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ABSTRACT

We study adaptive video streaming for multiple users in wireless ac-
cess edge networks with unreliable channels. The key challenge is to
jointly optimize the video bitrate adaptation and resource allocation
such that the users’ cumulative quality of experience is maximized.
This problem is a finite-horizon restless multi-armed multi-action
bandit problem and is provably hard to solve. To overcome this chal-
lenge, we propose a computationally appealing index policy entitled
Quality Index Policy, which is well-defined without the Whittle
indexability condition and is provably asymptotically optimal with-
out the global attractor condition. These two conditions are widely
needed in the design of most existing index policies, which are diffi-
cult to establish in general. Since the wireless access edge network
environment is highly dynamic with system parameters unknown
and time-varying, we further develop an index-aware reinforce-
ment learning (RL) algorithm dubbed QA-UCB. We show that QA-UCB
achieves a sub-linear regret with a low-complexity since it fully
exploits the structure of the Quality Index Policy for making de-
cisions. Extensive simulations using real-world traces demonstrate
significant gains of proposed policies over conventional approaches.
We note that the proposed framework for designing index policy
and index-aware RL algorithm is of independent interest and could
be useful for other large-scale multi-user problems.
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1 INTRODUCTION

Video streaming has dominated the traffic carried by wireless access
edge networks in recent years. It has already accounted for 59%
of the whole Internet traffic in 2016 and is expected to reach 79%
in 2022 [32]. This trend poses significant challenges to meet the
stringent constraints on the required quality of service provided by
the network so as to satisfy the quality of experience (QoE) of users.
Exacerbating this challenge is the fact that many emerging video
streaming services such as gaming and smart gyms often involve
interactions between multiple users, which may compete for the
limited and highly dynamic wireless edge network resources.

In this paper, we are interested in designing adaptive stream-
ing algorithms which ensure high QoE for multiple users that are
streaming video files in wireless access edge networks. Specifically,
each user receives video chunks that can be transmitted over unreli-
able wireless channels at varying bitrates, and competes for the limited
wireless network resources for video delivery. This is a challenging
problem that lacks effective solutions in the literature. Most of the
existing results are based on the widely used Dynamic Adaptive
Streaming over HTTP (DASH) 29, 31], and only study a single-user
setting [22, 30, 42]. However, when multiple users compete for
wireless network resources, the performance of these policies could
degrade dramatically [19, 33]. Existing works for scheduling video
files to multiple users often consider an infinite-horizon setting
[5, 12]; however, the time horizon of transmitting video contents
is rarely infinite, especially for emerging applications with short
contents on platforms like TikTok, Twitch, YouTube, etc. These
issues are further pronounced in wireless access edge networks
where the links connecting the wireless access point to the users
are unreliable.

To address these challenges, we pose the problem of adaptive
video streaming for multiple users in wireless access edge networks
with unreliable channels so as to maximize the cumulative QoE
as a Markov decision process (MDP) [27] in Section 3. This MDP
turns out to be a finite-horizon restless multi-armed multi-action
bandit (RMA2B) problem [13, 35, 39, 43] since we can choose bitrates
amongst multiple levels (i.e., multiple actions) for video streaming
in wireless access edge networks. Though we can solve this RMA2B
by using generic algorithms for MDPs such as the value iteration
[27], this approach suffers from the curse of dimensionality, and
also does not provide any insight into the solution, since it com-
pletely ignores the rich structure present in the underlying MDP.
Much effort has been devoted to developing low-complexity and
near-optimal solutions for such MDPs, which are largely inspired
by the celebrated Whittle index policy [38]. However, Whittle-like
policies are only well defined when the underlying MDP is indexa-
bile. Establishing the Whittle indexability of restless multi-armed
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bandit (RMAB)! or RMA2B problems is intractable in many scenarios,
especially when the probability transition kernel of the MDP is con-
voluted [24]. As a result, except for a few special cases, the Whittle
indices of many practical problems remain unknown. Finally, most
of the existing index policies [13, 35, 37, 45] are provably asymp-
totically optimal under a global attractor condition®, which is often
hard to establish and is only verified numerically [35, 45].

In this paper, we circumvent these limitations by designing new
index policies for multi-user adaptive video streaming in wireless
access edge networks in Section 4. We first obtain a relaxed problem
which can be equivalently formulated as a linear programming
(LP) problem using occupancy measures [2]. Then we propose an
index policy entitled Quality Index Policy, where each user is
associated with a so-called “quality index”, which is merely based
on the occupancy measures solved from the LP. As a result, our
index policy is computationally efficient. Unlike the Whittle-like
policies, our index policy is well-defined without the requirement of
indexability. In contrast with [13, 35, 37, 45], our proof of asymptotic
optimality holds regardless of the global attractor condition since
we consider a finite-horizon setting. We note that our proposed
framework of designing index policies is very general, and can be
applied to other MDP problems where multiple users compete for
limited network resources with multiple actions.

Since the wireless access edge network environment is highly dy-
namic, system parameters such as wireless channel conditions and
user video playback buffer are typically unknown and time-varying,
we further explore the possibility of designing a lightweight ma-
chine learning aided algorithm to address these issues in Section 5.
Though directly applying popular reinforcement learning (RL) algo-
rithms such as UCRL2 [15] or Thompson Sampling [11] may resolve
these issues, the computational complexity and regret of resulting
solutions grow exponentially with the number of users and state
spaces, making such solutions too slow to be of any practical use. To
address these challenges, we propose a RL based algorithm dubbed
Quality Index Aware UCB (QA-UCB) that leverages the inherent struc-
ture of our problem. We show that QA-UCB achieves an optimal
sub-linear regret with a low-complexity since it not only leverages
the approach of optimism-in-the-face-of-uncertainty [3, 15] to bal-
ance exploration and exploitation, but more importantly, it learns
to leverage the near-optimal Quality Index Policy for making
decisions. As a result, QA-UCB is easy to implement in large-scale
systems. To the best of our knowledge, our work is the first to
develop an index-aware RL policy in the context of adaptive video
streaming for multiple users in wireless access edge networks.

Finally, our extensive simulations using real video and network
traces in Section 6 demonstrate that our proposed polices produce
significant performance gain over conventional approaches.

2 RELATED WORK

Video Streaming in Wireless Networks has been extensively
studied in different scenarios, where most problems were formu-
lated as constrained optimization problems, e.g., [21, 30, 42], which

n the original form of RMAB, each arm can be either pulled (active) or not pulled
(passive). RMA2B generalizes RMAB to the case that each arm can take multiple actions,
which adds an additional layer of uncertainty and complexity.

