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Considerations of Process
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The recent COVID-19 pandemic reveals the vulnerability of global supply chains: the
unforeseen supply crunches and unpredictable variability in customer demands lead to cat-
astrophic disruption to production planning and management, causing wild swings in pro-
ductivity for most manufacturing systems. Therefore, a smart and resilient manufacturing
system (S&RMS) is promised to withstand such unexpected perturbations and adjust
promptly to mitigate their impacts on the system’s stability. However, modeling the
system’s resilience to the impacts of disruptive events has not been fully addressed.
We investigate a generalized polynomial chaos (gPC) expansion-based discrete-event
dynamic system (DEDS) model to capture uncertainties and irregularly disruptive events
for manufacturing systems. The analytic approach allows a real-time optimization for
production planning to mitigate the impacts of intermittent disruptive events (e.g., supply
shortages) and enhance the system’s resilience. The case study on a hybrid bearing manu-
facturing workshop suggests that the proposed approach allows a timely intervention in
production planning to significantly reduce the downtime (around one-fifth of the downtime
compared to the one without controls) while guaranteeing maximum productivity under the
system perturbations and uncertainties. [DOI: 10.1115/1.4055425]

Keywords: smart & resilience manufacturing systems, generalized polynomial chaos,
discrete-event dynamic system, intermittent perturbations

1 Introduction
Manufacturing systems are increasingly intertwined through

globally expanding supply chains [1]. Diverse activities within
manufacturing firms, including design, fabrication, production
planning, and sales, heavily rely on the sustainable flow of materials
from upstream to downstream of the supply chains. It is reported
that the proportion of organizations that experienced setbacks due
to unexpected catastrophic events (e.g., natural disasters and trans-
portation failures) reached its highest level at ∼77% in 2020 [2].
Notably, the COVID-19 pandemic relentlessly reveals the vulnera-
bility of manufacturing systems within global supply chains across
a variety of sectors and industries: the unforeseen supply crunches,
in conjunction with the unpredictable fluctuation in customer
demands, lead to catastrophic disruptions to the production plan-
ning and management [1,3,4].
The resilience embodies a system’s capability to withstand sig-

nificant shocks and perturbations, promptly adapt to sudden
changes, and recover rapidly before any adverse impacts are mate-
rialized [5]. Zhang and Van Luttervelt [6] included such system
response in the design of resilient manufacturing systems. They pro-
vided guidelines in multiple areas across the manufacturing
systems, including system design and management, external
impacts on supply operating models, and human factors to
enhance the system’s resilience. Following this, the resilience
concept has gained momentum in production planning and supply

chains, particularly as COVID-19 has inflicted massive perturba-
tions in manufacturing systems globally [1,7]. Indeed, customer
demands and upstream supplies have varied dramatically since
the onset of COVID-19 [8–10], resulting in delays in manufacturing
systems. Such drawbacks cause significant disruptions in manufac-
turing, which in turn renders the existing production schedules
futile. Therefore, prudent strategies and flexible production plan-
ning are urgent to ensure a manufacturing system’s endurance
amid unexpected disruptive events.
Recent investigations provide analytic approaches for modeling

and characterizing system resilience for shop floor levels. Gu
et al. [11] modeled the multistage configurable manufacturing
systems. They presented the system dynamics using a stationary
Markov chain to evaluate the impacts of different control measures
on systematic resilience based on specific resilience metrics. Hu
et al. [12] introduced a deterministic model for manufacturing
systems and provided various criteria for resilience assessment.
Abimbola and Khan [13] modeled the system resilience via a
dynamic object-oriented Bayesian network, and three capacities
that embody the resilience were proposed, i.e., absorption, adapta-
tion, and restoration. These models of resilient manufacturing
systems are rooted mainly in deterministic models or with the sta-
tionary assumption. However, a real-world system barely resides
in a steady-state because activities such as production time, material
logistics, and their coupling effects introduce significant variations
and non-stationarity in the process. Most existing models, which are
overwhelming with the stationary assumption and the deterministic
models, cannot deal with the process uncertainties, which may
create unexpected machine downtime and lead to significant distur-
bances in production planning [14].
The growing industrial adoption of the plant floor automation and

information systems (PFS) can create mega/tera-bytes of fast
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steaming sensor data per hour from the shop floor (see Fig. 1).
These data are mainly generated from the data acquisition &
control systems and most recent industrial internet-of-things
(IIoT) enabled sensors and devices [15]. This implementation of
PFS systems and IIoT in manufacturing systems offers unprece-
dented opportunities to track shop floor events (e.g., buffer levels,
material, logistics flow, and machine production rates), capture
the process variations, and provide real-time system evaluation
and control. The production scheduling and shop floor management
under the smart system need to accommodate this norm via a frame-
work of adaptive scheduling and control (in real-time) for the
dynamics of manufacturing systems [16]. Simulation techniques
such as discrete-event simulation and system dynamics have been
widely applied in manufacturing system management and planning
[17]. The advances in PFS, IIoT, and simulation techniques bring
up an opportunity to realize a smart and resilient manufacturing
system, which consists of mathematical modeling for evaluating
resilience, production planning, and forecasting disruptive events.
The proposed smart and resilient manufacturing system (S&RMS)
is projected to provide instant decisions on the shop floor schedul-
ing to mitigate impacts from unforeseen disruptive events (and
machine breakdowns) and therefore enhance system resilience.
This paper develops a discrete dynamic modeling approach to

