! membranes

Article

Non-Solvent Induced Phase Separation (NIPS) for Fabricating
High Filtration Efficiency (FE) Polymeric Membranes for Face
Mask and Air Filtration Applications

Ebuka A. Ogbuoji !, Lauren Stephens 17, Amber Haycraft 1, Eric Wooldridge % and Isabel C. Escobar *

check for
updates

Citation: Ogbuoji, E.A.; Stephens, L.;
Haycraft, A.; Wooldridge, E.; Escobar,
1.C. Non-Solvent Induced Phase
Separation (NIPS) for Fabricating
High Filtration Efficiency (FE)
Polymeric Membranes for Face Mask
and Air Filtration Applications.
Membranes 2022, 12, 637.
https://doi.org/10.3390/
membranes12070637

Academic Editor: Alfredo Cassano

Received: 3 May 2022
Accepted: 14 June 2022
Published: 21 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
ebuka.ogbuoji@uky.edu (E.A.O.); lauren.stephens1@uky.edu (L.S.); amber.haycraft@uky.edu (A.H.)
Digital Printing Technology, Somerset Community College, Somerset, KY 42501, USA;
eric.wooldridge@kctcs.edu

*  Correspondence: isabel.escobar@uky.edu; Tel.: +1-859-257-7990

Abstract: Protection against airborne viruses has become very relevant since the outbreak of SARS-
CoV-2. Nonwoven face masks along with heating, ventilation, and air conditioning (HVAC) filters
have been used extensively to reduce infection rates; however, some of these filter materials provide
inadequate protection due to insufficient initial filtration efficiency (FE) and FE decrease with time.
Flat sheet porous membranes, which have been used extensively to filter waterborne microbes and
particulate matter due to their high FE have the potential to filter air pollutants without compromising
its FE over time. Therefore, in this study, single layer polysulfone (PSf) membranes were fabricated
via non-solvent induced phase separation (NIPS) and were tested for airflow rate, pressure drop
and FE. Polyethylene glycol (PEG) and glycerol were employed as pore-forming agents, and the
effect of the primary polymer and pore-forming additive molecular weights (MW) on airflow rate
and pressure drop were studied at different concentrations. The thermodynamic stability of dope
solutions with different MWs of PSf and PEG in N-methylpyrrolidone (NMP) at different concen-
trations was determined using cloud-point measurements to construct a ternary phase diagram.
Surface composition of the fabricated membranes was characterized using contact angle and X-ray
photoelectron spectroscopy (XPS), while membrane morphology was characterized by SEM, and
tensile strength experiments were performed to analyze the membrane mechanical strength (MS). It
was observed that an increase in PSf and PEG molecular weight and concentration increased airflow
and decreased pressure drop. PSf60:PEG20:NMP (15:15:70)% w/w showed the highest air flow
rate and lowest pressure drop, but at the expense of the mechanical strength, which was improved
significantly by attaching the membrane to a 3D-printed polypropylene support. Lastly, the FE values
of the membranes were similar to those of double-layer N95 filters and significantly higher than those
of single layer of N95, surgical mask and HVAC (MERV 11) filters.
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1. Introduction

Air filters are vital for improving air quality by trapping dust, particulate matter,
allergens, and other materials that may be present in the atmosphere. Applications of air
filters can be found in various industries, such as medical, commercial, automobile and
military [1]. The importance of high efficiency particulate air filters (HEPA) for HVAC
systems and face masks have been emphasized in recent times due to the SARS-CoV-2
pandemic for effective protection against aerosolized microbes. The use of these high
filtration efficiency (FE) filters has reportedly resulted in a drastic decrease in infection rate
of the easily transmissible virus (SARS-CoV-2) [2,3]. High efficiency particulate air filters
(HEPA), which can trap 99.95% of dust particulates and aerosolized microbes greater than
0.3 pm in the air, have been recommended by the American Institute of Architects (AIA),
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the Centers for Disease Control (CDC) and the American Society of Heating Refrigerating
and Air Conditioning Engineers (ASHRAE) for optimal protection against aerosolized
microorganisms [4]. Similarly, high FE face masks such as N95 have been recommended by
the CDC for maximum protection against aerosolized pathogens [5]. Air filters for HVAC
systems are typically made from fiber glass, polymer fiber and pleated cotton while face
mask filters are made using nonwoven fibers, which have web-like structures formed by
entangled fibers from various synthetic polymers such as polypropylene, polyethylene,
polystyrene, polyurethane and polyacetonitrile [6-8]. These nonwoven fibers used for face
mask production are usually produced via spun bonding, melt blowing, and electrospin-
ning, and have important characteristics, such as low air resistance, versality and multiple
layers [9,10].

