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bandit (RMAB)1 or RMA2B problems is intractable in many scenarios,

especially when the probability transition kernel of the MDP is con-

voluted [24]. As a result, except for a few special cases, the Whittle

indices of many practical problems remain unknown. Finally, most

of the existing index policies [13, 35, 37, 45] are provably asymp-

totically optimal under a global attractor condition2, which is often

hard to establish and is only verified numerically [35, 45].

In this paper, we circumvent these limitations by designing new

index policies for multi-user adaptive video streaming in wireless

access edge networks in Section 4. We first obtain a relaxed problem

which can be equivalently formulated as a linear programming

(LP) problem using occupancy measures [2]. Then we propose an

index policy entitled Quality Index Policy, where each user is

associated with a so-called “quality index”, which is merely based

on the occupancy measures solved from the LP. As a result, our

index policy is computationally efficient. Unlike the Whittle-like

policies, our index policy is well-defined without the requirement of

indexability. In contrast with [13, 35, 37, 45], our proof of asymptotic

optimality holds regardless of the global attractor condition since

we consider a finite-horizon setting. We note that our proposed

framework of designing index policies is very general, and can be

applied to other MDP problems where multiple users compete for

limited network resources with multiple actions.

Since the wireless access edge network environment is highly dy-

namic, system parameters such as wireless channel conditions and

user video playback buffer are typically unknown and time-varying,

we further explore the possibility of designing a lightweight ma-

chine learning aided algorithm to address these issues in Section 5.

Though directly applying popular reinforcement learning (RL) algo-

rithms such as UCRL2 [15] or Thompson Sampling [11] may resolve

these issues, the computational complexity and regret of resulting

solutions grow exponentially with the number of users and state

spaces, making such solutions too slow to be of any practical use. To

address these challenges, we propose a RL based algorithm dubbed

Quality Index Aware UCB (QA-UCB) that leverages the inherent struc-

ture of our problem. We show that QA-UCB achieves an optimal

sub-linear regret with a low-complexity since it not only leverages

the approach of optimism-in-the-face-of-uncertainty [3, 15] to bal-

ance exploration and exploitation, but more importantly, it learns

to leverage the near-optimal Quality Index Policy for making

decisions. As a result, QA-UCB is easy to implement in large-scale

systems. To the best of our knowledge, our work is the first to

develop an index-aware RL policy in the context of adaptive video

streaming for multiple users in wireless access edge networks.

Finally, our extensive simulations using real video and network

traces in Section 6 demonstrate that our proposed polices produce

significant performance gain over conventional approaches.

2 RELATED WORK

Video Streaming in Wireless Networks has been extensively

studied in different scenarios, where most problems were formu-

lated as constrained optimization problems, e.g., [21, 30, 42], which

1In the original form of RMAB, each arm can be either pulled (active) or not pulled
(passive). RMA2B generalizes RMAB to the case that each arm can take multiple actions,
which adds an additional layer of uncertainty and complexity.
2[37] showed that Whittle index policy fails to be asymptotically optimal if the global
attractor condition is not satisfied.

were solved based on gradient algorithm, Lagrangian methods,

game theory, etc. MDP, a systematic stochastic optimization ap-

proach has also been adopted to model video streaming [7, 10, 44].

However, these results cannot be applied to the multi-user set-

ting due to the curse of dimensionality. [6, 19, 33] modeled the

(multi-user) video streaming problem as a MDP and leveraged off-

the-shelf (deep) RL algorithms (e.g., Q-learning and Actor-critic

algorithm) directly. As a result, these methods are often computa-

tionally expensive since they contend directly with an extremely

high dimensional state-action space. Further, these methods have

no finite-time performance analysis of the proposed RL algorithms.

To the best of our knowledge, none of the above works provided an

index based policy for adaptive video streaming for multiple users

in wireless access edge network. Such an index based approach

naturally lends itself to a lightweight RL framework that can fully

exploit the structure of index policy so as to reduce the high compu-

tational complexity. This index-aware RL algorithm and the regret

analysis further distinguish our work from existing results.

Restless Bandits and Reinforcement Learning. RMAB is a gen-

eral model for sequential decision making problems but is PSPACE

hard [26]. To this end, Whittle [38] proposed a heuristic policy

for the infinite-horizon RMAB where the decision maker can only

choose two actions for each arm. [13, 35, 45] generalized this to the

setting with multiple actions/channels. However, they are either (i)

still limited to proving (partial) indexability; or (ii) considering an

infinite-horizon setting with the proposed policies only guaranteed

to be asymptotically optimal [37] under a difficult-to-verify global

attractor condition. In contrast, we consider a finite horizon, and

hence existing techniques cannot be directly applied. Finite-horizon

RMAB or RMA2B have been less studied. To the best of our knowledge,

[14, 43] are the closest to ours; however, [14] studied RMAB with

binary actions and [43] focused on homogeneous users with the

same underlying environments while we consider a heterogeneous

multi-user model with multiple actions. Finally, all above works

assumed that the true system parameters are known.

There are also works examining RMAB from a learning perspec-

tive, e.g., [25] and references therein; however, these methods did

not exploit the special structure available in the problem and con-

tent directly with an extremely high dimensional state-action space.

For example, the color-UCRL2 [25] suffers from the exponential

computational complexity since it needs to solve Bellman equations

on a state-space with size growing exponentially with the number

of arms. Recently, [4, 9, 39–41] developed RL-based algorithms to

explore the problem structure through index policies. However,

[4, 9] lacked finite-time performance analysis and the proposed

multi-timescale stochastic approximation algorithms often suffer

from slow convergence; [40] considered an infinite-horizon setting

using Whittle index policy; and [39, 41] was based on a simulator

for exploration, which cannot be directly applied here since it is dif-

ficult to build a perfect simulator in complex and dynamic wireless

access edge network environments.

3 MODEL AND PROBLEM FORMULATION

3.1 Video Streaming Model

We consider a wireless access edge network as shown in Figure 1,

that consists of a DASH server, an access point (AP) and multiple
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Figure 1: A multi-user adaptive video streaming model in

wireless access edge networks with unreliable channels.

users. The AP connects to the DASH server using the wired reliable

backhaul link, and serves 𝑁 users denoted as N = {1, · · · , 𝑁 }
through unreliable wireless channels. The DASH server stores 𝐹

video files denoted as F = {1, 2, . . . , 𝐹 }, each of which is divided

into a set of consecutive video segments or chunks, consisting of 𝐿

seconds of video. Each video chunk is further encoded at different

bitrates. Let R be the finite set of all available bitrate levels. The AP

requests video chunks of various bitrates from the DASH server,

and serves the 𝑁 users through unreliable wireless channels that

are constrained in network resources used for chunk transmissions.

The operating time is divided into multiple units with each unit

called a “frame”, which is indexed by 𝑡 ∈ T = {1, · · · ,𝑇 }. Each
frame consists of multiple physical layer transmission slots since

the timescale at which the chunks are requested differs 1-3 orders

of magnitude from the timescale at which the physical layer trans-

missions are scheduled [5, 19, 33]. Without loss of generality, we

assume that the duration of each frame is 𝐿 seconds, equal to the

duration of a whole video chunk. We develop algorithms that adap-

tively choose the bitrates of video chunks. It is important to identify

a proper QoE model that measures the satisfaction of a user, which

in turn is judged by its long-term engagement [1]. While the QoE

might be user-specific, it is widely believed that QoE is largely

influenced by the following three key factors [18, 42]: the video

quality, the quality variation and the frequency of rebuffering events.

