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Uncertainty Quantification
and Optimal Robust Design
for Machining Operations
In this study, we carry out robust optimal design for the machining operations, one key
process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative
chatter and maximize the material removal rate (MRR) considering the inherent material
and process uncertainty. More specifically, we characterize the cutting tool dynamics
using a delay differential equation (DDE) and enlist the temporal finite element method
(TFEM) to derive its approximate solution and stability index given process settings or
design variables. To further quantify the inherent uncertainty, replications of TFEM
under different realizations of random uncontrollable variables are performed, which
however incurs extra computational burden. To eschew the deployment of such a crude
Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM
with a stochastic surrogate model, stochastic kriging, in an active learning framework to
sequentially approximate the stability boundary. The numerical result suggests that the
nominal stability boundary attained from this method is on par with that from the crude
MC, but only demands a fraction of the computational overhead. To further ensure the
robustness of process stability, we adopt another surrogate, the Gaussian process, to
predict the variance of the stability index at unexplored design points and identify the
robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom,
an optimal design in the robust stable region that maximizes the MRR can be identified.
[DOI: 10.1115/1.4055039]
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1 Introduction
The ongoing devastating COVID-19 pandemic has triggered

turmoil in global supply chains, manifesting in shipping delays,
rising costs for raw materials, shortages of finished components
and parts, and as well as capacity crunches in transportation net-
works. In particular, a shortfall in semiconductors throws a
wrench into a host of industries, such as the automobile, home
appliances, and computer gadgets. In wake of this supply upheaval,
automakers have scrambled to stockpile chips and other key parts,
in antithesis of the “Just in Time” philosophy [1]. As the coronavi-
rus contagion subsides and we gradually return to normalcy, the
demand for chips is roaring up, which further complicates the logis-
tical snags in chip acquisition. Against this backdrop, the scaleup of
chip manufacturing has been brought to sharp relief. Quality assur-
ance is the linchpin in scaleup manufacturing for the sought-after
chips, which calls for optimal process design.
Remarkably, machining is a fundamental procedure in chip fab-

rication, including ultra-precision machining and chemical mechan-
ical polishing [2–4]. Also known as material removal or subtractive
manufacturing, the unwanted parts from a workpiece or wafer are
scraped by cutting tools to achieve the desired surface roughness.
The surface roughness here determines the chip performance:
while the run-of-the-mill chips are made from the 28 nm wafers,
chips in advanced AI settings require the 5 nm ones. One detrimen-
tal effect in a variety of machining operations (e.g., turning, drilling,
and milling) is the self-exciting dynamics or regenerative chatter

arising from the intrinsic time delay phenomenon, which results
in exceedingly fierce tool vibration, premature tool wear/failure,
and scrap parts due to unacceptable surface finish. It is noted that
a high depth of cut usually induces a large cutting force, which in
turn, magnifies the chance of chatter. On the other front, large-scale
fabrication enforces a high production rate and hence a high depth
of cut. Therefore, optimal design for machining operations hinges
on the selection of process parameters (e.g., spindle speed and
depth of cut) to achieve high productivity (or equivalently, material
removal rate (MRR)) and avert the adverse chatter. Identification of
the boundary that separates the stable from unstable design config-
urations in machining processes is a profound quest.
Craftsman knowledge and trial-and-error tests are traditionally

used in machining process design, which, however, incurs tedious
efforts and enormous costs [5]. Alternatively, computer simulations
have been enlisted to characterize the machining process dynamics.
This includes the delay differential equation (DDE) models that
capture the quintessential phenomenon of time delay [6,7]. In con-
trast to ordinary differential equations, solutions to DDEs are of infi-
nite dimensions, and sophisticated numerical approaches, such as
the temporal finite element method (TFEM), are carried out to con-
struct the approximate solutions. Thus, chatter avoidance boils
down to discerning optimal machine settings that induce stable
solutions of the DDEs. In addition, the inherent uncertainty in
machining operations (e.g., material and process calibration) begs
the question of robust process design. Indeed, a workshop on
“Uncertainty in Machining” sponsored by the National Science
Foundation in 2010 underscored uncertainty quantification and
risk mitigation for machining and related manufacturing operations
[8]. More recently, the Bayesian network was utilized to evaluate
the impact of the random residual stress on machining performance
[9]. The challenge resides in how to efficiently navigate the design
space to delineate the contour of the stable regimes, graphically
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represented as a stability lobe diagram (SLD), and pinpoint the
optimal design that maximizes the MRR in a robust sense consider-
ing the underlying uncertainty.
In this exposition, we propose an active learning multi-fidelity

approach that integrates a high-fidelity simulation oracle (TFEM
here) to solve the DDE model and a low-fidelity surrogate to
mimic this simulator. More specifically, stochastic kriging (SK) is
used as the surrogate to elucidate the relationship between the sto-
chastic response (here, the stability index) and the design parame-
ters and predict the response distribution at unexplored design
points. On the back of such predictive distributions, active learning
provides guidance on the sequential batch selection of the most
informative design points that will be further evaluated by the high-
fidelity TFEM. This considerably trims the computational cost com-
pared to the high-fidelity simulator-only experimental design, and
the nominal stability boundary can be attained cost-effectively.
To tackle the uncertainty, we also incorporate the Gaussian
process (GP) to model the heterogeneous variance of stability
index across the design space and predict the variance at unexplored
design points. This avoids the crude Monte Carlo (MC) sampling at
each design point to derive the variance and further ameliorates the
computational overhead. Subsequently, a risk measure, conditional
value-at-risk (CVaR), is imposed on each candidate design point to
construct the robust stability boundary. Next, design points within
the robust stable region will be queried to maximize MRR.
The remainder of this article is organized as follows: related

works on stability modeling in machining processes are presented
in Sec. 2; the problem description, including the DDE model and
TFEM, is illustrated in Sec. 3; the methodology, including sequen-
tial design, SK-active learning, Gaussian process, and CVaR are
explained in Sec. 4; numerical results are be demonstrated in
Sec. 5; and finally the last section concludes this study.