Two major mechanisms governing air filtration are mechanical/physical and electro-
static mechanism [7]. Physical or mechanical mechanisms include diffusion, interception,
inertia impaction, straining/sieving and gravity sedimentation [11]. These mechanisms
affect the filter FE and are a function of filtration velocity and particle size [12]. Fiber
glass, which has been used extensively as HVAC filters and non-woven fibers, achieve
high filtration efficiency by electrostatic interaction [7,13]. This filtration mechanism allows
for high initial filtration efficiency with low pressure drop. Commercially available face
masks such as N95 and KN95 achieve high breathability without compromising the FE
by electrostatic attraction [12,14,15]. The downside of this mechanism is that the charged
media is often short-lived since various environmental factors such as humidity, corrosive
vapors, and salt can cause a premature discharge or charge masking, resulting in reduced
filtration efficiency performance [16]. This makes mechanical mechanism more attractive
for critical filtration applications such as protection against pathogenic microbes.

Polymeric membranes have received increased attention in the past decade for high
FE applications using mechanical filtration because the tortuosity and asymmetry of mem-
brane pores can help increase FE at low-pressure drops [17]. In addition, controllable
thickness, pore size, porosity and tunable surface functionalization make polymeric mem-
branes very attractive for air filtration [17]. HEPA filters capture aerosolized microbes
efficiently; however, these filters can become breeding grounds for microbes due to the suit-
able conditions, i.e., temperature and humidity present in the filter environment [4]. These
microbes tend to multiply effectively in the filters by using other trapped particulates as
food sources [4]. The resulting offspring are then dispersed back into the air, causing health
and safety concerns [4,18-20]. Cleaning these filters can result in FE reduction, and inap-
propriate disposal can lead to environmental problems. The modifiable surface and pore
composition of polymeric membranes enhance functionalization with antimicrobial agents,
such as silver, oxides of copper, zinc, and titanium [21-23], making membranes a potential
candidate for manufacturing reusable filters for HVAC systems and face mask applications.

In fabricating membranes for air filtration, factors such as FE and pressure drop must
be considered [24]. These parameters are dependent on membrane thickness and pore
sizes, as shown in Figure 1. Reducing the membrane thickness results in reduced airflow
resistance and pressure drop but can compromise the mechanical strength (MS). This
relationship follows Darcy’s law (Equation (1)):

g2 M
/A
where Q is the volumetric flow rate, A is the normal cross-sectional area, AP is the pressure
drop, e is the membrane thickness, x is the intrinsic air permeability, and # is the viscosity.
Pore size can also affect the filtration efficiency and pressure drop across the mem-
branes since pore size determines the size of particles filtered and resistance to airflow
(Figure 1). Another factor affecting pressure drop is the membrane thickness, and to attain
a very low pressure drop, the membrane thickness might range between 50 and 250 pum,
which may not withstand the mechanical stress from heavy breathing and mask mishan-
dling. Therefore, optimal thickness and pore size must be achieved to ensure sufficient FE,
minimal pressure drop and good mechanical strength.
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2. Materials and Methods

Polysulfone (PSf) pellets with average molecular weights of MW 35,000 Da (PS£35) and
MW 60,000 Da (PSf60) were obtained from Sigma Aldrich (Saint Louis, MO, USA) and Acros
Organics (Carlsbad, CA, USA), respectively. PEG with MW of 1000, 4000, 8000, 10,000 and
20,000 Da were purchased from Alfa Aesar (Haverhill, MA, USA). N-Methylpyrrolidone
(NMP) with 99% purity was purchased from VWR Chemicals (Radnor, PA, USA).