Each user stores its video chunks in its own playout buffer before

playing it. It plays one entire video chunk in each frame 𝑡 . Let 𝐵𝑛 (𝑡)
be the buffer occupancy (measured in seconds) of user 𝑛 in frame

𝑡 , i.e., the play time of the video chunk left in the buffer. Since

each chunk contains 𝐿 seconds of video, we denote the set of all

possible buffer occupancy as B := {0, 𝐿, 2𝐿, · · · , 𝐵max𝐿}, ∀𝑛 ∈ N .3

The capacity of the buffer is equal to 𝐵max𝐿, and depends upon

the storage limitations of users, as well as the service provider’s

policy. In case the buffer is empty and there is no video chunk to

play, there is a video interruption. A rebuffering event occurs when

the buffer empties, and the user has to wait until the next chunk is

delivered to it. Thus, rebuffering events should be avoided so as to

guarantee a stall-free playback.

At the beginning of each frame 𝑡 , the AP chooses the set of users

N(𝑡) ⊆ N to serve. It also chooses the chunk bitrate 𝑅𝑛 (𝑡) ∈ R �

(0, 𝑅max] for user 𝑛 ∈ N (𝑡), where 𝑅max > 0 is the maximum

available bitrate. The relation between the video bitrate and the

3Our results hold for user-dependent 𝐵𝑛,max, ∀𝑛, at the cost of complicated notations.
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Figure 2: The total bits of a video chunk with di�erent bi-

trates in real video traces [20]. See Section 6 formore details.

video quality, as a function of the bitrate, experienced by user 𝑛

is described by the function 𝑞𝑛 (·) : R → R+, ∀𝑛. Thus, if 𝑅𝑛 (𝑡)
denotes the bitrate of user 𝑛 during frame 𝑡 , then the perceived

video quality is equal to𝑞𝑛 (𝑅𝑛 (𝑡)). We assume that𝑞𝑛 (·), 𝑛 ∈ N are

non-decreasing [33, 42]. This means that a higher bitrate yields a

higher video quality. Note that we allow for 𝑞𝑛 (·) to be non-convex,
thus for example it could be sigmoid.

The AP then fetches video chunks of these bitrates from the

DASH server, and transmits them to users over unreliable wireless

channels. The transmission of video chunks consumes network

resources4. The total amount of network resources available for

video transmission is constrained by the budget𝑊 . Let𝑊𝑛 (𝑡) be the
amount of resource that is used for video transmission of user 𝑛 in

frame 𝑡 . Let𝐷𝑛 (𝑡) denote the number of video chunkswith bitrate of

𝑅𝑛 (𝑡) that can be successfully delivered by allocating𝑊𝑛 (𝑡) amount

of network resource, where 0 < 𝐷𝑛 (𝑡) ≤ 𝐵max + 1 − 𝐵𝑛 (𝑡)/𝐿. We

model 𝐷𝑛 (𝑡) as a random variable with probability distribution

P(·|𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)) to reflect the randomness of wireless fading and

video content. Denote 𝐶 (𝑊𝑛 (𝑡)) as the throughput of the wireless
link between the AP and user 𝑛 when video chunks are transmitted

at resource level𝑊𝑛 (𝑡) in frame 𝑡 , and let 𝑄 (𝑅𝑛 (𝑡)) be the total
bits of a video chunk with bitrate 𝑅𝑛 (𝑡). 𝐶 (𝑊𝑛 (𝑡)) is a random

variable to capture the wireless fading effect given𝑊𝑛 (𝑡) amount

of allocated network resource. Similarly, 𝑄 (𝑅𝑛 (𝑡)) is a random

variable to model the randomness of video content, as observed in

Figure 2, where the total bits of a video chunk with three different

bitrates vary across chunks in real video traces [20]. Both𝐶 (𝑊𝑛 (𝑡))
and 𝑄 (𝑅𝑛 (𝑡)) affect the distribution of 𝐷𝑛 (𝑡), i.e.,
P(𝐷𝑛 (𝑡) = 𝑑 |𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)) =

P

(

𝑑+1
∑

𝑖=1

𝑄 (𝑖) (𝑅𝑛 (𝑡)) > 𝐶 (𝑊𝑛 (𝑡)) ≥
𝑑
∑

𝑖=1

𝑄 (𝑖) (𝑅𝑛 (𝑡))
)

, (1)

where𝑄 (𝑖) (𝑅𝑛 (𝑡)) denotes the 𝑖-th realization of𝑄 (𝑅𝑛 (𝑡)). By con-
vention𝑊𝑛 (𝑡) = 0 means no resource is allocated to user 𝑛 and

hence P(𝐷𝑛 (𝑡) = 0|𝑅𝑛 (𝑡), 0) = 1 and P(𝐷𝑛 (𝑡) = 𝑑 |𝑅𝑛 (𝑡), 0) =

0,∀𝑑 ∈ [1, 𝐵max + 1 − 𝐵𝑛 (𝑡)/𝐿] .
4Multiple types of network resources fit into our model. For example, (i) transmis-
sion power is used to combat the randomness of wireless channels, which is usually
controlled at the physical layer. (ii) downlink bandwidth is allocated by the AP into
disjoint sub-bands to each user, which determines the channel throughput. (iii) time
can be allocated to serve users one-by-one and each user consumes a certain amount
of time slots for transmission.
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Figure 3: An illustration of bu�er dynamics of user 𝑛.

To achieve high efficiency of adaptive video streaming over wire-

less edge network, it is expected that the quality of the video chunks

transmitted to users to be as high as possible. Moreover, the video

quality should also be kept as “smooth” as possible by avoiding

frequently switching the quality. Based on the discussion above, we

let the instantaneous QoE of user 𝑛 at frame 𝑡 be given as follows:

QoE𝑛 (𝑡) = 𝐷𝑛 (𝑡) · 𝑞𝑛 (𝑅𝑛 (𝑡)) − 𝛼𝑛1{𝐵𝑛 (𝑡 )=0}
− 𝛽𝑛 |𝑞𝑛 (𝑅𝑛 (𝑡)) − 𝑞𝑛 (Γ𝑛 (𝑡)) | 1{𝐷𝑛 (𝑡 )>0}, (2)

where Γ𝑛 (𝑡) tracks the bitrate of last successfully received chunk for
user 𝑛 before frame 𝑡 , 𝛼𝑛 and 𝛽𝑛 are non-negative parameters that

capture the importance of rebuffering event and quality variation

of user 𝑛 in the QoE evaluation. The QoE defined in (2) is a random

variable and the value depends on𝐷𝑛 (𝑡). Note that quality variation
only occurs when newly successfully downloaded chunks in current

frame have different quality compared with the last successfully

received chunks. Since the network resource is limited, the above

QoE is achieved under the following constraint
∑

𝑛∈N(𝑡 )
𝑊𝑛 (𝑡) ≤𝑊, ∀𝑡 ∈ T . (3)

3.2 MDP-based Problem Formulation

We pose the problem of adaptively choosing bitrates and allocat-

ing resource to maximize the cumulative user-perceived QoE as a

finite-horizon MDP. Specifically, each user 𝑛 is modeled as a MDP

(S𝑛,A𝑛, P𝑛, 𝑟𝑛, s0,𝑇 ). We begin by describing the state-space S𝑛 ,
action spaceA𝑛 , transition kernel P𝑛 : S𝑛 ×A𝑛 ×S𝑛 ↦→ R, reward
function 𝑟𝑛 : S𝑛 × A𝑛 ↦→ R of this MDP of user 𝑛. For simplicity,

we assume that all 𝑁 users have the same initial distribution s0,

and the time horizon 𝑇 < ∞.

