior work [23]. In this exposition, we demonstrate that
integration of the high-fidelity physical model with statistical learning offers a unique way to ameliorate the prohibitive
computational cost associated with the physical simulation for resilience assessment. This will also pave the way for
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optimal resilience design for power grid networks. In essence, BS estimation is a binary classification problem, and the
key is to pinpoint the boundary (or boundaries for disjoint BoA) that separates the stable and unstable perturbed system
states. Herein, we develop a surrogate classifier, trained from the physical simulation, to asymptotically approximate the
boundary. To tackle high dimensionality of the generator states, sensitivity analysis (SA) is first adopted to pick out the
most pertinent features among the d = 11 generator states, which carry relatively large weight in prescription of the
stability boundary according to the XGBoost Classifier. Those states that are not sensitive are treated as constant at their
nominal values, i.e., they are not subject to the perturbation. Next, a diversity-enhanced active learning (DAL) framework
is leveraged in a sequential sampling strategy, such that only those informative design points that are pivotal to update
the decision boundary in each sampling batch are selected and evaluated by the physical model. Hence, we only make
occasional recourse to the high-fidelity TDS. This process iterates until the decision boundary converges.

3.1. XGBoost

In machine learning, an ensemble learning enlists a multitude of models to improve prediction accuracy. Boosting is a
sequential ensemble technique, which combines a set of base learners to boost learning accuracy in a stage-wise fashion.
In gradient boosting machine (GBM), predictive models (e.g., decision trees) are sequentially brought into play to offset
residual from the preceding ensemble, and the gradient descent is called upon to fit the new base learner. With training
data {(x;, i)}, % € RY, y; € R, for a GBM with K decision trees, the prediction at x; is derived in an additive way:

K

Vi =Fc ) = ka (%), (17)

k=1

where f; is the base learner (decision tree) at iteration k, which has a tree structure g and leaf weights wy, € R, Ty is
the number of leaves in the kth tree. The structure g, maps an instance x to a specific leaf index i, i.e., q: R — i,i =
1,2, ..., T, and the response of kth tree for x is given as fy(X) = wy [qx (®)]. That said, fi(x) is a leaf weight with index
qk (x). At each iteration k (k < K), the new ensemble is updated as F (x) = F,—1 (x) + fi(x), and the new base learner
or decision tree fi(x) is fitted to minimize a loss function fi (x) = argmins L, = argminy Z?:l I(yi, Fee1 (%) + fi(%:))
via the gradient descent approach. For regression problems, the square error loss function is often used, i.e., Ly =
Z?:] %(y,- — Fe_1 — fi)?. Likewise, XGBoost builds the predictive model additively, albeit with a regularization term
26 = yTi + %k llwe|l? to avoid overfitting. Here, y is the learning rate, which regulates the complexity of tree qy.
A is a regularization parameter that penalizes extreme leaf weights wy,. Thus, the objective function at iteration k is given
as L = Z?:l [l i, Fee1(®:) + fie (2:))] + $2(fi). In classification settings for BS estimation, the logistic loss is used instead:

15390 = yiln (14 ¢7) + (1 = y)In(1 + ) (18)

N Fie(x;) . . . . . . . S .
where y; = ]e:F:(’xi) at iteration k. Yet, this logistic loss function complicates the gradient descent optimization. To this

end, the second-order Taylor expansion is adopted on the objective function in XGBoost:

n
1
Ly = Z [1 i, Fee1) + gifc ) + Ehisz (Xi)] + 2 (fo), (19)
i=1
l(yi.Fr—1) o 921(yi.Fe1)
ey ond b= 0(Fi1)?
L= Y"1 [gific ®) + Jhif2 ()] + 22(fi). We further modify the objective function with the fact that fi(x) = wg [q¢ (¥)]:

where g; = . As I (y;, Fx_1) is fixed in iteration k, the objective function is simplified as

Tk

1
LI<=Z Zgi wk,j+5 Zhi+)\ wlij +yTy, (20)

j=1 i€l i€lj

where I; represents the set of data points in the jth leaf of the kth tree. Then, given the tree structure q, the optimal

weight wy; = —% with G; = Zielj g and H; = Zie,j h;, is obtained by setting % = 0. Consequently, the objective
becomes
Tk 2
1 G;
Lig, = —ZZ{Hjﬂ] + 7Tk (21)
j=1