2 Related Work
Regenerative chatter is a major destructive phenomenon in

machining operations, the avoidance of which via optimal design
is indispensable for quality assurance and scaleup manufacturing.
Numerical analytical approaches [10–12] have long been sought
after to predict the regenerative chatter, including the finite
element method (FEM) and Nyquist plots. In FEM, the governing
equations of system dynamics are discretized into multiple elements
to predict the behavior of cutting tools or other components in the
design stage [13,14]. Nyquist plots are commonly used in the fre-
quency response of the dynamical system, and the stability bound-
ary is derived by repeatedly adjusting the cutting conditions (i.e.,
depth of cut or spindle speed) in the feasible range [15]. The numer-
ical analytical approaches can also be classified into time and fre-
quency domain methods. Landers and Ulsoy [16] adopted time
domain simulation (TDS) with a nonlinear force model to track
the evolution of the cutting tool dynamics in a face-turning
process. Whereas the TDS is a straightforward simulation approach
in chatter analysis, it entails tremendous computation effort, partic-
ularly considering a large design space. Greis et al. [17] applied the
frequency domain stability analysis to identify the SLD by integrat-
ing physical experimental study and numerical analysis. In the fre-
quency domain stability analysis reported in Ref. [18], Fourier
transformation was implemented to transform the time domain
force signal into the frequency domain displacement-to-force ratio
signal to determine the analytical stability limit [18].
With the recent leap forward in sensing techniques to monitor the

machining processes, data-driven methods have been extensively
investigated. For instance, Khasawneh and Munch applied topologi-
cal data analysis on vibration signals from a turning process to predict
chatter: the time series was first transformed into a point cloud, and
persistent homology was then applied to quantify the topological dif-
ference under stable and unstable cuttings [19]. Schmitz et al. [20]
extracted the statistical variance of the once-per-revolution sampled
audio signal to detect chatter based on the fact that regenerative
chatter leads to a larger variance for the audio signal due to

asynchronous motion. Axinte et al. [21] suggested that cutting
forces were more sensitive to the burr formation and chatter marks
caused by regenerative instability. Denkena et al. [22] treated the
identification of SLD as a classification problem and compared the
performance of kernel interpolation, support vector machine
(SVM), and artificial neural network to pinpoint the stability bound-
ary with training data from simulation and experimental studies. With
in situ acceleration signals, continuous learning models, such as
SVM, were developed to identify the SLD under different process
dynamics [23]. In a similar vein, Friedrich et al. [24] combined rein-
forcement learning and nearest neighbor classification to extend the
SLD obtained at a certain time frame to changing machining dynam-
ics based on in situ vibration signal. Ringgaard et al. [5] formulated a
constrained optimization problem to maximize MRR, under the
penalty of chatter and forced vibration, and capture the trade-off
between robustness and optimality for this optimization problem.
Yet, uncertainty was not explicitly included in this study.
To quantify the impact of such uncertainty on machining stability,

the probabilistic characterization of the regenerative chatter in turning
was studied using both the MC method and the advanced first-order
second moment method, and the reliability of stability was deter-
mined by comparing the actual depth of cut and the limiting values
[25]. Park and Qin [26] applied the edge theorem to predict the stabi-
lity boundary considering epistemic uncertainty of process parame-
ters for both single- and multiple-degrees-of-freedom milling
systems. Totis [27] treated the model parameters as random variables
to obtain the probabilistic instead of deterministic stability lobes. A
new criterion for system stability based on level curves and gradient
of the probabilistic lobes was then applied to identify optimal robust
stable cutting conditions. Che and Cheng applied generalized polyno-
mial chaos to quantify the uncertainty propagation from the material
properties to process stability via a TFEM solver [6]. Similarly, the
fuzzy mathematical theory was adopted to account for the fuzzy sta-
bility lobes, each of which was assigned a membership value for the
chatter status [28,29]. Löser et al. [28] investigated the robust SLD via
the frequency domain approach. The tedious MC method was only
implemented at a few key design points for stability assessment,
and the solution was only approximated for other design points.
However, how to select those critical design points and build the
approximation solutions remain elusive.
Following the principle of Bayesian optimization, active learning

has gained enormous traction in the literature on optimal engineer-
ing design. Active learning aims to select the most informative data
points for further investigation and has been adopted in semi-
supervised learning for data labeling, particularly in data imbalance
settings. To explore the design space in a cost-effective manner, the
probability of improvement [30,31], expected improvement (EI)
[32,33], lower confidence bound [34], and knowledge gradient
[35] have been attempted. For instance, the acquisition of high-
dimensional data (e.g., imaging) in advanced manufacturing pre-
vails for process quality monitoring, which demands, however,
labor-intensive data annotation. An adaptive weighted uncertainty
sampling was investigated in Ref. [36] that reduces the amount of
necessary annotations by 20–70% in the data query of additive man-
ufacturing. Che and Cheng [37] integrated active learning and rele-
vance vector machine to sequentially probe the critical design
points to locate the decision boundary in stability analysis of
power systems. Botcha et al. [38] developed a query-by-committee
active learning approach for selecting the next optimal experimental
point to increase the prediction accuracy of surface roughness in a
grinding process. More recently, deep learning (e.g., convolutional
neural network (CNN)) has been adopted in active learning to
handle wafer map pattern classification [39]. The CNN platform
has been extensively used for spatial map data, and a softmax
layer is added to represent the classification uncertainty, which is
amenable for active learning. Similarly, Bayesian deep learning
has been designed to automatically handle data and model uncer-
tainty in active learning for labeling of high-dimensional image
data [40]. Compared to those existing efforts, our research explicitly
considers the intrinsic uncertainty at each design point to identify
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the nominal decision boundary, and a reliability-based design is
further pursued using CVaR criteria.