State. Denote S𝑛 (𝑡) := (𝐵𝑛 (𝑡), Γ𝑛 (𝑡)) ∈ S𝑛 as the state of user 𝑛 at

frame 𝑡 , where 𝐵𝑛 (𝑡) ∈ B is the buffer occupancy at frame 𝑡 , Γ𝑛 (𝑡) ∈
R is the bitrate of the video chunk which was last successfully

received before frame 𝑡 , which we call “quality tracker”. We let

S𝑛 ≡ S = B × R, and also S(𝑡) = (S1 (𝑡), · · · , S𝑁 (𝑡)).
Action. The AP makes the following two decisions for each user

𝑛 at the beginning of frame 𝑡 : (i) the chunk bitrate 𝑅𝑛 (𝑡), and (ii)

the resource𝑊𝑛 (𝑡) allocated to deliver it. Denote this by A𝑛 (𝑡) :=
(𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)) ∈ A𝑛 , where 𝑅𝑛 (𝑡) ∈ R,𝑊𝑛 (𝑡) ∈ W � [0,𝑊 ], and
A𝑛 ≡ A = R ×W. Also let A(𝑡) = (A1 (𝑡), · · · ,A𝑁 (𝑡)).

An adaptive video streaming policy 𝜋 maps the states of all

users S(𝑡) to video streaming decisionsA(𝑡), i.e.,A(𝑡) = 𝜋 (S(𝑡)),
∀𝑡 ∈ T .

Transition Kernel.When user 𝑛 is served and a rebuffering event

does not occur in frame 𝑡 , i.e., 𝐵𝑛 (𝑡) = 𝐵 > 0, ∀𝑛 ∈ N , user

𝑛 plays one video chunk in frame 𝑡 . If 𝐷𝑛 (𝑡) = 𝑑 chunks are

successfully delivered to user 𝑛 with bitrate 𝑅𝑛 (𝑡) by allocating

𝑊𝑛 (𝑡) amount of resource, the buffer occupancy of user 𝑛 becomes

𝐵 + (𝑑 − 1)𝐿, and the quality tracker is updated to be the quality

of the successfully received chunks. This occurs with probability

P(𝐷𝑛 (𝑡) = 𝑑 |𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)) as defined in (1). More precisely, we

have

P

(

𝑆𝑛 (𝑡 + 1) = (𝐵 + (𝑑 − 1)𝐿, 𝑅𝑛 (𝑡)) |𝑆𝑛 (𝑡) = (𝐵, Γ),

𝐴𝑛 (𝑡) = (𝑅𝑛 (𝑡),𝑊𝑛 (𝑡))
)

= P(𝐷𝑛 (𝑡) = 𝑑 |𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)), (4)

for ∀𝑑 ∈ [1, 𝐵max + 1 − 𝐵𝑛 (𝑡)/𝐿]. Otherwise, the buffer occupancy
is decreased by 𝐿 seconds, and the quality tracker is unchanged,

P

(

𝑆𝑛 (𝑡 + 1) = ((𝐵 − 𝐿)+, Γ) |𝑆𝑛 (𝑡) = (𝐵, Γ),

𝐴𝑛 (𝑡) = (𝑅𝑛 (𝑡),𝑊𝑛 (𝑡))
)

= P(𝐷𝑛 (𝑡) = 0|𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)). (5)

Similarly, when user 𝑛 is served and a rebuffering event occurs

in frame 𝑡 , i.e., 𝐵𝑛 (𝑡) = 0, user 𝑛 has no video chunk to play in

frame 𝑡 . As a result, its buffer occupancy becomes 𝑑𝐿 (rather than

(𝑑 − 1)𝐿 in (4)) when 𝐷𝑛 (𝑡) = 𝑑 chunks are successfully delivered,

P

(

𝑆𝑛 (𝑡 + 1) = (𝑑𝐿, 𝑅𝑛 (𝑡)) |𝑆𝑛 (𝑡) = (0, Γ),

𝐴𝑛 (𝑡) = (𝑅𝑛 (𝑡),𝑊𝑛 (𝑡))
)

= P(𝐷𝑛 (𝑡) = 𝑑 |𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)), (6)

for ∀𝑑 ∈ [1, 𝐵max + 1 − 𝐵𝑛 (𝑡)/𝐿]. Otherwise, the buffer occupancy
maintains to be zero,

P

(

𝑆𝑛 (𝑡 + 1) = (0, Γ) |𝑆𝑛 (𝑡) = (0, Γ),

𝐴𝑛 (𝑡) = (𝑅𝑛 (𝑡),𝑊𝑛 (𝑡))
)

= P(𝐷𝑛 (𝑡) = 0|𝑅𝑛 (𝑡),𝑊𝑛 (𝑡)). (7)

When user 𝑛 is not served in frame 𝑡 , the state transition proba-

bility of user 𝑛 satisfies

P

(

𝑆𝑛 (𝑡 + 1) = ((𝐵 − 𝐿)+, Γ) |𝑆𝑛 (𝑡) = (𝐵, Γ),

𝐴𝑛 (𝑡) = (𝑅𝑛 (𝑡), 0)
)

= 1,∀𝐵 ∈ B . (8)

In the following, we provide an example as shown in Figure 3 to

illustrate the buffer dynamics of user 𝑛 as defined in (4)-(8).