model the production system. A set of parameters, including
work-in-process, processing rates, buffer stocks, upstream and
downstream supplies at different workstations, and their coupling
effects on the process dynamics, is used to trace the production
system dynamics. The generalized polynomial chaos (gPC) is
further introduced to capture the process uncertainties during pro-
duction (i.e., the processing rates, the supply insufficiencies, and
the delay of arrivals) due to random disruptive events. An optimiza-
tion approach is further developed, which provides instant strategic
shop floor planning and mitigates impacts from the perturbations
[18,19]. The case study shows the presented method’s performance
in maintaining the shop floor production from a real-world bearing
manufacturing factory. Therefore, the presented model provides
optimal solutions to the shop floor scheduling by coordinating all
workstations within the shop floor to enhance the system resilience
from the adverse impacts of disruptive events and sudden fluctua-
tions (and insufficiencies) in the material flows.
The remainder of the paper is organized as follows: the developed

approach that formulates the gPC expansion for process character-
izations and optimization is presented in Sec. 2; Sec. 3 details the
implementation procedure of the presented method, which carries
out on a real-world manufacturing factory to demonstrate its

outperformance compared to existing methods tested; some con-
cluding remarks are provided in Sec. 4.

2 Methodology
2.1 Discrete-Event Dynamic System With Disruptive

Events. The linchpin to realizing S&RMS is to characterize the
uncertainties and disruptive events across the manufacturing
systems. From the perspective of system dynamics, the uncertain-
ties in manufacturing systems can be formulated as intermittent per-
turbations. The processes are switching between the static behaviors
and the emanating chaotic bursts (due to external shocks or pertur-
bations) [20–22]. The duration of those static phases follows a
power/scaling law [23]. Hence, one can conveniently formulate
such intermittent perturbations in a discrete manufacturing
process/system using a random variable from the exponential
family.
The proposed method provides a continuous optimization tool to

solve instability issues and enhance resilience when the system
undergoes intermittent shortages in the materials flow and the resul-
tant perturbations/disturbances in production planning. Essentially,
the presented approach continuously adjusts the processing rate for
each machine station to coordinate all the machines on the shop
floor to maintain production flow and reduce overall system-level
downtimes. The controllable processing time has been considered
as an important optimization variable for shop floor scheduling
and production planning problems [24]. In real-world manufactur-
ing processes, the processing conditions can be controlled accord-
ing to the real-time monitored quality of the process, and hence
the actual processing time is not constant but adjustable in a
certain scope. Adjusting the machining parameters (e.g., cutting
speeds and feed rates for lathing and milling, and polishing time
for the chemical mechanical planarization)—when such interven-
tions are technically reasonable—allows the controllability for
changing the processing time of the machining processes. Essen-
tially, tuning the processing time can coordinate all workstations
to reduce production downtime, mitigate the bottleneck impacts,
and maintain the material flows throughout the system [25,26],
which consequently impacts system performance criteria such as
operating costs and inventory carrying costs. Related analytical
approaches have been studied extensively to evaluate the perfor-
mance of manufacturing systems via adjusting the processing
time: Kayan and Akturk [25] investigated how to control the pro-
cessing time in a computer numerical control (CNC) machine

Fig. 1 A diagram showing the role of planning and scheduling in the smart man-
ufacturing platform: the smart manufacturing system benefits manufacturing
enterprises by reducing inventory and increasing time frame resolution (from
hours/shifts to minutes/seconds) to improve the scheduling accuracy for the
manufacturing operations management
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scheduling problem. Their bi-criteria scheduling problem on a
single CNC machine scheduling problem suggests that by properly
alternating the process parameters (e.g., cutting speed and feed
rate), the production system can efficiently utilize the resources
given specific requirements of make spans. Renna [26] proposed
new policies for shop floor scheduling by adjusting the processing
time of machine stations. The results suggested a significant system
performance improvement under several dynamic conditions. In
addition to controlling processing time, process uncertainty is
another critical aspect of production planning. Shabtay and Zofi
[27] investigated a single machine scheduling problem to minimize
the overall makespan via adjusting controllable processing time.
This problem was solved using a constant factor approximation
algorithm and a polynomial-time approximation scheme. Kim and
Lee [28] first considered the uncertain processing time and
pick-up constraints in the scheduling problem. Wu and Zhou
[29,30] further investigated derived optimality and feasibility con-
ditions under this assumption and extended the work by developing
a Petri-net model and control policy to obtain offline periodic sched-
uling solutions. In addition, adjusting the processing rate allows for
the system’s high performance even though the production com-
plexities and uncertainties exist in intelligent machine systems
[31,32].
In this paper, we consider optimizing the production planning in

an I-stage assembly line consisting of workstations with buffers and
storage. As shown in Fig. 2, the process starts from the material
replenished buffer B0 and each stage i is followed by a buffer Bi

with finite capacity Ci<∞.
In this exemplary manufacturing system, one can formulate the

dynamic model as

x0(t + 1)

XC(t + 1)

xI(t + 1)

⎡
⎢⎣

⎤
⎥⎦ =

1 0 0

0 I 0

0 0 1

⎡
⎢⎣

⎤
⎥⎦

x0(t)

XC(t)

xI (t)

⎡
⎢⎣

⎤
⎥⎦

+MV(t) +

R(t)

0

0

⎡
⎢⎣

⎤
⎥⎦ −

0

0

P(t)

⎡
⎢⎣

⎤
⎥⎦ (1)

where t is the time index, x0 records the state of storage size for
raw materials at B0, XC is a 1 × (I− 1) column vector, i.e.,
XC = [x1, x2, . . . , xI−1]⊤, records all the levels of buffer from
stage 1 to stage I− 1, and xI represents the level of machined prod-
ucts at BI. I is the identity matrix such that I ∈ R(I−1)×(I−1). Note
that a fixed time interval is usually selected between two adjacent
time indices to discretize the continuous time (in the numerical
case study, we set the time interval as 20 min). The vector V(t) con-
tains the processing rates for all machines at time index t, i.e., V(t) =

[V1,1, . . . , V1,S1 , V2,1, . . .V2,S2 , . . . , VI,1, . . . , VI,SI ]
⊤ and M ∈

R(I+1)×
∑I

i=1
Si is the machine control matrix as

M =

−1S1 0 0
1S1 −1S2 0
0 1S2 −1S3

0

0
. .
.