2[37] showed that Whittle index policy fails to be asymptotically optimal if the global
attractor condition is not satisfied.
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were solved based on gradient algorithm, Lagrangian methods,
game theory, etc. MDP, a systematic stochastic optimization ap-
proach has also been adopted to model video streaming [7, 10, 44].
However, these results cannot be applied to the multi-user set-
ting due to the curse of dimensionality. [6, 19, 33] modeled the
(multi-user) video streaming problem as a MDP and leveraged off-
the-shelf (deep) RL algorithms (e.g., Q-learning and Actor-critic
algorithm) directly. As a result, these methods are often computa-
tionally expensive since they contend directly with an extremely
high dimensional state-action space. Further, these methods have
no finite-time performance analysis of the proposed RL algorithms.
To the best of our knowledge, none of the above works provided an
index based policy for adaptive video streaming for multiple users
in wireless access edge network. Such an index based approach
naturally lends itself to a lightweight RL framework that can fully
exploit the structure of index policy so as to reduce the high compu-
tational complexity. This index-aware RL algorithm and the regret
analysis further distinguish our work from existing results.
Restless Bandits and Reinforcement Learning. RMAB is a gen-
eral model for sequential decision making problems but is PSPACE
hard [26]. To this end, Whittle [38] proposed a heuristic policy
for the infinite-horizon RMAB where the decision maker can only
choose two actions for each arm. [13, 35, 45] generalized this to the
setting with multiple actions/channels. However, they are either (i)
still limited to proving (partial) indexability; or (ii) considering an
infinite-horizon setting with the proposed policies only guaranteed
to be asymptotically optimal [37] under a difficult-to-verify global
attractor condition. In contrast, we consider a finite horizon, and
hence existing techniques cannot be directly applied. Finite-horizon
RMAB or RMA2B have been less studied. To the best of our knowledge,
[14, 43] are the closest to ours; however, [14] studied RMAB with
binary actions and [43] focused on homogeneous users with the
same underlying environments while we consider a heterogeneous
multi-user model with multiple actions. Finally, all above works
assumed that the true system parameters are known.

There are also works examining RMAB from a learning perspec-
tive, e.g., [25] and references therein; however, these methods did
not exploit the special structure available in the problem and con-
tent directly with an extremely high dimensional state-action space.
For example, the color-UCRL2 [25] suffers from the exponential
computational complexity since it needs to solve Bellman equations
on a state-space with size growing exponentially with the number
of arms. Recently, [4, 9, 39-41] developed RL-based algorithms to
explore the problem structure through index policies. However,
[4, 9] lacked finite-time performance analysis and the proposed
multi-timescale stochastic approximation algorithms often suffer
from slow convergence; [40] considered an infinite-horizon setting
using Whittle index policy; and [39, 41] was based on a simulator
for exploration, which cannot be directly applied here since it is dif-
ficult to build a perfect simulator in complex and dynamic wireless
access edge network environments.

3 MODEL AND PROBLEM FORMULATION
3.1 Video Streaming Model

We consider a wireless access edge network as shown in Figure 1,
that consists of a DASH server, an access point (AP) and multiple
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Figure 1: A multi-user adaptive video streaming model in
wireless access edge networks with unreliable channels.

users. The AP connects to the DASH server using the wired reliable
backhaul link, and serves N users denoted as N = {1,---,N}
through unreliable wireless channels. The DASH server stores F
video files denoted as ¥ = {1,2,..., F}, each of which is divided
into a set of consecutive video segments or chunks, consisting of L
seconds of video. Each video chunk is further encoded at different
bitrates. Let R be the finite set of all available bitrate levels. The AP
requests video chunks of various bitrates from the DASH server,
and serves the N users through unreliable wireless channels that
are constrained in network resources used for chunk transmissions.

The operating time is divided into multiple units with each unit
called a “frame”, which is indexed by t € 7 = {1,---,T}. Each
frame consists of multiple physical layer transmission slots since
the timescale at which the chunks are requested differs 1-3 orders
of magnitude from the timescale at which the physical layer trans-
missions are scheduled [5, 19, 33]. Without loss of generality, we
assume that the duration of each frame is L seconds, equal to the
duration of a whole video chunk. We develop algorithms that adap-
tively choose the bitrates of video chunks. It is important to identify
a proper QoE model that measures the satisfaction of a user, which
in turn is judged by its long-term engagement [1]. While the QoE
might be user-specific, it is widely believed that QoE is largely
influenced by the following three key factors [18, 42]: the video
quality, the quality variation and the frequency of rebuffering events.

Each user stores its video chunks in its own playout buffer before
playing it. It plays one entire video chunk in each frame ¢. Let B, ()
be the buffer occupancy (measured in seconds) of user n in frame
t, i.e, the play time of the video chunk left in the buffer. Since
each chunk contains L seconds of video, we denote the set of all
possible buffer occupancy as 8 := {0, L, 2L, - - - , BmaxL}, Vn € N3
The capacity of the buffer is equal to BmaxL, and depends upon
the storage limitations of users, as well as the service provider’s
policy. In case the buffer is empty and there is no video chunk to
play, there is a video interruption. A rebuffering event occurs when
the buffer empties, and the user has to wait until the next chunk is
delivered to it. Thus, rebuffering events should be avoided so as to
guarantee a stall-free playback.

At the beginning of each frame ¢, the AP chooses the set of users
N(t) € N to serve. It also chooses the chunk bitrate R, (t) € R £
(0, Rmax| for user n € N(t), where Ryax > 0 is the maximum
available bitrate. The relation between the video bitrate and the

30ur results hold for user-dependent By, max, V1, at the cost of complicated notations.
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Figure 2: The total bits of a video chunk with different bi-
trates in real video traces [20]. See Section 6 for more details.

0

video quality, as a function of the bitrate, experienced by user n
is described by the function g,(-) : R — Ry, Vn. Thus, if R,(¢)
denotes the bitrate of user n during frame t, then the perceived
video quality is equal to g, (R, (t)). We assume that ¢, (-),n € N are
non-decreasing [33, 42]. This means that a higher bitrate yields a
higher video quality. Note that we allow for g, (-) to be non-convex,
thus for example it could be sigmoid.

The AP then fetches video chunks of these bitrates from the
DASH server, and transmits them to users over unreliable wireless
channels. The transmission of video chunks consumes network
resources*
video transmission is constrained by the budget W. Let Wy, (¢) be the
amount of resource that is used for video transmission of user n in
frame t. Let D, (t) denote the number of video chunks with bitrate of
R, () that can be successfully delivered by allocating W;, (t) amount
of network resource, where 0 < D, (¢) < Bpax + 1 — By (t)/L. We
model D, (t) as a random variable with probability distribution
P(:|Rn (1), Wn (1)) to reflect the randomness of wireless fading and
video content. Denote C(W;,(t)) as the throughput of the wireless
link between the AP and user n when video chunks are transmitted
at resource level Wy, (t) in frame ¢, and let Q(R,(¢)) be the total
bits of a video chunk with bitrate R, (). C(W,(¢)) is a random
variable to capture the wireless fading effect given W, () amount
of allocated network resource. Similarly, Q(R,(¢)) is a random
variable to model the randomness of video content, as observed in
Figure 2, where the total bits of a video chunk with three different
bitrates vary across chunks in real video traces [20]. Both C(W,, (1))
and Q(R, (1)) affect the distribution of Dy, (t), i.e.,

. The total amount of network resources available for

P(Dn(t) = d|Rn (1), Wa(1)) =
d+1 ) d )
D10 Ra(1)) > C(Wa() = 370D (Ra(1)) |, (1)
i=1 i=1

where Q(i) (Rn (1)) denotes the i-th realization of Q(Ry,(t)). By con-
vention W, (¢t) = 0 means no resource is allocated to user n and
hence P(Dy(t) = 0|R,(%),0) = 1 and P(D,(t) = d|R,(t),0) =
0,Vd € [1, Bmax + 1 — Bp(t)/L].