3 Problem Description
The peculiar time delay effect in machining processes is por-

trayed in Fig. 1, in which the cutting tool continuously removes
material from a rotating workpiece. The dynamics of the cutting
tool can be represented via a DDE [7]:

z̈(t) + 2ξω2
nż(t) + ω2

nz(t) = −kb( f0 − z(t) + z(t − τ)) (1)

Here, the time delay τ= 1/Ω is the time period for one revolution
of the workpiece rotation determined by the spindle speed Ω
(rounds/min). z(t) and z(t− τ) are the cutting tool displacement at
time t and the previous revolution t− τ, respectively. The nominal
feed rate f0= 5 × 10−2 mm is kept constant in this study. The
tunable parameters, depth of cut b, and spindle speed Ω, are
deemed as the design variables. For illustration, we choose the
range of b∈ [0.0, 0.4]mm and Ω∈ [1.5 × 103, 7.5 × 103] rounds/
min in this study, which covers broad machine settings. Thanks
to this intrinsic time delay, the effective feed rate f1= f0− z(t)+
z(t− τ), consequently, b( f0− z(t)+ z(t− τ)) signifies the instanta-
neous cutting area. Thus, −kb( f0− z(t)+ z(t− τ)) represents the
effective cutting force, proportional to the instantaneous cutting
area at time t. That said, the phase difference of surface finish at
two successive revolutions could amplify the cutting force and
magnify fierce tool vibration, also called chatter, which typically
results in inferior machined surfaces and premature tool wear.
Moreover, with randomness in material and process calibration,
we impose a normal distribution on each of the uncontrollable var-
iables, including damping ratio ξ, natural frequency ωn, and force
coefficient k: ξ ∼ N(0.02, 0.0022), ωn ∼ N(600π, (2π)2)
rounds/s, and k ∼ N(2 × 1011, 52) N/m2. The distributions of
parameters were obtained from our prior investigation, and a com-
paratively small variability of the force coefficient k was reported
[2]. To achieve high productivity, a certain level of MRR is often-
times desired. Here we use the nominal MRR = π(r2− (r− b)2) ×
f0 ×Ω and r is the radius of the workpiece. Yet, increase in the
depth of cut inevitably leads to a high chance of chatter. Hence, it
is indispensable to design the machining process to circumvent
the chatter and simultaneously maximize the MRR.
The DDE of Eq. (1) does not admit a closed-form solution, and

approximate algorithms, including Chebyshev collocation and
TFEM, have been extensively adopted in literature to approximate
z(t) [41]. To make this article self-contained, we elaborate on the
TFEM solution for machining stability analysis. Concretely, the
time delay or workpiece rotation period is divided into E elements,
such that each element amounts to a time interval of TE= τ/E. Then
for the nth revolution, a polynomial representation for tool displace-
ment in the jth element is given as

z(t) =
∑4

i=1
anjiHi(ρ(t)) (2)

where ρ(t)= t− (n− 1)τ− ( j− 1)TE, and ρ(t)∈ [0, TE] represents
local time in the jth element in the nth period. Hi(ρ) are the cubic
Hermite polynomial functions [41]:

H1(ρ) = 1 − 3
ρ
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( )2

+2
ρ

TE

( )3

(3a)

H2(ρ) = TE
ρ

TE

( )
− 2

ρ

TE

( )2

+
ρ

TE

( )3
[ ]

(3b)

H3(ρ) = 3
ρ

TE

( )2

−2
ρ

TE

( )3

(3c)

H4(ρ) = TE −
ρ

TE

( )2

+
ρ

TE

( )3
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The coefficient aji characterizes the displacement z(t) and veloc-
ity ż(t) at the two end nodes of each temporal element (i.e., ρ= 0 or
ρ= TE). As depicted in Fig. 2 with E= 2 temporal elements for
demonstration, the upper cuve represents the tool displacement
z(t) and the lower curve represents the velocity ż(t) at time t. an−111
and an−112 signify the displacement z(t) and velocity ż(t) at the start-
ing node (ρ= 0) of the first element in the (n− 1)th revolution; an−113
and an−114 represent z(t) and ż(t) at the ending node (ρ= TE) of the
first temporal element in the (n− 1)th revolution. Likewise, an21
and an22 (an23 and an24) stand for z(t) and ż(t) at the starting
(ending) node for the second temporal element in the nth revolution.
As the feasible solution complies with the continuity and boundary
conditions, consistent z(t) and ż(t) at the common node between two
adjacent elements are imposed to regulate the TFEM solution,
namely, an−113 = an−121 , an−114 = an−122 , as well as an−123 = an11 and
an−124 = an12. In the computational implementation, a large E is the
requisite for accurate approximation, and we use E= 100 in this
study.
Next, we plug the TFEM solution Eq. (2) into Eq. (1) to solve the

coefficient aji, and this inevitably leads to the approximation resid-
ual. To minimize this approximation residual, all terms on both
sides of Eq. (2) are projected onto a set of test functions Ψ1(ρ)= 1
and Ψ2(ρ)= ρ/TE− 1/2, in a Galerkin projection [42]. Therefore, dis-
cretization of the cutting tool dynamics for the jth element in the nth
revolution is expressed as∫TE