2.1. Dope Solution Preparation and Casting Method

The primary polymer (PSf) and pore-forming additives were dissolved in NMP at
concentrations shown in Table 1. Solutions with additives (MW < 10 kDa) were stirred
at room temperature while those with additives (MW > 10 kDa) were heated to 50 °C
and stirred at 100 rpm in a tightly sealed container until a clear solution was obtained,
signifying complete dissolution. The dissolved solution was sonicated to remove bubbles
and kept at room temperature for 30 min before casting using an automatic bench-top
flat sheet casting machine (Model: BTFS-TC, PMI, Ithaca, NY USA) set at a casting speed
of 500 cm/min to avoid inconsistencies in membrane thickness which could result from
casting manually [33]. The casted solution was then immersed in a coagulation (water)
bath at room temperature for 15 min before transferring into a container with deionized
(DI) water, where it was stored for 24 h. The membrane was then dried in a convective
dryer set at 30 °C for 24 h and was tested afterwards.

Table 1. Composition of membrane casting solutions.

Concentrations (% w/w)

Membranes PSF35 PSF60 PEG 1K PEG 4K PEG 8K PEG 10K PEG 20K GLY NMP
P1 15 - - - - - - - 85
P2 - 15 - - - - - - 85
P3 15 - - - - - - 10 75
P4 15 - 10 - - - - - 75
P5 15 - - 10 - - - - 75
P6 15 - - - 10 - - - 75
p7 15 - - - - - 15 - 70
P8 15 - - - - 10 - - 75
P9 - 15 - - - - 15 - 70

P7-5 15 - - - - - 5 - 80
P7-10 15 - - - - - 10 - 75

2.2. Airflow, Pressure Drop and Filtration Efficiency (FE) Test

The completely dried samples were cut into spherical shapes (4.5 cm diameter) to
fit a 47 mm in-line polycarbonate filter holder (Pall corporation, Show Low, AZ, USA) as
shown in Figure 2. The cell was connected to an air source (high purity compressed air), a
differential manometer (VWR, Radnor, PA, USA) was connected across the cell to measure
pressure drop, and a digital mass flow meter purchased from Kelly Pneumatics (Newport
Beach, CA, USA) was connected to the end of the system. Air resistance and pressure drop
tests were conducted at 0.4 and 0.55 bar since these pressures result in flowrates greater than
reported normal human respiration flowrate (6-10 LPM) calculated by multiplying normal
breathing tidal volume (0.5 L [34]) by normal breathing rate (12-20 breaths/minute [35]).
Experiments were performed in triplicates to ensure data reproducibility.
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To investigate the thermodynamic stability of the casting solutions, a phase diagram
was constructed by measuring cloud point. Cloud point measurements were carried out
by the titration method, which involves adding water into a solution until a visually
turbid solution is formed [37]. Homogeneous polymer casting solutions were first obtained
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at 50 °C and 150 rpm before adding water. Ultrapure water was then dropped into
the homogeneous solution at 70 °C and 150 rpm until a visually cloudy solution was
obtained. On adding water, the solution was agitated using a vortex shaker when localized
precipitation occurred until the precipitated chunk disappeared. Cloudy solutions were
maintained at operating conditions (70 °C and 150 rpm) for 30 min to confirm turbidity.
Once a turbid solution was confirmed (cloud point), the compositions of the solutions were
recorded and used to construct a ternary phase diagram.