Identification of the optimal structure g is a NP-hard problem. We employ a greedy algorithm and start from a single
leaf and then iteratively add leaves with the loss reduction function

N A
Lspiic = 3 Hy+x + Hptn — HAx | V- (22)

Here, I = I; U Iz; I; and I are the set of data points assigned to the left and right leaves of this leaf node after split.
Eq. (22) is the information gain after the split, which also measures the quality of split. We grow the tree with maximal
information gain and stop growing when Lgy;c < 0.
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3.2. Sensitivity analysis

In our prior work, TDS of the generator dynamics model was implemented at ny g = 1.5 x 10 sampling points
of the perturbed physical states in a crude MC simulation to estimate the BS, which is also the ground truth in this
study [23]. This number guarantees the variance-to-mean ratio (VMR) as small as 1.27 x 1077, To narrow down the
critical features amongst the original d = 11 physical states that reign supreme in BS estimation, we adopt local sensitive
analysis (SA), the one-feature-at-a-time (OFAT) approach. First, we randomly select (e.g., via space filling sampling) a
small subset D; = {x,-,y,-}?;1 from the ny data points to train the XGBoost classifier C. Here, %; € R? and the label
y; € 0,1 is derived from TDS of the aforementioned physical model. We also select a validation set D, = {x;, y,—}?;;"jl
for SA. For the n, data points in D,, in each round we anchor one of the d = 11 features to its nominal value at
equilibrium and compare the predictive responses from C against the true labels. Specifically, for round j € [1, d], the jth

feature is replaced by its nominal value M/, i.e., x; = [x!,xZ, ..., xf’]T is replaced with x: =[x,....M, ..., xf]T for all
X; € D,. We denote the shifted validation set as X’. Then, the predicted responses on the original validation set X and
i i . T I C), ) =
X! from C are used to derive the accuracy for reach round j: ¢ = M where I (a, b) = 1 a b .
ny 0 otherwise

Intuitively, lower accuracy implies high relevance of the feature to system stability, which consequently wields larger
impact on the prediction. Hence, we aim to select m of the most pertinent features and derive a compact representation
of system dynamics in a m-dimensional subspace. Compared to variance-based and other global SA methods, the OFAT
is not computationally intensive. Moreover, computational result in OFAT will be further included in sequential optimal
design, thus more appealing that other SA approaches, including Sobol index [28].

3.3. Diversity-enhanced active learning

Given an unlabeled pool X, = {m,'}?:”] e RY whose m pertinent features selected via OFAT vary in the design space
and the rest is fixed at nominal value, we seek to select a batch of the most informative X, C Xy, |Xi| = ny < n, and
make recourse to the high-fidelity physical TDS to obtain the label Y. Then (X}, Y} ) are annexed into the training set D
for further update of the classifier and the stability boundary. This process iterates until the simulation budget is depleted
or the estimation is sufficiently close to the true boundary.

To select X, from the unlabeled pool X,, we first identify a pack of candidate points that are most likely to lay close
to the true stability boundary, which are the points with large predictive uncertainty from XGBoost. In other words, those
design points are more likely to be misclassified. We use the entropy to represent this uncertainty as

Hi = —po (i) 10g; po (i) — p1 (i) 10g, p1 (=), (23)
where pg (i) = p (i =0|xi),p1(xi) = p Y= 1|x;) for x; € X,. Here, po (x;) is the output of the classifier C,
and p; (xj) = 1 — pg (a;). Theoretically, we could select the top n. points with maximal summation of entropy, or

Xe = argmaxg, . o, Y Hi, i € Xy, as candidate critical points. Yet, this only leads to the issue of near duplicates,
in that those sampling points cluster together and almost duplicate each other. Whereas each design point carries critical
information to update the classifier and the boundary, they are not collectively informative. Therefore, the redundant
information inherent in near duplicates elevate the computational cost in the TDS without contributing significantly to
the stability boundary estimation. To solve the issue of redundancy, we adopt a diversity-enhanced sampling scheme
based on the K-means clustering sampling. It is noteworthy that we only adopt diversity sampling on the important
features selected by SA. It samples from transformed candidates X, € RY, whose m pertinent features selected via OFAT
vary in the design space and the rest is fixed at nominal value. In concreteness, we first perform K-means clustering
algorithm on candidate X, then a batch of critical points X, C X, that are closest to its nearest cluster center are
selected: @) = mMingex, d(x, ) for k =1, ..., ny, where d(-, -) is the Euclidean distance, c; is the kth cluster center. ny is
the number of clusters and also the size of Xj.

