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Abstract—This paper investigates multi-channel machine learning (ML) techniques in the presence of receiver nonlinearities and
noise, and compares the results with the single-channel receiver architecture. It is known that the multi-channel architecture relaxes the
sampling speed requirement of analog to digital conversion and provides significant robustness to clock jitter and front-end noise due
to the bandwidth-splitting property inherent in these receivers. However, when a high-voltage swing signal is used in a wireline
communication link, the received signal suffers from third-order harmonic distortions and inter-modulation products caused by the
nonlinearity profile of the analog front-end (AFE). To this end, this paper proposes the channel decision passing (CDP) algorithm in
combination with nonlinear feedback cancellation as a low-complexity candidate for nonlinearity mitigation and compares the
performance of this solution with other well-known ML algorithms. Simulation results show significant improvement in a multi-channel
receiver architecture equipped with nonlinear feedback cancellation and CDP in comparison with its single-channel counterpart under

practical nonlinearity profiles and noise conditions.

Index Terms—Multi-channel receiver, Nonlinearities, Machine learning, Supervised learning, Unsupervised learning, Reinforcement

learning.

1 INTRODUCTION

HE exponentially growing demand for high-rate data commu-
Tnication drives wireless and wireline transceivers to operate
with a wider bandwidth. Multi-channel receiver architectures are
becoming increasingly popular among receiver designs consid-
ering the improvement on spectral efficiency by dividing the
available channel bandwidth into a number of subchannels with
fractional bandwidth, such that the high data rate can be achieved
by configuring multiple data modulation formats with subcarriers
in a multi-tone or multi-band transmission [1]. Moreover, the sam-
pling speed requirement of analog-to-digital converters (ADCs)
can be relaxed by the number of parallel channels compared to the
traditional ADC-based baseband receiver. Therefore, the impact
of inter-symbol interference (ISI) can be greatly reduced due to
the extension of the symbol time, which in turn simplifies the
equalization design [2].

While scaling of CMOS technology improves the speed and
power consumption of integrated circuits, it leads to the degrada-
tion of the linearity due to the reduced power supplies [3]. The
harmonic distortions and the inter-modulation products caused by
the nonlinearity characteristic of the analog front end (AFE) lead
to the degradation of the link bit-error-rate (BER) performance. As
higher-order modulation formats are pursued to increase commu-
nication rate, nonlinearities will eventually become the bottleneck
of the transmission capacity [4].

Considering the challenges of improving the linearity by ana-
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log means including cost, area footprint, and power consumption
[5], [6], digital nonlinearity mitigation techniques offer great flexi-
bility and adaptability. Previous digital post-processing algorithms
can be divided into two basic categories. Those that aim to invert
the nonlinearity effects and those that try to cancel them out. In [7],
[8], [9], the adaptive feedforward nonlinearity cancellation struc-
ture is proposed. This technique uses a linear reference receiver
with least mean square (LMS) filters to adaptively reproduce the
nonlinearity distortions, which are then subtracted from the main
receiver. However, the requirement of a more linear reference path
than the main path limits its application to multi-channel receivers,
especially when considering the increasing number of channels.
A post-compensation algorithm inverting the nonlinearity effect
is presented in [10], [11], [12]. This approach firstly identifies
the nonlinear system using either Hammerstein’s model [13],
[14], [15] or Volterra series [16], [17], and then performs the
p-th inverse calculation [18], [19] or Richardson iteration [20].
However, this method uses part of the nonlinearity distortion from
the high-frequency bandpass filters, thus inherently giving only
approximate distortion estimates, while the in-band distortions still
degrade the quality of the received signal.

Machine Learning (ML) and Deep Learning (DL) have been
applied in various areas as powerful tools for pattern recogni-
tion and modeling of complex systems. Recently, nonlinearity
mitigation techniques based on ML&DL algorithms have been
widely used in single-channel communication systems for channel
estimation, and symbol detection [21], [22], [23], [24], [25],
[26]. In general, machine learning algorithms fall into three
broad categories. Supervised learning, unsupervised learning, and
reinforcement learning. In supervised learning, the machine is
provided with training data. The supervised learning algorithms
analyze the training data and produce correct output from the
associated labels. Supervised learning algorithms applied to non-
linearity mitigation include k-nearest neighbors (KNN) [27], [28],
[29] and support vector machine (SVM) [30], [31]. In contrast
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Fig. 1: Chart of ML-based multi-channel nonlinearity mitigation algorithms arranged by trade-off ranking of performance versus

complexity.

with supervised learning, unsupervised learning [32] algorithms
act on unsorted data according to its similarities, patterns, and
differences of it without the involvement of training data. Typical
unsupervised learning algorithms include k-mean clustering and
hierarchical clustering. Although overlooked for a long time,
reinforcement learning (RL) is starting to gain attention after
multiple successful applications such as Google’s DeepMind [33].
In reinforcement learning, the machine receives feedback by inter-
acting with the environment and learns to choose actions that max-
imize the reward. Traditional reinforcement learning algorithms
include Monte-Carlo learning [34], and Temporal-Difference (TD)
learning [35]. Deep Learning is a specific subset of Machine
Learning, which works on the principle of back-propagation to
find the gradient loss across the layers of a neural network.
Based on the implementation style of the neural network, DL can
be supervised learning, unsupervised learning, or reinforcement
learning. Multiple neural network structures have been applied for
alleviating the nonlinearity effect of the receiver including multi-
layer perceptron (MLP) [36], convolutional neural network (CNN)
[37] and recurrent neural network (RNN) [38], [39].

This paper investigates the applicability of machine learning
algorithms to the nonlinearity mitigation of ADC-based multi-
channel receivers, which has not been widely investigated in the
research field. A two-step consideration for possible combina-
tions of techniques is shown in Fig. 1. Firstly, channel-decision
processing is taken into account, which can be divided into
joint-channel decisions, grouped-channel decision passing, and
channel-by-channel decision passing. For joint-channel decisions,
the decisions of the transmitted symbols from all channels are
made simultaneously. For grouped-channel passing, the channels
are split into several groups. The decision for a group of channels
will be made, and the information will be passed on to the
following groups to help them make their decisions. Similarly,
for channel-by-channel decision passing, the decision of the trans-
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mitted symbol will be made channel by channel and passed to the
following channel. It is self-evident that from channel-by-channel
decision passing to joint-channel decisions, the performance will
increase since joint-channel decisions aim for an exhaustive search
of optimal solutions at the expense of increased complexity.
Besides, note that the nonlinearity mitigation process implemented
in a decision-passing fashion can be properly modeled by the
Markov Decision Process (MDP) [40], [41]. Thus, the nonlinearity
mitigation algorithms developed with a decision-passing technique
need to comply with the RL paradigm.