2.4. Porosity and Viscosity Measurements

Membrane porosity was estimated by the gravimetric method, which involves weigh-
ing dry and wet membrane samples to obtain a weighted average [38]. Fabricated mem-
brane samples were cut into 1 X 1 cm? sheets and were soaked in isopropanol (IPA) for
24 h. The soaked flat sheets were then weighed wet and dried in an oven at 50 °C for 24 h.
Dried membranes were weighed after drying completely, and the membrane porosity (P)
was calculated using Equation (2) described by [39]:

(1M —mg)

Y e
My —Mm m
Vt ( o 4) + pT;l
where V;, Vi, my, my p; and py, are IPA volume, total volume, wet membrane weight, dry
membrane weight, IPA density and membrane density, respectively. The experiment was
performed in triplicate to ensure reproducibility.
Casting solution viscosity was obtained using a rheometer (AG-G2, TA Instruments,
New Castle, DE, USA) in a parallel plate geometry (40.0 mm parallel plate, Peltier plate
stainless steel). Viscosity measurements were taken at 25 °C and a shear rate of 0.1 1/s.

P 3)

2.5. X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), and Surface
Pore Analysis

XPS was used to obtain a quantitative elemental composition of the fabricated mem-
branes. XPS characterization was performed using a K-Alpha XPS apparatus equipped
with an A1 K (1486.6 eV) source (Thermo Fisher Scientific, Waltham, MA, USA). The X-ray
source had an accelerated voltage of 10 kV, an emission current of 12 mA, and the takeoff
angle of the photoelectron was set at 90°. Peaks of carbon, oxygen, and sulfur were fitted
using an Avantage software version 5.9918, Thermo Fisher Scientific, Waltham, MA, USA. A
depth profile analysis was also performed with the same equipment to obtain the elemental
composition of the membrane matrix below the surface layer. A 200 eV ion beam was
used to etch 100 nm layer of the membrane top surface for 5 cycles at 60 s/cycle, and the
elemental compositions of each sample were measured.

Fabricated membrane morphology was observed by SEM (FEI Helios Nanolab 660,
Thermo Fisher Scientific, Waltham, MA, USA). The samples were prepared by first frac-
turing in liquid nitrogen and then sputter-coated with platinum before observations were
carried out on the membrane cross-section.

SEM images of different magnifications (1000 x, 2500 %, 5000 x) were used to analyze
surface pore characteristics. Images were obtained using SEM (FEI Helios Nanolab 660,
Thermo Fisher Scientific, Waltham, MA, USA) and were further analyzed using Image],
an open-source image analysis software to obtain average pore size and pore size distribu-
tion. Pore size was obtained manually after adjusting the image scale by measuring the
pore diameter. Pore sizes were measured for three magnifications 1000x (50 umy), 2500 x
(10 um), and 5000 x (5 pm) for each membrane, and were averaged to obtain the mean pore
size. Other surface images and pore size distributions were obtained and reported in the
supplementary materials (Figures S1, S6 and S7).
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3. Results and Discussion
3.1. Membrane Composition

To determine the elemental membrane surface composition, the membranes were
characterized using X-ray photoelectron spectroscopy (XPS), as shown in Table 2. An
increase in surface oxygen concentration was observed in the membranes fabricated using
casting solutions containing PEG. PSF35:PEG20 (P7) and PSF60:PEG20 (P9) both showed
higher oxygen contents of 15.55 & 1.7 mol% and 15.75 £ 1.05 mol%, respectively, as
compared to 12.74 £ 0.68 mol% for PS£35 (P1) and 12.23 £ 0.29 mol% for PSF60 (P2).
Additionally, oxygen/carbon ratios were higher for P7 (0.188) and P9 (0.192) compared
to their pristine counterparts P1 (0.148) and P2 (0.141). The increase in membrane surface
oxygen is hypothesized to originate from the oxygen in PEG backbone and terminal
hydroxyl functional group, which suggests that the additive does not completely diffuse
into the non-solvent during phase separation, instead, some PEG remnants are trapped
in the membrane matrix. Different mechanisms of pore formation in the presence of
water-soluble pore-forming additives during non-solvent induced phase separation (NIPS)
have been proposed in literature and are summarized here [31,40-42]. Some studies
suggest that additives cause delayed solidification of membrane matrix resulting from pore
former diffusion into the non-solvent (water), leading to the formation of fully developed
macropores [41,43]. Other studies suggest water-soluble additive migration to the surface
layer of the membrane [40,42], which could support the observation here of an increased
amount of oxygen on the surface of the membrane potentially arising from the pore former.