“Multiple types of network resources fit into our model. For example, (i) transmis-
sion power is used to combat the randomness of wireless channels, which is usually
controlled at the physical layer. (ii) downlink bandwidth is allocated by the AP into
disjoint sub-bands to each user, which determines the channel throughput. (iii) time
can be allocated to serve users one-by-one and each user consumes a certain amount
of time slots for transmission.
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Figure 3: An illustration of buffer dynamics of user n.

To achieve high efficiency of adaptive video streaming over wire-
less edge network, it is expected that the quality of the video chunks
transmitted to users to be as high as possible. Moreover, the video
quality should also be kept as “smooth” as possible by avoiding
frequently switching the quality. Based on the discussion above, we
let the instantaneous QoE of user n at frame ¢ be given as follows:

QoE,,(t) = Dp(t) - qn(Rn(t)) - anlyp, (1)=0}
= Br|qn(Rn (1)) = qn(Tn(t))] IL{D,l(t)>0}) )

where T}, () tracks the bitrate of last successfully received chunk for
user n before frame t, o, and B, are non-negative parameters that
capture the importance of rebuffering event and quality variation
of user n in the QoE evaluation. The QoE defined in (2) is a random
variable and the value depends on D, (t). Note that quality variation
only occurs when newly successfully downloaded chunks in current
frame have different quality compared with the last successfully
received chunks. Since the network resource is limited, the above
QoE is achieved under the following constraint

Z Wa(t) < W, VteT.
neN(t)

®)

3.2 MDP-based Problem Formulation

We pose the problem of adaptively choosing bitrates and allocat-
ing resource to maximize the cumulative user-perceived QoE as a
finite-horizon MDP. Specifically, each user n is modeled as a MDP
(Sn, An, P, rn, 50, T). We begin by describing the state-space Sy,
action space Ay, transition kernel P, : S, X A, XS, — R, reward
function rp, : Sp X A, — R of this MDP of user n. For simplicity,
we assume that all N users have the same initial distribution s,
and the time horizon T < co.

State. Denote S, (t) := (B (1), (t)) € Sy, as the state of user n at
frame t, where By, (t) € B is the buffer occupancy at frame ¢, T}, (¢) €
R is the bitrate of the video chunk which was last successfully
received before frame ¢, which we call “quality tracker”. We let
Sp =8 =8x%xR,and also S(t) = (S1(¢),---,SNn(1)).

Action. The AP makes the following two decisions for each user
n at the beginning of frame ¢: (i) the chunk bitrate R, (¢), and (ii)
the resource Wy, () allocated to deliver it. Denote this by A, (t) =
(Rn (1), Wn (1)) € Ay, where R, (1) € R, Wy(t) € ‘W £ [0, W], and
Ap= A =R xW.Alsolet A(t) = (A1(t),--- ,AN(1)).

An adaptive video streaming policy 7 maps the states of all
users S(t) to video streaming decisions A(t), i.e., A(t) = n(S(t)),
VieT.

Transition Kernel. When user n is served and a rebuffering event
does not occur in frame t, i.e., B,(t) = B > 0, Vn € N, user
n plays one video chunk in frame t. If D,(¢t) = d chunks are
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successfully delivered to user n with bitrate R, (t) by allocating
W, (t) amount of resource, the buffer occupancy of user n becomes
B+ (d — 1)L, and the quality tracker is updated to be the quality
of the successfully received chunks. This occurs with probability
P(Dp(t) = d|R,(t), W,(t)) as defined in (1). More precisely, we
have

B(Su(t+1) = (B+(d= DL Ra(0)ISa(1) = (B.T),

An(1) = (Ra(2), Wn(t))) =P(Dn(t) = d|Rn (), Wn (1)), (4)

for Vd € [1, Bmax + 1 — B,(t)/L]. Otherwise, the buffer occupancy
is decreased by L seconds, and the quality tracker is unchanged,

B(Su(t+1) = ((B= 1)1, D)ISa() = (BT),

An(t) = (Ra(2), Wn(t))) =P(Dn(t) = 0[Rn (1), Wa(1)). (5)

Similarly, when user n is served and a rebuffering event occurs
in frame t, i.e., B,(t) = 0, user n has no video chunk to play in
frame t. As a result, its buffer occupancy becomes dL (rather than
(d = 1)L in (4)) when Dy, (t) = d chunks are successfully delivered,

P(Su(t+1) = (AL Ra(1)ISn(1) = (0.T),

An(t) = (Rn(t), Wn(t))) =P(Dn(t) = d|Ru(t), Wn (1)), (6)

for Vd € [1, Bmax + 1 — B, (t)/L]. Otherwise, the buffer occupancy
maintains to be zero,

B(Su(t+1) = (0.1)Sx(1) = (0.T),

An(t) = (Ra(2), Wn(f))) =P(Dn(t) = 0[Rn (1), Wa(1)). (7)

When user 7 is not served in frame t, the state transition proba-
bility of user n satisfies

B(Sn(t+1) = ((B= L)1, )ISa(t) = (BT),

An(t) = (Rn(t),O)) - LVYBeB. (8

In the following, we provide an example as shown in Figure 3 to
illustrate the buffer dynamics of user n as defined in (4)-(8).

EXAMPLE 1. Suppose that the buffer occupancy of user n is B, (t —
1) = 2L at the beginning of frame t — 1, and it is served but receives no
video chunk in this frame. Thus its buffer occupancy becomes By, (1) =
L at the beginning of frame t. This event occurs with probability
defined in (5). In frame t, user n plays one chunk and successfully
receives one chunk, which occurs with probability defined in (4). To
this end, By (t+1) = L. Suppose that user n is not served in frame t +1
and hence we have By (t + 2) = 0 since it still plays one chunk. This
event occurs with probability defined in (8). As a result, a rebuffering
occurs in frame t +2 and user n cannot play a video. Suppose that user
n is served in this frame but no video chunk is successfully delivered,
i.e., Bn(t +3) = 0, which occurs with probability defined in (7). Thus
a rebuffering event occurs again in frame t + 3 and user n cannot play
a video chunk. Now suppose user n is served in this frame with 3L
video chunks successfully delivered. Hence we have B, (t +4) = 3L,
which occurs with probability defined in (6). In frame t + 4, user
n plays one chunk and successfully receives two chunks, and hence
Bn(t +5) = 4L. This occurs with probability defined in (4). Finally,
similar event occurs in frame t +5 as in frame t.
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Reward. The instantaneous reward/QoE received by user n in
frame t is equal to (2). In particular, we write it explicitly as a
function of state and action as QoE,, (Sn (1), An(1)).