Example 1. Suppose that the buffer occupancy of user 𝑛 is 𝐵𝑛 (𝑡 −
1) = 2𝐿 at the beginning of frame 𝑡 −1, and it is served but receives no

video chunk in this frame. Thus its buffer occupancy becomes 𝐵𝑛 (𝑡) =
𝐿 at the beginning of frame 𝑡 . This event occurs with probability

defined in (5). In frame 𝑡 , user 𝑛 plays one chunk and successfully

receives one chunk, which occurs with probability defined in (4). To

this end, 𝐵𝑛 (𝑡 +1) = 𝐿. Suppose that user 𝑛 is not served in frame 𝑡 +1
and hence we have 𝐵𝑛 (𝑡 + 2) = 0 since it still plays one chunk. This

event occurs with probability defined in (8). As a result, a rebuffering

occurs in frame 𝑡 +2 and user 𝑛 cannot play a video. Suppose that user
𝑛 is served in this frame but no video chunk is successfully delivered,

i.e., 𝐵𝑛 (𝑡 + 3) = 0, which occurs with probability defined in (7). Thus

a rebuffering event occurs again in frame 𝑡 + 3 and user 𝑛 cannot play

a video chunk. Now suppose user 𝑛 is served in this frame with 3𝐿

video chunks successfully delivered. Hence we have 𝐵𝑛 (𝑡 + 4) = 3𝐿,

which occurs with probability defined in (6). In frame 𝑡 + 4, user

𝑛 plays one chunk and successfully receives two chunks, and hence

𝐵𝑛 (𝑡 + 5) = 4𝐿. This occurs with probability defined in (4). Finally,

similar event occurs in frame 𝑡 + 5 as in frame 𝑡 .
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Reward. The instantaneous reward/QoE received by user 𝑛 in

frame 𝑡 is equal to (2). In particular, we write it explicitly as a

function of state and action as QoE𝑛 (𝑆𝑛 (𝑡), 𝐴𝑛 (𝑡)).
Adaptive Video Streaming Problem. Our objective is to design

a policy 𝜋 that maximizes the expected cumulative rewards of all

𝑁 users, while ensuring that the network resource utilization is

below its capacity, i.e., we have to solve the following problem:

max
𝜋

E𝜋

(

𝑁
∑

𝑛=1

𝑇
∑

𝑡=1

QoE𝑛 (𝑆𝑛 (𝑡), 𝐴𝑛 (𝑡))
)

s.t.

𝑁
∑

𝑛=1

𝑊𝑛 (𝑡) ≤𝑊, ∀𝑡 ∈ T , (9)

where the subscript denotes the fact that expectation is taken with

respect to the measure induced by the policy 𝜋 . We refer to (9) as

the “original problem”. Though in theory this could be solved using

dynamic programming [27], the complexity is 𝑂 ( |S|𝑁 |A|𝑁 ), and
hence suffers from the curse of dimensionality. We overcome this

difficulty by developing an index-based policy that is computation-

ally appealing and provably optimal.

4 INDEX POLICY DESIGN AND ANALYSIS

We now propose a class of index policies for the QoE maximization

problem (9). Our proposed solution utilizes a so-called “relaxed

problem”, whose solution provides an upper bound for the original

problem (9). This relaxed problem can be posed as a linear pro-

gramming (LP). We solve this LP and obtain an optimal occupation

measure, which is then used to develop an index policy entitled

Quality Index Policy for the QoE maximization problem (9).

We show that our proposed index policy is asymptotically optimal

when both the number of users and the resource constraint go to

infinity with their ratio holding constant.

4.1 The Relaxed Problem

We relax the instantaneous constraints that are required to hold in

each frame 𝑡 in the original problem (9) so that now they need to

hold only on average. This gives us the following relaxed problem

max
𝜋

E𝜋

(

𝑁
∑

𝑛=1

𝑇
∑

𝑡=1

QoE𝑛 (𝑆𝑛 (𝑡), 𝐴𝑛 (𝑡))
)

s.t. E𝜋

(

𝑁
∑

𝑛=1

𝑊𝑛 (𝑡)
)

≤𝑊, ∀𝑡 ∈ T . (10)

Then we immediately have the following result

Lemma 1. The optimal value achieved by the relaxed problem in

(10) is an upper bound of that of the original problem (9).

Proof. The proof is straightforward since the constraint in (10)

expands the feasible region of (9). �

It is well known (see e.g. [2]) that the relaxed problem (10) can be

reduced to a LP in which the decision variables are the occupation

measures of the controlled process. We begin with some definitions.

Definition 1. (Occupancy measure) [2]. The occupancy measure

𝜇 of a policy 𝜋 in a finite-horizon MDP is defined as the expected

number of visits to a state-action pair (𝑠, 𝑎) in each frame 𝑡 . Formally,

𝜇 =
{

𝜇𝑛 (𝑠, 𝑎; 𝑡) = P(𝑆𝑛 (𝑡) = 𝑠, 𝐴𝑛 (𝑡) = 𝑎) : ∀𝑛 ∈ N , 𝑡 ∈ T
}

. (11)

It can be easily checked that
∑

(𝑠,𝑎) 𝜇𝑛 (𝑠, 𝑎, 𝑡) = 1 and 0 ≤
𝜇𝑛 (𝑠, 𝑎, 𝑡) ≤ 1, ∀𝑛 ∈ N , 𝑠 ∈ S, 𝑎 ∈ A, 𝑡 ∈ T . Hence the occu-

pancy measure 𝜇𝑛 , ∀𝑛 is a probability measure. Define the expected

value of QoE𝑛 (𝑆𝑛 (𝑡), 𝐴𝑛 (𝑡)) as 𝑟𝑛 (𝑠, 𝑎, 𝑡). Using this definition, the

relaxed problem (10) can be reformulated as a LP [2]:

Proposition 1. The relaxed problem (10) is equivalent to the

following LP

max
𝜇

𝑁
∑

𝑛=1

𝑇
∑

𝑡=1

∑

(𝑠,𝑎)
𝜇𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎; 𝑡) (12)

s.t.

𝑁
∑

𝑛=1

∑

(𝑠,𝑎)
𝑤𝜇𝑛 (𝑠, 𝑎; 𝑡) ≤𝑊, ∀𝑡 ∈ T , (13)

∑

𝑎∈A
𝜇𝑛 (𝑠, 𝑎; 𝑡)=

∑

(𝑠′,𝑎′)
𝜇𝑛 (𝑠 ′, 𝑎′; 𝑡−1)𝑃𝑛 (𝑠 ′, 𝑎′, 𝑠), (14)

∑

𝑎∈A
𝜇𝑛 (𝑠, 𝑎, 1) = s0 (𝑠), ∀𝑠 ∈ S, 𝑛 ∈ N , (15)

where (13) is a restatement of the constraint in (10), and𝑤 is associ-

ated with the action 𝑎; (14) indicates the transition of the occupancy

measure from time frame 𝑡 − 1 to time frame 𝑡 ; and (15) represents

the initial condition at frame 1.

Let 𝜇★ =

{

𝜇★𝑛 (𝑠, 𝑎; 𝑡) : 𝑛 ∈ N , 𝑡 ∈ T
}

be an optimal solution to

the above LP. We now construct a Markovian randomized policy

𝜉★ = {𝜉★𝑛 (𝑡) : 𝑛 ∈ N , 𝑡 ∈ T } from 𝜇★ as follows: if the state 𝑆𝑛 (𝑡)
in frame 𝑡 is equal to 𝑠 , then 𝜉★𝑛 (𝑡) chooses the action 𝑎 with a

probability equal to

𝜉★𝑛 (𝑠, 𝑎; 𝑡) :=
𝜇★𝑛 (𝑠, 𝑎; 𝑡)

∑

𝑎∈A 𝜇★𝑛 (𝑠, 𝑎; 𝑡)
. (16)

If the denominator of (16) is equal to zero, i.e., state 𝑠 for user 𝑛

is not reachable at time 𝑡 , user 𝑛 can be simply made “unserved”,

i.e., 𝜉★𝑛 (𝑠, 0; 𝑡) = 1 and 𝜉★𝑛 (𝑠, 𝑎; 𝑡) = 0,∀𝑎 ∈ A \ {0}. Note that 𝜉★ is

non-stationary since it is time-dependent and is Markovian since it

makes decisions on the basis of current state only.