For each channel-decision operation method, the nonlinearity
mitigation can be implemented with different ML-based strategies.
KNN and K-mean clustering algorithms are considered candidates
for their simplicity as they do not require knowledge of the
nonlinearity model. As an unsupervised learning algorithm, K-
mean clustering can directly operate on the received data without
the guidance of the training sequence for classification. However,
the K-mean algorithm BER performance suffers when the received
samples interfuse with other constellation points caused by nonlin-
earities. Such performance degradation can be improved by using
a training sequence like in the KNN algorithm. Both KNN and
K-mean clustering do not have any involvement of nonlinearity
cancellation, which can bring performance limitations. To stress
this, with a known nonlinearity model, the nonlinearities of the
received samples can be effectively removed through a feedback
cancellation scheme to generate soft decisions.

Based on the principle of this design flow, we extend on
an algorithm previously proposed by the authors [4] named the
channel speculation passing (CSP) algorithm. The CSP algorithm
is modified to make the decisions not only using speculation based
on the smallest Euclidian distance but instead using ML-based
classification. We call this modified algorithm channel decision
passing (CDP). The CDP algorithm iteratively makes decisions
on the output symbols of each channel, which are then used to
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Fig. 2: Block diagram of the multi-channel receiver.

cancel out the nonlinearities of the following channels until the
outputs from all channels converge to a stable state. A detailed
comparison regarding BER performance and time complexity is
made between KNN, K-mean clustering, and CDP algorithms.
Fig. 1 organizes in a chart the possible multi-channel nonlinearity
mitigation methods and their expected trade-off ranking in terms
of performance versus complexity. A combination of KNN/K-
mean clustering with TD(A) learning is considered to be able to
mitigate nonlinearities without knowing the nonlinearity model,
where A is a parameter controlling if the channel-by-channel
decision passing (A = 1) or grouped-channel decision passing
(A €(0,1)) is used.

The remainder of this paper is organized as follows. The
system architecture of the multi-channel receiver is presented in
section II, and the signal-to-noise and distortion ratio (SNDR)
improvement of the multi-channel receiver over baseband single-
channel receiver is summarized. The nonlinearity mitigation meth-
ods based on multiple machine learning algorithms are introduced
in section III, comparisons between machine learning algorithms
from the simulation are analyzed in section IV, and finally, section
V concludes the paper.

2 MULTI-CHANNEL RECEIVER ARCHITECTURE AD-
VANTAGES

The architecture of the N-channel ADC-based multi-channel re-
ceiver (MCRX) is shown in Fig. 2, which is designed to detect
a multi-band signal. The baseband channel is a single path
configured to detect a pulse amplitude modulation (PAM) signal,
whereas the remaining subchannels i = 2,3,...,N have both 1&Q
paths configured to detect a quadrature amplitude modulation
(QAM) signal. The multi-band signal S(¢) to the input of the multi-
channel receiver can be expressed as:

N-1
s(t) =ap(t) + Z Re{c;(t)e 2"} (1)
i=1
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where ag(7) is the PAM signal, and ¢;(r) are QAM signals that are
up-converted and transmitted through the higher frequency sub-
bands with center frequency @; = 27 f;. The QAM constellation
points can be expressed as c¢;(t) = a;(t) + jbi(t), where a;(r)
and b;(t) are PAM signals corresponding to the in-phase and
quadrature component of the QAM signal. This multi-band signal
passes through the analog front-end (AFE), mixer, integrator, and
finally the ADC before becoming the input to the ML unit, which
is designed to mitigate the nonlinearity distortion introduced by
the AFE.

The proposed architecture has multiple advantages over the
traditional baseband single-channel receiver (SCRX), specifically
considering the effects of noise, clock jitter [42], phase noise, and
nonlinearity. Fig. 3 shows the main noise and distortion sources
in the signal and clock paths of the multi-channel receiver. The
SNDR improvement provided by the multi-channel architecture
will be discussed in detail as followed.

2.1 Analog Front-end Noise

At the input of the receiver, the noise generated by the termination
resistor and the input-referred noise of the AFE can be modeled
as a white power spectral density (PSD) "%,m =EN2, ], where E]
is the expected value. This noise is shaped by the channel-loss

compensation magnitude response, Hyc(f), and is added with the

mixer’s thermal noise with white PSD given by v2,. ... This can be
expressed as:
2 2
V%,AFE(f) = V%,in|HMC(f)| + Viixer @)

After down-conversion, the multi-band signal passes through
the integrator of each data-transmission path. As shown in Fig. 2,
the integrator is implemented by a sinc-type filter with main
lobe bandwidth equalling to the inverse of integration time Tj,
resulting in a split channel bandwidth % = Tis, where BW is
the original signal bandwidth. Assuming a double-sided power
spectral densities, the variance of the total integrated noise of the

signal at the output of the baseband channel is:

to \Gp.. . [(Ef

N

2
af (3

where f; = T% G, is the transconductance of the operational
transconductance amplifier (OTA) and Cy is the capacitance of
the sampling capacitor as shown in Fig. 2. The other subchannels
i=2,3,...,N, have a combined [1&Q output total integrated noise
variance that can be found by integrating the sinc filtered down-
converted double-sided power spectral density in the frequency

domain:
oo G . nf
GI%/ICRX,- = /700 V;ZL,AFE (f—=1) Cfr:Ts sinc (Z)

thus, 1&Q paths have the same noise variance.

From Eqns. 3 and 4, each channel of the multi-channel receiver
sees a reduced bandwidth with respect to the single-channel
receiver operating with the same overall transmission bandwidth,
then the signal-to-noise ratio (SNR) of the multi-channel receiver
will be improved compared to the single-channel receiver, which
can be expressed as:

doo__
Oicrx :lm Vﬁ,m|HSC(f)|2df )

where Hge(f) is the channel-loss compensation frequency re-
sponse of the single-channel receiver analog front-end.

2
df (4)
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Fig. 3: Noise & distortion sources in a multi-channel receiver.

If we consider the ideal scenario when the ISI channel is
lossless, with the input peak-to-peak voltage swing (V,,), the
transfer function of the single-channel receiver’s analog front-
end is required to be |Hgc| = % bringing the single-band signal
to the full-scale sampling range Vgs of the ADC. In order to
keep the same V), for both single-band signal and multi-band
signal, the voltage swing on each subband of the multi-band
signal needs to be decreased by a certain value. It is worth
mentioning, this multi-band signaling remains orthogonal at a
minimum channel separation 6F = T%, which requires the center
frequency to be a multiple of the subband bandwidth such that
W; = %(z =1,..N—1) in Eqn. 1. Based on this condition, we
verify fhrough simulation that the maximum value of the multi-
band signal at the transmit side is obtained at instant t¢ = 5(15711)
Assuming each carrier has a peak voltage amplitude A, then the
multiband signal’s peak-to-peak voltage is expressed as:

Vpp(N) =24 1+1§1 (cos<5(2”" ))+Sin<5(2ni
(6)

N—1 N-1)
Thus, the multi-channel receiver analog front-end requires
a transfer function with flat gain |Hyc(N)| = % that brings
each sub-band signal to Vgg producing noise amplification. Then,
Eqns. 3, 4 and 5, can be simplified, and the signal-to-noise ratio
of the single-channel receiver and multi-channel receiver can be

expressed as:

By
e bW e
vn7in SC (7)
P,
e e (M
Vi,in2N—1 FIMC

Here we neglect the mixer’s thermal noise, considering only
the input-referred additive white Gaussian noise (AWGN) with
bandwidth BW, and assuming %TS =1 in Eqns. 3 and 4.