Adaptive Video Streaming Problem. Our objective is to design
a policy 7 that maximizes the expected cumulative rewards of all
N users, while ensuring that the network resource utilization is
below its capacity, i.e., we have to solve the following problem:

N T
max B, ZZQoEn(Sn(t),An(t))
n=1t=1

N
st. Z Wa(t) <W, VteT, )
n=1
where the subscript denotes the fact that expectation is taken with
respect to the measure induced by the policy 7. We refer to (9) as
the “original problem”. Though in theory this could be solved using
dynamic programming [27], the complexity is O(|S|V|A|N), and
hence suffers from the curse of dimensionality. We overcome this
difficulty by developing an index-based policy that is computation-
ally appealing and provably optimal.

4 INDEX POLICY DESIGN AND ANALYSIS

We now propose a class of index policies for the QoE maximization
problem (9). Our proposed solution utilizes a so-called “relaxed
problem”, whose solution provides an upper bound for the original
problem (9). This relaxed problem can be posed as a linear pro-
gramming (LP). We solve this LP and obtain an optimal occupation
measure, which is then used to develop an index policy entitled
Quality Index Policy for the QoE maximization problem (9).
We show that our proposed index policy is asymptotically optimal
when both the number of users and the resource constraint go to
infinity with their ratio holding constant.

4.1 The Relaxed Problem

We relax the instantaneous constraints that are required to hold in
each frame ¢ in the original problem (9) so that now they need to
hold only on average. This gives us the following relaxed problem

N T
max E, (Z Z QOEn(Sn(t),An(t)))

n=1t=1

N
st. Ep (

n=1

w,,(t)) <W, VteT. (10)

Then we immediately have the following result

LEMMA 1. The optimal value achieved by the relaxed problem in
(10) is an upper bound of that of the original problem (9).

Proor. The proof is straightforward since the constraint in (10)
expands the feasible region of (9). O

It is well known (see e.g. [2]) that the relaxed problem (10) can be
reduced to a LP in which the decision variables are the occupation
measures of the controlled process. We begin with some definitions.

DEFINITION 1. (Occupancy measure) [2]. The occupancy measure
1 of a policy m in a finite-horizon MDP is defined as the expected
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number of visits to a state-action pair (s, a) in each frame t. Formally,
u :{,un(s, @) =P(Su(t) = 5, An(t) =a) : Vn € Nt € fr}. (1)

It can be easily checked that } (4 pin(s.at) = 1 and 0 <
tn(s,a,t) < 1,Vn e N,s € S,a € A, t € 7. Hence the occu-
pancy measure /i, Vn is a probability measure. Define the expected
value of QOE,, (S, (1), An(t)) as ru(s, a,t). Using this definition, the
relaxed problem (10) can be reformulated as a LP [2]:

PROPOSITION 1. The relaxed problem (10) is equivalent to the
following LP

N T

mﬁx Z Z Z Un (s, a; t)rp(s, a;t) (12)
n=1t=1 (s,a)
N

s.t. Z Z wip(s,a;t) < W, Vi € T, (13)

n=1 (s,a)
Z fin(s, ast) :Z yn(s', a’;t=1)P,(s",a’,s), (14)
acA (s",a")
Z tn(s,a,1) =so(s), VseS,neN, (15)
aeA

where (13) is a restatement of the constraint in (10), and w is associ-
ated with the action a; (14) indicates the transition of the occupancy
measure from time frame t — 1 to time frame t; and (15) represents
the initial condition at frame 1.

Let p* = {,u,’{(s, a;t):neN,te T} be an optimal solution to
the above LP. We now construct a Markovian randomized policy
E ={&(t) :ne N,t € T} from u* as follows: if the state S, ()
in frame t is equal to s, then &5 (¢) chooses the action a with a
probability equal to

M (s, a;t)

)= o D

If the denominator of (16) is equal to zero, i.e., state s for user n
is not reachable at time ¢, user n can be simply made “unserved”,
ie, &5 (s,0;¢) =1and & (s,a;t) = 0,Ya € A \ {0}. Note that £* is
non-stationary since it is time-dependent and is Markovian since it
makes decisions on the basis of current state only.

(16)

4.2 The Quality Index Policy

Our proposed policy attaches the following index 7, (s; t) to each
user n in frame t,

Tu(s;t) = Z EX(s.ait), VneN,
acA\{0}

where &¥ (s, a;t) is defined in (16). We call this index the quality
index since the probability & (s, a; t) is related with the quality of
action q in state s in frame t towards the QoE maximization, and
is determined by the occupation measure derived by solving the
LP (12)-(15). Let 7 (t) := {I(s;t) : n € N'} denote the set of quality
indices associated with all N users in frame ¢.

However, the optimal indices for the relaxed problem (10) is not
always feasible for the original problem (9), since in the latter, at
most W network resources can be consumed by all users at a time.
To resolve this issue, our Quality Index Policy prioritizes the
users according to a decreasing order of their quality indices, and

17)
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Algorithm 1 Quality Index Policy

1: Initialize state S, (1) for user n, ¥n and N(t) = 0, Vt.

2: Construct the LP in (12)-(15) and solve the occupancy measure
[T

3. Compute f;‘{(s, a,t),Vs,a,t according to (16);

4: Construct the quality index set 7 (t) := {Z,(s;t) : n € N} as
in (17), and sort 7, (s; t) in a decreasing order;

5. while ZnGN(t) Wy (t) < W do

6: Serve users with quality indices in a decreasing order (Step
4) and randomly select a feasible activation action according to
the probability &¥ (s, a; t) in (16).

7. end while

then serves the maximum number of users as long as the network
resource constraint 3, ¢ (s) Wn(t) < W is satisfied, where N ()
is the subset of users that the AP transmits video chunks to in frame
t. The remaining users, i.e. those in the set N'\ N (1), are not served
in frame t. Specifically, for each served user, its action is randomly
selected according to the probability &5 (s, a; t) in (16). This policy
is summarized in Algorithm 1, and denoted as 7* = {7},n € N'}.

REMARK 1. Quality Index Policy is computationally tractable
since it requires us to solve a LP with N|S||A|T decision variables.
Note that the design of our index policy can be applied to general
multi-agent MDP with constraints, and not just the QoE maximization
problem for multi-user video streaming over wireless edges. In that
sense, the applicability of our proposed framework is of independent
interest, and beyond the current problem. Finally, our proposed index
policy is well-defined even when the problem is not indexable [38].

4.3 Asymptotic Optimality

We now show that our Quality Index Policy is asymptotically
optimal in the same asymptotic regime as that in Whittle [38] and
others [35, 37, 45]. For abuse of notation, let the number of users
be nN and the resource constraint be W in the asymptotic regime
with n — oco. In other words, we consider N different classes of
users with each class containing 1 users. Let QoE” (W, nN) denote
the expected QoE of the original problem (9) under an arbitrary
policy 7 for such a system. Denote the optimal policy for the original
problem (9) as 7°P! := {ﬂspt,\%n e N}.