4.2 The Quality Index Policy

Our proposed policy attaches the following index I𝑛 (𝑠; 𝑡) to each

user 𝑛 in frame 𝑡 ,

I𝑛 (𝑠; 𝑡) :=
∑

𝑎∈A\{0}
𝜉★𝑛 (𝑠, 𝑎; 𝑡), ∀𝑛 ∈ N , (17)

where 𝜉★𝑛 (𝑠, 𝑎; 𝑡) is defined in (16). We call this index the quality

index since the probability 𝜉★𝑛 (𝑠, 𝑎; 𝑡) is related with the quality of

action 𝑎 in state 𝑠 in frame 𝑡 towards the QoE maximization, and

is determined by the occupation measure derived by solving the

LP (12)-(15). Let I(𝑡) := {I𝑛 (𝑠 ; 𝑡) : 𝑛 ∈ N} denote the set of quality
indices associated with all 𝑁 users in frame 𝑡 .

However, the optimal indices for the relaxed problem (10) is not

always feasible for the original problem (9), since in the latter, at

most𝑊 network resources can be consumed by all users at a time.

To resolve this issue, our Quality Index Policy prioritizes the

users according to a decreasing order of their quality indices, and
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Algorithm 1 Quality Index Policy

1: Initialize state 𝑆𝑛 (1) for user 𝑛, ∀𝑛 and N(𝑡) = 0,∀𝑡 .
2: Construct the LP in (12)-(15) and solve the occupancy measure

𝜇★;

3: Compute 𝜉★𝑛 (𝑠, 𝑎, 𝑡),∀𝑠, 𝑎, 𝑡 according to (16);

4: Construct the quality index set I(𝑡) := {I𝑛 (𝑠; 𝑡) : 𝑛 ∈ N} as
in (17), and sort I𝑛 (𝑠; 𝑡) in a decreasing order;

5: while
∑

𝑛∈N(𝑡 )𝑊𝑛 (𝑡) ≤𝑊 do

6: Serve users with quality indices in a decreasing order (Step

4) and randomly select a feasible activation action according to

the probability 𝜉★𝑛 (𝑠, 𝑎; 𝑡) in (16).

7: end while

then serves the maximum number of users as long as the network

resource constraint
∑

𝑛∈N(𝑡 )𝑊𝑛 (𝑡) ≤𝑊 is satisfied, where N(𝑡)
is the subset of users that the AP transmits video chunks to in frame

𝑡 . The remaining users, i.e. those in the setN \N(𝑡), are not served
in frame 𝑡 . Specifically, for each served user, its action is randomly

selected according to the probability 𝜉★𝑛 (𝑠, 𝑎; 𝑡) in (16). This policy

is summarized in Algorithm 1, and denoted as 𝜋★ = {𝜋★𝑛 , 𝑛 ∈ N}.
Remark 1. Quality Index Policy is computationally tractable

since it requires us to solve a LP with 𝑁 |S| |A|𝑇 decision variables.

Note that the design of our index policy can be applied to general

multi-agent MDP with constraints, and not just the QoE maximization

problem for multi-user video streaming over wireless edges. In that

sense, the applicability of our proposed framework is of independent

interest, and beyond the current problem. Finally, our proposed index

policy is well-defined even when the problem is not indexable [38].

4.3 Asymptotic Optimality

We now show that our Quality Index Policy is asymptotically

optimal in the same asymptotic regime as that in Whittle [38] and

others [35, 37, 45]. For abuse of notation, let the number of users

be 𝜂𝑁 and the resource constraint be 𝜂𝑊 in the asymptotic regime

with 𝜂 → ∞. In other words, we consider 𝑁 different classes of

users with each class containing 𝜂 users. Let QoE𝜋 (𝜂𝑊 ,𝜂𝑁 ) denote
the expected QoE of the original problem (9) under an arbitrary

policy 𝜋 for such a system. Denote the optimal policy for the original

problem (9) as 𝜋𝑜𝑝𝑡 := {𝜋𝑜𝑝𝑡𝑛 ,∀𝑛 ∈ N}.
Theorem 1. The Quality Index Policy (Algorithm 1) is asymp-

totically optimal, i.e.,

lim
𝜂→∞

1

𝜂

(

QoE𝜋
★ (𝜂𝑊 ,𝜂𝑁 ) − QoE𝜋

𝑜𝑝𝑡 (𝜂𝑊 ,𝜂𝑁 )
)

= 0. (18)

Remark 2. Theorem 1 indicates that as the number of per-class

users goes to infinity, the average gap between the performance

achieved by our Quality Index Policy 𝜋★ and the optimal policy

𝜋𝑜𝑝𝑡 tends to be zero.

Proof Sketch: For any policy 𝜋★ derived from Algorithm 1, the left

hand side of (18) is non-positive. Hence we need to show that for

𝜋★. Let 𝐵𝑛 (𝑠; 𝑡) be the number of class 𝑛 users in state 𝑠 at time 𝑡

and𝐷𝑛 (𝑠, 𝑎; 𝑡) be the number of class 𝑛 users in state 𝑠 at time 𝑡 that

are being served with action 𝑎 ∈ A \ {0}. By induction, we show

that 𝐵𝑛 (𝑠; 𝑡)/𝜂 → 𝑃𝑛 (𝑠; 𝑡) and 𝐷𝑛 (𝑠, 𝑎; 𝑡)/𝜂 → 𝑃𝑛 (𝑠; 𝑡)𝜉★𝑛 (𝑠, 𝑎; 𝑡),
respectively, as 𝜂 → ∞ almost surely. This leads to the fact that

lim𝜂→∞ 1
𝜂QoE

𝜋★ (𝜂𝑊 ,𝜂𝑁 ) =

∑𝑁
𝑛=1

∑𝑇
𝑡=1

∑

(𝑠,𝑎)
𝜇★𝑛 (𝑠, 𝑎; 𝑡)𝑟𝑛 (𝑠, 𝑎; 𝑡),

which is an upper bound of lim𝜂→∞ 1
𝜂QoE

𝜋𝑜𝑝𝑡 (𝜂𝑊 ,𝜂𝑁 ).

5 REINFORCEMENT LEARNING SOLUTIONS

The computation of the Quality Index Policy requires the knowl-

edge of transition probabilities and reward functions associated

with the user-level MDPs that were discussed in Section 3.2. As-

suming that these parameters are known is unrealistic since the

wireless access edge network environment is often highly dynamic

with these parameters varying over time. Hence, we now design

learning algorithms that combine the optimism principle on top

of the Quality Index Policy. We denote the resulting learning

rule as Quality Index Aware UCB (QA-UCB). We prove that QA-UCB

achieves an optimal sub-linear regret. Moreover, the multiplicative

“pre-factor” that goes with the time-horizon dependent function in

the regret, is quite low since it fully leverages the structure of the

Quality Index Policy for making decisions.