0 0
0 −1SI−1 1SI
0 0 1SI

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where 1Si denotes an all-ones row vector with the dimension 1 × Si.
R(t) represents the amount of raw materials (at B0), and P(t) repre-
sents the number of machined products (at BI). The equations for
R(t) and P(t) are formulated as

R(t) =
QIn

0

{
t = φIn

o.w.
(3)

φIn = t0 +
∑
�τ<τ

T�τ (4)

Likewise, we have

P(t) =
QOut

0

{
t = φout

o.w.
(5)

φout = t′0 +
∑
�τ<τ′

T ′
�τ (6)

Raw materials will be replenished at the time φIn and products
will be sent to the downstream customer at the time φout. t0, t′0 are
the beginning time indices and Tτ, T ′

τ′ are the random intervals of
the replenishment and take-out from the manufacturing system,
respectively. τ, τ′ ∈ℤ+ (τ = 1, 2, 3, …, r, τ′ = 1, 2, 3, …, p),
where r is the number of the replenishment period, and p is the
number of take-out of machined parts. Here, we model the time
interval between every two events (QIn’s and/or QOut’s) using a
Poisson distribution. Such intermittent demand patterns in material
flows/supplies can be characterized by periods with positive
demand, alternated with (many, or a few) periods without
demands. Researchers reported that such intermittent demand
follows a Poisson process [30]. The denoted intervals between
two incidents (e.g., QIn’s and/or QOut’s), i.e., Tτ and T ′

τ′ , follow
Poisson distributions: Tτ ∼ Poisson(hr) and T ′

τ′ ∼ Poisson(hp).
After the disruptive event(s), the parameters of these Poisson distri-
butions change to h′r and h′p, correspondingly. Also, QIn and QOut

are in turn replaced by Q′
In and Q′

Out after the disruptive event.
Recall that xi describes the buffer level at Bi. Here, we denote its

derivative as Δxi(t)= [x(t)− x(t−Δt)]/Δt at time t, which can be
formulated as

Δxi(t) =
∑Si
j=1

Vi,j(t) −
∑Si+1
j=1

Vi+1,j(t) (7)

Fig. 2 A schematic diagram showing an I-stage manufacturing system with I+1 buffer
{B0, B1,…,}, where the total number of machines is Si in stage i, i=1,2,…,I
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where 0≤ xi(t)≤Ci. Δx0(t) describes the releasing rate of raw mate-
rials at B0, and ΔxI(t) is the throughput rate capturing the productiv-
ity at the last stage I. Vi,j(t) and Vi+1,j(t) are processing rates for the
jth machine at the ith and (i + 1)th stage at time t, respectively. If
there is no material in the (i− 1)th storage, i.e., xi−1(t)= 0, then
all the machines at stage i will be starved. Meanwhile, if the
buffer capacity at Bi surpasses its capacity, i.e., xi(t)≥Ci, a flow
jam will be formed for the machines at stage i. Hence, the equation
can be formulated as

Vi,j(t) =
0, if xi−1(t) ≤ 0 or xi(t) ≥ Ci

ui,j, if xi−1(t) > 0 and xi(t) < Ci

{
(8)

where ui,j is the actual processing rate when the machine Mi,j is
under operation. When the machineMi,j is unoccupied, the process-
ing rate is set to zero. Essentially, the discontinuity nature in Eq. (8)
introduces nonlinear behaviors in the system dynamics. Assume
that the processing rate for the machine Mi,j is with mean μ0i,j and
the standard deviation σ0i,j to describe the process uncertainties.
As most products are processed in batches, one can estimate the
mean of the processing rate per item [33,34] by a normal distribu-
tion with the sample mean μi,j and the sample variance σ2i,j, i.e.,
ui,j ∼ N(μi,j, σ2i,j). Let the vector μ = (μ1,1, . . . , μ1,S1 , . . . ,

μI,S1 , . . . , μI,SI )
⊤ ∈ R1×

∑I

i=1
Si and σ = (σ1,1, . . . , σ1,s1 , . . . , σI,S1 , . . . ,

σI,SI )
⊤ represent the mean and standard deviation of processing

rates for all the machines, respectively. In addition, we apply the
signal-noise ratio (SNR) value [35], i.e., SNR= μi,j/σi,j, to denote
the level of the uncertainty in the processing rate. During the pro-
duction, Vi,j’s are affected by other machines from upstream
and downstream. Hence, we can rewrite the notation Vi,j(t) as Vi,

j(μ, t), denoting its relationship with μ. Similarly, xi(μ, t) replaces
the notation xi(t) in the following (sub) sections. Therefore, we
apply the time interval between two events conformed to Poisson
distribution and the processing rate conformed to normal distribu-
tion. Those probability distributions lead to manufacturing system
uncertainties, which cause the unexpected intermittent shortage/
congestion of the material and/or the perturbations in production
planning.
At each stage i, all the machinesMi,j

′s operate in parallel, and the
material flows assigned to each machine are proportional to each
machine’s processing rate. For example, since the machine Mi,1

and the machine Mi,2 at stage i are located parallelly, they receive
the material quantities from upstream with the proportions Vi,1-

(μ, t)/(Vi,1(μ, t)+Vi,2(μ, t)) and Vi,2(μ, t)/(Vi,1(μ, t)+Vi,2(μ, t)),
respectively. In addition, these parallel machines share the same
buffer Bi. In other words, once the upstream buffer Bi−1 is empty
or the buffer at stage i (Bi) is full, all the machines at the stage
i, {Mi,j} for j= 1, 2, …, Si, would be idle (starved or blocked).