By evaluating Eqns. 6 and 7, note that the multi-channel
receiver shows an SNR penalty compared to the single-channel
receiver for an ideal lossless inter-symbol-interference (ISI) chan-
nel. However, in a practical scenario where the AFEs are used
to compensate for the ISI channel loss, the input-referred noise
will exhibit a frequency-dependent amplification across bands
leading to an SNR improvement of the multi-channel receiver
with respect to the traditional baseband single-channel receiver.
To illustrate this, we run circuit simulations to evaluate a single-
channel PAM-4 receiver with 32GHz bandwidth and a 3-channel
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receiver configured to detect a PAM-4 signal in baseband, and
two QAM-16 signals in mid-band and high-band channels. These
setups achieve a 64 Gigabit per second (Gbps) transmission
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Fig. 4: (a) Multi-band signal using multi-carrier signaling and a
wireline ISI channel example (30dB loss at 16GHz), (b) Analog-
front end frequency response of single-channel RX and multi-
channel RX.
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rate [43]. The baseband PAM-4, mid-band QAM-16, and high-
band QAM-16 modulation format combination of the 3-channel
receiver can provide uniform performance across all channels
since an effective PAM-4 signal is processed by each 1&Q path
after down-conversion. As shown in Fig. 4(a) each path has a
bandwidth of 6.4GHz, the mid-band signal is centered at 6.4GHz
and the high-band signal is centered at 12.8 GHz.

For the ideal scenario, where the channel loss is not present,
the 3-channel receiver shows a 4.4dB SNR penalty from sim-
ulation which is consitent with the derivations in Eqns. 6-7.
While considering an IST channel with 30dB loss at the Nyquist
frequency of 16GHz, the AFEs are designed to partially equalize
the channel loss showed in Fig. 4(b) resulting in a 3.7dB SNR
improvement of the multi-channel receiver compared to the single-
channel receiver. A closed-form expression of this SNR improve-
ment is provided at the end of this section.

2.2 Phase Noise in the Down-conversion LOs

The impact of phase noise in the local oscillators (LOs) in a
frequency-interleaved (FI) ADC has been studied in [44]. Al-
though this work focuses on evaluating the SNDR of the ADC
as a function of the input frequency, with a special interest in the
periodicity caused by the different sub-channels of the FI-ADC,
the findings in this work are applicable to the proposed receiver.
While the multi-channel architecture used in this paper uses sinc
filters allowing the derivation of useful closed-form expressions.
Additionally, using multi-channel signaling has the advantage that
reconstruction of the multiband signal is not needed, instead, each
subband is equalized separately to later infer the bits modulated
on this subband. In terms of additional noise contributions in the
multi-channel receiver, the phase noise of the LOs is translated to
baseband and the noise contribution from the LOs is delimited by
the integrator bandwidth.

To analyze the impact of phase noise from the LOs, the
analysis will be initially carried out for an input tone at frequency
fc and later on is generalized for a multi-tone input. Thus, we have
the multiplication of the input tone and the ith channel LO with
phase noise ¢;(r) and denote the output of the mixer voltage swing
as A.

Viixer; () = Acos(2m fot)cos(2T fro,t + ¢i(t)) =

%A (cos@(fo— fuo)t — i(2)) +cosRa fu+ fro,)t + (1))

~ %Acos(27r(fc — fro)t — 9i(t))
(3)

The term at the sums of the frequencies f. + fi0, is intentionally
discarded as it will be filtered out by the sinc filter. Denoting
fe— fro; as fir;, we have that the output of the sinc-filter is:

Vs, (1) S Acos(2 it — 6,1))
L2 ©
= EA [cos(2m firt)cos(9i(t)) + sin(2m firt)sin(@i(1))]

Furthermore, for small phase variations ¢;(¢) < 1 rad, we can use
the small angle approximations to rewrite Eqn. 9.

1 1 .
Viixer, (1) & EAcos(Zﬂrf[p,t) + EA(ISi(t)sm(an]Fit) (10)

The first term in Eqn. 10 corresponds to the desired downconverted
tone with a clean LO whereas the second term is the noise
introduced by the phase noise of the LO that is induced at the
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Fig. 5: (a) Phase noise profile example, (b) Comparison between
theoretical and simulation results of LO-induced phase noise.

output of the mixer. This noise is in essence the phase noise of the
LO modulated to the IF frequency in the ith channel.

V,'(Z) = %A(])i(t)sin(anlﬁt) (11)

Since the noise at the output of the mixer will be filtered out by the
sinc filter with impulse response h(¢) and sampled at time ¢t = Tj.
At the filter’s output, we can express the noise y; as:

yi =vi(t) xh(t) =1, (12)

where * denotes convolution and the noise variance 67, is the
variance of y;. The random variable y; is assumed zero-mean and
has a PSD given by S,,(f), therefore the variance of the total
integrated noise induced by the LO phase noise is calculated as:

Sio, = Ellyil’]

o oo - 2 (13)
— [ supar=[ w&&f)'in smc<”7{) df
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where S, (f) is the PSD of the noise v;(r), which can be derived
from Eqn. 11 and expressed as:

2

a0 =500+ 5 (380 im) + 38 +5m))|

e (14)
= T¢ So.(f = fir) +So,(f + fir))
here Sy, (f) is the phase noise power spectral density used to
characterize the oscillator phase noise.

Now we can generalize our analysis for a multi-tone signal.
In this case, the PSD of the noise §,, at the output of ith channel

mixer can be expressed as:

AZN

Su(1) =1 ¥ (S0 (F = fin,) + So.(f + fir))

k=1

s)

where fir, . = fe, — fLo;» fc, denotes the frequency of the kth tone.
Considering the frequency response of the sinc filter, the noise
variance of the ith channel of the multi-channel receiver is:

A% e Gm.. . (mf\|
oo, = 16 WSV,-(f) ‘CSTY sinc (7f> df (16)

Finally, it is worth mentioning that in a practical implemen-
tation, the clock used for the LOs, and the sampling clock of the
ADC are going to be derived from the same clock source with
frequency fsource using clock dividers. Therefore, if we assume
that noiseless clock dividers are available, the jitter standard
deviation of the master clock source will be the same as that of the
LOs and also the sampling clock, namely ¢;. Therefore, we have
the following relationship [45], [46], [47]:

” 2
1m5¢f(f Jdf = (2701 fi0,)" = <2ncj%) an

1

where M; is the division constant that generates fp, from fy,urce.