0

{ ∑4

i=1
anjiḦi(ρ)Ψu(ρ)

( )
+ 2ξω2

n

∑4

i=1
anjiḢi(ρ)Ψu(ρ)

( )

+ω2
n

∑4

i=1
anjiHi(δ(t))Ψu(ρ)

( )}
dρ

+
∫TE
0
kb

{
f0 −

∑4

i=1
anjiHi(ρ)Ψu(ρ)

( )

+
∑4

i=1
an−1ji Hi(ρ)Ψu(ρ)

( )}
dρ = 0, u = 1, 2 (4)

In a compact matrix representation, we have

N11 N12 N13 N14

N21 N22 N23 N24

[ ]
anj1 anj2 anj3 anj4

[ ]T= D1 D2
[ ]T

+
P11 P12 P13 P14

P21 P22 P23 P24

[ ]
an−1j1 an−1j2 an−1j3 an−1j4

[ ]T
(5)

where Nui =
�TE
0 Ḧi(ρ) + 2ξω2

nḢi(ρ) + (ω2
n − kb)Hi(ρ)

( )
Ψu(ρ)dρ,

Du =
�TE
0 ( − kb)Ψu(ρ)dρ, Pui =

�TE
0 (−kb)Hi(ρ)Ψu(ρ)dρ The two

successive revolutions are included in this discretization representa-
tion to account for the time delay τ in Eq. (1). Moreover, according

Fig. 1 Schematic diagram of time delay effect in a machining
process
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to the aforementioned continuity and boundary conditions,

anj1 anj2
[ ]

= an( j−1)3 an( j−1)4
[ ]

(6)

an11 an12
[ ]

= [an−1E3 an−1E4 ] (7)

Consequently, we assemble the local matrix equation for the jth
element, Eq. (5) here, into a global matrix equation for all the E ele-
ments:
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where the submatrix N1 =
N11 N12

N21 N22

[ ]
, N2 =

N13 N14

N23 N24

[ ]
,

P1 =
P11 P12

P21 P22

[ ]
, P2 =

P13 P14

P23 P24

[ ]
. In a more compact represen-

tation, we have

Nan = Pan−1 + D (9)

Denote λG as the maximum absolute eigenvalue of the transition
matrix G = N−1P. According to the finite-dimensional Monodromy
operator theory [6], the stability condition of Eq. (1) is λG< 1. This
is equivalent to stability index λ=max(Re(log(λG)))/τ< 0, which is
also the criterion to gauge stability of the machining process in this
study. In the deterministic case, the stability boundary is the
contour of λ= 0 in the design space of x= [Ω, b]T. Yet, the uncontrol-
lable variables ζ= [ξ, ωn, k]

T render the quest of stability boundary a
stochastic experimental design problem. This enforces a large
number of replications of TFEM according to ζ= [ξ, ωn, k]

T at
each x= [Ω, b]T to derive the average response λ(x) = Eζ[λ(x, ζ)]
and quantify the intrinsic variance V(x) =Var(λ(x, ζ)), incurring
the onerous computational cost. As shown in Sec. 5, V(x) is hetero-
geneous in the design space. The objective of this study is to seek the
optimal machine settings (the design variables) that can achieve
MRR above a certain level and, at the same time, avert the regener-
ative chatter in a robust sense.

4 Methodology
We adopt the SK surrogate to emulate the TFEM under uncer-

tainty to capture how λ(x) varies across x, and an active learning
scheme is further developed to seek the trade-off between the high-
fidelity TFEM and low-fidelity SK. Thus, the nominal stability
boundary, or the contour of λ(x)= 0, can be sequentially estimated
by SK. We note that SK generates a predictive distribution for λ(x)
as λ̂(x) ∼ N(�λ(x), V(λ(x))), where �λ(x) is the predictive mean and
V(λ(x)) is the corresponding predictive variance. It bears mentioning
that V(x) and V(λ(x)) are different. Furthermore, the intrinsic uncer-
tainty V(x) associated with λ(x, ζ) entails a robust quantification of
the nominal stability boundary, which necessitates further quantifi-
cation ofV(x). To avoid brute force replications at each x to estimate
V(x), we fit a GP surrogate using existing TFEM simulations and
MC runs and predict V(x) for design points near the nominal stabi-
lity boundary estimated from SK-active learning. A CVaR measure
is then imposed on those design points, and a robust boundary can
be derived.
The overall flowchart for the optimal design of machining pro-

cesses which seeks to simultaneously maximize the MRR and
eschew the adverse regenerative chatter in a robust sense is depicted
in Fig. 3. In this iterative process, design points from the initial slice
of batch sampling and their MC replications at uncontrollable var-
iables are evaluated via the TFEM, which constitutes the initial
training set for SK. This statistical learning model is then adopted
to predict the mean response of the stability index λ(x) at design
points from the next slice. To ameliorate the prohibitive computa-
tional cost associated with TFEM and MC, we leverage the EI cri-
terion in active learning to pick out the most informative design
points in this new slice, and only those selected informative
design points will be further evaluated by MC-TFEM. The evalua-
tion results will be annexed into the training set. Therefrom, the SK

Fig. 2 Illustration of cutting tool displacement and velocity with two temporal elements
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model along with the estimated stability boundary is updated. This
iteration continues until the estimated nominal stability boundary
converges in the average sense. To ensure a robust stability bound-
ary, we adopt risk measurement CVaR on design points close to the
nominal stability boundary, which entails the valuation of the
average response λ(x) and variance V(x) of the stability index
λ(x, ζ). GP is utilized to estimate the variance V(x) for design
points near the stability boundary. Therefrom, a grid search is con-
ducted in the robust stability region to seek the design that maxi-
mizes the MRR. We note that this active learning approach,
which reconciles the high-fidelity stochastic physical simulation
and low-fidelity surrogate, only incurs a fraction of the computa-
tional cost for the stochastic simulation.