THEOREM 1. TheQuality Index Policy (Algorithm 1)is asymp-
totically optimal, i.e.,

lim ~ (QoE”*(qw, nN) — QE™"" (nW, ryN)) 0. (18

n—on

REMARK 2. Theorem 1 indicates that as the number of per-class
users goes to infinity, the average gap between the performance
achieved by our Quality Index Policy z* and the optimal policy
7°Pt tends to be zero.

Proof Sketch: For any policy 7* derived from Algorithm 1, the left
hand side of (18) is non-positive. Hence we need to show that for
7*. Let B, (s;t) be the number of class n users in state s at time ¢
and Dy, (s, a; t) be the number of class n users in state s at time ¢ that
are being served with action a € A \ {0}. By induction, we show
that By, (s;t)/n — Pu(s;t) and Dy (s,a;t)/n — Pp(s;t)Ex(s, ast),
respectively, as  — oo almost surely. This leads to the fact that
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%QOE”*(UW, nN) = ZnN=1 Zthl (Z)y:(s, a;t)rn(s,a;t),
s,a

which is an upper bound of lim; %QOE”O‘M (nW,nN).

lirnq_NXJ

5 REINFORCEMENT LEARNING SOLUTIONS

The computation of the Quality Index Policy requires the knowl-
edge of transition probabilities and reward functions associated
with the user-level MDPs that were discussed in Section 3.2. As-
suming that these parameters are known is unrealistic since the
wireless access edge network environment is often highly dynamic
with these parameters varying over time. Hence, we now design
learning algorithms that combine the optimism principle on top
of the Quality Index Policy. We denote the resulting learning
rule as Quality Index Aware UCB (QA-UCB). We prove that QA-UCB
achieves an optimal sub-linear regret. Moreover, the multiplicative
“pre-factor” that goes with the time-horizon dependent function in
the regret, is quite low since it fully leverages the structure of the
Quality Index Policy for making decisions.

5.1 The Learning Algorithm: QA-UCB

Algorithm Overview. We adapt the upper confidence bound (UCB)
strategy [3] to our problem and call our RL algorithm as the QA-UCB
policy, which is summarized in Algorithm 2. Specifically, QA-UCB
decomposes the total operating time into episodes, and each episode
is composed of H consecutive frames. Let K be the total number
of episodes until time T. We denote the k-th episode by Hj. and
let 73 denote the time when it starts. Thus, T = KH. Each episode
consists of two phases: planning and policy execution.

At the planning phase of each episode (lines 2-4 in Algorithm 2),
QA-UCB constructs a confidence ball that contains a set of plausible
MDPs [15] for each user n € N. In order to obtain an optimistic
estimate of the true MDP parameters, QA-UCB solves an optimistic
planning problem where the MDP parameters can be chosen from
the constructed confidence ball. This problem turns out to be a
LP where the decision variables are the occupancy measures cor-
responding to the process associated with N users. The planning
problem, which is referred to as extended LP in Algorithm 2 is
described below. QA-UCB then defines the corresponding Quality
Index Policy using the solutions to the extended LP.

At the policy execution phase of each episode (line 5 in Algo-
rithm 2), QA-UCB executes the constructed Quality Index Policy.
The key contribution and novelty of our proposed RL algorithm
is to leverage our proposed Quality Index Policy for making
decisions, rather than directly contending with an extremely large
state-action space to balance between exploration and exploitation.
These together contribute to the sub-linear regret of QA-UCB with
a low-complexity, which is discussed in detail later.

Optimistic Planning. QA-UCB maintains two counts for each user
n. Let Cﬁ_l (s, a) be the number of visits to state-action pairs (s, a)
until 7, and C],j_l (s,a,s") be the number of transitions from s to
s’ under action a. At 7, QA-UCB updates the respective counts
as Ck(s,a) = Ck™'(s,0) + T 1(Sk(h) = 5, AK(h) = a), and
Ch(s,a,5") = Cr (s, a,8")+ X0 1(SK(h+1) = 5'|SK(h) = 5, AR (h) =
a),V¥(s,a) € SXx A and V(s,a,s") € S X A x S for user n, where
Sﬁ(h) is the state of user n at the h-th time frame in episode k.
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Algorithm 2 QA-UCB Policy

Require: Initialize C}(s,a) = 0, and f’,ll (s'|s,a) = 1/|8S]
1: fork=12,--- ,Kdo
2 Construct P,’f (s,a) and Rﬁ(s, a) according to (21) at 7;
3 Compute the optimal solution to the extended LP (23);
4: Recover £5* according to (24) and establish the correspond-
ing Quality Index Policy 7k*;
5 Execute 75* in the current episode.
6: end for

At 73, QA-UCB estimates the true transition model and the true
reward by the corresponding empirical averages as:

Chl(s.a8)

sk B
Pa(s'ls.a) = max{Cﬁ_l(s, a), 1}’ 49)
k-1 H
> 2 ru(s,a)L(Sf(h) =s, AL (h) =a)
7k (s,q) = =12 (20)

rnax{Cﬁ_1 (s,a),1}

The QA-UCB further defines confidence intervals for the transition
probabilities (resp. rewards) such that the true transition probabil-
ities (resp. rewards) lie in them with high probabilities. Formally,
for V(s,a) € S X A, we define

Pk (s,a) :={PK(s'|s.a).¥s": |PK (s'|s.a) - DK (s'|s.a)| < 6K (s.0)},

RE (s,a) :={FX (s.a).Vs.a: X (s.0) =K (s.a) + 5K (s,0)}, (21)

where the size of the confidence intervals 5§ (s, a) is built according
to the Hoeffding inequality [23] for € € (0,1) as

1 4|S||A|N(k—1)2H?2
5k s,a)= lo .
(o) \/20’5-1(s,a) f e )

(22)

To this end, the set of plausible MDPs associated with the con-

fidence intervals is M,Ii = {My = (S, A, Py) : P,If( |s,a) €
7’,’1‘ (s, a), f'],i (s,a) € R’,ﬁ(s, a)}. Then QA-UCB computes a policy a*k
by performing optimistic planning. In other words, given the set of
plausible MDPs, it selects an optimistic MDP and an optimistic pol-
icy by solving a “modified LP”, which is similar to the LP (12)-(15)
but with transition and reward functions replaced by lsrlf( |-,+) and
fﬁ (+,+;+), Vs, a, h, n, k, respectively, in the confidence intervals (21)
since the corresponding true values are not available.
The Extended LP Problem. We cannot directly solve the “modi-
fied LP” since the true transitions and rewards are unknown. To
this end, we rewrite it as an extended LP problem by leverag-
ing the state-action-state occupancy measure zﬁ(s, a,s’, h) defined
as z],i (s,a,s",h) = Pu(s’]s, a)yﬁ(s, a, h) to express the confidence
intervals of the transition probabilities. The extended LP over
Zk = {zﬁ(s, a,s’,h),¥n € N} is given as follows:

H N
max ZZ Z zﬁ(s,a,s';h)r’,]f(s,a;h)
" h=1n=1(s,as)

N
s.t. Z Z wzﬁ(s, a,s’;h) < W, Vhe H,

n=1(s,a,s’)
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Zzﬁ(s, a,s’;h) = Z zﬁ(s', a',s,h—1), VYheH,
a,s’
zK(s,a,5";h)
2y K (s,a,y;h)
K(s.a,s";h .
- % + (P],f(s’|s, a) - 55(5, a)) <0,
Zy Zn(s’ a, y; h)
Zzﬁ(s, a,s’;1) = slg(s), Vs € S,Vne N.
as’
This LP has O(|S|?|A|HN) constraints and decision variables. Such
an approach was also used in the context of adversarial MDPs
[16, 28] and in constrained MDPs [8, 17]. Once we compute the
optimal solution ZK* to (23), we recover the Markovian randomized
policy &* as

s’,a

— (PR (s)s,a) + 85 (s.a)) < 0,

(23)

Sy 2 (a5 h)
Db 2% (s,b,57; h)
Finally, we compute the quality index in (17) using the policy de-

rived in (24), from which we construct the Quality Index Policy
k,ox
hex

&> (s, ash) = , VneN. (24)

= {n],f’*, Vn}, and execute this policy in this episode. We
summarize this process in Algorithm 2.