2.2 The Generalized Polynomial Chaos-Based Model to
Capture Manufacturing System Uncertainties. To capture the
propagation of uncertainties, we utilize the gPC expansion-
based discrete-event dynamic system (DEDS) for manufacturing
systems under intermittent disruptive events [36]. The gPC expan-
sion has recently garnered tremendous traction for its efficient
uncertainty quantification in complex dynamic systems [37]. Uncer-
tainties are always present in the manufacturing environment, espe-
cially for the production process, such as processing rates and
delivery lead time. In this paper, we model the processing time
and its variations as a stochastic process u(ξ), which can be repre-
sented as a linear combination of a convergent series of polynomials
in gPC expansion, i.e., u(ξ) =

∑∞
k=0 ukϕk(ξ) [38], and the expan-

sion is truncated to finite order K as an approximation, i.e.,
u(ξ) ≈

∑K
k=0 ûkϕk(ξ). Here, uk is the polynomial coefficient in the

gPC expansion while ûk is the polynomial coefficient in the trun-
cated gPC expansion, ξ is the random variable inherent in the sto-
chastic process u, and the functional ϕk represents the polynomial

chaos basis function conforming to the distribution of ξ. Note that
ϕk for k= 1, …, K are mutually orthogonal in L2 space, namely,
〈ϕk, ϕl〉 = ∫ϕk(ξ)ϕl(ξ)ρ(ξ)dξ = δkl〈ϕk〉, ϕl, where ρ(ξ) is the
probability density function of ξ, and δkl= 1 if k= l and δkl= 0 oth-
erwise. The expansion coefficients ûk can be approximated by the
Galerkin projection approach, such that ûk = u, ϕk/ϕ

2
k

〈 〉
[22,37].

The numerator is approximated using a Gaussian quadrature rule
as u, ϕk =

∑Z
z=1 ω

(z)u(ξ(z))ϕk(ξ
(z)) and the denominator is evaluated

as ϕ2
k

〈 〉
=
∑Z

z=1 ω
(z)ϕk(ξ

(z))ϕk(ξ
(z)), where Z is the total number of

quadrature points, ξ(z) is z-th quadrature point and ω(z) represents
its weight. Hermite, Legendre, and Jacobi polynomials have been
satisfied with this orthogonality criterion for Gaussian, Uniform,
and Beta random variables, respectively [39,40]. Gaussian distribu-
tion is assumed in this study without loss of generality, and corre-
spondingly, the functional ϕk is selected as the univariate Hermite
polynomials.
In general, two functions are used to model the controllable time

for manufacturing processes, namely the bounded linear and the
scaling decreasing functions [41]: the linear bounded function is
presented as Vj = Vj − αjuj, 0 ≤ uj ≤ �uj ≤ �Vj/αj, where for the
job j, Vj is the non-compressed processing time, �uj is the
maximum (upper bound) based on the resource in the buffer that
can be allocated to the current machine Mij, and the parameter αj
represents the compression rate. Another formula utilizes the
scaling function which can be stated as Vj= (θj/uj)

k, where the
parameter θj is the workload of the job j with a positive scaling
factor k. In our presented method, the processing time is controlla-
ble given a specific range of the processing time with induced ran-
domness to describe the uncertainty of the processes. The detailed
formulation is summarized in Sec. 2.3.

2.3 A Smart DEDS Based Production Optimization
Approach. Next, we investigate an optimization strategy for pro-
duction planning under perturbations and uncertainties in the afore-
mentioned manufacturing system. The discontinuity nature causes
perturbation behaviors in the system dynamics, i.e., the processing
rate of machine Mi,j is set to ui,j only when the machine is running,
as shown in Eq. (8). Meanwhile, the uncertainty for the manufactur-
ing process resides in the process variations, i.e., ui,j ∼ N(μi,j, σ

2
i,j).

As suggested in Sec. 2.2, we introduce the surrogate gPC expansion
estimations, i.e., ui,j(μi,j, σi,j, ξ) =

∑q
k=0 ûk(μi,j, σi,j, ξ)ϕk(ξ), to

approximate ui,j, where q is a finite order to the truncated, ξ is the
Gaussian random variable, the functional ϕk(ξ) denotes the univar-
iate Hermite polynomials conforming to the distribution of ξ, and ûk
is the corresponding coefficient determined by the Galerkin projec-
tion approach [39]. Essentially, implementing the gPC approxima-
tion avoids uncertainty terms in the optimization problem, and the
mean processing rates (μ′i,js) are considered as the variables in the
optimization problem as stated in Eqs. (9)–(16).
The generalized polynomial chaos-based smart & resilient

process optimization and control (gPC-SRPOC) model aims to opti-
mize the production plan by maximizing the system output rate
while minimizing the system’s downtime. The gPC-SRPOC con-
siders two criteria, i.e., system productivity and workstations’
downtime, into the optimization objective. The mathematical mod-
eling of the optimization problem is stated as

max
μ∈R1×

∑
i

si

∑Tf
t=T0

∑SI
j=1

VI,j(μ, t) − a
∑I

i=1

∑Si
j=1

di,j(t)

[ ]
(9)

s.t.: Vi,j(μ, t)