4.1 Fully-Sequential Space-Filling Design. An efficient
sequential space-filling sampling algorithm that effectively explores
the design space at each iteration is the premise for active learning.
Here, we employ a backward fully-sequential space-filling
(FSSF-b) design introduced by Shang and Apley [43], which out-
strips Sobol sequence and more complex batch-sequential
methods, such as the slice Latin hypercube design [44] and
nested Latin hypercube design [45] in terms of both minimum pair-
wise distance and maximum hole size. It starts from a candidate set
of the Sobol sequence CN= {x1, x2, …, xN} with N design points,
which is a quasi-random fully-sequential sequence to uniformly
cover a rectangular design region, albeit with poor space-filling
properties. Then one design point is removed from CN at each
stage, and we denote the sequence of indices for the removed
points as {iN, iN−1, …, i1}. iN is the index for the first removed
point and i1 is for the last removed one. At each stage m=N− 1,
N− 2, …, 0, we have the design points Sm = {xi1 , . . . , xim} with
index set Im= {i1, …, im}. Thus, a sequence of nested design
points with size from 1 to Nc are formed as
S1 ⊂ S2 ⊂ . . . ⊂ SNc ⊂ CN . At the core of FSSF-b, given Im+1 and
Sm+1 from stage m+ 1, we seek to find the index im+1∈ Im+1 for
the next point xim+1 ∈ Sm+1 to remove to form Sm = Sm+1 \ xim+1 for
each stage m. The criterion to find the index im+1 is the maximum
of the minimal pairwise distance among the design Sm+1, i.e.,

im+1 = arg max
i∈Im+1

dmin(Sm+1 \ xi) (10a)

dmin(Sm) = min
j,k ∈ Im
j ≠ k

d(xj, xk) (10b)

where d(xj, xk)= xj− xk is the Euclidean distance between point xj
and xk. The removed points are recorded reversely to explicate
the sequential addition of design points. Generally, a large size N
for the Sobol sequence is required for achieving a number Nc of
space-filling design points, and the relationship is empirically

expressed as N= 1000dm+ 2Nc according to [43], where dm is the
dimensionality of the design points. Denote the Nc space-filling
design points as B = {xi1 , . . . , xiNc }, then the sequential batch sam-
pling is given by design points on each of the n slices as
B1 = {xi1 , . . . , xiφ}, B2 = {xiφ+1 , . . . , xi2×φ},
…,Bk = {xi(k−1)×φ+1 , . . . , xik×φ}, k= 1, …, n. Here, φ=Nc/n is the
number of design points in each slice, and n is the total number
of slices. For demonstration purposes, we showcase the procedure
of sequential batch sampling in Fig. 4, with φ= 20.

4.2 Stochastic Kriging. SK is deemed as an extension of GP
or kriging with a heterogeneous error term, which implies the intrin-
sic uncertainty at each design point. Thus, it inherits the extrinsic
uncertainty embedded in the response surface as in GP for experi-
mental design and also preserves the intrinsic uncertainty of sto-
chastic simulations [46–48]. Quantification of such intrinsic
uncertainty necessitates a number of replications at each design
point x= [Ω, b]T. Therefore, for xi= [Ωi, bi]

T the simulation
output at the jth replication can be estimated as

λj(xi) = f T (xi)β +M(xi) + εj(xi) (11)

Here, λj(xi)= λ(xi, ζj) denotes the stability index from TFEM in
the jth replication. f is a predefined basis function that captures
the overall trend (e.g., f (x)= [1, x, x2, …]T), and β represents the
basis coefficients. M is a zero-mean Gaussian random field and
encapsulates the extrinsic uncertainty, characterized by a covariance

function Cov(x, x
′
; L) = σ2f exp − 1

2 (x − x
′
)L−1(x − x

′
)
T

( )
, where σ2f

is the signal variance and L is the diagonal length-scale matrix.
ɛj(xi) ∼ℕ(0, V(xi)). V(xi) is the intrinsic variance, and it is indepen-
dent of the extrinsic uncertainty induced by M. With Ns design
points X= [x1, …, xNs]

T and ni replications at xi, i= 1, 2, …, Ns,
the response, namely, the average stability index λ(x) and the intrin-
sic variance V(x), are acquired from TFEM and MC runs:

λ(xi) =
1
ni

∑ni

j=1
λj(xi) (12a)

V(xi) =
1

ni − 1

∑ni

j=1
(λj(xi) − λ(xi))

2 (12b)

Therefrom, the predictive λ̂(x0) at a testing point x0 is expressed
in terms of its first two moments:

�λ(x0) = f T (x0)β + ΣT
M(x0, X)[ΣM + Σε]

−1(λ − Fβ) (13)

V(λ(x0)) = ΣM(x0, x0) − ΣT
M(x0, X)[ΣM + Σε]

−1ΣM(x0, X) (14)

Fig. 3 Flowchart of reliable estimation of optimal design
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where ΣM ∈ RNs×Ns is the extrinsic covariance matrix, with
entity Σ(i,j)

M = cov(M(xi), M(xj)), and ΣM(x0, X) =
[cov(M(x0), M(x1)), . . . , cov(M(x0), M(xNs ))]

T . Σɛ= diag{V(xi)/
ni} is the intrinsic uncertainty matrix and F = [ f (x1), . . . , f (xNs )]

T .
The hyperparameters θ = [β, σ2f , L] can be trained by the
maximum log likelihood [7,49]. It is noteworthy that in SK, we esti-
mate the mean of the stability index λ̂(x0), rather than the stability
index itself λj(xi). Whereas the variance of λj(xi) is irreducible as
shown in Eq. (11), entries in the intrinsic variance matrix tend to
vanish with a large number of replications.