The flowchart of the proposed approach is summarized in Fig. 3. We first conduct SA to select the salient state variables
or features that bear profound information in determining the generator stability or synchronization after perturbation.
This is carried out on an initial set D, with |D;| = n, data points to train the XGBoost classifier. Then, prediction is
made on the unlabeled pool X,, |X,| = n,, and predictive entropy is obtained for X,. The most informative batch of
n. candidate points in X, € X, are selected according to the maximal entropy principle. Then, the weighted K-means
clustering is conducted on the transformed candidates X, i.e., only important features left, and ny, critical design points Xy,
are selected according to the distance between candidates and clustering centers. Finally, the responses Y, are obtained
by TDS and (X, Y},) are annexed into the training set D; for further update of the classifier.

We halt the training if either of two conditions are met: (1) the simulation budget is exhausted; (2) validation accuracy

T I(C(%),Yi . - . . .
= Z‘:%L(x')y’) > 0.9 and error ratio A = w < 1x 1072 are simultaneously achieved on the validation set, where
) vai

1 C(x) =y . . .
I(C(x;),y;) = {O ot(h;)r isyei' C(x;) is the predicted response and y; is the true response. ng, ng and n,q are the number
w
of false positive cases, false negative cases on validation set and the size of the validation set.
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. Prediction on K-means on
Select important Entropy I for
features unlabeled pool candidates X transformed
Xy ¢ candidates X,
No Obtain (X, ¥ic), Select ny critical
SA with Dy Update Classifier annexed into the -k
- design points
training set D,
Estimate BS
Fig. 3. Roadmap of the proposed method.
Table 3
Lower and upper bounds for the perturbation on physical states.
State Aw A6 E, E/ Va Vg
variable
L —0.100 — —0.288 —1.001 —0.737 —0.371
U 0.100 7 0.546 1.450 1.073 0.751
State M S, S3 Efd Vi
Variable
L —6.322 x 107* —1.390 —1.495 —22.813 —0.547
U 7.916 x 1074 0.933 0.981 29.796 0.608

The rationale is that the validation accuracy n alone does not suffice as an optimal stopping criterion, because the
error ratio between false positive cases and false negative cases can significantly affect the estimation of BS. We note
that BS is estimated as the number of stable sampling points (denoted as positive predictions) over the total number
of investigations. In a very special scenario, if we have the same number of false positive (unstable points predicted as
stable) and false negative (stable points predicted as unstable) cases on the testing set, then the total number of predicted
positive cases will be exactly the same as that of the ground truth and hence, the BS estimation will be exactly the same as
the true BS. In addition, if the number of false positive cases is much higher than that of false negative cases on the testing
set (1.5 million points), the BS will be overestimated. To this end, we choose n = 0.9 as the critical validation accuracy
and A = 1x 1073 as critical error ratio in inference of the whole test set (1.5 million points). This leads to prediction error
of £1 x 1073 on BS estimation. Moreover, the marginal computational cost is too high beyond the threshold of n = 0.9.

4. Numerical results

Without loss of generalization, we assume the perturbation manifests in the form of a 11-dimensional independent
multivariate uniform distribution, and the distribution parameters (the lower bound L and upper bound U) for each state
variable is shown in Table 3. For the rotor frequency w and rotor angle 6, we characterize the perturbation on Aw and
AfQ: A6 € [—m, ] and Aw € [—0.100, 0.100].