=
0, if xi−1(μ, t) ≤ 0 or xi(μ,t ≥ Ci∑q

k=0ûk(μi,j, σi,j, ξ) if xi−1(μ ,t)> 0 and xi(μ,t)<Ci

{

(10)
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Δx0(μ, t) = −
∑S1
j=1

V1,j(μ, , t) (11)

Δxi(μ, t) =
∑Si
j=1

Vi,j(μ, t) −
∑Si+1
j=1

Vi+1,j(μ, t),

i = 1, 2, . . . , I − 1 (12)

ΔxI(μ, t) =
∑SI
j=1

VI,j(μ, t) (13)

x0(μ, t + 1) = x0(μ, t) + R(μ, t) (14)

xI (μ, t + 1) = xI (μ, t) − P(μ, t) (15)

0 ≤ xi(μ, t) ≤ Ci, i = 0, 1, 2, . . . , I (16)

As demonstrated in the objective function of Eq. (9), we seek
to maximize the production with a minimal of system downtime
by adjusting the mean processing rates μ = (μ1,1, . . . , μ1,S1 , . . . ,
μI,S1 , . . . , μI,SI )

⊤ for machines in the system. Here, T0 and Tf
denote the starting and finishing time stamps of the production
process. The first term in the objective function is the total output
of the system between T0 and Tf, where VI,j represents the process-
ing rate of the machines at the last stage. When the shortage of mate-
rial in production happens, the decrease in the throughput rate can
be mainly caused by the deficiency of the material. This term
does not guarantee a minimal downtime. The second term is
added in the objective function to ensure maximal production rate
with a minimal downtime under the perturbations of the material
supplies. Frequent system/machine breakdowns have adverse
effects on the equipment effectiveness, management activities,
and profits at any capacity level of a manufacturing system [42].
For example, unplanned system breakdowns may result in a
decline in labor efficiencies, and frequently starting and stopping
machines and changing the operation parameters (e.g., revolutions
per minute, cutting speed, and feed rate) may accelerate equipment
degradation [43]. In addition, machine downtime increases the cost
of labor and spares value or other resources for facilities in the
industry. Therefore, decreasing downtime while maintaining con-
sistent productivity is a value-added activity that consequently
enhances machine utilization efficiency and business profitability
in system [44,45]. di,j(t) is a binary variable indicating whether
the machine j at stage i is down at time t, i.e., di,j(t)= 0 when the
machine Mi,j is in operation, and di,j(t)= 1 when Mi,j is either
blocked or starved. The variable a is a penalty term, which controls
tolerance of the total downtime of the system (in most of our case
studies, a is selected as 100 to properly weigh the downtime
in the objective function) [46]. The constraints are delineated in
Eqs. (10)–(16). Here, Eq. (10) can capture process perturbation
and uncertainty based on gPC expansion. Vi,j(μ, t) =

∑q
k=0 ûk(μi,j,

σi,j, ξ)ϕk(ξ) when the machine j at stage i is under operations,
and Vi,j(μ, t)= 0 during the downtime. Equations (11)–(16) are
the state equations. The first derivative of the inventory level at
ith buffer, Δxi(μ, t) =

∑Si
j=1 Vi,j(μ, t) −

∑Si+1
j=1 Vi+1,j(μ, t), denotes

the rate of buffer level changes, which is determined by the differ-
ential of the throughput between its upstream and downstream
machines (Eq. (12)). Especially, Δx0(μ, t) is the releasing rate of
raw materials (Eq. (11)), and ΔxI(μ, t) is the throughput rate of
the final production (Eq. (13)). In addition, x0(t) increases due to
the replenishment (Eq. (14)) and xI(μ, t) decreases by the outflow
(Eq. (15)) as the quantity of produced parts sent to downstream cus-
tomers. The inventory level xi(μ, t) of the buffer Bi at time t is
subject to the capacity limits in Eq. (16), i.e., xi(μ, t) is non-negative
and no greater than the storage capacity Ci. The intermittent pertur-
bations of the material flow can be reflected by the uncertainties of
replenishment and take-out in both quantities and time durations.
Therefore, we model such perturbations as stated in Sec. 2.1
(Eqs. (3)–(6)). Those intermittent perturbations will affect the math-
ematical model of the optimization problem through Eqs. (14)
and (15). Note that the main purpose of presenting the explicit for-
mulas and parameters for system uncertainties is to demonstrate the
validity of the presented approach for optimizing the system under
uncertainties. This presented framework opens up an opportunity
for implementing quantification approaches (to estimate the dis-
tribution formulas and parameters) to capture the real-world uncer-
tainties. In this paper, a constrained optimization by linear
approximation (COBYLA) based algorithm [47] is applied in the
optimization process. If multiple equivalent optimal solutions are
available, it is preferred to select the optima with minimal difference
for adjusting the processing time. In other words, if we have K
equivalent optimal solutions, we select the solution μ(*) such that

∗ = argmin Therefore, we obtain the
optimal mean processing rates (µ) after solving the optimization
problem using the COBYLA algorithm [47], which can ensure
maximizing the production rate with minimum system breakdowns.