4.3 Active Learning. Given the initial training data X =
[x1, . . . , xNs ]

T from Latin hypercube design (LHD) and their
response λ(X ) and V(X ), we obtain the predictive distribution of
λ̂(x) according to Eqs. (13) and (14) from SK. The nominal stability
boundary is the contour of λ(x)= 0. Intuitively, design points far
away from this nominal boundary barely contribute to refining
the estimation. Therefore, active learning is promising to single
out the most informative design points that will be further evaluated
by the simulation oracle or the TFEM simulator with MC runs in
this study. We adopt the EI criterion on estimation for sampling
points. Specifically, new sampling points in each FSSF-b slice are
fed into SK to estimate their response �λ(x) and the uncertainty
V(λ(x)), and then only the most informative ones according to the
EI criterion will be further evaluated by the TFEM and MC runs
to obtain λ(x) and V(x). Those selected points along with their
responses will be annexed into the training set to update the SK
model and the nominal boundary. The EI criterion [47,50,51]
involves a utility function at a new sampling point x0:

I(x0|X) =max(0, γmin − γe) (15)

where γmin=min(|λ0− λ|), γe = |λ0 − λ̂(x0) |, and λ0= 0 is the target
value. λ = [λ(x1), . . . , λ(xNs )]

T signifies the set of λ(x) computed
from TFEM. λ̂(x0) is the estimated stability index for input x0
from SK. Considering the uncertainty associated with SK predic-
tion, the EI is defined as:

E[I(x0|X)] = σ ϕ(γ) + ((γmin − �λ(x0))Φ(γ) (16)

where γ = γmin − |λ0 − �λ(x0)|/σ, σ =                                                   
ΣM(x0, x0) − ΣT

M(x0, X)[ΣM + Σε]−1ΣM(x0, X)
√

is the standard

deviation of the estimated stability index λ̂(x0) at design point x0.
ϕ(γ) and Φ(γ) are the probability density function and cumulative
distribution function for the standard normal distribution, respec-
tively. Intuitively, the EI tends to select x0 with mean response
�λ(x0) close to the target λ0 or with large variance. Fifteen points
with the highest EI scores are selected from each slice Bk in this
study, and they will be annexed into the existing training set to
update the design points and intrinsic variance. This iterative
process is halted when the estimated nominal stability boundary
converges. Here, we evaluate the convergence of the hyperpara-
meters θ = [β, σ2f , L] of SK. If the change of θ is within 1%, then
both the SK model and the fitted nominal boundary converge. For
convenience, we denote the set of all design points selected for
TFEM and MC as XG.

4.4 Gaussian Process. Yet, owing to the intrinsic uncertainty,
the machining process may still lose stability for design points
below the nominal boundary from the sequential SK algorithm.
Thereby, it is necessary to assess the intrinsic uncertainty V(x) for
design points in the vicinity of the nominal boundary to seek a
more reliable boundary, which can be attained from TFEM and
MC runs in the same way as we assemble the training set for SK.
To avoid this laborious process, we draw on GP to predict the intrin-
sic variance for un-investigated design points in this vicinity, based
upon the existing TFEM simulation and MC runs.
GP is a widely used surrogate model that conventionally accom-

modates prior knowledge in the form of covariance functions
[52,53]. Here, we represent the intrinsic variance in a GP framework
as

V(x) = f TG (x)βG +MG(x) (17)

Again, V(x) is the variance of λ(x, ζ) at design point x= [Ω, b]T
associated with uncontrollable variables ζ= [ξ, ωn, k]T. fG, βG,
and MG are similar to those terms defined in SK. Thus, given the
training set XG = [x1, . . . , xNG ]

T and VG = [V(x1), . . . , V(xNG )]
T ,

the predictive distribution of the response at a test point x0 is

Fig. 4 Illustration of sequential addition of space-filling design
points via FSSF-b: 20 sampling points are selected in each
slice, indicated by the different shapes: (a) the square shapes
are the selected sampling points in the first slice, (b) dot
shapes represent the selected sampling points in the second
slice and separate with sampling points of the first slice, and
(c) the triangle shapes represent the selected sampling points
in third slice and separate with sampling points of previous
two slices
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given in terms of the first two moments

�V(x0) = f TG (x0)βG + ΣT
MG

(x0, XG)Σ−1
MG

(VG − FGβG) (18)

MSE(V(x0)) = ΣMG (x0, x0) − ΣT
MG

(x0, XG)Σ−1
MG

ΣMG (x0, XG) (19)

Here, ΣMG ∈ RNG×NG is the extrinsic covariance matrix with
entity Σ(i,j)

MG
=cov(MG(xi), MG(xj)), and ΣMG (x0, XG)= [cov(MG(x0),, ...

MG(x1)), . . .. cov(MG(x0), MG(xNG ))]
T . FG = [ fG(x1), . . . , fG(xNG )]

T .
We use the first moment �V(x0) to characterize the variance of stabi-
lity index λ(x0, ζ), at a design point x0.