5.1 The Learning Algorithm: QA-UCB

AlgorithmOverview.Weadapt the upper confidence bound (UCB)

strategy [3] to our problem and call our RL algorithm as the QA-UCB

policy, which is summarized in Algorithm 2. Specifically, QA-UCB

decomposes the total operating time into episodes, and each episode

is composed of 𝐻 consecutive frames. Let 𝐾 be the total number

of episodes until time 𝑇 . We denote the 𝑘-th episode by H𝑘 and

let 𝜏𝑘 denote the time when it starts. Thus, 𝑇 = 𝐾𝐻 . Each episode

consists of two phases: planning and policy execution.

At the planning phase of each episode (lines 2-4 in Algorithm 2),

QA-UCB constructs a confidence ball that contains a set of plausible

MDPs [15] for each user 𝑛 ∈ N . In order to obtain an optimistic

estimate of the true MDP parameters, QA-UCB solves an optimistic

planning problem where the MDP parameters can be chosen from

the constructed confidence ball. This problem turns out to be a

LP where the decision variables are the occupancy measures cor-

responding to the process associated with 𝑁 users. The planning

problem, which is referred to as extended LP in Algorithm 2 is

described below. QA-UCB then defines the corresponding Quality

Index Policy using the solutions to the extended LP.

At the policy execution phase of each episode (line 5 in Algo-

rithm 2), QA-UCB executes the constructed Quality Index Policy.

The key contribution and novelty of our proposed RL algorithm

is to leverage our proposed Quality Index Policy for making

decisions, rather than directly contending with an extremely large

state-action space to balance between exploration and exploitation.

These together contribute to the sub-linear regret of QA-UCB with

a low-complexity, which is discussed in detail later.

Optimistic Planning. QA-UCBmaintains two counts for each user

𝑛. Let 𝐶𝑘−1𝑛 (𝑠, 𝑎) be the number of visits to state-action pairs (𝑠, 𝑎)
until 𝜏𝑘 , and 𝐶

𝑘−1
𝑛 (𝑠, 𝑎, 𝑠 ′) be the number of transitions from 𝑠 to

𝑠 ′ under action 𝑎. At 𝜏𝑘 , QA-UCB updates the respective counts

as 𝐶𝑘𝑛 (𝑠, 𝑎) = 𝐶𝑘−1𝑛 (𝑠, 𝑎) + ∑𝐻
ℎ=1

1(𝑆𝑘𝑛 (ℎ) = 𝑠, 𝐴𝑘𝑛 (ℎ) = 𝑎), and
𝐶𝑘𝑛 (𝑠, 𝑎, 𝑠 ′) = 𝐶𝑘−1𝑛 (𝑠, 𝑎, 𝑠 ′)+∑𝐻

ℎ=1
1(𝑆𝑘𝑛 (ℎ+1) = 𝑠 ′ |𝑆𝑘𝑛 (ℎ) = 𝑠, 𝐴𝑘𝑛 (ℎ) =

𝑎), ∀(𝑠, 𝑎) ∈ S × A and ∀(𝑠, 𝑎, 𝑠 ′) ∈ S × A × S for user 𝑛, where

𝑆𝑘𝑛 (ℎ) is the state of user 𝑛 at the ℎ-th time frame in episode 𝑘 .
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Algorithm 2 QA-UCB Policy

Require: Initialize 𝐶1
𝑛 (𝑠, 𝑎) = 0, and 𝑃1𝑛 (𝑠 ′ |𝑠, 𝑎) = 1/|S|

1: for 𝑘 = 1, 2, · · · , 𝐾 do

2: Construct P𝑘
𝑛 (𝑠, 𝑎) and R𝑘

𝑛 (𝑠, 𝑎) according to (21) at 𝜏𝑘 ;

3: Compute the optimal solution to the extended LP (23);

4: Recover 𝜉𝑘,★ according to (24) and establish the correspond-

ing Quality Index Policy 𝜋𝑘,★;

5: Execute 𝜋𝑘,★ in the current episode.

6: end for

At 𝜏𝑘 , QA-UCB estimates the true transition model and the true

reward by the corresponding empirical averages as:

𝑃𝑘𝑛 (𝑠 ′ |𝑠, 𝑎) =
𝐶𝑘−1𝑛 (𝑠, 𝑎, 𝑠 ′)

max{𝐶𝑘−1𝑛 (𝑠, 𝑎), 1}
, (19)

𝑟𝑘𝑛 (𝑠, 𝑎) =

𝑘−1
∑

𝜏=1

𝐻
∑

ℎ=1
𝑟𝑛 (𝑠, 𝑎)1(𝑆𝜏𝑛 (ℎ) =𝑠, 𝐴𝜏𝑛 (ℎ) =𝑎)

max{𝐶𝑘−1𝑛 (𝑠, 𝑎), 1}
. (20)

The QA-UCB further defines confidence intervals for the transition

probabilities (resp. rewards) such that the true transition probabil-

ities (resp. rewards) lie in them with high probabilities. Formally,

for ∀(𝑠, 𝑎) ∈ S × A, we define

P𝑘
𝑛 (𝑠,𝑎) :={𝑃𝑘𝑛 (𝑠 ′ |𝑠,𝑎),∀𝑠 ′: |𝑃𝑘𝑛 (𝑠 ′ |𝑠,𝑎)−𝑃𝑘𝑛 (𝑠 ′ |𝑠,𝑎) | ≤𝛿𝑘𝑛 (𝑠,𝑎)},

R𝑘
𝑛 (𝑠,𝑎) :={𝑟𝑘𝑛 (𝑠,𝑎),∀𝑠,𝑎 : 𝑟𝑘𝑛 (𝑠,𝑎)=𝑟𝑘𝑛 (𝑠,𝑎)+𝛿𝑘𝑛 (𝑠,𝑎)}, (21)

where the size of the confidence intervals 𝛿𝑘𝑛 (𝑠, 𝑎) is built according
to the Hoeffding inequality [23] for 𝜖 ∈ (0, 1) as

𝛿𝑘𝑛 (𝑠, 𝑎)=
√

1

2𝐶𝑘−1𝑛 (𝑠, 𝑎)
log

( 4|S| |A|𝑁 (𝑘−1)2𝐻2

𝜖

)

. (22)

To this end, the set of plausible MDPs associated with the con-

fidence intervals is M𝑘
𝑛 = {𝑀𝑛 = (S,A, 𝑟𝑛, 𝑃𝑛) : 𝑃𝑘𝑛 (·|𝑠, 𝑎) ∈

P𝑘
𝑛 (𝑠, 𝑎), 𝑟𝑘𝑛 (𝑠, 𝑎) ∈ R𝑘

𝑛 (𝑠, 𝑎)}. Then QA-UCB computes a policy 𝜋★,𝑘

by performing optimistic planning. In other words, given the set of

plausible MDPs, it selects an optimistic MDP and an optimistic pol-

icy by solving a “modified LP”, which is similar to the LP (12)-(15)

but with transition and reward functions replaced by 𝑃𝑘𝑛 (·|·, ·) and
𝑟𝑘𝑛 (·, ·; ·), ∀𝑠, 𝑎, ℎ, 𝑛, 𝑘, respectively, in the confidence intervals (21)

since the corresponding true values are not available.