2.4 Discrete Event-Based Simulation With Real-Time
Optimal Solutions for Production Planning. A simulation for
the DEDS model of a production system is carried out in SIMPY
[48] to test the performance of the presented gPC-SRPOC. The
manufacturing system simulation was conducted given the
optimal production plan generated by gPC-SRPOC. As shown in
Fig. 3, the objects such as the workstations (machines), buffers,
and material flows are initialized. The material flows (shown as
arrows in Fig. 3) suggest the production line structure and the con-
nectivity between workstations. The overall flowchart describing
the simulation procedure is summarized in Fig. 4. First, the param-
eters including material quantity, the time interval between arrivals,
the processing rate as well as the uncertainty level for each machine
are initialized. The dashed block in Fig. 4 describes the logic for

Fig. 3 A schematic diagram showing the structure (including buffers and machines) and material flow in an exemplary pro-
duction line for discrete-event simulations. It suggests different machine statuses due to the limited sizes of buffer and the
stock level: the upstream machines will be blocked when the stock reaches its capacity limit; the downstream machines
will be starved when the stock is empty.
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determining the status of the current machine (i.e., being occupied
or idle). The throughput rate and the total machine downtime (i.e.,
the time duration when one machine is under starved and blocked
conditions) through the simulation are recorded to evaluate the per-
formance of the presented method [17].
To compare the performance of the gPC-SRPOC with other

methods, two strategies are carried out: Plan A selects a consistent
production planning throughout the whole time-span (i.e., the exact
solution of shop floor scheduling before and after the disruptive
events); The plan B applies the presented gPC-SRPOC to generate
an adaptive optimal solution, i.e., this solution to the production
plans adjusts promptly after the onset of the disruptive events.
The roadmap for the proposed approach is illustrated in Fig. 5:

(1) Initialization: it includes parameters which are the mean of
the processing rate of the machine μi,j, the period T (1)

τ , and
the quantity QI of the replenished of the raw materials
before perturbation in the multistage configurable manufac-
turing system;

(2) During the iteration of the dynamic model, the buffer capac-
ity, xi(μ, t), i = 0, 1, 2,…, I, is updated. The objective func-
tion value in Eq. (9) is calculated once t= Tf;

(3) The optimal μ∗i,j is generated by solving the optimization
problem described in Sec. 2.3. Then the measures, including
the throughput rate and total downtime rate, are calculated;

(4) Initialize the parameters, such as T (1)′
τ and Q′

I at the starting
point of phase II;

(5) In phase II, plan A applies the original optimal solution for
the production planning. The measures, including the
throughput rate and total downtime, are also calculated;

(6) Under plan B, the processing rate of the machine μ∗
′

i,j is
re-optimized by solving the optimization problem with new

Fig. 4 The logic diagram of the discrete-event simulation for manufacturing systems: during the simulation, for the machine j
in stage i, the amount of the products in the upstreambuffer is subtracted by ui, and the downstream buffer is added by ui, when
the machine is under operations. When the machine j in stage i is being idle (due to starvation and/or block situations), the
downtime di, is then added by 1, and the stock xi keeps unchanged.

Fig. 5 A flowchart describing the procedures for process opti-
mization and result comparisons
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inputs (e.g., T (1)′
τ and Q′

I ). The measures for plan B are then
calculated;

(7) The optimized production plans are used as inputs in a
discrete-event simulation module. The simulation result is
used for evaluating the performance of the gPC-SRPOC.

3 Case Study and Results
3.1 Manufacturing System Simulation. We consider a

bearing manufacturing workshop, as portrayed in Fig. 6. It consists
of three production lines for machining three parts of the rolling
bearing, i.e., the inner ring, the outer rings, and the rolling elements.
The inner and outer rings go through the raw material removal pro-
cedures (e.g., turning, chamfering, and grooving). Before sending to
the assembly and inspection, these machined parts are treated with
heat treatment, grinding, and polishing. The simulation model of
this manufacturing workshop is depicted in Fig. 7. This multistage
manufacturing system can be simplified into two parallel production
lines. Correspondingly, the production lines for producing inner and
outer rings (i.e., material flows 1 and 2, respectively) include 2, 1,
and 2 machines at three stages. The production line for material
flow 3 only contains one machine at each stage. These three produc-
tion lines are merged into a single unit for assembly, inspection, and
packaging. The buffer size for each Bi (for i= 1, 2,…, 6) is set as 20
in the simulation. The processing rate ui,j is time-varying with
uncertainties, i.e., ui,j ∼ N(μi,j, σ2i,j), for each machine Mij, and
the estimated PC coefficient ûk is obtained using 20 quadrature
points (i.e., Z = 20). SNR values are set as 100, 10, 5, 2, and 1 to

simulate the system from a nearly deterministic process (SNR=
100) to a high uncertainty for the manufacturing process (SNR= 1).
In addition, note that the intervals between the events (QIn’s and

QOut’s) are discrete values in this dynamic model. Then this point
process can be characterized by Poisson statistics [49]. Therefore,
in the presented model, the material flow demand at a random inter-
val Intr follows a Poisson distribution as Intr∼ Poisson (hR). At the
onset of the disruptive event, the delivery time from upstream sup-
plies varies significantly. This leads to a longer period between
material replenishments, i.e., Int′r ∼ Poisson (h′R) where hR < h′R.
Due to the disruptive event, the quantity of replenished raw materi-
als is reduced to Q′

In(Q
′
In < QIn). As a result, such an uncertain dis-

ruptive incidence causes supply insufficiency, and the downstream
machines will be under starvation. The total quantity of rawmaterial
QIn is set as 300 with the simulation period of 33.5 h and hR as 10
for phase I. Then, a disruptive event is at the beginning of phase II
(at the time index tp (33.5)). The total quantity Q′

In is set as 250 with
50 h of simulation and h′R as 15 in phase II. A 20 min interval (Δt=
20min) is set for this discrete-event simulation.