Fig. 5(a) shows the phase noise profile of an oscillator.
To verify the above-mentioned phase noise analysis, a transient
simulation is run by passing a QAM-16 signal through the mid-
band channel (MBC) and high-band channel (HBC) of a 3-channel
receiver, respectively. As shown in Fig. 5(b), the simulation results
are well-aligned with the derived expressions.

2.3 Jitter-induced Noise at the Sampler

The jitter-induced noise is the major limitation of the baseband
single-channel receiver since the ADC needs to sample at the full
signal bandwidth (BW) [48]. Thus, for a single-channel receiver
sampled by the ADC with full-scale range Vrg, the jitter-induced
noise is

2
Vi

2 FS
o; = | —=2noc;BW 18
1.SCRX (2 /20 ) (18)
In comparison, the ADC on each path of the multi-channel
receiver samples the signal with an ideal reduced bandwidth of
22—“_]1. The jitter-induced noise variance in each path of the multi-

channel receiver is

2
Vs BW > (19)

2 > A oros
O MCRX = (2\5 Udey IN—1
In Eqn. 19, although equality is achieved with ideal low-pass

filters, it provides a good approximation that is used in this paper’s
derivations.
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2.4 Sampling Noise

As shown in Fig. 2, the sinc-filters in the multi-channel receiver
are realized by the resettable Gm-C filters. The double-sided
noise power spectral density produced by the transconductance
amplifier given by 2kTG,, will be shaped by the transfer function
of the sinc filter during the integration phase, and an extra %
noise coming with the capacitor Cs from the previous reset phase
will also contribute to the total sampling noise. Here, k is the
Boltzmann constant, and T is the temperature. Then the total
integrated sampling noise variance is given by:

Esinc (ﬂ—f>
CS fs

2

kKT [~
o2 = C—s+/_ 2KkTG,, df

(), 26T\ KT
Cs Cs

2.5 Nonlinearity

(20)

Compared to the traditional baseband single-channel receiver, the
multi-channel architecture also shows robustness to the nonlinear-
ity distortion. Fig. 6(a) shows a static nonlinearity profile of the
AFE captured by running a transient simulation, which is used for
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Fig. 6: (a) Nonlinearity profile, (b) SNDR vs. Vpp comparison
between single-channel RX and multi-channel RX.
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both the single-channel receiver and the multi-channel receiver.
For a given V), the amplitude of the received signal to the input
of the multi-channel receiver needs to be scaled down to limit
the maximum peak-to-peak voltage. Thus the amplitude of each
sub-channel signal of the multi-channel receiver is less than the
amplitude of the single-channel receiver. This condition leads to
that the multi-channel receiver suffering less from the nonlinearity
distortion overall compared to the single-channel receiver.

Fig. 6(b) shows the signal-to-noise and distortion ratio (SNDR)
of the single-channel receiver and the multi-channel receiver as
a function of input swing. In this simulation, we consider the
impacts of 5001V /Hz input-referred noise, which is shaped by
the AFEs’ frequency response, and the nonlinearities. With lower
input swing, where the SNDR performance is dominated by noise,
the multi-channel receiver outperforms the single-channel receiver
as discussed in section 2.1. Moreover, as the input swing increases,
the overall linearity of the signal deteriorates, and the SNDR of
the single-channel receiver drops faster compared to the multi-
channel receiver, resulting in increasing SNDR improvement of
the multi-channel receiver.

Now let’s use ()']%,LSC to represent the distortion variance of
the single channel receiver caused by the nonlinearities, and G]%,LI,
to represent the distortion variance caused by the nonlinearities
of the ith channel of the multi-channel receiver [49]. From
the simulation result shown in Fig. 6(b), we can conclude that
Oursc > G[%/L,—(i = 1,2,..N). Thus, the nonlinearity distortion
variance of the single-channel receiver is greater than that of the
multi-channel receiver. In the multi-channel receiver, the high-
frequency components of nonlinearity distortion falling beyond
the baseband bandwidth are partially filtered out by the sinc filter
response created by the windowed Gm-C filters, and the remaining
components alias back into the Nyquist band after sampling. So,
GI%,L’, indicates the in-band nonlinearity distortion variance.

2.6 Sampled-data SNDR Improvement

Now we can derive the overall sampled-data SNDR expression
considering the impact of front-end noise, the sampling noise from
the Gm-C filter, sampling clock jitter, phase noise of the LO in the
ith sub-channel (i = 1,2,...,N), the quantization noise from the
ADC and the nonlinearity distortion introduced by the AFE:

P signal

2 VES 5 sw \2, o, A2 o’ i=1
c +(— 7162 ) 46244 o
_ crx; T\ 23 IZN—I) s+ 12 0N,
SNDRycrx; = Pz % ienl ' >0
i
2 ) -
2 2 VEs . BW 2,42, 2
GMCRXi+GLOi+(2\/§2”G.7 N-T ) +05+ 07 oy,
(21)

where A is the quantization interval of the ADCs

By comparison, the single-channel receiver has an SNR with
no LO noise contribution but with full-bandwidth jitter-induced
noise given by,

Psignal
Vis . 24 kT | A2 2
Oscry T (2\5271:0']BW) T+ 13 Osc

SNDRscrx = (22)

where it has been assumed that the single channel receiver uses an
RC sampling network with 1% sampling noise.

By evaluating Eqns. 21 and 22, the sampled-data SNDR im-
provement given by the multi-channel architecture in comparison
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Fig. 7: SNDR vs. Jitter comparison between single-channel RX
and multi-channel RX with 500nV2/Hz input-referred noise and
linear AFE.

with the baseband single-channel receiver sampling at the full
bandwidth can be expressed as:

SNDRimprovemem =
1 N C: Psignal
w1 L= G > (VEs Bw \?, 52, A2 2
O'MCinJFGLo,-*(mZ”‘ﬁ 2N—1) TS+ T oy, (23)
Rvignal
62py+( EES 2168w 2+k—T+£+62
SCRX 2V2 J Cg 12 NL,SC

where C; =1 for i =1 and C; =2 for i > 2 to correctly account in
the average for the I&Q paths of the higher frequency channels.
Also, GL201 = 0 for the baseband channel of the multi-channel
receiver.