Table 2. Surface elemental composition of fabricated PSf membranes.

Surface Elemental (mol%)

Membrane
Cls O1ls S2p O1s/C1s
P1 86.10 & 0.95 12.74 £+ 0.68 1.16 = 0.27 0.148
P2 86.88 + 0.3 12.23 +£0.29 0.89 +£0.01 0.141
pP7 82.83 £1.95 15.55 + 1.7 1.62 +0.28 0.188
P9 8218 + 1.5 15.75 £ 1.05 207 +04 0.192

To further investigate the hypothesis of PEG entrapment in the membrane matrix,
a depth profile was obtained using XPS by etching the first five 100 nm top layer of the
membrane surface. For all samples, oxygen concentration decreased with depth; however,
P7 and P9 had a higher decrease in oxygen content, 71.4% and 72.6% respectively, between
the top surface and the first etched surface layer compared to P1 (62.5%) and P2 (62.2%)
(Figure 3a and Table 3), which implies a higher surface oxygen concentration for P7 and
P9. Beyond the first etch layer, there was no significant difference between the oxygen
content of the etched layers for all samples (Figure 3a). This indicates that PEG, responsible
for the increased oxygen content, is only present in the surface layer of the membrane,
which agrees with the proposed reason that the pore former migrates to the surface during
NIPS [40,42]. When the cast solution was immersed in water, the hydrophilic additive
migrated to the membrane top layer in an attempt to diffuse into the non-solvent. However,
instantaneous demixing occurred, leading to fast precipitation; hence, some long-chain PEG
molecules were trapped and immobilized at the surface of the membrane. The presence of
increased oxygen content on the surface layers of P7 and P9 resulted in decreased carbon
concentrations on their surfaces as compared to P1 and P2. The percent increase in carbon
concentration between the top surface and the first etched layer for P7 and P9 were higher
compared to those of P1 and P2 (Figure 3b and Table 3); which again signifies a higher
oxygen concentration at P7 and P9 membrane surfaces.
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Figure 3. Depth profile of fabricated PSf membranes, (a) oxygen (O1s) profile, and (b) carbon (Cls) profile.
Table 3. Elemental compositions of top surface and first etched membrane layer.
Oxygen Concentration (%mol) Carbon Concentration (%mol)
Membrane
Top Surface 1st Etched Surface % Decrease  Top Surface 1st Etched Surface % Increase
P1 13.92 522 62.5 84.70 92.45 9.2
P2 13.67 517 62.2 85.17 92.71 8.9
pP7 16.88 4.83 714 81.16 92.74 14.3
P9 17.67 4.84 72.6 81.18 93.37 15

The higher oxygen composition on the membrane surface, observed in Figure 3a and
Table 3, may condense humid air and wet the pores. Therefore, observing that PEG does
not completely exit the membranes during NIPS is a key finding, and there are techniques
that can be employed to address this, such as by surface grafting an organosilane to
react with the hydroxyl group from the PEG on the membrane surface. For example,
fluoroalkylsilane (FAS) has been used to increase membrane hydrophobicity by 300% [44].
The addition of surface modifying macromolecules (SMM) in dope solutions has also
been reported to increase the hydrophobicity of polymeric membranes formed by phase
inversion because the active SMM, which has a low polarity component, migrates to the top
layer of the membrane during phase separation, thereby enhancing hydrophobicity without
significantly compromising flux [45,46]. Other additives, such as clay nanocomposites,
have reportedly increased hydrophobicity [47] if pore wetting becomes a problem.