5.2 The Learning Regret

We use regret to evaluate the efficiency of QA-UCB policy, which
is defined as the expected gap between the offline optimum, i.e.,
the best policy under full knowledge of all transition probabili-
ties and reward information, and the cumulative reward obtained
by QA-UCB. Specifically, denote the cumulative reward under pol-
icy 7 as R(so,T) := Zthl Zﬁjzl rn(t), which is a random vari-
able. Then the expected average reward under policy 7 satisfies
y(s0) == lim7_, %En [R(s0, T)], and the optimal average reward
is y* = sup, y(so), which is independent of initial states for
MDPs with finite diameter [27]. Then the regret of x is defined
as A(T) := Ty* = E;[R(s¢, T)]. The following theorem establishes
the finite-time performance of QA-UCB policy.

THEOREM 2. The regret of QA-UCB policy satisfies
A(T) = (j(ﬁ(\/logT + W\/ISII&“IIN)).

(25)

Proof Sketch: The results are achieved by combing two steps: (i) Step
1. We bound the regret due to the inherent randomness of rewards.
We show that the cumulative regret can be expressed as the sum
of regrets accumulated during each episode. (ii) Step 2. We further
classify the episodic regrets into either “failure event” (the true
MDP is not in the confidence ball) or “good event” (the true MDP
is within confidence ball). We show that these are upper bounded

as WVT and /T log T, respectively.

REMARK 3. QA-UCB achieves an (5(\/?) regret no worse than the
state-of-the-art colored-UCRL2 [25] for RMAB. However, colored-UCRL2
suffers from an exponential implementation complexity since it derives
a policy by solving Bellman equations on a state-action space with
size growing exponentially with the number of users in each episode.
In contrast, our QA-UCB derives a policy by leveraging the proposed
lightweight Quality Index Policy along with solving an LP, whose
complexity grows linearly with the state-action space. In addition,
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M
Video Information | Resolution/Bitrate ean. Variance
Chunk Size
The Swiss Account, 480)@.'60 0.3144MB 0.0017
Sport 300 kbits/s
? 1280%720
Length: 57:34, 7 1.2265MB 0.0349
1200 kbits/s
Chunk length: 10s 19201080
4.3414MB 2.50
6000 kbits/s 2067
480%360
Big Buck B 0.3217MB 0.0020
6 buck bunny, 300 kbits/s
Animation,
1280%720
Length: 09:46, . 1.1166MB 0.0607
1200 kbits/s
Chunk length: 10s
19201080 4.7303MB 0.7479
6000 kbits/s ’ '

Table 1: Properties of Swiss Account video traces [20].

the explore-then-commit mechanism has recently been adopted to
design low-complexity RL algorithms for RMAB, e.g., Restless-UCB [36]
and R(MA)? B-UCB [39] by sampling and constructing the plausible
MDPs only once via a simulator (a generative model). However, it is
infeasible to build a perfect simulator in dynamic wireless access edge
environments as considered in this paper. Furthermore, [36] sacrifices
the regret performance to O(T?/3) since it depends on the performance
of an offline oracle approximator for policy execution. While R(MA)*B-
UCB [39] achieves O(NT) regret, the multiplicative “pre-factor” that
goes with the time dependent function in the regret is linear in |S|
and |A|, while our QA-UCB has a much smaller “pre-factor”.

6 EXPERIMENTS

In this section, we numerically evaluate the performance of our
proposed Quality Index Policy and QA-UCB.

6.1 Evaluation Setup

Video Traces. We evaluate our policies using the Swiss Account
video traces [20]. In particular, we consider the sport trace in [20]
with key traces characteristics summarized in Table 1. All videos
are encoded into multiple chunks, with each chunk of L = 10
seconds. Each video consists of three bitrates: 300 kbits/s, 1200
kbits/s and 6000 kbits/s, from which we abstract the bitrate levels as
R = {1, 2, 3}. The total bits of a video chunk with different bitrates
across chunks are presented in Figure 2. It is clear from Table 1
that the higher the bitrate, the larger mean chunk size and variance.
This is consistent with our QoE model as described in Section 3.
Baselines. We compare our policies with the following baselines:

> Vanilla: A base case with served users being allocated the
highest resources, and no differentiation between users.

> Greedy: Each user greedily selects the action with the largest
reward for current state.

> Deep Q Network (DQN): This is a deep Q-learning policy de-
signed for multi-user wireless video streaming in [6]. We exploit
the same configurations as in [6], i.e., two hidden layers with 64
and 32 neurons in each layer with double DQN algorithm, and a
e-greedy policy with decayed learning rate.

> Panda [21] uses “probe and adapt” mechanism to adjust video
bitrate based on estimated network bandwidth, where “probe” means
that users constantly measure the network bandwidth and “adapt”
indicates that users adapt their video bitrates based the “probe”.
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Monte Carlo Simulation. We consider 20 users, and a total re-
source W = 10 MBps with ‘W = {0, 0.25MBps, 0.5MBps, IMBps}.
We apply the Monte Carlo method to estimate the success download
and state transition probabilities based on the statistics obtained
from network traces [34], in which the dynamics of a user’s down-
load speed is presented in Figure 4. Based on this, we generate a
wireless fading channel for each user in our simulation. Specifically,
in each round, each user experiences a wireless download speed
w € W and w/2 with probability 0.7 and 0.3, respectively. With the
allocated resource, each user receives video chunks with selected
bitrates. We use Monte Carlo simulation with 10° independent
trails to compute the average success download probability and
then generate the state transition kernel accordingly. Finally, we
set the maximum buffer size for each user as Bj,;,4x = 9 and the QoE
is defined as ¢, (R) =R, ap =3, fn = L,Vnand R € R.

6.2 Evaluation Results

Asymptotic Optimality. We first validate the asymptotic opti-
mality of Quality Index Policy (see Theorem 1). In particular,
we define the difference of average per-user QoE obtained by any
policy with that obtained from the theoretical upper bound solved
from the LP (12)-(15) (see Proposition 1) as the per-user optimality
gap. Figure 5 shows the per-user optimality gap of Quality Index
Policy with different number of users when the total number of
frames is T = 100 and T = 200. We observe that as the number of
users increases, the per-user optimality gap decreases significantly
and closes to zero under both settings. This verifies the asympototic
optimality in Theorem 1. Moreover, the per-user optimality gap
also decreases with a larger frame number.