4.5 Conditional Value-at-Risk. CVaR is widely used in
uncertainty quantification [54–56], and we adopt this concept to
ensure the reliability of the estimated SLD considering the inherent
material and calibration uncertainty. We recall that the nominal sta-
bility regime is captured by the contour of λ(x)= 0. With the uncon-
trollable variables ζ= [ξ, ωn, k]

T, λ(x, ζ)∼ℕ(λ(x), V(x)), where
λ(x) = Eζ[λ(x, ζ)] and the intrinsic variance V(x)=Var(λ(x, ζ)).
We define the probability of instability as pc=P[λ(x, ζ)≥ 0] at
design point x= [Ω, b]T during the machining process. Given a
target reliability or confidence level α, the probability of instability
pc≤ 1− α is the shaded area under the distribution density curve of
λ(x, ζ) in Fig. 5. In this illustrative example, we set α = 99% and x =
[4.53 × 103, 2.22 × 10−1]T, then the predicted stability index λ(x)
from SK is �λ(x) = −13.4088, and the predicted variance of λ(x, ζ)
from GP is V(x)= 5.0876. The α-quantile Qα(λ(x, ζ)) of λ(x, ζ) at
x is given as

Qα(λ(x, ζ)) = F−1
ζ (α) (20)

where Fζ(λ(x, ζ)) is the cumulative distribution function for λ(x, ζ).
The CVaR denoted as �Qα(λ(x, ζ)) is

�Qα(λ(x, ζ)) = Qα(λ(x, ζ)) +
1

1 − α
Eζ[[λ(x, ζ) − Qα(λ(x, ζ))]+] (21)

where [λ(x, ζ)−Qα(λ(x, ζ))]+=max(0, λ(x, ζ)−Qα(λ(x, ζ))).
Following this, the CVaR can be derived at each design point x=
[Ω, b]T, and the reliable stability regime of the machining process
is R = {x| Qα(λ(x, ζ)) < 0}.

5 Numerical Result
We first conduct a full factorial design of 100 levels of spindle

speed Ω∈ [1.5 × 103, 7.5 × 103] round/min and depth of cut b∈
[0.0, 0.4]mm. At each of the 100 × 100 design points of x=
[Ω, b]T, we enlist 500 crude MC runs of the TFEM for the uncon-
trollable variables ζ= [ξ, ωn, k]

T to gauge the intrinsic uncertainty
V(x). As depicted in Fig. 6, the uncontrollable variables induce het-
erogeneous variance V(x) of the response λ(x, ζ) across the design
space. This further justifies the SK to accommodate the variance
heterogeneity.
The true nominal stability boundary λ(x)= 0 attained from the

MC runs at those 10,000 design points is showcased as the solid
curves in Fig. 7, which, however, is prohibitively expensive.
Next, the SK-active learning framework is called upon to ameliorate
the computational expense. We start the initial slice with Ns= 100
space-filling points from the LHD, evaluate those design points
with the TFEM and 500 MC runs to derive λ(x) and V(x), and
train the SK and GP. This leads to a rough estimate of the
nominal stability boundary. For the sequential batch sampling, a
set B of Nc= 10,000 space-filling design points across n= 10
slices are included, and their responses are estimated from SK.
Hence, the active learning algorithm selects the top 15 informative
design points among Nc/n= 1,000 space-filling design points in
each slice Bk, k= 1, …, 10 via the EI criterion. Those informative
points are further fed into the TFEM and MC runs and then
annexed into the training dataset to train SK and GP. Therefrom,

Fig. 5 Illustration of CVaR �Qα(λ(x, ζ)) at x= [4.53× 103, 2.22× 10−1]

Fig. 6 Heterogeneous variance of λ(x, ζ) in the design space
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the SK and estimated boundary are updated. We halt this iterative
process after n= 10 slices since the estimated boundary converges.
The sequential estimate of the nominal stability boundary via

SK-active learning at different slice numbers is shown in Fig. 7.
The dots above the dashed line symbolize the informative design
points in the unstable region, whereas the ones below the dashed
line represent the informative design points in the stable region.
The dashed curve is the predictive stability boundary in each
slice, which approaches the true boundary (the solid curve) with
the addition of new slices. To discern the subtle difference in the
boundary estimation at the 6th and 10th slices, we further zoom
into Figs. 7(c) and 7(d ) and manifest the local contour in Figs.
7(e) and 7( f ), respectively. Therefore, with only 100+ 15 × 10=
250 design points, the estimated stability contour derived from

this novel active learning framework is congruous with the
nominal contour obtained from the crude MC with 10,000 design
points.
As aforementioned, the SK-active learning framework only

derives the nominal contour λ(x)= 0. Design points below this
nominal boundary could still lead to unstable dynamics owing to
the intrinsic uncertainty. In an attempt to certify the stochastic
optimal design, it is imperative to appraise the risk and quantify
the variance V(x) at design points on the underside in the vicinity
of the estimated stability boundary. To shun the computation of
V(x) via the crude MC, we apply GP, trained on the same training
dataset in SK-active learning, to predict V(x) for design points in
this critical proximity. To demonstrate the accuracy of variance pre-
diction, 300 design points are randomly selected from the underside

Fig. 7 Comparison of the true nominal stability boundary (the solid curve) and that from the SK-Active learning at the (a) 1st,
(b) 3rd, (c) 6th, (d ) 10th slice of the FSSF-b design, (e) and ( f ) are the insets for (c) and (d ), respectively. The dots above the
dashed line are the selected unstable informative points and the dots below the dashed line are the stable ones in each slice.
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vicinity, and the comparison of predictive V(x) from GP and the
valuation from the onerous TFEM and MC runs is illustrated in
Fig. 8. A high predictive accuracy registered here suggests that
the predictive variance can be adopted for the CVaR formulation.
Consequently, the CVaR is utilized to acquire the reliable boundary
under the 99% reliability constraint, shown as the blue curve in
Fig. 9. That said, we can safely select the design points below
this reliable stability boundary to ensure the avoidance of chatter
with a probability of 99%. The dashed line here is the stability
boundary estimated by the SK-active learning the same as those
in Fig. 7.
To verify the robust stability boundary, we randomly select three