Fig. 7 shows the overall SNDR of a baseband single-channel
receiver and multi-channel receiver as the function of the master
clock RMS jitter. In this simulation, we assume the analog front-
ends are linear. Besides, it is assumed the input-referred noise
is shaped by the AFE’s frequency response shown in Fig. 4(b)
considering the AFEs are used for channel loss compensation.
Vpp is set to 1.2V for both the single-channel receiver and the
multi-channel receiver and the PSD of the input-referred noise is
set to 500nV?2 /Hz. In the absence of jitter-induced noise, the av-
erage SNDR of the 3-channel receiver offers 3.7dB improvement
over that of the single-channel baseband receiver. Compared to the
baseband channel (BBC), the MBC and HBC SNR performance
of the multi-channel receiver degrades by the phase noise of the
LOs according to Eqn. 17, where the LO frequency of the ith
channel fi0, is (i — 1) 55 (i = 2,...N). As the master clock RMS
jitter is increased, the impact of the LOs phase noise is limited by
the sinc filter, and the SNDR of each subchannel is dominated by
the jitter-induced noise at the sampler, leading to similar SNDRs
between subchannels. With the master clock jitter of 2ps, the
SNDR improvement provided by the multi-channel architecture
is 13.5dB compared with the single-channel baseband receiver.

2.7 Communications System SNDR and SNR Deriva-
tions

The SNDR derived so far is defined as the sampled signal power
divided by the sum of all the contributions of total integrated
noise and distortion variance under the assumption that these
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distortion sources are uncorrelated to each other. A related signal-
to-noise ratio commonly used for bit-error-rate (BER) calculation
in wireless/wireline communications systems is f,—i E), represents
the input signal energy per information bit, and N, is twice
the noise power spectral density. Considering the nonlinearity
distortion variance o7,, and taking N,/2 as the input referred
noise density, the SNDR at the ith channel sampler output for a
single tone per channel can be written as:
2
SNDR; = LZ < E_ — Viis/8 (24)
Py+oy, — By [0 % Huc, (f)df
where Hyc,(f) is the transfer function from the receiver input
to the ith channel sampler output that brings the input signal with
energy per bit £}, to a full-scale baseband signal with peak-to-peak
amplitude Vrg. Furthermore, the fraction % is the sampled-data
SNR and can be upper bounded as: '

bE),
Px Ty

B ( 2b ) Ep
Pn,- o %fmax T:Yfmax N()
where b is the number of bits per symbol, 7 is the symbol period,
and fiuqy 1S the maximum signal bandwidth. For most signals, we
have T;‘fmax =1
Now, we derive the communications signal-to-noise and distor-
tion ratio (SNDRcomms) which represents the SNDR that results
after the signal passes through the digital baseband nonlinearity
mitigation algorithm, which can be expressed as:

Py
P,+ 03
n T ONL,,,

(25)

SNDRcomms = (26)
where Gz%/Lm represents the residual nonlinearity variance that the
nonlinearity mitigation algorithm was not able to remove. Such
residual nonlinearity can be modeled as additive noise, allowing
to write an expression for the communications SNR as:

1 E,
SNRcomms = (*) SNDRcoyms < ﬁb 27)

2b o

Furthermore, the inequality in Eqn. 24 allows writing the aver-
age SNR improvement (i%’;f‘;cc) as a function of the corresponding
nonlinearities in each case, and assuming the same input % and
the same full-scale sampling signal power for both receivers as a
function of the receivers’ transfer functions from the input to the

samplers’ outputs:

SNRimpmvement =
SNRuc J1Z B2 Hse (f)Pdf + onpy
SNRsc b sy G [ 172 82 Hye, () f + 07

where C; =1 fori =1 and C; =2 for i > 2 as explained for Eqn. 23.

Fig. 8 shows the communication SNR comparison between
the single-channel receiver and the multi-channel receiver as a
function of Eb/No. In this simulation, we set the sampling clock
jitter to zero, and we consider both the linear and nonlinear AFEs
where the nonlinear profile is the same one as in Fig. 6(a), which
can be approximated by the 3rd order intercept point (IIP3) of
14.5dBm. The frequency response of single-channel receiver and
multi-channel receiver’s AFEs is shown in Fig. 4(b) to compensate
for 30dB loss at the 16GHz Nyquist rate. When the AFEs are
assumed to be linear, the input signal is not distorted by the non-
linearities, referring to Eqn. 28, the 3-channel receiver provides
3.7dB communications SNR improvement over the single-channel

(28)
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Fig. 8: Communications SNR vs Eb/No comparison between
single-channel RX and 3-channel multi-channel RX considering
30dB loss at 16GHz Nyquist rate and no jitter in the sampling
clock with (a) linear AFE, (b) nonlinear AFE.

receiver as shown in Fig. 8(a). While practically, when the AFEs
are assumed to be nonlinear, the communications SNR of the
receivers are limited by the nonlinearities as shown in Fig. 8(b).
The robustness to nonlinearities of the multi-channel receiver as
discussed in section 2.5 leads to further communications SNR
improvement over the single-channel receiver.

The analysis and simulation in this section disregard the im-
pact of residual ISI-channel loss that was not compensated by the
continuous-time equalizer (CTLE) added to the AFE. Although
any residual IST can be removed with digital equalization, a noise
amplification penalty is incurred that is not included in Eqn. 28.
The rest of this paper will focus on the investigation of ML-based
nonlinearity mitigation algorithms for multi-channel receivers.

3 NONLINEARITY MITIGATION METHODS
3.1

Although the lumped nonlinearities of these building blocks can
be modeled by a static profile as shown in Fig. 6(a), such a model
does not account for memory effects of earlier inputs induced on

Nonlinearity Model with Memory Effect
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current symbols. A practical model that includes memory effects
is the Hammerstein model,

K 01
yiln] :/;1 ;)ak"’si[(n_qm sil(n=g)T] (29)

where the transmitted signal after down-conversion through each
path is represented by s;[nT], Q is the memory depth, K is the order
of the nonlinearity polynomial, and oy , represents the nonlinearity
parameter. Considering the even order nonlinearities vanish when
fully-differential structures are used, Eqn. (29) can be simplified

to:
K—10-1

yiln] =Y Y a1 4si((n—q)T)

k=1 g=0

Fig. 6(a) shows the static nonlinearity profile of the system
can be closely approximated by using only the 3rd-order non-
linearities. Moreover, considering the limited input swing and the
memory effect decays as the memory order increases, we set K =3
and O =2 in Eqn. 30. As discussed in Section 2.5, the residual
nonlinearity distortion falling in the baseband will be mitigated
by the nonlinearity mitigation scheme based on machine learning
algorithms.

Fig. 9 shows the histogram of a received PAM-4 signal
distorted by noise and nonlinearities. Each distorted symbol
corresponds to one of the PAM-4 constellation points, thus the
received symbols can be categorized into 4 classes. It can be seen
from Fig. 9, due to the noise and nonlinearities, the symbols
belonging to the adjacent classes can be interfused with each
other. Thus, only setting up the thresholds between classes cannot
provide satisfying BER performance. Now, it’s clear that the
nonlinearity mitigation process of the receiver can be modeled as
a classification problem, and ML-based classification algorithms
like the KNN algorithm and the K-mean clustering algorithm
can be applied to improve the classification accuracy. On the
other hand, by partially removing the nonlinearity distortion, the
communications SNR of the received symbols can be improved.
As a result, the receiver’s BER performance can be boosted by
passing those symbols with limited residual nonlinearities through
the slicer.