The Extended LP Problem.We cannot directly solve the “modi-

fied LP” since the true transitions and rewards are unknown. To

this end, we rewrite it as an extended LP problem by leverag-

ing the state-action-state occupancy measure 𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′, ℎ) defined
as 𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′, ℎ) = 𝑃𝑛 (𝑠 ′ |𝑠, 𝑎)𝜇𝑘𝑛 (𝑠, 𝑎, ℎ) to express the confidence

intervals of the transition probabilities. The extended LP over

𝑧𝑘 := {𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′, ℎ),∀𝑛 ∈ N} is given as follows:

max
𝑧�

𝐻
∑

ℎ=1

𝑁
∑

𝑛=1

∑

(𝑠,𝑎,𝑠′)
𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ)𝑟𝑘𝑛 (𝑠, 𝑎;ℎ)

s.t.

𝑁
∑

𝑛=1

∑

(𝑠,𝑎,𝑠′)
𝑤𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ) ≤𝑊, ∀ℎ ∈ H ,

∑

𝑎,𝑠′
𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ) =

∑

𝑠′,𝑎′
𝑧𝑘𝑛 (𝑠 ′, 𝑎′, 𝑠, ℎ − 1), ∀ℎ ∈ H ,

𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ)
∑

𝑦 𝑧
𝑘
𝑛 (𝑠, 𝑎,𝑦;ℎ)

− (𝑃𝑘𝑛 (𝑠 ′ |𝑠, 𝑎) + 𝛿𝑘𝑛 (𝑠, 𝑎)) ≤ 0,

− 𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ)
∑

𝑦 𝑧
𝑘
𝑛 (𝑠, 𝑎,𝑦;ℎ)

+ (𝑃𝑘𝑛 (𝑠 ′ |𝑠, 𝑎) − 𝛿𝑘𝑛 (𝑠, 𝑎)) ≤ 0,

∑

𝑎,𝑠′
𝑧𝑘𝑛 (𝑠, 𝑎, 𝑠 ′; 1) = s

𝑘
0 (𝑠), ∀𝑠 ∈ S,∀𝑛 ∈ N . (23)

This LP has𝑂 ( |S|2 |A|𝐻𝑁 ) constraints and decision variables. Such
an approach was also used in the context of adversarial MDPs

[16, 28] and in constrained MDPs [8, 17]. Once we compute the

optimal solution 𝑧𝑘,★ to (23), we recover the Markovian randomized

policy 𝜉𝑘,★ as

𝜉𝑘,★𝑛 (𝑠, 𝑎;ℎ) =
∑

𝑠′ 𝑧
𝑘,★
𝑛 (𝑠, 𝑎, 𝑠 ′;ℎ)

∑

𝑏,𝑠′ 𝑧
𝑘,★
𝑛 (𝑠, 𝑏, 𝑠 ′;ℎ)

, ∀𝑛 ∈ N . (24)

Finally, we compute the quality index in (17) using the policy de-

rived in (24), from which we construct the Quality Index Policy

𝜋𝑘,★ := {𝜋𝑘,★𝑛 ,∀𝑛}, and execute this policy in this episode. We

summarize this process in Algorithm 2.

5.2 The Learning Regret

We use regret to evaluate the efficiency of QA-UCB policy, which

is defined as the expected gap between the o�ine optimum, i.e.,

the best policy under full knowledge of all transition probabili-

ties and reward information, and the cumulative reward obtained

by QA-UCB. Specifically, denote the cumulative reward under pol-

icy 𝜋 as 𝑅(s0,𝑇 ) :=
∑𝑇
𝑡=1

∑𝑁
𝑛=1 𝑟𝑛 (𝑡), which is a random vari-

able. Then the expected average reward under policy 𝜋 satisfies

* (s0) := lim𝑇→∞ 1
𝑇 E𝜋 [𝑅(s0,𝑇 )], and the optimal average reward

is *★ := sup𝜋 * (s0), which is independent of initial states for

MDPs with finite diameter [27]. Then the regret of 𝜋 is defined

as Δ(𝑇 ) := 𝑇*★ − E𝜋 [𝑅(s0,𝑇 )] . The following theorem establishes

the finite-time performance of QA-UCB policy.

Theorem 2. The regret of QA-UCB policy satisfies

Δ(𝑇 ) = Õ
(√
𝑇
(

√

log𝑇 +𝑊
√

|S| |A|𝑁
))

. (25)

Proof Sketch: The results are achieved by combing two steps: (i) Step

1. We bound the regret due to the inherent randomness of rewards.

We show that the cumulative regret can be expressed as the sum

of regrets accumulated during each episode. (ii) Step 2. We further

classify the episodic regrets into either “failure event” (the true

MDP is not in the confidence ball) or “good event” (the true MDP

is within confidence ball). We show that these are upper bounded

as𝑊
√
𝑇 and

√

𝑇 log𝑇 , respectively.

Remark 3. QA-UCB achieves an Õ(
√
𝑇 ) regret no worse than the

state-of-the-art colored-UCRL2 [25] for RMAB. However, colored-UCRL2

suffers from an exponential implementation complexity since it derives

a policy by solving Bellman equations on a state-action space with

size growing exponentially with the number of users in each episode.

In contrast, our QA-UCB derives a policy by leveraging the proposed

lightweight Quality Index Policy along with solving an LP, whose

complexity grows linearly with the state-action space. In addition,

87



MobiHoc’22, October 17–20, 2022, Seoul, Republic of Korea Guojun Xiong1 , Xudong Qin2 , Bin Li2 , Rahul Singh3 , Jian Li1

Video Information Resolution/Bitrate
Mean

Chunk Size
Variance

The Swiss Account,

Sport,

Length: 57:34,

Chunk length: 10s

480×360
300 kbits/s

0.3144MB 0.0017

1280×720
1200 kbits/s

1.2265MB 0.0349

1920×1080
6000 kbits/s

4.3414MB 2.5067

Big Buck Bunny,

Animation,

Length: 09:46,

Chunk length: 10s

480×360
300 kbits/s

0.3217MB 0.0020

1280×720
1200 kbits/s

1.1166MB 0.0607

1920×1080
6000 kbits/s

4.7303MB 0.7479

Table 1: Properties of Swiss Account video traces [20].

the explore-then-commit mechanism has recently been adopted to

design low-complexity RL algorithms for RMAB, e.g., Restless-UCB [36]

and R(MA)2B-UCB [39] by sampling and constructing the plausible

MDPs only once via a simulator (a generative model). However, it is

infeasible to build a perfect simulator in dynamic wireless access edge

environments as considered in this paper. Furthermore, [36] sacrifices

the regret performance to Õ(𝑇 2/3) since it depends on the performance

of an o�ine oracle approximator for policy execution. While R(MA)2B-

UCB [39] achieves Õ(
√
𝑇 ) regret, the multiplicative “pre-factor” that

goes with the time dependent function in the regret is linear in |S|
and |A|, while our QA-UCB has a much smaller “pre-factor”.