points in the design space and evaluate the response according to
the tedious TFEM and 500 MC runs of the uncontrollable variables.
We also indicate the probability of instability P[λ(x, ζ)≥ 0] at each
verifying point. As depicted in Fig. 9, point A (the square) is just
above the nominal stability boundary registers P[λ(x, ζ)≥ 0]=
0.72, point B (the triangle) residing between the nominal and

robust stability boundary showcases P[λ(x, ζ)≥ 0]= 0.36, and
point C (the star) below the robust stability boundary notches
P[λ(x, ζ)≥ 0]= 0.00. This underscores the necessity to include
intrinsic uncertainty to identify the robust stability boundary. More-
over, we test the running time for crude MC and our novel active
learning framework on a computer with a processor of i7-8700
CPU, 3.7 GHz, and six cores. It takes 365.87 min for the crude
MC to estimate the stability boundary, whereas it only costs
12.71 min in our approach. Thus, our novel approach slashes
over 95% of the computational overhead required by the crude MC.
Next, we evaluate MRR at each design point within the robust

stability region and identify the maximal MRR. As illustrated in
Fig. 9, at point D with Ω= 5984.85 rounds/min and b= 0.35mm
(the diamond), the maximal MRR of 3.26 × 104mm3/min is
achieved. Further, a baseline MRR is often needed in engineering
practice. For demonstration, we set the baseline for MRR as
2.50 × 104mm3/min, and then seek the design that achieves an
MRR above this baseline, showcased as the shaded area in Fig. 9.
This gives the operators leeway to choose from a set of machine
settings that avoid the adverse chatter and at the same time achieves
an MRR above this baseline.

6 Discussion and Conclusions
In the wake of the ongoing COVID-19 pandemic, the chip short-

fall is exacting huge economic tolls on a variety of industries. This
underscores the scaleup manufacturing of chips, which necessitates
optimal design for quality assurance. In this present work, we inves-
tigate the robust optimal design of machining processes, one key
operation in chip fabrication, to maximize the MRR and eschew
the regenerative chatter, considering the inherent uncertainty.
While computer simulations have been widely used to locate the
stability boundary in machining, they generally incur a huge com-
putational cost, not to mention the replications to account for the
uncertainty. We adopt an active learning framework that integrates
the stochastic surrogate SK with the high-fidelity yet tedious TFEM
and crude MC runs to predict the stability index at querying design
points. The EI criterion is called upon to sequentially identify the
critical design points that are informative to locate the stability
boundary, and only those critical design points are evaluated via
the TFEM. Following this, a GP surrogate is utilized to predict
the variance of the stability index at design points below the
nominal stability boundary, and CVaR is used to ensure a robust
solution. A maximal MRR of 3.26 × 104mm3/min is achieved,
and a set of reliable optimal designs that attain a baseline MRR
of 2.50 × 104mm3/min are also derived in the illustrative
example. We emphasize that the stability boundary is sequentially
identified in a cost-effective manner, taking into account the uncon-
trollable variables ζ. Whereas numerous studies have been reported
in decision boundary approximation in a stochastic setting, includ-
ing efficient global reliability analysis [57,58] and SVM-based limit
state analysis [59–62], very few works consider intrinsic uncer-
tainty, particularly in the study of machine stability. The stability
boundary is oftentimes bumpy and difficult to fit compared with
other reliability boundaries in those existing works. We hope our
novel approach can be used in a variety of machining operations
(e.g., nano/micromachining) and stimulate the interest in stochastic
optimal design in the broad community. We highlight the following
implications:

(1) The intrinsic variance attributed to the uncontrollable vari-
ables ζ provokes the robust design problem. TFEM and
MC run at different realizations of ζ are used to establish
the ground truth. To ameliorate the computational overhead,
SK, as opposed to the kriging or Gaussian process, is utilized
to emulate the high-fidelity TFEM and MC runs. It is noted
that in SK, we are modeling the average stability index

λ(xi) = 1/ni
∑ni
j=1

λj(xi) rather than the stability index λj(xi).

Fig. 8 Prediction and true variance of λ(x, ζ) for design points in
the vicinity of the estimated nominal stability boundary

Fig. 9 The dashed line: the nominal stability boundary esti-
mated from the SK active learning; the solid line: the robust sta-
bility boundary derived from CVaR under 99% reliability. Three
verifying design points A, B, and C are randomly selected and
tested with the TFEM and 500 MC runs, whose probability of
instability is indicated in the figure. At design point D (the
diamond), the maximal MRR of 3.26× 104 mm3/min is achieved.
For design points inside the shaded region, a minimal MRR of
2.50× 104 mm3/min can be obtained.
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(2) Identification of machining stability boundary is essentially a
binary classification problem. In the deterministic case, both
GP [7,63–65] and SVM have been adopted to approximate
the decision boundary. As reported in our earlier work,
SVM fails to capture the bumpy stability boundary in a
sequential framework [7]. GP has mostly been used for deter-
ministic problems. Very few, if any, existing works consider
the active learning-driven sequential design under uncer-
tainty. Hence, we compare the result from our innovative
approach to the ground truth given by the TFEM and MC
runs.

(3) While we corroborate the proposed approach on a one-
dimensional example, it can be easily extended to other high-
dimensional machining operations (e.g., five-axis milling).
Such high-dimensional processes typically incur enormous
computational costs to derive the stability boundary via the
high-fidelity simulation, and it is also cumbersome to
explore the design space through active learning. Therefore,
active learning is imperative for the optimal design for such
complex processes.
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