3.2 Data-Driven Modeling Results. A DEDS simulation is
carried out based on two production planning strategies A and
B. The gPC-SRPOC generates the solution for the process parame-
ters (i.e., the dynamic processing rate μi,j for each machine) in the
DEDS simulation model. Figure 8 lists the evolution of the through-
put rate and the downtime ratio for one study case with SNR= 100.
The results of plan A (in dashed line) are obtained using the optimal
solution when the system has no perturbations (i.e., no observable

Fig. 6 A shop floor structure of a rolling bearing manufacturing workshop, which mainly consists of three material flows: (1)
flow 01 is the production line for machining inner rings, (2) flow 02 outlines the manufacturing procedures for outer rings, and
(3) flow 03 describes the procedures of manufacturing rolling elements

Fig. 7 A multistage manufacturing systemmodel is extracted based on the presented rolling
bearing manufacturing workshop
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disruptive events). When the perturbations emerge (at the time
index tp), plan A still sticks to the original solution for the produc-
tion planning. The manufacturing system exhibits lower productiv-
ity, as indicated by the decreased throughput rate in Fig. 8(b).
Moreover, the system is under significant machine downtime—
more than 10% of the downtime ratio for the system after 50 h
when the disruptive event emerges.
On the other hand, by applying strategy B, the production plan-

ning strategy promptly adapts to the system uncertainty (the sudden
perturbation introduced at tp). The overall downtime ratio is under
3% (shown in the dash-dotted lines in Fig. 8(a)). Specifically, the
overall downtime for all machines is 18 h under plan B compared
to 87 h under plan A. This illustrative example shows a significant
improvement using the presented gPC-SRPOC method to enhance
the system resilience.
Next, we compute the results with 20 replications under each

SNR level. The throughput rates and the downtime ratios based
on 20 computations of the simulations following strategies A and
B are summarized in Table 1 and Fig. 9. The results generated
from plan A in phase I are plotted in boxes with backslashes, and
plan B’s results in phase I are shown with boxes with slashes. For
comparisons between plans A and B, Figs. 9(a) and 9(b) are the
results of the throughput rate and the downtime ratio before and
after the perturbations. It may be noticed that there are no significant
differences between these two plans after the disruptive events due
to the deficiency of materials, signified by the similar throughput
rates. However, the downtime ratio values from the two strategies
(A and B) are significantly different: plan A has a downtime ratio

increasing to 14.7%, and plan B’s downtime ratio is only 1.83%
using the gPC-SRPOC under SNR of 100. Therefore, plan B,
which re-optimizes the production plan after disruptive events,
shows significant advances in enhancing the machine utility and
reducing the system downtime (which may save associated marginal
costs). This case study suggests that the proposed approach allows a
timely intervention in production planning to significantly reduce
downtime while guaranteeing maximum productivity under system
perturbations and uncertainties.
To compare with the gPC-SRPOC, we apply a conventional

Monte Carlo-based production optimization and control (MCPOC)
approach [50]. The detailed procedures for implementing MCPOC
are as follows:

(1) a set of random numbers (ϵi,j)∀(i, j) are generated by the sam-
pling from the distribution of N (0, σ2i,j) [7];

(2) based on sampled ϵi,j, estimate ui,j= μi,j+ ϵi,j, ∀(i, j);
(3) μ∗i,j ( ∀(i, j)) is obtained after resolving mathematical model-

ing of the optimization problem;
(4) iterate steps (1), (2), and (3) n times to obtain the solutions of

processing rates {μ∗i,j
(1), μ∗i,j

(2), . . . , μ∗i,j
(·)};

(5) the expectation �μ∗i,j of all μ∗(.)i,j ’s is used as the input in a
discrete-event simulation module. The simulation result is
used for evaluating the performance of the MCPOC.

Specifically, this MCPOC method uses two different sample
sizes, i.e., 1000 and 10,000. The throughput rate and the downtime
ratio with gPC-SRPOC andMCPOC are summarized in Table 2 and

Fig. 8 The result comparisons between the conventional production planning (results in
dashed lines) and the proposed gPC-SRPOC (dash-dotted lines) using two metrics: (a) down-
time ratio and (b) throughput rate, where the system perturbations are introduced at the time
index tp (segmenting phases I and II)

Table 1 Results in terms of the throughput rate and the downtime ratio under different SNRs using plans A and B

Measurements SNR

Before perturbation After perturbation

Plan A Plan B Plan A Plan B

Mean Std. Mean Std. Mean Std. Mean Std.

Throughput rate 100 3.007 0.0021 3.005 0.0027 2.015 0.0196 2.008 0.0186
10 2.990 0.0070 2.986 0.0081 2.001 0.0166 2.005 0.0168
5 2.954 0.0085 2.956 0.0076 2.000 0.0221 2.002 0.0238
2 2.809 0.0116 2.809 0.0119 2.001 0.0239 1.998 0.0263
1 2.746 0.0145 2.751 0.0131 1.997 0.0288 1.991 0.0257

Downtime ratio (%) 100 0.0 0.0 0.01 0.05 14.70 0.41 1.83 0.36
10 0.03 0.08 0.03 0.08 14.84 0.49 2.20 0.51
5 0.06 0.12 0.02 0.05 16.94 0.49 2.52 0.58
2 0.15 0.23 0.09 0.15 21.04 0.56 3.33 0.57
1 0.22 0.32 0.15 0.26 26.22 0.85 3.67 0.60
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Fig. 10, where the gPC-SRPOC results are represented
by boxplots with slashes, and MCPOC results are plotted by
boxes with dots/crosses. Note that both methods are applied only
under plan B to test their performances in optimizing the production
plans after disruptive events occur.
First, we apply a sampling size of 1000 for the MCPOC method.