6 EXPERIMENTS

In this section, we numerically evaluate the performance of our

proposed Quality Index Policy and QA-UCB.

6.1 Evaluation Setup

Video Traces.We evaluate our policies using the Swiss Account

video traces [20]. In particular, we consider the sport trace in [20]

with key traces characteristics summarized in Table 1. All videos

are encoded into multiple chunks, with each chunk of 𝐿 = 10

seconds. Each video consists of three bitrates: 300 kbits/s, 1200

kbits/s and 6000 kbits/s, from which we abstract the bitrate levels as

R = {1, 2, 3}. The total bits of a video chunk with different bitrates

across chunks are presented in Figure 2. It is clear from Table 1

that the higher the bitrate, the larger mean chunk size and variance.

This is consistent with our QoE model as described in Section 3.

Baselines.We compare our policies with the following baselines:

� Vanilla: A base case with served users being allocated the

highest resources, and no differentiation between users.

� Greedy: Each user greedily selects the action with the largest

reward for current state.

� Deep Q Network (DQN): This is a deep Q-learning policy de-

signed for multi-user wireless video streaming in [6]. We exploit

the same configurations as in [6], i.e., two hidden layers with 64

and 32 neurons in each layer with double DQN algorithm, and a

𝜖-greedy policy with decayed learning rate.

� Panda [21] uses “probe and adapt” mechanism to adjust video

bitrate based on estimated network bandwidth, where “probe”means

that users constantly measure the network bandwidth and “adapt”

indicates that users adapt their video bitrates based the “probe”.

Monte Carlo Simulation. We consider 20 users, and a total re-

source𝑊 = 10 MBps with W = {0, 0.25MBps, 0.5MBps, 1MBps}.
We apply theMonte Carlo method to estimate the success download

and state transition probabilities based on the statistics obtained

from network traces [34], in which the dynamics of a user’s down-

load speed is presented in Figure 4. Based on this, we generate a

wireless fading channel for each user in our simulation. Specifically,

in each round, each user experiences a wireless download speed

𝑤 ∈ W and𝑤/2 with probability 0.7 and 0.3, respectively. With the

allocated resource, each user receives video chunks with selected

bitrates. We use Monte Carlo simulation with 106 independent

trails to compute the average success download probability and

then generate the state transition kernel accordingly. Finally, we

set the maximum buffer size for each user as 𝐵𝑚𝑎� = 9 and the QoE

is defined as 𝑞𝑛 (𝑅) = 𝑅, 𝛼𝑛 = 3, 𝛽𝑛 = 1,∀𝑛 and 𝑅 ∈ R .

6.2 Evaluation Results

Asymptotic Optimality. We first validate the asymptotic opti-

mality of Quality Index Policy (see Theorem 1). In particular,

we define the difference of average per-user QoE obtained by any

policy with that obtained from the theoretical upper bound solved

from the LP (12)-(15) (see Proposition 1) as the per-user optimality

gap. Figure 5 shows the per-user optimality gap of Quality Index

Policy with different number of users when the total number of

frames is 𝑇 = 100 and 𝑇 = 200.We observe that as the number of

users increases, the per-user optimality gap decreases significantly

and closes to zero under both settings. This verifies the asympototic

optimality in Theorem 1. Moreover, the per-user optimality gap

also decreases with a larger frame number.

Optimality Gap. The optimality gap is defined in the similar way

as the per-user optimality gap, but measures the gap between the

total expected cumulative QoE. We run QA-UCB for 𝐾 = 100 and

𝐾 = 200 episodes with 𝐻 = 100 frames in each episode. It is clear

from Figure 6 that our Quality Index Policy performs most

closely to the theoretical optimum and significantly outperforms

existing algorithms. From Figure 6, it is also evident that QA-UCB per-

forms close to Quality Index Policy as the number of episodes

increases since QA-UCB leverages our proposed index policy for

making decisions along with the information learned from the

episodes. Furthermore, QA-UCB significantly outperforms DQN.

AverageQoE. Figure 7 shows the average QoE attained by different

policies. The error bars are drawn based on the 95% percentage

of QoE CDFs in Figure 8. It is clear that QA-UCB outperforms all

baselines. The improvement becomes more pronounced when we

compare the QoE CDF in Figure 8, where QA-UCB achieves a higher

QoE for a larger fraction of users. For example, QA-UCB achieves an

average QoE over 5 for 95% of the time whereas the next best policy

(DQN) is only about 40%. Further, we observe a steeper CDF curve

of QA-UCB compared to baselines, suggesting that it guarantees

fairness among users since most users have similar average QoE.

Rebu�ering.As discussed in Section 3, rebuffering greatly impacts

QoE experienced by users. It is clear from Figure 9 that QA-UCB en-

sures lower rebuffering than the other policies under consideration.

Learning Regret. The learning regrets of QA-UCB and DQN are

shown in Figure 10, where we use the Monte Carlo simulation

with 10, 000 independent trails. To evaluate the regret of DQN, we
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ity Index Policy.
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also modify the training horizon into episodes with each episode

containing 100 frames as our QA-UCB setting. As shown in Figure 10,

QA-UCB achieves a much smaller regret as compared with DQN. In

particular, the accumulated regret of QA-UCB plateaus around 2×104
frames while that of DQN has a non-negligible increase.

Scalability.We also evaluate the scalability of our policies by in-

creasing the number of users with a fixed number of frames𝑇 = 250

in Figure 11. As the number of users increases, the gap between

the accumulated QoE achieved by QA-UCB and that achieved by

solving LP (12)-(15) (see Proposition 1) keeps the same, while the

gap becomes larger for DQN and Panda, suggesting that QA-UCB is

more scalable to the network environments.

Consistency. As discussed in Section 3, the QoE of user 𝑛 in (2)

depends on the quality function 𝑞𝑛 (·) and parameters 𝛼𝑛, 𝛽𝑛 . We

now show that the performance improvement of our QA-UCB over

baselines is consistent across different settings. Specifically, we

further consider 𝑞𝑛 (𝑅) = 0.5𝑅, 𝛼𝑛 = 1, 𝛽𝑛 = 1,∀𝑛 and 𝑅 ∈ R,
under which QA-UCB still significantly outperforms other policies

in shown Figure 12, similar to our observations in Figure 6.

7 CONCLUSION

We studied the problem of adaptively choosing bitrates and allo-

cating network resources for maximizing the cumulative QoE of

multiple users that are streaming videos over a shared wireless ac-

cess edge network. Though it can be cast as a finite-horizon restless

bandit problem, it is provably hard to solve. To circumvent this,

we designed a computationally appealing Quality Index Policy

that is provably asymptotically optimal. Since the wireless edge en-

vironment is highly dynamic with system parameters varying over

time, we further proposed an index-aware RL algorithm dubbed as

QA-UCB. We proved that QA-UCB achieves a sub-linear regret with a

low-complexity since it fully leverages our proposed index policy

for making decisions. To the best of our knowledge, this is the

first work that designs a lightweight index-aware reinforcement

learning policy with sub-linear regret in the context of adaptive

video streaming with multiple users in wireless edge networks. We

performed simulations using real-world video traces, and observed

that our policies outperform conventional ones.
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