450 T T T T T T T
[N Class1

0
Voltage(V)

Fig. 9: Histogram of received symbols distorted by noise and
nonlinearities.
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The implementation detail of the multi-channel nonlinearity
mitigation based on the KNN algorithm, the K-mean clustering
algorithm, and the channel-decision-passing algorithm will be
introduced in the rest of this section.

3.2 K-Nearest Neighbors (KNN) Algorithm

The KNN algorithm is one of the most frequently used ML
algorithms in the category of supervised learning. In the KNN al-
gorithm, the received data is divided into a training sequence and a
testing sequence. Compared to other machine learning algorithms,
for example, SVM and ANNSs, which require the training process
to obtain the parameters of the model, the classification process of
KNN is based on the training sequence only and is independent
of any learned parameters, so the testing data can be directly
classified. The training sequence {(Y1,/1),...(Yp,la)} consists of
M instances with the assigned labels /; € L. An instance in the
training sequence Y ; can be described by a D—dimensional feature
vector: [a1(Y;),...,ap(Y j)], where a,(Y ;) denotes the value of the
rth feature of the instance. Given a query instance Y, in the testing
sequence to be classified by the KNN algorithm, the distance
between Y, and an arbitrary instance Y ; in the training sequence
can be expressed as:

D
(Y, Yg) = Y (ar(Y)) —ar(Yy))? 31)
r=1
let Ni(Y4) = [Y1,...,Yx] denote the set containing k instances
that are nearest to Y, from the training sequence, then the class of
Y, can be predicted by:

f(Yy) =argmax Y &(11)) (32)
€L jeN,(v,)
where,
1, 1=
5(1,1;)=X " / (33)
0, 1#1I;
thus, the majority of labels in Ni(Y,) will be the predicted label
of ¥,.

Referring to Fig. 10, a joint classification over the received
symbols through all channels is required when applying the
KNN algorithm for nonlinearity mitigation of the multi-channel
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Fig. 11: BER performance of the KNN algorithm as a function of
Eb/No for a different number of instances in the training sequence
(M) with nonlinear AFE of 14.5dBm IIP3.

receiver. An instance in the training sequence is expressed as
(Yj,lj), where Yj = [_')_71 [I’LL < VIN—1 [n],cyl [I’l — ]L <y CYIN—1 [I’l —
1]]. y:[n](i = 1,2,...,2N — 1) are the currently-received samples in
the training sequence, y;[n — 1] are the previously-received samples
in the training sequence weighted by ¢, which is a coefficient used
to account for the memory effect according to Eqn. 29. Since
the memory effect decays as the memory depth increases, the
value of this coefficient c is in the range from O to 1. Its optimal
value can be found by sweeping from O to 1 with a 0.1 step
size and picking the one leading to the best BER performance
given by the KNN algorithm. /; € L is the corresponding label
of the instance in the training sequence. Assuming a PAM-
4 signal is transmitted in the baseband subband, and QAM-16
signals are transmitted in the other (N — 1) passband subbands,
then L = {1,2,...,4*N=1}. The label of an instance in the testing
sequence Y, = [yi[n],...,yan—1[n],eyi[n — 1],...,cyon—1[n — 1]] is
predicted following Eqn. 31 and Eqn. 32. Once the output label is
generated, the predicted transmitted symbols of each channel can
be decoded through label mapping and used for BER calculation.

The classification accuracy of the KNN algorithm depends on
the number of neighbors k and the number of instances M in the
training sequence. Based on the simulation results, the variation
of k only slightly changes the BER in the regime dominated by
noise, whereas M can significantly impact the BER performance
as shown in Fig. 11. However, the time complexity of the KNN
algorithm is in the order of O(kDlog(M)) even by using the
KD-tree method, which organizes the training sequence as a
binary-tree data structure and allows faster search for nearest
neighbors compared to brute force searching method. Here, D is
the dimension of the feature vector. This performance-complexity
trade-off can preclude the implementation of the KNN algorithm
as a fully-integrated nonlinearity mitigation method.

3.3 K-mean Clustering

As a representative unsupervised learning algorithm, the K-mean
clustering algorithm can partition the unlabelled data into clusters
without requiring the training sequence. Fig. 12 shows the opera-
tion process of the multi-channel nonlinearity mitigation applying
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the K-mean clustering algorithm. The output sequence y; of each
path of the multi-channel receiver is past through a K-mean clus-
tering block. Initially, K samples are randomly selected from y; as
the centroids assuming a PAM-K signal is transmitted through the
path. Secondly, based on the nearest Euclidean distance principle,
each sample is assigned to the corresponding cluster represented
by the centroid. Thirdly, the centroids are updated by calculating
the mean value of the clusters. Finally, the second and third steps
will be iteratively operated until the standard measure function
converges, which is expressed by:

K I

E=Y Zd(xik,ck)2
k=1i=1

where I, is the number of samples in kth cluster, ¢ is the centroid
of kth cluster, and d(x;*,c;) is the Euclidean distance of the ith
sample in the kzh cluster to the corresponding centroid.

With a low value of K, the K-mean clustering shows fast
convergence speed and avoids falling into local optimums for
the randomly-selected initial centroids. Such attribute is well
aligned for the multi-channel receiver, since a relatively low-order
modulation format like PAM-4 can be configured for each data
path, which allows mitigating the nonlinearity distortions of the
received samples in an efficient way.

(34)

3.4 Channel Decision Passing (CDP) Algorithm

The block diagram of the CDP algorithm with feedback non-
linearity cancellation scheme is shown in Fig. 13. Considering
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Fig. 13: Block diagram of feedback cancellation nonlinearity mit-
igation scheme in combination with the proposed CDP algorithm.
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the SNR improvement based on the bandwidth splitting property
of multi-channel receivers, the event that symbols transmitted
through multiple channels are simultaneously in error has a low
probability of occurrence. Based on this, implementing the non-
linearity mitigation on the multi-channel receivers in a channel-
by-channel fashion will be desirable to increase computational
efficiency. Such a process can actually be modeled as the model-
free Markov Decision Process (MDP), calling for the application
of reinforcement learning (RL) algorithms on the nonlinearity
mitigation of multi-channel receivers. Here, “model-free” means
the transition matrix and reward of MDP are unknown to the
system and it can only take actions by a trial-and-error process
through a reward mechanism.