In order to determine the optimal size n; of the initial training set D, in SA, we conduct SA with a progressively
increasing n; until the accuracy measure ¢;, or the consistency of the predicted responses on the original validation set X
and the shifted set X’, converges. The size of the validation set is fixed as n, = 10000. In Fig. 4, we show the variation of
g,j=1,2,..., 11 as n; accrues. With n, = 10000, it is evident that three features notch significantly lower ¢;, suggesting
that they are critical toward the stability boundary. Hence, we only include the sensitive features [w, 6, E,;] to appraise
system resilience, and the rest 8 will remain constant at their nominal values. The hyperparameters (the max depth T
and the number of estimators K) of XGBoost is tuned by 3-fold cross validation on the initial training set D;: Ty = 15 and
K = 100. We adopt an early stopping rule to prevent overfitting in each iteration: if the metric obtained on the validation
set is not further improved after we add another k estimators, we halt the training. Note that the early stopping rule here
is to prevent overfitting in each iteration of active learning and is different from the stopping criterion used in the active
learning process. In our study, we use the area under ROC curve (AUC) as the performance metric and set k = 10.
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Fig. 4. Variation of the accuracy measure ¢; in SA as n;, increases.
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Fig. 5. Boxplot of BS estimation.

The unlabeled pool has a size n, = 150000 in 3-dimensional space. In each iteration of the DAL, we select the most
informative n;, = 300 design points among the n. = 3000 candidate design points. We set the simulation budget as 200
iterations. We run the experiments 15 times with different initial training set and validation set. The estimated BS are
shown in Fig. 5. In these experiments, the mean of BS estimation is 0.3238 with standard deviation 0.0019.

We illustrate the learning process in Fig. 6. In Fig. 6(a), it is evident that we have overfitting at the early learning stage,
and the validation accuracy on the testing and validation sets elevates until the iteration halts at iteration 141 according to
the stopping criteria. In Fig. 6(b), the error ratio A for testing and validation sets showcases oscillation, which affects the
BS estimation. The evolution of BS during this learning process is depicted in Fig. 6(c). Whereas it still fluctuates toward
the end of the iteration, owing to the oscillation of the error ratio A, the computational overhead is considerably high
beyond iteration 141, with only marginal improvement on BS estimate.

Furthermore, we visualize the BoA in terms of A6 and Aw in Fig. 7, with resolution of 200 x 200 pixels. Each pixel
represents the average BS of design points with the same 0 and w but different valuations for other 9 features, as denoted
in the color bar. The approximate BoA at iteration 141 is almost identical to the one obtained under crude MC.

Here, we compare the amount of time used for simple 1.5 million MC simulations and our method. The MC simulation
was implemented via parallel computing with machine setting of 12-core CPU (i7-8750H), and the computational time
for 1.5 million MC simulations is ~3.5 h. On the same machine setting, the average time used in our methods are ~0.33 h
and the training of XGBoost takes ~12 min. In our settings, we implemented K-means from Scikit-learn [29].

5. Conclusions

Uptick in extreme weather conditions and natural disasters and relentless penetration of the renewable energy have
posed a quandary for the resilience of the power generating system. In this study, we represent the resilience from a novel
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Fig. 6. Training process: (a) training and validation accuracy: The black dashed line is the critical accuracy 0.9; (b) Training and validation error
ratio A: The black dashed line is the critical ratio 1 x 1073; (c) BS estimation: black dashed line is the true BS 0.3240.

perspective of stability of nonlinear dynamic systems, and BS offers a comprehensive measure of system resilience against

potentially large perturbations. While models
swing equation to the full-detail sub-transient

of different fidelities have been explored in literature, from the simplest
representation, the high-fidelity models have not been extensive probed in

estimate of BS, largely owing to the tremendous computational overhead involved. We adopt sensitivity analysis to pick
out the critical states, whose perturbation exerts huge impact and hence are sensitive on BS or system resilience. Following
this, we develop a diversity-enhanced active learning framework to sequentially identify the informative perturbed states,
which will be further evaluated by the high-fidelity sub-transient model. This approach only incurs a paltry of simulation
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Fig. 7. (a) The 2D BoA from the crude MC method with 1.5 million design points (the underlying truth); (b) (c) (d) the estimated basin plot from
the proposed methods at the initial, 50th and the final (141st) iteration.

effort compared to tedious MC simulation but with comparable accuracy on BS estimation. While we only study the BS
for a single machine infinite bus system here, this research work also paves the way for the resilience quantification for
power grid networks, which can pinpoint the weak generators to reinforcement against potential disruptions.
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