3.2. Membrane Wettability

Contact angle measurements were conducted to obtain the hydrophilicity or wettabil-
ity of the membrane surface. Membranes fabricated with solutions containing pore forming
additives showed a lower contact angle compared to their pristine polymer solution coun-
terparts. As observed in Figure 4, the contact angle slightly decreased from 69 + 0.69° for
PS£35(P1) to 68 + 1.8° for PSf35:PEG20(P7); however, the decrease is not statistically signifi-
cant. On the other hand, for the higher molecular weight PSf, the contact angle decreased
from 63.18 £ 2.2° for PSf60(P2) to 54.87 £ 3.2° for PSf60:PEG20(P9). Contact angle measure-
ments agree with Table 2, which showed an average increase of approximately 3 mol% in
the amount of oxygen between P1 and P2 with the addition of PEG pore former. Since PEG
is a hydrophilic compound, the decrease in contact angle further strengthens the hypothesis
that the pore former migrates to the surface of the membrane during phase inversion and
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The longer the chain length of PEG, the higher the probability of chain entanglement
responsible for viscosity in higher molecular weight polymer solutions. As expected,
P8 showed the highest air flowrate, which correlates with the increased porosity of the
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membrane (Figure 5). Membranes made from solutions with PEG additives showed
increased flow rate with molecular weight from 4.2-14.7 LPM at 0.4 bar and 4.6-20.9 LPM
at 0.55 bar. P3 showed lower flowrate compared to the other pore formers studied. This is
because glycerol has a lower molecular weight compared to the PEGs studied, hence a lower
viscosity leading to lower porosity and flowrate (effect of NaCl, another small molecular
weight compound, was reported in the Supplementary Materials Table S1). Table 4 shows
that the viscosity of the casting solution increased with increasing PEG molecular weight
leading to varying sizes of fully /partially developed macrovoids in the membranesublayer,
as also observed in Figure 6. Although all membranes showed finger-like pore structures
Membranes 2022, 12, x FOR PEER REVl#lting from instantaneous demixing, it is noticeable that there were more developed 10
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, -~ Asmentioned previously, polymer molecular weight is estimated by the chain length
in the polymer; thus, the higher the molecular weight, the longer the chains. Chain length
can affect the arrangement of the polymer in a membrane matrix which can, in turn, affect
porosity and flux across the membrane. To determine the effect of PSf molecular weight
on air flow resistance and pressure drop, membranes of two PSf molecular weights (35
kDA and 60 kDA) were fabricated and tested. The membrane composition was kept at
15:15:70 (%w/w) of PSf:PEG20:NMP. Figure 8a,b shows that P9 had the highest airflow
rate of 20.3 LPM at 0.4 bar and 25.8 LPM at 0.55 bar. The effect of PSf molecular weight on
flow rate could be analyzed based on thermodynamics, kinetics, and polymer confor-
mation. PSf60, a longer chain polymer compared to PSf35, would make a less compact
conformation during precipitation in the presence of another long-chain polymer such as
PEG20 because of the reduced potential to arrange properly. This could result in larger
pores and increased porosity after NIPS since PEG diffuses into the non-solvent as pre-
cipitation occurs [42]. Figg{‘g 9 shows an increase in porosity with PEG molecular weight
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molecular weight (Figure 10) causing a rapid exchange between solvent and non-solvent,
resulting in faster precipitation associated with more porous membranes [53]. Pressure
drop is expected to correlate with airflow rate since both parameters relate to membrane
resistance to airflow. For samples with lower resistance to airflow, there would be a higher
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In addition, viscosity increases with molecular weight leading to increased porosity

and increased airflow rate. Viscosity showed an increasing trend with PSf molecular weight

in casting solutions (Table 4) which resulted in more porous membranes, shown in Figure 9;
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3.6. Ternary Phase Diagram