The state-action interaction process of the CDP algorithm is
illustrated in Fig. 14. Since the nonlinearity mitigation will be pro-
cessed channel-by-channel with subchannels processed path-by-
path, the initial state starting from the single path of the baseband
channel, Py, can be expressed as so = [d1[n],d2[n], ...,dan—1[n], P1],
di[n](i = 1,2,..2N — 1) represents the detected symbol of each
data path without nonlinearity mitigation. A; = [c?im, ...,c?,-(v)] is
the action space where the transmitted symbol from the corre-
sponding path P; will be speculated from V constellation symbols.
Thus, A; varies from the path to path. The detected outputs are
replacgd by Ehe specplated decisions, then an intermediate state is:
s;i = [di[n],da[n], ...di[n],dis1[n]...,doan—1[n], P+1], Pr1 represents
the path of the current state.

The reward r, which represents the error between one of
the constellation points d:-{v)(v =1,2,...,V) and the nonlinearity
cancellation result using this symbol associated with outputs from
other channels, can be calculated by:

r@)='—an]—(hpfijﬂ”L~1§w7¢+1mL~¢bN71MD

X N N (35)
— o 1 Ji(di[n— 1],y [n—1]) — o difn— 1] —d")|
Based on greedy policy [50], the constellation symbol d?m)

corresponding to the maximum reward ) will be the taken

action from A;, which is regarded as the speculated decision d;[n]

on the currently received symbol of path P, and thus updates

the decision vector of the state representing the combination of
estimated symbols for all paths.
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Fig. 14: State-action interaction process of CDP algorithm.
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In Eqn. 35, yi[n](i = 1,2,...2N — 1) is the distorted sequence
sampled by the ADC, J; is the function including all the inband
nonlinearity terms of a path and dj[n — 1] are the estimation of the
previous symbols used for addressing the memory effect. ¢ 1, @30
and o03; are nonlinearity parameters that are obtained using the
normalized least mean square (NLMS) algorithm with a training
sequence as shown in Fig. 15, where j;[n|(i = 1,2,..2N — 1)
represents the received samples of the training sequence, and d;[n]
represents the known symbol associated with y;[n].

In the CDP algorithm, an episode is terminated once the de-
tected symbols from all paths are replaced by the speculative deci-
sions [f,[n] So the termination state is: s7 = [[fl [n], oy [n], P1].
The learning process will stop when the termination state is stable
from episode to episode. The proposed CDP algorithm shows a
fast convergence speed, which will be discussed in the following
section.

4 SIMULATION RESULTS

In this section, we will compare the nonlinearity mitigation meth-
ods based on selected machine learning algorithms in terms of
time complexity and BER performance. As stated in IV-A, both
the time complexity and BER performance of the KNN algorithm
are significantly impacted by the size of the training sequence.
While in order to improve the classification accuracy in the low
SNR regime, the number of neighbors k is set to 21 for the rest
of the simulations, and the size of training sequence M is set to
50000.

The time complexity comparison result between the ML-based
multi-channel nonlinearity mitigation methods is presented in
Table 1. Here, we use the elapsed time and the number of floating
point operations (FLOPs) as the indication of time complexity.
In the simulation, a 3-channel receiver is configured to detect a
PAM-4 signal through the baseband channel and QAM-16 signals
through 2 higher frequency subchannels. Each ML algorithm
operates under the setup of input swing Vpp = 1.2V, Eb/No =

ML Algorithms Elapsed time Flops BER
KNN (M=50000) 3.045 s 6556 x 10° | 9.44x107°
K-mean clustering 0.052s 180x10° | 1.66x 10~%

CDP 0.145 s 3224%10° | <1x107°

TABLE 1: Time complexity comparison between different ML-
based nonlinearity mitigation algorithms with Eb/No=20dB and
[IP3=14.5dBm.
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20dB and IIP3 = 14.5dBm. A testing sequence containing 1E5
symbols is passed through the system for simulation.

Through the simulations, the number of iterations required by
K-mean clustering is 3. For CDP, the average number of episode
processing one set of symbols through all paths is 1.04. Based
on these results, the FLOPs for each algorithm are calculated
by counting the real-number addition/subtraction, the real-number
multiplication/division, and the comparison between real numbers
as one FLOP respectively. The elapsed time is collected by running
the algorithm in MATLAB.

It can be learned from Table 1, the K-mean clustering al-
gorithm shows the lowest time complexity since this algorithm
does not require the assistance of training sequence nor the
nonlinearities feedback cancellation, but instead directly partitions
the received samples into clusters. However, for a system with
low IIP3, the received samples can be severely distorted by
the nonlinearities and therefore become interfused with other
constellation points. Those samples cannot be correctly classified
with a clustering operation. Thus, the K-mean clustering provides
the worst BER performance among these three algorithms.

With a training sequence, the BER performance of KNN
is improved compared to K-mean clustering. However, due to
the large size of the training sequence, KNN shows the worst
time complexity. On the other hand, the noise and nonlinearities
present in the training samples with known labels can be interfused
with other categories which will lead to BER degradation. In
comparison, the CDP algorithm using the nonlinearities feedback
cancellation outperforms both KNN and K-mean clustering algo-
rithms with reasonable time complexity.

Fig. 16 shows the simulation results of BER performance for
the ML-based nonlinearity mitigation methods under the same
nonlinearity profile and data rate conditions. In this simulation,
the swing of the input signal through the AFE is set to 0.5V and
1.2V respectively. The IIP3 of the system is set to 14.5dBm, and
the memory effect is modeled by setting % = 0.16 referring to
Eqn. 30. The comparison between the single-channel receiver and
the multi-channel receiver is made assuming the single-channel
receiver is configured to detect a baseband PAM-4 signal sampled
at 32GS/s, while a 3-channel receiver is configured to detect a
combination of baseband PAM-4 signal and mid-band QAM-16
signal centered at 6.4GHz and high-band QAM-16 signal centered
at 12.8GHz with ADCs sampling at 6.4GS/s.

It can be seen from Fig. 16, for both V pp=0.5V and V pp=1.2V
cases, the multi-channel receiver shows improved BER perfor-
mance compared to the single-channel receiver when the non-
linearity mitigation methods are not applied. Such improvement
dues to the SNR improvement following Eqn. 28 and the inherent
nonlinearity robustness of the multi-channel receiver over the
single-channel receiver caused by the carrier’s amplitude reduction
in the signal bands since the combined multi-band signal has the
same overall amplitude limit as the single-band counterpart.