Optimality Gap. The optimality gap is defined in the similar way
as the per-user optimality gap, but measures the gap between the
total expected cumulative QoE. We run QA-UCB for K = 100 and
K = 200 episodes with H = 100 frames in each episode. It is clear
from Figure 6 that our Quality Index Policy performs most
closely to the theoretical optimum and significantly outperforms
existing algorithms. From Figure 6, it is also evident that QA-UCB per-
forms close to Quality Index Policy as the number of episodes
increases since QA-UCB leverages our proposed index policy for
making decisions along with the information learned from the
episodes. Furthermore, QA-UCB significantly outperforms DQN.
Average QoE. Figure 7 shows the average QoE attained by different
policies. The error bars are drawn based on the 95% percentage
of QoE CDFs in Figure 8. It is clear that QA-UCB outperforms all
baselines. The improvement becomes more pronounced when we
compare the QoE CDF in Figure 8, where QA-UCB achieves a higher
QokE for a larger fraction of users. For example, QA-UCB achieves an
average QoE over 5 for 95% of the time whereas the next best policy
(DQN) is only about 40%. Further, we observe a steeper CDF curve
of QA-UCB compared to baselines, suggesting that it guarantees
fairness among users since most users have similar average QoE.
Rebuffering. As discussed in Section 3, rebuffering greatly impacts
QoE experienced by users. It is clear from Figure 9 that QA-UCB en-
sures lower rebuffering than the other policies under consideration.
Learning Regret. The learning regrets of QA-UCB and DQN are
shown in Figure 10, where we use the Monte Carlo simulation
with 10, 000 independent trails. To evaluate the regret of DQN, we
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Figure 7: Average QoE.

also modify the training horizon into episodes with each episode
containing 100 frames as our QA-UCB setting. As shown in Figure 10,
QA-UCB achieves a much smaller regret as compared with DQN. In
particular, the accumulated regret of QA-UCB plateaus around 2x10*
frames while that of DQN has a non-negligible increase.
Scalability. We also evaluate the scalability of our policies by in-
creasing the number of users with a fixed number of frames T = 250
in Figure 11. As the number of users increases, the gap between
the accumulated QoE achieved by QA-UCB and that achieved by
solving LP (12)-(15) (see Proposition 1) keeps the same, while the
gap becomes larger for DQN and Panda, suggesting that QA-UCB is
more scalable to the network environments.

Consistency. As discussed in Section 3, the QoE of user n in (2)
depends on the quality function g, (-) and parameters ay, f,. We
now show that the performance improvement of our QA-UCB over
baselines is consistent across different settings. Specifically, we
further consider q,(R) = 0.5R,ay, = 1,pp = LLYnand R € R,
under which QA-UCB still significantly outperforms other policies
in shown Figure 12, similar to our observations in Figure 6.

7 CONCLUSION

We studied the problem of adaptively choosing bitrates and allo-
cating network resources for maximizing the cumulative QoE of
multiple users that are streaming videos over a shared wireless ac-
cess edge network. Though it can be cast as a finite-horizon restless
bandit problem, it is provably hard to solve. To circumvent this,
we designed a computationally appealing Quality Index Policy
that is provably asymptotically optimal. Since the wireless edge en-
vironment is highly dynamic with system parameters varying over

Figure 8: CDF of average QoE.
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Figure 9: Rebuffering.

time, we further proposed an index-aware RL algorithm dubbed as
QA-UCB. We proved that QA-UCB achieves a sub-linear regret with a
low-complexity since it fully leverages our proposed index policy
for making decisions. To the best of our knowledge, this is the
first work that designs a lightweight index-aware reinforcement
learning policy with sub-linear regret in the context of adaptive
video streaming with multiple users in wireless edge networks. We
performed simulations using real-world video traces, and observed
that our policies outperform conventional ones.

ACKNOWLEDGEMENTS

The work of G. Xiong and J. Li was supported in part by the
NSF grants CRII-CNS-NeTS-2104880 and RINGS-2148309, and was
supported in part by funds from OUSD R&E, NIST, and industry
partners as specified in the Resilient & Intelligent NextG Systems
(RINGS) program, as well as the DOE DE-EE0009341. The work of R.
Singh was partially supported by the SERB Grant SRG/2021/002308,
and PC 39010B. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-Tuning Video ABR Algorithms to Network Conditions. In Proc. of ACM
SIGCOMM.

[2] Eitan Altman. 1999. Constrained Markov Decision Processes. Vol. 7. CRC Press.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-Time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2 (2002), 235-256.

[4] Konstantin Avrachenkov and Vivek S Borkar. 2020. Whittle Index Based
Q-learning for Restless Bandits with Average Reward.  arXiv preprint



MobiHoc’22, October 17-20, 2022, Seoul, Republic of Korea

(5

[10

(1

[12

(13

[14

(15

[16

[17

[18

[19

[20

(21

[22
[23

[24

Accumulated regret

=

]

]

]

]

]

]

]

]

]

Guojun Xiong?, Xudong Qin?, Bin Li?, Rahul Singh?, Jian Li!

; 3000 | | - : : :
—0—-QA-UCB

2500 | ——Vanilla
o —*—Greedy
©20001 |—o—DQN
2 —O—Panda
& 1500
5
O 1000

500

. . . 35 x10° .
| - - -UpperBound
1 3[ |<-QA-UCB
w ——DQN
8r 1 § 25t |[-O0-Panda
el
j53
6 + 8 2
=3
£
4r 1 315
<<
2r 1 1
0.5
0 0.5 1 1.5 2 25 3 50 100
Frame (T) x10%
Figure 10: Learning regret.
arXiv:2004.14427 (2020).

Dilip Bethanabhotla, Giuseppe Caire, and Michael ] Neely. 2016. WiFlix: Adaptive
Video Streaming in Massive MU-MIMO Wireless Networks. IEEE Transactions
on Wireless Communications 15, 6 (2016), 4088-4103.

Rajarshi Bhattacharyya, Archana Bura, Desik Rengarajan, Mason Rumuly, Srini-
vas Shakkottai, Dileep Kalathil, Ricky KP Mok, and Amogh Dhamdhere. 2019.
Qflow: A Reinforcement Learning Approach to High QoE Video Streaming over
Wireless Networks. In Proc. of ACM MobiHoc.

Chao Chen, Robert W Heath, Alan C Bovik, and Gustavo de Veciana. 2013. A
Markov Decision Model for Adaptive Scheduling of Stored Scalable Videos. IEEE
Transactions on Circuits and Systems for Video Technology 23, 6 (2013), 1081-1095.
Yonathan Efroni, Shie Mannor, and Matteo Pirotta. 2020. Exploration-Exploitation
in Constrained MDPs. arXiv preprint arXiv:2003.02189 (2020).