As shown in Fig. 10, the performance of the presented gPC

expansion is with less variance than the MCPOC (here we denote
the results based on 1000 sample size using MC1) and consistently
with lower downtime ratios under all SNR levels. The throughput
rate obtained using MCPOC decreases as the system uncertainty
increases. This is because a considerable process variation may
abrupt the production planning and increase the chances of being
idle for downstream workstations. For instance, under the condition

Fig. 9 The boxplots show the production simulation results of the throughput rates and the
downtime ratio values (based on 20 simulations under each condition) for two strategies
(plans A and B) after introducing intermittent perturbations/disruptive events (phase II). The
boxplot with back slashes represents the results from plan A and the boxplot with slashes
represents the results from plan B (a) plots the statistics of throughput rates and (b) is the
results of the downtime ratio.

Table 2 The throughput rates and the downtime ratio values under different SNRs using gPC, MCmethod (MC1 for a sampling size of
1000 and MC2’s sample size is 10,000)

Measurement SNR

Method

gPC MC1 (size= 1000) MC2 (size= 10,000)

Mean Std. Mean Std. Mean Std.

Throughput rate 100 2.605 0.0024 2.608 0.0088 2.602 0.0048
10 2.580 0.0043 2.570 0.0111 2.579 0.0047
5 2.554 0.0100 2.503 0.0506 2.543 0.0171
2 2.412 0.0163 2.363 0.0933 2.408 0.0278
1 2.348 0.0170 2.311 0.0912 2.346 0.0378

Downtime ratio (%) 100 6.1 0.03 6.6 0.85 6.1 0.09
10 6.1 0.06 7.1 0.91 6.1 0.15
5 7.1 0.14 9.2 1.59 7.0 0.24
2 10.1 0.28 12.1 1.90 10.0 0.80
1 13.4 0.44 14.4 2.01 13.4 1.09

Fig. 10 The boxplots showing the performance (based on 20 simulations) using gPC-SRPC (boxes with slashes) compared to
two results (i.e., MC1 and MC2) using MCPOC under different sampling sizes: the sampling size of MC1 is 1000 (boxes with
dots) and MC2’s sample size is 10,000 (boxes with crosses) (a) plots the statistics of the throughput rate and (b) shows the
results of the downtime ratio values.
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with SNR= 5, the throughput rate decreases to 2.503, and the
downtime ratio increases up to 9.2%. On the contrary, the presented
gPC method has less downtime (nearly 22% improvement com-
pared to the MC-based method tested) but a higher throughput
rate (1.99% increment compared to the MC-based method).
Besides, the throughput rate and downtime ratio variances gener-
ated using MCPOC are more significant than gPC expansion. Per-
tinently, as the uncertainty increases (SNR decreases), the
throughput rate using gPC varies from 0.0024 to 0.0170, and the
MCPOC’s variance changes from 0.0088 to 0.0912. Meanwhile,
the variance of the total downtime using gPC varies from 0.03%
to 0.44%, but the MC method possesses relatively higher variances,
increasing from 0.85% to 2.01% as the SNR ratio decreases.
We further test the MOPOC approach with a different sampling

size of 10,000. The results of MCPOC (here it is denoted by MC2)
and gPC were summarized in Table 2 and Fig. 10. The variances of
the MCmethod are shrunk due to the increment of its sampling size.
However, it is noticed that the presented gPC-SRPOC is still with
less variance and lower downtime ratios under all SNR levels.
For even lower SNR levels (i.e., larger uncertainties), the presented
gPC-SRPOC is more stable than the MCPOC. Besides, in real-
world applications, especially for monitoring a manufacturing plat-
form/system, it is inconvenient to acquire sufficient information to
infer the underlying probability distribution of a collection of empir-
ical observations due to limited data availability. Compared to the
MC-based method, gPC expansion possesses high accuracy and
avoids the time-consuming sampling scheme. The gPC-SRPOC
can generate consistent solutions throughout different levels of
system dynamic uncertainties. Therefore, gPC-SRPOC can serve
as an efficient analytic approach to enhance system resilience and
mitigate the impacts of disruptive perturbations in manufacturing
firms.

4 Conclusions and Discussions
This paper presents a DEDS modeling approach to capture the

manufacturing system dynamics under production disturbances. A
gPC-based optimization and control approach is proposed to
realize a smart and resilient shop floor by providing responsive pro-
duction planning strategies. The contributions of the paper are sum-
marized as follows:

(1) The core issues of characterizations of nonstationary behav-
iors and uncertainties in manufacturing systems have been
addressed using a gPC-based DEDS model.

(2) A gPC-based differential evolution global optimization tool
is further developed. It provides instantaneous optimization
and control of the shop floor activities to enhance the
system’s resilience against unforeseen catastrophic events.

(3) The experimental case study suggests that the proposed
gPC-SRPOC approach maintains the system production
when the systems undergo intermittent material flow short-
ages without significant system downtime. In addition, this
approach avoids large sampling efforts to save computation
time and performs consistently compared to the existing
random sampling methods MCPOC. Overall, the presented
method captures the variations and uncertainties for respon-
sive strategic planning on the shop floor, mitigating the
impacts of disruptive events to enhance the system’s
resilience.

Currently, the presented approach focuses on the I-stage system,
which is a general presentation for most manufacturing factory plat-
forms. However, further investigations are needed to implement
gPC-SRPOC into manufacturing systems with various structures,
such as custom workshops and flexible manufacturing systems
which are with more complex logistics and manufacturing pro-
cesses (e.g., feedback material flows into earlier workstations).
The DEDS model needs to be extended for such scenarios. In addi-
tion, approaches such as Bayesian inference and Markov chain

Monte Carlo need to be incorporated for further uncertainty
quantifications.
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