Fig. 16(a) also shows the BER performance of multi-channel
receivers using different ML-based nonlinearity mitigation algo-
rithms when the nonlinearity distortion of the received samples is
limited with V pp = 0.5V. Under this condition, KNN and K-mean
clustering cannot provide noticeable BER improvement compared
to the multi-channel receiver without a nonlinearity mitigation
scheme since the 3rd-order harmonic distortions and the inter-
modulation products are negligible. While the CDP algorithm
can still offer improved BER performance since the residual
nonlinearities caused by the memory effect can be efficiently
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Fig. 16: BER performance comparison between the single-channel
receiver and 3-channel receiver with & without ML-based nonlin-
earity mitigation algorithms from nonlinear AFE with 14.5dBm
IIP3 and memory effect quantified by Z:—‘:) =0.16 and (a) Vpp =
0.5V, (b) Vpp = 1.2V. '

removed by the feedback cancellation scheme. Fig. 16(b) shows
the BER plots as the counterpart of those in Fig. 16(a) when
the received samples are severely distorted by the nonlinearities
with Vpp =1.2V. Compared to the multi-channel receiver without
any nonlinearity mitigation method, all the ML-based algorithms
significantly improve the BER in the high Eb/No regime, where
the SNDR of the received samples is dominated by nonlinear-
ities. While, as mentioned above, with the implementation of
the nonlinearity feedback cancellation when the system interacts
with the environment, the CDP algorithm provides better BER
performance compared to both KNN and K-mean clustering
algorithms. Overall, the proposed CDP algorithm can provide
consistent nonlinearity mitigation when the peak-to-peak swing
of the input signal increases from 0.5V to 1.2V. In practice, the
CDP algorithm can benefit from improved SNR of the received
samples by simply increasing V pp of the input signal, while the
nonlinearity distortion can still be effectively removed by the CDP
algorithm with acceptable complexity.

It needs to mention here, through our simulation, the KNN
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Fig. 17: Communication SNR vs IIP3 comparison between the
single-channel receiver and 3-channel receiver with 20dB Eb/No

and memory effect quantified by % =0.16.

algorithm shows the capability of mitigating correlated noise con-
sidering KNN’s jointly-classification operation over the symbols
from all channels. Fig. 16 shows that the KNN algorithm with
fully-correlated noise improves the BER performance in the low
SNR regime compared to the KNN plot with uncorrelated noise. In
comparison, the K-mean clustering and the CDP algorithms make
the symbol’s decision independently in each channel, the corre-
lation among channel noise realizations does not have an impact
on the BER performance. Practically, the noise between channels
will show some degree of correlation when the sampling clock of
ADCs has a high common-mode clock jitter that dominates the
SNR of the receiver. This correlation, however, becomes weak for
an arbitrary input signal, and in general obtaining correlated noise
across channels that lead to improved performance in the low SNR
regime remains an open problem.

Fig. 17 shows the communications SNR comparison result
between nonlinearity mitigation algorithms as the function of IIP3
with 20dB Eb/No, which is a practical setup for the wireline re-
ceiver and provides an upper bound for the single-channel receiver
and the 3-channel receiver referring to Eqn. 27. The SNRcomums
of the multi-channel receiver using the CDP algorithm can be
calculated from the soft decisions after the feedback cancellation
with the converged decisions from all channels. It can be seen
when the IIP3 of the AFE is 9dBm, the received samples of the
multi-channel receiver are severely distorted by the nonlinearities
when the nonlinearity mitigation method is not applied. In this
case, the CDP algorithm can provide only 3dB communications
SNR improvement compared to the multi-channel receiver without
a nonlinearity mitigation scheme. While, as the IIP3 of the AFE
increases, the communications SNR of the multi-channel receiver
without nonlinearity mitigation gets improved and the CDP algo-
rithm provides increasing communications SNR boost. When the
IIP3 of the AFE is greater than 12dBm, the communications SNR
of the multi-channel receiver is greater than 5dB, which leads to
the BER without nonlinearity mitigation of less than 102, In this
case, the nonlinearity distortion can be significantly removed by
the CDP algorithm. Thus, the communications SNR provided by
the multi-channel receiver with the CDP algorithm approaches the

© 2023 IEEE. Personal use is_lpermitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
exas A M University. Downloaded on

Authorized licensed use limited to:

13
10° w 1.4
—©— Multi without i ity miti
P = # = Multi-channel using CDP
10 CDP time i 1.2

102 1
w
3 )
- 10 0.8 g
& =
@ 3
10 06 2
s
w
108 0.4
106 0.2
10-7 1 1 1 0

Number of Channel

Fig. 18: BER & Time complexity of CDP algorithm vs the number
of channels from simulation set up of 20dB Eb/No and 14.5dBm
TIP3 with memory effect quantified by 2.1 = 0.16.

a0

performance upper bound.

Although the KNN algorithm and K-mean clustering algorithm
can only generate the hard decisions since they are both classifi-
cation algorithms, their equivalent SNRcoyms can be obtained
from the resulting BER. As shown in Fig. 17, the nonlinearity
distortion can be partially removed by the KNN or K-mean
clustering algorithms. However, there’s a noticeable SNRcomums
gap when compared to the CDP algorithm as IIP3 increases. This
performance gap is caused by the memory effect which leads to
the unremovable residual nonlinearity distortion by the KNN or K-
mean clustering algorithm. In summary, the linearity requirement
of the analog front end can be effectively relaxed by the proposed
CDP algorithm.

The BER performance and the time complexity of the CDP
algorithm are investigated as shown in Fig. 18. In this simulation,
the Eb/No is set to 20dB, and the IIP3 of the AFE is set to
14.5dBm with the associated memory effect. The channel loss
is assumed to be not presented in this simulation. Thus, referring
to Eqns. 6 and 7, there’s an SNR penalty as N > 1, where N is
the number of channels. However, due to the amplitude reduction
of each sub-band signal, the multi-channel receiver suffers less
from the nonlinearity distortion as the channels increase, leading
to improved communications SNR as the result. It can be seen
from Fig. 18 when no nonlinearity mitigation is applied to the
multi-channel receiver, the BER performance is improved with
the increasing number of channels, which leads to a higher BER
when the CDP algorithm is applied. Moreover, as N increases, the
amplitude of each subband signal will decrease. As the result, the
memory effect will eventually become the performance limiter,
which leads to converged communications SNR of the received
sample and thus similar BER performance with the increasing
number of channels. Fig. 18 also shows the time complexity
of the CDP algorithm linearly increases with the number of
channels. This simulation runs on MATLAB with an Intel I9-
12900H processor and 32GB memory. The result proves that the
complexity of the CDP algorithm is in the order of O(N), thus
showing the applicability of multi-channel receivers by stacking
more channels to improve the transmission bandwidth without the
risk of complexity issues.
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5 CONCLUSION

This paper quantifies the performance advantages of the multi-
channel receiver over the single-channel receiver in terms of
front-end noise, phase noise, clock jitter, and nonlinearities with
expression and simulation results. The analysis and simulations
illustrate the need to achieve further nonlinearity mitigation. Thus,
multiple ML-based algorithms are investigated for nonlinearity
mitigation in the multi-channel receiver architecture including
the KNN-based joint classification algorithm, K-mean clustering
algorithm, and RL-based CDP algorithm. Time complexity, BER
performance, and communications SNR comparisons are made
between these algorithms. The proposed CDP algorithm shows
fast convergence speed and significantly improved BER perfor-
mance, making this method a practical solution for fully-integrated
nonlinearity mitigation in multi-channel receivers.
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