Jing Fu, Yoni Nazarathy, Sarat Moka, and Peter G Taylor. 2019. Towards Q-
Learning the Whittle Index for Restless Bandits. In 2019 Australian & New Zealand
Control Conference (ANZCC). IEEE, 249-254.

Chen Gong and Xiaodong Wang. 2013. Adaptive Transmission for Delay-
Constrained Wireless Video. IEEE Transactions on Wireless Communications
13, 1 (2013), 49-61.

Aditya Gopalan and Shie Mannor. 2015. Thompson Sampling for Learning
Parameterized Markov Decision Processes. In Proc. of COLT.

Yashuang Guo, Qinghai Yang, F Richard Yu, and Victor CM Leung. 2017. Dynamic
Quality Adaptation and Bandwidth Allocation for Adaptive Streaming Over Time-
Varying Wireless Networks. IEEE Transactions on Wireless Communications 16,
12 (2017), 8077-8091.

David ] Hodge and Kevin D Glazebrook. 2015. On the Asymptotic Optimality of
Greedy Index Heuristics for Multi-Action Restless Bandits. Advances in Applied
Probability 47, 3 (2015), 652-667.

Weici Hu and Peter Frazier. 2017. An Asymptotically Optimal Index Policy for
Finite-Horizon Restless Bandits. arXiv preprint arXiv:1707.00205 (2017).
Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-Optimal Regret
Bounds for Reinforcement Learning. Journal of Machine Learning Research 11, 4
(2010).

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. 2019. Learning
Adversarial MDPs with Bandit Feedback and Unknown Transition. arXiv preprint
arXiv:1912.01192 (2019).

Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo. 2021. A Sample-Efficient
Algorithm for Episodic Finite-Horizon MDP with Constraints. In Proc. of AAAL
Jonathan Kua, Grenville Armitage, and Philip Branch. 2017. A Survey of Rate
Adaptation Techniques for Dynamic Adaptive Streaming Over HTTP. IEEE
Communications Surveys & Tutorials 19, 3 (2017), 1842-1866.

Qiao Lan, Bojie Lv, Rui Wang, Kaibin Huang, and Yi Gong. 2020. Adaptive
Video Streaming for Massive MIMO Networks via Approximate MDP and Rein-
forcement Learning. IEEE Transactions on Wireless Communications 19, 9 (2020),
5716-5731.

Stefan Lederer, Christopher Miiller, and Christian Timmerer. 2012. Dynamic
Adaptive Streaming over HT TP Dataset. In Proc. of ACM MMSys.

Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David
Oran. 2014. Probe and Adapt: Rate Adaptation for HTTP Video Streaming at
Scale. IEEE Journal on Selected Areas in Communications 32, 4 (2014), 719-733.
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.

Andreas Maurer and Massimiliano Pontil. 2009. Empirical Bernstein Bounds and
Sample Variance Penalization. arXiv preprint arXiv:0907.3740 (2009).

José Nifio-Mora. 2007. Dynamic Priority Allocation via Restless Bandit Marginal
Productivity Indices. Top 15, 2 (2007), 161-198.

Ronald Ortner, Daniil Ryabko, Peter Auer, and Rémi Munos. 2012. Regret Bounds
for Restless Markov Bandits. In Proc. of Algorithmic Learning Theory.

90

0 150 200
Number of users (N)

Figure 11: Scalability.

[26

[27

[28

[29

[43

[44]

[45

0"
100

200 300 400 500 600
Frame (T)

700 800 900 1000

Figure 12: Consistent improvement.

Christos H Papadimitriou and John N Tsitsiklis. 1994. The Complexity of Optimal
Queueing Network Control. In Proc. of IEEE Conference on Structure in Complexity
Theory.

Martin L Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons.

Aviv Rosenberg and Yishay Mansour. 2019. Online Convex Optimization in
Adversarial Markov Decision Processes. In Proc. of ICML.

Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia 18, 4 (2011), 62-67.

Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. IEEE/ACM Transactions on Net-
working 28, 4 (2020), 1698-1711.

Thomas Stockhammer. 2011. Dynamic Adaptive Streaming Over HTTP-
Standards and Design Principles. In Proc. of ACM MMSys.

Cisco Systems. 2019. Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 2017-2022 White Paper. [Online.] Available: https:
//s3.amazonaws.com/ media.mediapost.com/uploads/ CiscoForecast.pdf (2019).
Kexin Tang, Nuowen Kan, Junni Zou, Chenglin Li, Xiao Fu, Mingyi Hong, and
Hongkai Xiong. 2021. Multi-user Adaptive Video Delivery over Wireless Net-
works: A Physical Layer Resource-Aware Deep Reinforcement Learning Ap-
proach. IEEE Transactions on Circuits and Systems for Video Technology 31, 2
(2021), 798-815.

J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177-2180.

Ina Maria Verloop. 2016. Asymptotically Optimal Priority Policies for Indexable
and Nonindexable Restless Bandits. The Annals of Applied Probability 26, 4 (2016),
1947-1995.

Siwei Wang, Longbo Huang, and John Lui. 2020. Restless-UCB, an Efficient and
Low-complexity Algorithm for Online Restless Bandits. In Proc. of NeurIPS.
Richard R Weber and Gideon Weiss. 1990. On An Index Policy for Restless Bandits.
Journal of Applied Probability (1990), 637-648.

Peter Whittle. 1988. Restless Bandits: Activity Allocation in A Changing World.
Journal of Applied Probability (1988), 287-298.

Guojun Xiong, Jian Li, and Rahul Singh. 2022. Reinforcement Learning Aug-
mented Asymptotically Optimal Index Policies for Finite-Horizon Restless Ban-
dits. In Proc. of AAAI 2022.

Guojun Xiong, Shufan Wang, Jian Li, and Rahul Singh. 2022. Model-free Re-
inforcement Learning for Content Caching at the Wireless Edge via Restless
Bandits. arXiv preprint arXiv:2202.13187 (2022).

Guojun Xiong, Shufan Wang, Gang Yan, and Jian Li. 2022. Reinforcement Learn-
ing for Dynamic Dimensioning of Cloud Caches: A Restless Bandit Approach. In
Proc. of IEEE INFOCOM.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming Over HTTP. In Proc.
of ACM SIGCOMM.

Gabriel Zayas-Caban, Stefanus Jasin, and Guihua Wang. 2019. An Asymptoti-
cally Optimal Heuristic for General Nonstationary Finite-Horizon Restless Multi-
Armed, Multi-Action Bandits. Advances in Applied Probability 51, 3 (2019), 745—
772.

Chao Zhou, Chia-Wen Lin, and Zongming Guo. 2016. mDASH: A Markov
Decision-based Rate Adaptation Approach for Dynamic HTTP Streaming. IEEE
Transactions on Multimedia 18, 4 (2016), 738-751.

Yihan Zou, Kwang Taik Kim, Xiaojun Lin, and Mung Chiang. 2021. Minimizing
Age-of-Information in Heterogeneous Multi-Channel Systems: A New Partial-
Index Approach. In Proc. of ACM MobiHoc.