The decrease in thermodynamic stability with increasing molecular weight of both
PSf and the presence of PEG can be seen in the ternary phase diagram (Figure 10). Ther-
modynamic stability has been reported to affect membrane pore structure, porosity, and
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3.6. Ternary Phase Diagram

The decrease in thermodynamic stability with increasing molecular weight of both
PSf and the presence of PEG can be seen in the ternary phase diagram (Figure 10). Ther-
modynamic stability has been reported to affect membrane pore structure, porosity, and
mechanical strength of the membrane [31,37,54]. To investigate the thermodynamic stability
of the casting solutions used in fabricating membranes in this work, a phase diagram was
constructed by cloud point measurement. The phase diagram encompasses an experimen-
tal binodal curve (cloud point) which represents compositions of thermodynamic instability
and phase transition. Cloud point curve for solutions without additives (PSf35 (P1) and
PS£60 (P2)) and with additives (PSf35:PEG20 (P7) and PSf60:PEG20 (P9)) were obtained.
For all solutions, the one-phase region reduced (shorter composition path) with increased
PSf molecular weight, indicating an increase in thermodynamic instability and faster liquid-
liquid demixing with molecular weight (Figure 10). A shorter composition path was also
observed for solutions containing PEG, which signifies a lower thermodynamic stability
than their additive-free counterparts.

The effect of thermodynamic stability on membrane surface pore size and porosity
can be observed in the surface SEM images (Figure 11). As seen in Figure 11 and Table 5,
the surface pore size increases in the presence of PEG, which agrees with previous stud-
ies [31,50]. The surface pores on membranes fabricated with casting solutions with lower
thermodynamic stability (P7 and P9) were significantly larger than those on membranes
fabricated with more thermodynamically stable solutions (P1 and P2). Additionally, the
pore sizes on membranes with PEG were not uniformly distributed compared to additive-
free membranes due to the presence of macropores caused by the high inflow of water
during phase inversion. P9 was observed to have more surface macropores compared to P7
ue to the presence of longer polymer chains (i.e., PSf 60 kDa > PSf 35 kDa) Wthh hinders
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Table 5. Surface pore size of fabricated membranes obtained using image].

Membrane Mean Pore Size (nm) Max Pore Size (nm) Min Pore Size (nm)
PSf 35 (P1) 383 +45 1151 82
PSt60 (P2) 392 +23 878 66
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Table 5. Surface pore size of fabricated membranes obtained using image].

Membrane Mean Pore Size (nm)  Max Pore Size (nm) Min Pore Size (nm)

PSf 35 (P1) 383 + 45 1151 82

PSt60 (P2) 392 £23 878 66
PS£35:PEG20 (P7) 1433 + 675 18,051 292
PSf60:PEG20 (P9) 2207 + 808 19,366 412

3.7. Membrane Mechanical Strength and Filtration Efficiency

A tensile test was conducted to determine the mechanical strength of the fabricated
membranes, which informs their durability and ability to withstand stress. Mechanical
strength was expressed in elongation, elastic modulus, and tensile strength. In the presence
of an additive, it was observed that the tensile strength decreased with an increase in PSf
molecular weight, as seen in Figure 12a. PSf60:PEG20 (P9) showed a significantly lower
tensile strength (0.11 MPa) compared to that for PSf35:PEG20 (P7), 0.23 MPa. Similarly, the
elastic modulus and elongation decreased with increase in PSf molecular weight in the
presence of PEG (Figure 12b). This decrease in mechanical strength with an increase in
molecular weight can be attributed to the presence of larger macrovoids in the P9 membrane
structure caused by reduced compactness in longer PSf chain (molecular weight = 60 kDa)
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all single layer filters tested, P9 showed the highest FE values as a function of NaCl parti-
cle diameter with significantly higher FE values than that of N95-1, SM-1 and HVAC for
particle sizes ranging from 0.3-2 um (Figure 13). On the other hand, there was no signifi-
cant difference between the FE values of P9 and dual-layer N95 (N95-2). The added N95
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